src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Mon, 10 Jan 2011 18:46:29 -0800

author
iveresov
date
Mon, 10 Jan 2011 18:46:29 -0800
changeset 2438
dd031b2226de
parent 2314
f95d63e2154a
child 2497
3582bf76420e
permissions
-rw-r--r--

4930919: race condition in MDO creation at back branch locations
Summary: Reuse set_method_data_for_bcp() to setup mdp after MDO creation.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    45 #ifdef COMPILER2
    46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    47 ExceptionBlob      *OptoRuntime::_exception_blob;
    48 #endif // COMPILER2
    50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    60 #define __ masm->
    62 class SimpleRuntimeFrame {
    64   public:
    66   // Most of the runtime stubs have this simple frame layout.
    67   // This class exists to make the layout shared in one place.
    68   // Offsets are for compiler stack slots, which are jints.
    69   enum layout {
    70     // The frame sender code expects that rbp will be in the "natural" place and
    71     // will override any oopMap setting for it. We must therefore force the layout
    72     // so that it agrees with the frame sender code.
    73     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    74     rbp_off2,
    75     return_off, return_off2,
    76     framesize
    77   };
    78 };
    80 class RegisterSaver {
    81   // Capture info about frame layout.  Layout offsets are in jint
    82   // units because compiler frame slots are jints.
    83 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    84   enum layout {
    85     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    86     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    87     DEF_XMM_OFFS(0),
    88     DEF_XMM_OFFS(1),
    89     DEF_XMM_OFFS(2),
    90     DEF_XMM_OFFS(3),
    91     DEF_XMM_OFFS(4),
    92     DEF_XMM_OFFS(5),
    93     DEF_XMM_OFFS(6),
    94     DEF_XMM_OFFS(7),
    95     DEF_XMM_OFFS(8),
    96     DEF_XMM_OFFS(9),
    97     DEF_XMM_OFFS(10),
    98     DEF_XMM_OFFS(11),
    99     DEF_XMM_OFFS(12),
   100     DEF_XMM_OFFS(13),
   101     DEF_XMM_OFFS(14),
   102     DEF_XMM_OFFS(15),
   103     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
   104     fpu_stateH_end,
   105     r15_off, r15H_off,
   106     r14_off, r14H_off,
   107     r13_off, r13H_off,
   108     r12_off, r12H_off,
   109     r11_off, r11H_off,
   110     r10_off, r10H_off,
   111     r9_off,  r9H_off,
   112     r8_off,  r8H_off,
   113     rdi_off, rdiH_off,
   114     rsi_off, rsiH_off,
   115     ignore_off, ignoreH_off,  // extra copy of rbp
   116     rsp_off, rspH_off,
   117     rbx_off, rbxH_off,
   118     rdx_off, rdxH_off,
   119     rcx_off, rcxH_off,
   120     rax_off, raxH_off,
   121     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   122     align_off, alignH_off,
   123     flags_off, flagsH_off,
   124     // The frame sender code expects that rbp will be in the "natural" place and
   125     // will override any oopMap setting for it. We must therefore force the layout
   126     // so that it agrees with the frame sender code.
   127     rbp_off, rbpH_off,        // copy of rbp we will restore
   128     return_off, returnH_off,  // slot for return address
   129     reg_save_size             // size in compiler stack slots
   130   };
   132  public:
   133   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   134   static void restore_live_registers(MacroAssembler* masm);
   136   // Offsets into the register save area
   137   // Used by deoptimization when it is managing result register
   138   // values on its own
   140   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   141   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   142   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   143   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   144   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   146   // During deoptimization only the result registers need to be restored,
   147   // all the other values have already been extracted.
   148   static void restore_result_registers(MacroAssembler* masm);
   149 };
   151 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   153   // Always make the frame size 16-byte aligned
   154   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   155                                      reg_save_size*BytesPerInt, 16);
   156   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   157   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   158   // The caller will allocate additional_frame_words
   159   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   160   // CodeBlob frame size is in words.
   161   int frame_size_in_words = frame_size_in_bytes / wordSize;
   162   *total_frame_words = frame_size_in_words;
   164   // Save registers, fpu state, and flags.
   165   // We assume caller has already pushed the return address onto the
   166   // stack, so rsp is 8-byte aligned here.
   167   // We push rpb twice in this sequence because we want the real rbp
   168   // to be under the return like a normal enter.
   170   __ enter();          // rsp becomes 16-byte aligned here
   171   __ push_CPU_state(); // Push a multiple of 16 bytes
   172   if (frame::arg_reg_save_area_bytes != 0) {
   173     // Allocate argument register save area
   174     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   175   }
   177   // Set an oopmap for the call site.  This oopmap will map all
   178   // oop-registers and debug-info registers as callee-saved.  This
   179   // will allow deoptimization at this safepoint to find all possible
   180   // debug-info recordings, as well as let GC find all oops.
   182   OopMapSet *oop_maps = new OopMapSet();
   183   OopMap* map = new OopMap(frame_size_in_slots, 0);
   184   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   188   // rbp location is known implicitly by the frame sender code, needs no oopmap
   189   // and the location where rbp was saved by is ignored
   190   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   197   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   198   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   199   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   200   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   201   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   202   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   203   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   204   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   205   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   206   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   207   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   208   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   209   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   210   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   211   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   212   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   213   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   214   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   215   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   217   // %%% These should all be a waste but we'll keep things as they were for now
   218   if (true) {
   219     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   220                           rax->as_VMReg()->next());
   221     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   222                           rcx->as_VMReg()->next());
   223     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   224                           rdx->as_VMReg()->next());
   225     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   226                           rbx->as_VMReg()->next());
   227     // rbp location is known implicitly by the frame sender code, needs no oopmap
   228     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   229                           rsi->as_VMReg()->next());
   230     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   231                           rdi->as_VMReg()->next());
   232     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   233                           r8->as_VMReg()->next());
   234     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   235                           r9->as_VMReg()->next());
   236     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   237                           r10->as_VMReg()->next());
   238     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   239                           r11->as_VMReg()->next());
   240     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   241                           r12->as_VMReg()->next());
   242     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   243                           r13->as_VMReg()->next());
   244     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   245                           r14->as_VMReg()->next());
   246     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   247                           r15->as_VMReg()->next());
   248     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   249                           xmm0->as_VMReg()->next());
   250     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   251                           xmm1->as_VMReg()->next());
   252     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   253                           xmm2->as_VMReg()->next());
   254     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   255                           xmm3->as_VMReg()->next());
   256     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   257                           xmm4->as_VMReg()->next());
   258     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   259                           xmm5->as_VMReg()->next());
   260     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   261                           xmm6->as_VMReg()->next());
   262     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   263                           xmm7->as_VMReg()->next());
   264     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   265                           xmm8->as_VMReg()->next());
   266     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   267                           xmm9->as_VMReg()->next());
   268     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   269                           xmm10->as_VMReg()->next());
   270     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   271                           xmm11->as_VMReg()->next());
   272     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   273                           xmm12->as_VMReg()->next());
   274     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   275                           xmm13->as_VMReg()->next());
   276     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   277                           xmm14->as_VMReg()->next());
   278     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   279                           xmm15->as_VMReg()->next());
   280   }
   282   return map;
   283 }
   285 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   286   if (frame::arg_reg_save_area_bytes != 0) {
   287     // Pop arg register save area
   288     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   289   }
   290   // Recover CPU state
   291   __ pop_CPU_state();
   292   // Get the rbp described implicitly by the calling convention (no oopMap)
   293   __ pop(rbp);
   294 }
   296 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   298   // Just restore result register. Only used by deoptimization. By
   299   // now any callee save register that needs to be restored to a c2
   300   // caller of the deoptee has been extracted into the vframeArray
   301   // and will be stuffed into the c2i adapter we create for later
   302   // restoration so only result registers need to be restored here.
   304   // Restore fp result register
   305   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   306   // Restore integer result register
   307   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   308   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   310   // Pop all of the register save are off the stack except the return address
   311   __ addptr(rsp, return_offset_in_bytes());
   312 }
   314 // The java_calling_convention describes stack locations as ideal slots on
   315 // a frame with no abi restrictions. Since we must observe abi restrictions
   316 // (like the placement of the register window) the slots must be biased by
   317 // the following value.
   318 static int reg2offset_in(VMReg r) {
   319   // Account for saved rbp and return address
   320   // This should really be in_preserve_stack_slots
   321   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   322 }
   324 static int reg2offset_out(VMReg r) {
   325   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   326 }
   328 // ---------------------------------------------------------------------------
   329 // Read the array of BasicTypes from a signature, and compute where the
   330 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   331 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   332 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   333 // as framesizes are fixed.
   334 // VMRegImpl::stack0 refers to the first slot 0(sp).
   335 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   336 // up to RegisterImpl::number_of_registers) are the 64-bit
   337 // integer registers.
   339 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   340 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   341 // units regardless of build. Of course for i486 there is no 64 bit build
   343 // The Java calling convention is a "shifted" version of the C ABI.
   344 // By skipping the first C ABI register we can call non-static jni methods
   345 // with small numbers of arguments without having to shuffle the arguments
   346 // at all. Since we control the java ABI we ought to at least get some
   347 // advantage out of it.
   349 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   350                                            VMRegPair *regs,
   351                                            int total_args_passed,
   352                                            int is_outgoing) {
   354   // Create the mapping between argument positions and
   355   // registers.
   356   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   357     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   358   };
   359   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   360     j_farg0, j_farg1, j_farg2, j_farg3,
   361     j_farg4, j_farg5, j_farg6, j_farg7
   362   };
   365   uint int_args = 0;
   366   uint fp_args = 0;
   367   uint stk_args = 0; // inc by 2 each time
   369   for (int i = 0; i < total_args_passed; i++) {
   370     switch (sig_bt[i]) {
   371     case T_BOOLEAN:
   372     case T_CHAR:
   373     case T_BYTE:
   374     case T_SHORT:
   375     case T_INT:
   376       if (int_args < Argument::n_int_register_parameters_j) {
   377         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   378       } else {
   379         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   380         stk_args += 2;
   381       }
   382       break;
   383     case T_VOID:
   384       // halves of T_LONG or T_DOUBLE
   385       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   386       regs[i].set_bad();
   387       break;
   388     case T_LONG:
   389       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   390       // fall through
   391     case T_OBJECT:
   392     case T_ARRAY:
   393     case T_ADDRESS:
   394       if (int_args < Argument::n_int_register_parameters_j) {
   395         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   396       } else {
   397         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   398         stk_args += 2;
   399       }
   400       break;
   401     case T_FLOAT:
   402       if (fp_args < Argument::n_float_register_parameters_j) {
   403         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   404       } else {
   405         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   406         stk_args += 2;
   407       }
   408       break;
   409     case T_DOUBLE:
   410       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   411       if (fp_args < Argument::n_float_register_parameters_j) {
   412         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   413       } else {
   414         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   415         stk_args += 2;
   416       }
   417       break;
   418     default:
   419       ShouldNotReachHere();
   420       break;
   421     }
   422   }
   424   return round_to(stk_args, 2);
   425 }
   427 // Patch the callers callsite with entry to compiled code if it exists.
   428 static void patch_callers_callsite(MacroAssembler *masm) {
   429   Label L;
   430   __ verify_oop(rbx);
   431   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   432   __ jcc(Assembler::equal, L);
   434   // Save the current stack pointer
   435   __ mov(r13, rsp);
   436   // Schedule the branch target address early.
   437   // Call into the VM to patch the caller, then jump to compiled callee
   438   // rax isn't live so capture return address while we easily can
   439   __ movptr(rax, Address(rsp, 0));
   441   // align stack so push_CPU_state doesn't fault
   442   __ andptr(rsp, -(StackAlignmentInBytes));
   443   __ push_CPU_state();
   446   __ verify_oop(rbx);
   447   // VM needs caller's callsite
   448   // VM needs target method
   449   // This needs to be a long call since we will relocate this adapter to
   450   // the codeBuffer and it may not reach
   452   // Allocate argument register save area
   453   if (frame::arg_reg_save_area_bytes != 0) {
   454     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   455   }
   456   __ mov(c_rarg0, rbx);
   457   __ mov(c_rarg1, rax);
   458   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   460   // De-allocate argument register save area
   461   if (frame::arg_reg_save_area_bytes != 0) {
   462     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   463   }
   465   __ pop_CPU_state();
   466   // restore sp
   467   __ mov(rsp, r13);
   468   __ bind(L);
   469 }
   472 static void gen_c2i_adapter(MacroAssembler *masm,
   473                             int total_args_passed,
   474                             int comp_args_on_stack,
   475                             const BasicType *sig_bt,
   476                             const VMRegPair *regs,
   477                             Label& skip_fixup) {
   478   // Before we get into the guts of the C2I adapter, see if we should be here
   479   // at all.  We've come from compiled code and are attempting to jump to the
   480   // interpreter, which means the caller made a static call to get here
   481   // (vcalls always get a compiled target if there is one).  Check for a
   482   // compiled target.  If there is one, we need to patch the caller's call.
   483   patch_callers_callsite(masm);
   485   __ bind(skip_fixup);
   487   // Since all args are passed on the stack, total_args_passed *
   488   // Interpreter::stackElementSize is the space we need. Plus 1 because
   489   // we also account for the return address location since
   490   // we store it first rather than hold it in rax across all the shuffling
   492   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   494   // stack is aligned, keep it that way
   495   extraspace = round_to(extraspace, 2*wordSize);
   497   // Get return address
   498   __ pop(rax);
   500   // set senderSP value
   501   __ mov(r13, rsp);
   503   __ subptr(rsp, extraspace);
   505   // Store the return address in the expected location
   506   __ movptr(Address(rsp, 0), rax);
   508   // Now write the args into the outgoing interpreter space
   509   for (int i = 0; i < total_args_passed; i++) {
   510     if (sig_bt[i] == T_VOID) {
   511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   512       continue;
   513     }
   515     // offset to start parameters
   516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   517     int next_off = st_off - Interpreter::stackElementSize;
   519     // Say 4 args:
   520     // i   st_off
   521     // 0   32 T_LONG
   522     // 1   24 T_VOID
   523     // 2   16 T_OBJECT
   524     // 3    8 T_BOOL
   525     // -    0 return address
   526     //
   527     // However to make thing extra confusing. Because we can fit a long/double in
   528     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   529     // leaves one slot empty and only stores to a single slot. In this case the
   530     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   532     VMReg r_1 = regs[i].first();
   533     VMReg r_2 = regs[i].second();
   534     if (!r_1->is_valid()) {
   535       assert(!r_2->is_valid(), "");
   536       continue;
   537     }
   538     if (r_1->is_stack()) {
   539       // memory to memory use rax
   540       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   541       if (!r_2->is_valid()) {
   542         // sign extend??
   543         __ movl(rax, Address(rsp, ld_off));
   544         __ movptr(Address(rsp, st_off), rax);
   546       } else {
   548         __ movq(rax, Address(rsp, ld_off));
   550         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   551         // T_DOUBLE and T_LONG use two slots in the interpreter
   552         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   553           // ld_off == LSW, ld_off+wordSize == MSW
   554           // st_off == MSW, next_off == LSW
   555           __ movq(Address(rsp, next_off), rax);
   556 #ifdef ASSERT
   557           // Overwrite the unused slot with known junk
   558           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   559           __ movptr(Address(rsp, st_off), rax);
   560 #endif /* ASSERT */
   561         } else {
   562           __ movq(Address(rsp, st_off), rax);
   563         }
   564       }
   565     } else if (r_1->is_Register()) {
   566       Register r = r_1->as_Register();
   567       if (!r_2->is_valid()) {
   568         // must be only an int (or less ) so move only 32bits to slot
   569         // why not sign extend??
   570         __ movl(Address(rsp, st_off), r);
   571       } else {
   572         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   573         // T_DOUBLE and T_LONG use two slots in the interpreter
   574         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   575           // long/double in gpr
   576 #ifdef ASSERT
   577           // Overwrite the unused slot with known junk
   578           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   579           __ movptr(Address(rsp, st_off), rax);
   580 #endif /* ASSERT */
   581           __ movq(Address(rsp, next_off), r);
   582         } else {
   583           __ movptr(Address(rsp, st_off), r);
   584         }
   585       }
   586     } else {
   587       assert(r_1->is_XMMRegister(), "");
   588       if (!r_2->is_valid()) {
   589         // only a float use just part of the slot
   590         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   591       } else {
   592 #ifdef ASSERT
   593         // Overwrite the unused slot with known junk
   594         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   595         __ movptr(Address(rsp, st_off), rax);
   596 #endif /* ASSERT */
   597         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   598       }
   599     }
   600   }
   602   // Schedule the branch target address early.
   603   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   604   __ jmp(rcx);
   605 }
   607 static void gen_i2c_adapter(MacroAssembler *masm,
   608                             int total_args_passed,
   609                             int comp_args_on_stack,
   610                             const BasicType *sig_bt,
   611                             const VMRegPair *regs) {
   613   //
   614   // We will only enter here from an interpreted frame and never from after
   615   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   616   // race and use a c2i we will remain interpreted for the race loser(s).
   617   // This removes all sorts of headaches on the x86 side and also eliminates
   618   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   621   // Note: r13 contains the senderSP on entry. We must preserve it since
   622   // we may do a i2c -> c2i transition if we lose a race where compiled
   623   // code goes non-entrant while we get args ready.
   624   // In addition we use r13 to locate all the interpreter args as
   625   // we must align the stack to 16 bytes on an i2c entry else we
   626   // lose alignment we expect in all compiled code and register
   627   // save code can segv when fxsave instructions find improperly
   628   // aligned stack pointer.
   630   __ movptr(rax, Address(rsp, 0));
   632   // Must preserve original SP for loading incoming arguments because
   633   // we need to align the outgoing SP for compiled code.
   634   __ movptr(r11, rsp);
   636   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   637   // in registers, we will occasionally have no stack args.
   638   int comp_words_on_stack = 0;
   639   if (comp_args_on_stack) {
   640     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   641     // registers are below.  By subtracting stack0, we either get a negative
   642     // number (all values in registers) or the maximum stack slot accessed.
   644     // Convert 4-byte c2 stack slots to words.
   645     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   646     // Round up to miminum stack alignment, in wordSize
   647     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   648     __ subptr(rsp, comp_words_on_stack * wordSize);
   649   }
   652   // Ensure compiled code always sees stack at proper alignment
   653   __ andptr(rsp, -16);
   655   // push the return address and misalign the stack that youngest frame always sees
   656   // as far as the placement of the call instruction
   657   __ push(rax);
   659   // Put saved SP in another register
   660   const Register saved_sp = rax;
   661   __ movptr(saved_sp, r11);
   663   // Will jump to the compiled code just as if compiled code was doing it.
   664   // Pre-load the register-jump target early, to schedule it better.
   665   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   667   // Now generate the shuffle code.  Pick up all register args and move the
   668   // rest through the floating point stack top.
   669   for (int i = 0; i < total_args_passed; i++) {
   670     if (sig_bt[i] == T_VOID) {
   671       // Longs and doubles are passed in native word order, but misaligned
   672       // in the 32-bit build.
   673       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   674       continue;
   675     }
   677     // Pick up 0, 1 or 2 words from SP+offset.
   679     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   680             "scrambled load targets?");
   681     // Load in argument order going down.
   682     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   683     // Point to interpreter value (vs. tag)
   684     int next_off = ld_off - Interpreter::stackElementSize;
   685     //
   686     //
   687     //
   688     VMReg r_1 = regs[i].first();
   689     VMReg r_2 = regs[i].second();
   690     if (!r_1->is_valid()) {
   691       assert(!r_2->is_valid(), "");
   692       continue;
   693     }
   694     if (r_1->is_stack()) {
   695       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   696       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   698       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   699       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   700       // will be generated.
   701       if (!r_2->is_valid()) {
   702         // sign extend???
   703         __ movl(r13, Address(saved_sp, ld_off));
   704         __ movptr(Address(rsp, st_off), r13);
   705       } else {
   706         //
   707         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   708         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   709         // So we must adjust where to pick up the data to match the interpreter.
   710         //
   711         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   712         // are accessed as negative so LSW is at LOW address
   714         // ld_off is MSW so get LSW
   715         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   716                            next_off : ld_off;
   717         __ movq(r13, Address(saved_sp, offset));
   718         // st_off is LSW (i.e. reg.first())
   719         __ movq(Address(rsp, st_off), r13);
   720       }
   721     } else if (r_1->is_Register()) {  // Register argument
   722       Register r = r_1->as_Register();
   723       assert(r != rax, "must be different");
   724       if (r_2->is_valid()) {
   725         //
   726         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   727         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   728         // So we must adjust where to pick up the data to match the interpreter.
   730         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   731                            next_off : ld_off;
   733         // this can be a misaligned move
   734         __ movq(r, Address(saved_sp, offset));
   735       } else {
   736         // sign extend and use a full word?
   737         __ movl(r, Address(saved_sp, ld_off));
   738       }
   739     } else {
   740       if (!r_2->is_valid()) {
   741         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   742       } else {
   743         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   744       }
   745     }
   746   }
   748   // 6243940 We might end up in handle_wrong_method if
   749   // the callee is deoptimized as we race thru here. If that
   750   // happens we don't want to take a safepoint because the
   751   // caller frame will look interpreted and arguments are now
   752   // "compiled" so it is much better to make this transition
   753   // invisible to the stack walking code. Unfortunately if
   754   // we try and find the callee by normal means a safepoint
   755   // is possible. So we stash the desired callee in the thread
   756   // and the vm will find there should this case occur.
   758   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   760   // put methodOop where a c2i would expect should we end up there
   761   // only needed becaus eof c2 resolve stubs return methodOop as a result in
   762   // rax
   763   __ mov(rax, rbx);
   764   __ jmp(r11);
   765 }
   767 // ---------------------------------------------------------------
   768 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   769                                                             int total_args_passed,
   770                                                             int comp_args_on_stack,
   771                                                             const BasicType *sig_bt,
   772                                                             const VMRegPair *regs,
   773                                                             AdapterFingerPrint* fingerprint) {
   774   address i2c_entry = __ pc();
   776   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   778   // -------------------------------------------------------------------------
   779   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
   780   // to the interpreter.  The args start out packed in the compiled layout.  They
   781   // need to be unpacked into the interpreter layout.  This will almost always
   782   // require some stack space.  We grow the current (compiled) stack, then repack
   783   // the args.  We  finally end in a jump to the generic interpreter entry point.
   784   // On exit from the interpreter, the interpreter will restore our SP (lest the
   785   // compiled code, which relys solely on SP and not RBP, get sick).
   787   address c2i_unverified_entry = __ pc();
   788   Label skip_fixup;
   789   Label ok;
   791   Register holder = rax;
   792   Register receiver = j_rarg0;
   793   Register temp = rbx;
   795   {
   796     __ verify_oop(holder);
   797     __ load_klass(temp, receiver);
   798     __ verify_oop(temp);
   800     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   801     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   802     __ jcc(Assembler::equal, ok);
   803     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   805     __ bind(ok);
   806     // Method might have been compiled since the call site was patched to
   807     // interpreted if that is the case treat it as a miss so we can get
   808     // the call site corrected.
   809     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   810     __ jcc(Assembler::equal, skip_fixup);
   811     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   812   }
   814   address c2i_entry = __ pc();
   816   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   818   __ flush();
   819   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   820 }
   822 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   823                                          VMRegPair *regs,
   824                                          int total_args_passed) {
   825 // We return the amount of VMRegImpl stack slots we need to reserve for all
   826 // the arguments NOT counting out_preserve_stack_slots.
   828 // NOTE: These arrays will have to change when c1 is ported
   829 #ifdef _WIN64
   830     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   831       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   832     };
   833     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   834       c_farg0, c_farg1, c_farg2, c_farg3
   835     };
   836 #else
   837     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   838       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   839     };
   840     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   841       c_farg0, c_farg1, c_farg2, c_farg3,
   842       c_farg4, c_farg5, c_farg6, c_farg7
   843     };
   844 #endif // _WIN64
   847     uint int_args = 0;
   848     uint fp_args = 0;
   849     uint stk_args = 0; // inc by 2 each time
   851     for (int i = 0; i < total_args_passed; i++) {
   852       switch (sig_bt[i]) {
   853       case T_BOOLEAN:
   854       case T_CHAR:
   855       case T_BYTE:
   856       case T_SHORT:
   857       case T_INT:
   858         if (int_args < Argument::n_int_register_parameters_c) {
   859           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   860 #ifdef _WIN64
   861           fp_args++;
   862           // Allocate slots for callee to stuff register args the stack.
   863           stk_args += 2;
   864 #endif
   865         } else {
   866           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   867           stk_args += 2;
   868         }
   869         break;
   870       case T_LONG:
   871         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   872         // fall through
   873       case T_OBJECT:
   874       case T_ARRAY:
   875       case T_ADDRESS:
   876         if (int_args < Argument::n_int_register_parameters_c) {
   877           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   878 #ifdef _WIN64
   879           fp_args++;
   880           stk_args += 2;
   881 #endif
   882         } else {
   883           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   884           stk_args += 2;
   885         }
   886         break;
   887       case T_FLOAT:
   888         if (fp_args < Argument::n_float_register_parameters_c) {
   889           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   890 #ifdef _WIN64
   891           int_args++;
   892           // Allocate slots for callee to stuff register args the stack.
   893           stk_args += 2;
   894 #endif
   895         } else {
   896           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   897           stk_args += 2;
   898         }
   899         break;
   900       case T_DOUBLE:
   901         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   902         if (fp_args < Argument::n_float_register_parameters_c) {
   903           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   904 #ifdef _WIN64
   905           int_args++;
   906           // Allocate slots for callee to stuff register args the stack.
   907           stk_args += 2;
   908 #endif
   909         } else {
   910           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   911           stk_args += 2;
   912         }
   913         break;
   914       case T_VOID: // Halves of longs and doubles
   915         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   916         regs[i].set_bad();
   917         break;
   918       default:
   919         ShouldNotReachHere();
   920         break;
   921       }
   922     }
   923 #ifdef _WIN64
   924   // windows abi requires that we always allocate enough stack space
   925   // for 4 64bit registers to be stored down.
   926   if (stk_args < 8) {
   927     stk_args = 8;
   928   }
   929 #endif // _WIN64
   931   return stk_args;
   932 }
   934 // On 64 bit we will store integer like items to the stack as
   935 // 64 bits items (sparc abi) even though java would only store
   936 // 32bits for a parameter. On 32bit it will simply be 32 bits
   937 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   938 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   939   if (src.first()->is_stack()) {
   940     if (dst.first()->is_stack()) {
   941       // stack to stack
   942       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   943       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   944     } else {
   945       // stack to reg
   946       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   947     }
   948   } else if (dst.first()->is_stack()) {
   949     // reg to stack
   950     // Do we really have to sign extend???
   951     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   952     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   953   } else {
   954     // Do we really have to sign extend???
   955     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   956     if (dst.first() != src.first()) {
   957       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   958     }
   959   }
   960 }
   963 // An oop arg. Must pass a handle not the oop itself
   964 static void object_move(MacroAssembler* masm,
   965                         OopMap* map,
   966                         int oop_handle_offset,
   967                         int framesize_in_slots,
   968                         VMRegPair src,
   969                         VMRegPair dst,
   970                         bool is_receiver,
   971                         int* receiver_offset) {
   973   // must pass a handle. First figure out the location we use as a handle
   975   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
   977   // See if oop is NULL if it is we need no handle
   979   if (src.first()->is_stack()) {
   981     // Oop is already on the stack as an argument
   982     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   983     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   984     if (is_receiver) {
   985       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   986     }
   988     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   989     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   990     // conditionally move a NULL
   991     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
   992   } else {
   994     // Oop is in an a register we must store it to the space we reserve
   995     // on the stack for oop_handles and pass a handle if oop is non-NULL
   997     const Register rOop = src.first()->as_Register();
   998     int oop_slot;
   999     if (rOop == j_rarg0)
  1000       oop_slot = 0;
  1001     else if (rOop == j_rarg1)
  1002       oop_slot = 1;
  1003     else if (rOop == j_rarg2)
  1004       oop_slot = 2;
  1005     else if (rOop == j_rarg3)
  1006       oop_slot = 3;
  1007     else if (rOop == j_rarg4)
  1008       oop_slot = 4;
  1009     else {
  1010       assert(rOop == j_rarg5, "wrong register");
  1011       oop_slot = 5;
  1014     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1015     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1017     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1018     // Store oop in handle area, may be NULL
  1019     __ movptr(Address(rsp, offset), rOop);
  1020     if (is_receiver) {
  1021       *receiver_offset = offset;
  1024     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1025     __ lea(rHandle, Address(rsp, offset));
  1026     // conditionally move a NULL from the handle area where it was just stored
  1027     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1030   // If arg is on the stack then place it otherwise it is already in correct reg.
  1031   if (dst.first()->is_stack()) {
  1032     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1036 // A float arg may have to do float reg int reg conversion
  1037 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1038   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1040   // The calling conventions assures us that each VMregpair is either
  1041   // all really one physical register or adjacent stack slots.
  1042   // This greatly simplifies the cases here compared to sparc.
  1044   if (src.first()->is_stack()) {
  1045     if (dst.first()->is_stack()) {
  1046       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1047       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1048     } else {
  1049       // stack to reg
  1050       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1051       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1053   } else if (dst.first()->is_stack()) {
  1054     // reg to stack
  1055     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1056     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1057   } else {
  1058     // reg to reg
  1059     // In theory these overlap but the ordering is such that this is likely a nop
  1060     if ( src.first() != dst.first()) {
  1061       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1066 // A long move
  1067 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1069   // The calling conventions assures us that each VMregpair is either
  1070   // all really one physical register or adjacent stack slots.
  1071   // This greatly simplifies the cases here compared to sparc.
  1073   if (src.is_single_phys_reg() ) {
  1074     if (dst.is_single_phys_reg()) {
  1075       if (dst.first() != src.first()) {
  1076         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1078     } else {
  1079       assert(dst.is_single_reg(), "not a stack pair");
  1080       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1082   } else if (dst.is_single_phys_reg()) {
  1083     assert(src.is_single_reg(),  "not a stack pair");
  1084     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1085   } else {
  1086     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1087     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1088     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1092 // A double move
  1093 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1095   // The calling conventions assures us that each VMregpair is either
  1096   // all really one physical register or adjacent stack slots.
  1097   // This greatly simplifies the cases here compared to sparc.
  1099   if (src.is_single_phys_reg() ) {
  1100     if (dst.is_single_phys_reg()) {
  1101       // In theory these overlap but the ordering is such that this is likely a nop
  1102       if ( src.first() != dst.first()) {
  1103         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1105     } else {
  1106       assert(dst.is_single_reg(), "not a stack pair");
  1107       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1109   } else if (dst.is_single_phys_reg()) {
  1110     assert(src.is_single_reg(),  "not a stack pair");
  1111     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1112   } else {
  1113     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1114     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1115     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1120 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1121   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1122   // which by this time is free to use
  1123   switch (ret_type) {
  1124   case T_FLOAT:
  1125     __ movflt(Address(rbp, -wordSize), xmm0);
  1126     break;
  1127   case T_DOUBLE:
  1128     __ movdbl(Address(rbp, -wordSize), xmm0);
  1129     break;
  1130   case T_VOID:  break;
  1131   default: {
  1132     __ movptr(Address(rbp, -wordSize), rax);
  1137 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1138   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1139   // which by this time is free to use
  1140   switch (ret_type) {
  1141   case T_FLOAT:
  1142     __ movflt(xmm0, Address(rbp, -wordSize));
  1143     break;
  1144   case T_DOUBLE:
  1145     __ movdbl(xmm0, Address(rbp, -wordSize));
  1146     break;
  1147   case T_VOID:  break;
  1148   default: {
  1149     __ movptr(rax, Address(rbp, -wordSize));
  1154 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1155     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1156       if (args[i].first()->is_Register()) {
  1157         __ push(args[i].first()->as_Register());
  1158       } else if (args[i].first()->is_XMMRegister()) {
  1159         __ subptr(rsp, 2*wordSize);
  1160         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1165 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1166     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1167       if (args[i].first()->is_Register()) {
  1168         __ pop(args[i].first()->as_Register());
  1169       } else if (args[i].first()->is_XMMRegister()) {
  1170         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1171         __ addptr(rsp, 2*wordSize);
  1176 // ---------------------------------------------------------------------------
  1177 // Generate a native wrapper for a given method.  The method takes arguments
  1178 // in the Java compiled code convention, marshals them to the native
  1179 // convention (handlizes oops, etc), transitions to native, makes the call,
  1180 // returns to java state (possibly blocking), unhandlizes any result and
  1181 // returns.
  1182 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1183                                                 methodHandle method,
  1184                                                 int total_in_args,
  1185                                                 int comp_args_on_stack,
  1186                                                 BasicType *in_sig_bt,
  1187                                                 VMRegPair *in_regs,
  1188                                                 BasicType ret_type) {
  1189   // Native nmethod wrappers never take possesion of the oop arguments.
  1190   // So the caller will gc the arguments. The only thing we need an
  1191   // oopMap for is if the call is static
  1192   //
  1193   // An OopMap for lock (and class if static)
  1194   OopMapSet *oop_maps = new OopMapSet();
  1195   intptr_t start = (intptr_t)__ pc();
  1197   // We have received a description of where all the java arg are located
  1198   // on entry to the wrapper. We need to convert these args to where
  1199   // the jni function will expect them. To figure out where they go
  1200   // we convert the java signature to a C signature by inserting
  1201   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1203   int total_c_args = total_in_args + 1;
  1204   if (method->is_static()) {
  1205     total_c_args++;
  1208   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1209   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1211   int argc = 0;
  1212   out_sig_bt[argc++] = T_ADDRESS;
  1213   if (method->is_static()) {
  1214     out_sig_bt[argc++] = T_OBJECT;
  1217   for (int i = 0; i < total_in_args ; i++ ) {
  1218     out_sig_bt[argc++] = in_sig_bt[i];
  1221   // Now figure out where the args must be stored and how much stack space
  1222   // they require.
  1223   //
  1224   int out_arg_slots;
  1225   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1227   // Compute framesize for the wrapper.  We need to handlize all oops in
  1228   // incoming registers
  1230   // Calculate the total number of stack slots we will need.
  1232   // First count the abi requirement plus all of the outgoing args
  1233   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1235   // Now the space for the inbound oop handle area
  1237   int oop_handle_offset = stack_slots;
  1238   stack_slots += 6*VMRegImpl::slots_per_word;
  1240   // Now any space we need for handlizing a klass if static method
  1242   int oop_temp_slot_offset = 0;
  1243   int klass_slot_offset = 0;
  1244   int klass_offset = -1;
  1245   int lock_slot_offset = 0;
  1246   bool is_static = false;
  1248   if (method->is_static()) {
  1249     klass_slot_offset = stack_slots;
  1250     stack_slots += VMRegImpl::slots_per_word;
  1251     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1252     is_static = true;
  1255   // Plus a lock if needed
  1257   if (method->is_synchronized()) {
  1258     lock_slot_offset = stack_slots;
  1259     stack_slots += VMRegImpl::slots_per_word;
  1262   // Now a place (+2) to save return values or temp during shuffling
  1263   // + 4 for return address (which we own) and saved rbp
  1264   stack_slots += 6;
  1266   // Ok The space we have allocated will look like:
  1267   //
  1268   //
  1269   // FP-> |                     |
  1270   //      |---------------------|
  1271   //      | 2 slots for moves   |
  1272   //      |---------------------|
  1273   //      | lock box (if sync)  |
  1274   //      |---------------------| <- lock_slot_offset
  1275   //      | klass (if static)   |
  1276   //      |---------------------| <- klass_slot_offset
  1277   //      | oopHandle area      |
  1278   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1279   //      | outbound memory     |
  1280   //      | based arguments     |
  1281   //      |                     |
  1282   //      |---------------------|
  1283   //      |                     |
  1284   // SP-> | out_preserved_slots |
  1285   //
  1286   //
  1289   // Now compute actual number of stack words we need rounding to make
  1290   // stack properly aligned.
  1291   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1293   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1296   // First thing make an ic check to see if we should even be here
  1298   // We are free to use all registers as temps without saving them and
  1299   // restoring them except rbp. rbp is the only callee save register
  1300   // as far as the interpreter and the compiler(s) are concerned.
  1303   const Register ic_reg = rax;
  1304   const Register receiver = j_rarg0;
  1306   Label ok;
  1307   Label exception_pending;
  1309   assert_different_registers(ic_reg, receiver, rscratch1);
  1310   __ verify_oop(receiver);
  1311   __ load_klass(rscratch1, receiver);
  1312   __ cmpq(ic_reg, rscratch1);
  1313   __ jcc(Assembler::equal, ok);
  1315   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1317   __ bind(ok);
  1319   // Verified entry point must be aligned
  1320   __ align(8);
  1322   int vep_offset = ((intptr_t)__ pc()) - start;
  1324   // The instruction at the verified entry point must be 5 bytes or longer
  1325   // because it can be patched on the fly by make_non_entrant. The stack bang
  1326   // instruction fits that requirement.
  1328   // Generate stack overflow check
  1330   if (UseStackBanging) {
  1331     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1332   } else {
  1333     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1334     __ fat_nop();
  1337   // Generate a new frame for the wrapper.
  1338   __ enter();
  1339   // -2 because return address is already present and so is saved rbp
  1340   __ subptr(rsp, stack_size - 2*wordSize);
  1342     // Frame is now completed as far as size and linkage.
  1344     int frame_complete = ((intptr_t)__ pc()) - start;
  1346 #ifdef ASSERT
  1348       Label L;
  1349       __ mov(rax, rsp);
  1350       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1351       __ cmpptr(rax, rsp);
  1352       __ jcc(Assembler::equal, L);
  1353       __ stop("improperly aligned stack");
  1354       __ bind(L);
  1356 #endif /* ASSERT */
  1359   // We use r14 as the oop handle for the receiver/klass
  1360   // It is callee save so it survives the call to native
  1362   const Register oop_handle_reg = r14;
  1366   //
  1367   // We immediately shuffle the arguments so that any vm call we have to
  1368   // make from here on out (sync slow path, jvmti, etc.) we will have
  1369   // captured the oops from our caller and have a valid oopMap for
  1370   // them.
  1372   // -----------------
  1373   // The Grand Shuffle
  1375   // The Java calling convention is either equal (linux) or denser (win64) than the
  1376   // c calling convention. However the because of the jni_env argument the c calling
  1377   // convention always has at least one more (and two for static) arguments than Java.
  1378   // Therefore if we move the args from java -> c backwards then we will never have
  1379   // a register->register conflict and we don't have to build a dependency graph
  1380   // and figure out how to break any cycles.
  1381   //
  1383   // Record esp-based slot for receiver on stack for non-static methods
  1384   int receiver_offset = -1;
  1386   // This is a trick. We double the stack slots so we can claim
  1387   // the oops in the caller's frame. Since we are sure to have
  1388   // more args than the caller doubling is enough to make
  1389   // sure we can capture all the incoming oop args from the
  1390   // caller.
  1391   //
  1392   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1394   // Mark location of rbp (someday)
  1395   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  1397   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  1398   // All inbound args are referenced based on rbp and all outbound args via rsp.
  1401 #ifdef ASSERT
  1402   bool reg_destroyed[RegisterImpl::number_of_registers];
  1403   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  1404   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  1405     reg_destroyed[r] = false;
  1407   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  1408     freg_destroyed[f] = false;
  1411 #endif /* ASSERT */
  1414   int c_arg = total_c_args - 1;
  1415   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  1416 #ifdef ASSERT
  1417     if (in_regs[i].first()->is_Register()) {
  1418       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  1419     } else if (in_regs[i].first()->is_XMMRegister()) {
  1420       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  1422     if (out_regs[c_arg].first()->is_Register()) {
  1423       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  1424     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  1425       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  1427 #endif /* ASSERT */
  1428     switch (in_sig_bt[i]) {
  1429       case T_ARRAY:
  1430       case T_OBJECT:
  1431         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1432                     ((i == 0) && (!is_static)),
  1433                     &receiver_offset);
  1434         break;
  1435       case T_VOID:
  1436         break;
  1438       case T_FLOAT:
  1439         float_move(masm, in_regs[i], out_regs[c_arg]);
  1440           break;
  1442       case T_DOUBLE:
  1443         assert( i + 1 < total_in_args &&
  1444                 in_sig_bt[i + 1] == T_VOID &&
  1445                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1446         double_move(masm, in_regs[i], out_regs[c_arg]);
  1447         break;
  1449       case T_LONG :
  1450         long_move(masm, in_regs[i], out_regs[c_arg]);
  1451         break;
  1453       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1455       default:
  1456         move32_64(masm, in_regs[i], out_regs[c_arg]);
  1460   // point c_arg at the first arg that is already loaded in case we
  1461   // need to spill before we call out
  1462   c_arg++;
  1464   // Pre-load a static method's oop into r14.  Used both by locking code and
  1465   // the normal JNI call code.
  1466   if (method->is_static()) {
  1468     //  load oop into a register
  1469     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1471     // Now handlize the static class mirror it's known not-null.
  1472     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1473     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1475     // Now get the handle
  1476     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1477     // store the klass handle as second argument
  1478     __ movptr(c_rarg1, oop_handle_reg);
  1479     // and protect the arg if we must spill
  1480     c_arg--;
  1483   // Change state to native (we save the return address in the thread, since it might not
  1484   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1485   // points into the right code segment. It does not have to be the correct return pc.
  1486   // We use the same pc/oopMap repeatedly when we call out
  1488   intptr_t the_pc = (intptr_t) __ pc();
  1489   oop_maps->add_gc_map(the_pc - start, map);
  1491   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  1494   // We have all of the arguments setup at this point. We must not touch any register
  1495   // argument registers at this point (what if we save/restore them there are no oop?
  1498     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1499     // protect the args we've loaded
  1500     save_args(masm, total_c_args, c_arg, out_regs);
  1501     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1502     __ call_VM_leaf(
  1503       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1504       r15_thread, c_rarg1);
  1505     restore_args(masm, total_c_args, c_arg, out_regs);
  1508   // RedefineClasses() tracing support for obsolete method entry
  1509   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1510     // protect the args we've loaded
  1511     save_args(masm, total_c_args, c_arg, out_regs);
  1512     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1513     __ call_VM_leaf(
  1514       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1515       r15_thread, c_rarg1);
  1516     restore_args(masm, total_c_args, c_arg, out_regs);
  1519   // Lock a synchronized method
  1521   // Register definitions used by locking and unlocking
  1523   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  1524   const Register obj_reg  = rbx;  // Will contain the oop
  1525   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  1526   const Register old_hdr  = r13;  // value of old header at unlock time
  1528   Label slow_path_lock;
  1529   Label lock_done;
  1531   if (method->is_synchronized()) {
  1534     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1536     // Get the handle (the 2nd argument)
  1537     __ mov(oop_handle_reg, c_rarg1);
  1539     // Get address of the box
  1541     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1543     // Load the oop from the handle
  1544     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1546     if (UseBiasedLocking) {
  1547       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  1550     // Load immediate 1 into swap_reg %rax
  1551     __ movl(swap_reg, 1);
  1553     // Load (object->mark() | 1) into swap_reg %rax
  1554     __ orptr(swap_reg, Address(obj_reg, 0));
  1556     // Save (object->mark() | 1) into BasicLock's displaced header
  1557     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1559     if (os::is_MP()) {
  1560       __ lock();
  1563     // src -> dest iff dest == rax else rax <- dest
  1564     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1565     __ jcc(Assembler::equal, lock_done);
  1567     // Hmm should this move to the slow path code area???
  1569     // Test if the oopMark is an obvious stack pointer, i.e.,
  1570     //  1) (mark & 3) == 0, and
  1571     //  2) rsp <= mark < mark + os::pagesize()
  1572     // These 3 tests can be done by evaluating the following
  1573     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1574     // assuming both stack pointer and pagesize have their
  1575     // least significant 2 bits clear.
  1576     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  1578     __ subptr(swap_reg, rsp);
  1579     __ andptr(swap_reg, 3 - os::vm_page_size());
  1581     // Save the test result, for recursive case, the result is zero
  1582     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1583     __ jcc(Assembler::notEqual, slow_path_lock);
  1585     // Slow path will re-enter here
  1587     __ bind(lock_done);
  1591   // Finally just about ready to make the JNI call
  1594   // get JNIEnv* which is first argument to native
  1596   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  1598   // Now set thread in native
  1599   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  1601   __ call(RuntimeAddress(method->native_function()));
  1603     // Either restore the MXCSR register after returning from the JNI Call
  1604     // or verify that it wasn't changed.
  1605     if (RestoreMXCSROnJNICalls) {
  1606       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1609     else if (CheckJNICalls ) {
  1610       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1614   // Unpack native results.
  1615   switch (ret_type) {
  1616   case T_BOOLEAN: __ c2bool(rax);            break;
  1617   case T_CHAR   : __ movzwl(rax, rax);      break;
  1618   case T_BYTE   : __ sign_extend_byte (rax); break;
  1619   case T_SHORT  : __ sign_extend_short(rax); break;
  1620   case T_INT    : /* nothing to do */        break;
  1621   case T_DOUBLE :
  1622   case T_FLOAT  :
  1623     // Result is in xmm0 we'll save as needed
  1624     break;
  1625   case T_ARRAY:                 // Really a handle
  1626   case T_OBJECT:                // Really a handle
  1627       break; // can't de-handlize until after safepoint check
  1628   case T_VOID: break;
  1629   case T_LONG: break;
  1630   default       : ShouldNotReachHere();
  1633   // Switch thread to "native transition" state before reading the synchronization state.
  1634   // This additional state is necessary because reading and testing the synchronization
  1635   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1636   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1637   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1638   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1639   //     didn't see any synchronization is progress, and escapes.
  1640   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1642   if(os::is_MP()) {
  1643     if (UseMembar) {
  1644       // Force this write out before the read below
  1645       __ membar(Assembler::Membar_mask_bits(
  1646            Assembler::LoadLoad | Assembler::LoadStore |
  1647            Assembler::StoreLoad | Assembler::StoreStore));
  1648     } else {
  1649       // Write serialization page so VM thread can do a pseudo remote membar.
  1650       // We use the current thread pointer to calculate a thread specific
  1651       // offset to write to within the page. This minimizes bus traffic
  1652       // due to cache line collision.
  1653       __ serialize_memory(r15_thread, rcx);
  1658   // check for safepoint operation in progress and/or pending suspend requests
  1660     Label Continue;
  1662     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1663              SafepointSynchronize::_not_synchronized);
  1665     Label L;
  1666     __ jcc(Assembler::notEqual, L);
  1667     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1668     __ jcc(Assembler::equal, Continue);
  1669     __ bind(L);
  1671     // Don't use call_VM as it will see a possible pending exception and forward it
  1672     // and never return here preventing us from clearing _last_native_pc down below.
  1673     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1674     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1675     // by hand.
  1676     //
  1677     save_native_result(masm, ret_type, stack_slots);
  1678     __ mov(c_rarg0, r15_thread);
  1679     __ mov(r12, rsp); // remember sp
  1680     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1681     __ andptr(rsp, -16); // align stack as required by ABI
  1682     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1683     __ mov(rsp, r12); // restore sp
  1684     __ reinit_heapbase();
  1685     // Restore any method result value
  1686     restore_native_result(masm, ret_type, stack_slots);
  1687     __ bind(Continue);
  1690   // change thread state
  1691   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1693   Label reguard;
  1694   Label reguard_done;
  1695   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1696   __ jcc(Assembler::equal, reguard);
  1697   __ bind(reguard_done);
  1699   // native result if any is live
  1701   // Unlock
  1702   Label unlock_done;
  1703   Label slow_path_unlock;
  1704   if (method->is_synchronized()) {
  1706     // Get locked oop from the handle we passed to jni
  1707     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1709     Label done;
  1711     if (UseBiasedLocking) {
  1712       __ biased_locking_exit(obj_reg, old_hdr, done);
  1715     // Simple recursive lock?
  1717     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  1718     __ jcc(Assembler::equal, done);
  1720     // Must save rax if if it is live now because cmpxchg must use it
  1721     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1722       save_native_result(masm, ret_type, stack_slots);
  1726     // get address of the stack lock
  1727     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1728     //  get old displaced header
  1729     __ movptr(old_hdr, Address(rax, 0));
  1731     // Atomic swap old header if oop still contains the stack lock
  1732     if (os::is_MP()) {
  1733       __ lock();
  1735     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  1736     __ jcc(Assembler::notEqual, slow_path_unlock);
  1738     // slow path re-enters here
  1739     __ bind(unlock_done);
  1740     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1741       restore_native_result(masm, ret_type, stack_slots);
  1744     __ bind(done);
  1748     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1749     save_native_result(masm, ret_type, stack_slots);
  1750     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1751     __ call_VM_leaf(
  1752          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1753          r15_thread, c_rarg1);
  1754     restore_native_result(masm, ret_type, stack_slots);
  1757   __ reset_last_Java_frame(false, true);
  1759   // Unpack oop result
  1760   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1761       Label L;
  1762       __ testptr(rax, rax);
  1763       __ jcc(Assembler::zero, L);
  1764       __ movptr(rax, Address(rax, 0));
  1765       __ bind(L);
  1766       __ verify_oop(rax);
  1769   // reset handle block
  1770   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  1771   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1773   // pop our frame
  1775   __ leave();
  1777   // Any exception pending?
  1778   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1779   __ jcc(Assembler::notEqual, exception_pending);
  1781   // Return
  1783   __ ret(0);
  1785   // Unexpected paths are out of line and go here
  1787   // forward the exception
  1788   __ bind(exception_pending);
  1790   // and forward the exception
  1791   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1794   // Slow path locking & unlocking
  1795   if (method->is_synchronized()) {
  1797     // BEGIN Slow path lock
  1798     __ bind(slow_path_lock);
  1800     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1801     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1803     // protect the args we've loaded
  1804     save_args(masm, total_c_args, c_arg, out_regs);
  1806     __ mov(c_rarg0, obj_reg);
  1807     __ mov(c_rarg1, lock_reg);
  1808     __ mov(c_rarg2, r15_thread);
  1810     // Not a leaf but we have last_Java_frame setup as we want
  1811     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  1812     restore_args(masm, total_c_args, c_arg, out_regs);
  1814 #ifdef ASSERT
  1815     { Label L;
  1816     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1817     __ jcc(Assembler::equal, L);
  1818     __ stop("no pending exception allowed on exit from monitorenter");
  1819     __ bind(L);
  1821 #endif
  1822     __ jmp(lock_done);
  1824     // END Slow path lock
  1826     // BEGIN Slow path unlock
  1827     __ bind(slow_path_unlock);
  1829     // If we haven't already saved the native result we must save it now as xmm registers
  1830     // are still exposed.
  1832     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1833       save_native_result(masm, ret_type, stack_slots);
  1836     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1838     __ mov(c_rarg0, obj_reg);
  1839     __ mov(r12, rsp); // remember sp
  1840     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1841     __ andptr(rsp, -16); // align stack as required by ABI
  1843     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1844     // NOTE that obj_reg == rbx currently
  1845     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  1846     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1848     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1849     __ mov(rsp, r12); // restore sp
  1850     __ reinit_heapbase();
  1851 #ifdef ASSERT
  1853       Label L;
  1854       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1855       __ jcc(Assembler::equal, L);
  1856       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1857       __ bind(L);
  1859 #endif /* ASSERT */
  1861     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  1863     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1864       restore_native_result(masm, ret_type, stack_slots);
  1866     __ jmp(unlock_done);
  1868     // END Slow path unlock
  1870   } // synchronized
  1872   // SLOW PATH Reguard the stack if needed
  1874   __ bind(reguard);
  1875   save_native_result(masm, ret_type, stack_slots);
  1876   __ mov(r12, rsp); // remember sp
  1877   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1878   __ andptr(rsp, -16); // align stack as required by ABI
  1879   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1880   __ mov(rsp, r12); // restore sp
  1881   __ reinit_heapbase();
  1882   restore_native_result(masm, ret_type, stack_slots);
  1883   // and continue
  1884   __ jmp(reguard_done);
  1888   __ flush();
  1890   nmethod *nm = nmethod::new_native_nmethod(method,
  1891                                             masm->code(),
  1892                                             vep_offset,
  1893                                             frame_complete,
  1894                                             stack_slots / VMRegImpl::slots_per_word,
  1895                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1896                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1897                                             oop_maps);
  1898   return nm;
  1902 #ifdef HAVE_DTRACE_H
  1903 // ---------------------------------------------------------------------------
  1904 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1905 // in the Java compiled code convention, marshals them to the native
  1906 // abi and then leaves nops at the position you would expect to call a native
  1907 // function. When the probe is enabled the nops are replaced with a trap
  1908 // instruction that dtrace inserts and the trace will cause a notification
  1909 // to dtrace.
  1910 //
  1911 // The probes are only able to take primitive types and java/lang/String as
  1912 // arguments.  No other java types are allowed. Strings are converted to utf8
  1913 // strings so that from dtrace point of view java strings are converted to C
  1914 // strings. There is an arbitrary fixed limit on the total space that a method
  1915 // can use for converting the strings. (256 chars per string in the signature).
  1916 // So any java string larger then this is truncated.
  1918 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  1919 static bool offsets_initialized = false;
  1922 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  1923                                                 methodHandle method) {
  1926   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1927   // be single threaded in this method.
  1928   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1930   if (!offsets_initialized) {
  1931     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  1932     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  1933     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  1934     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  1935     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  1936     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  1938     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  1939     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  1940     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  1941     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  1942     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  1943     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  1944     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  1945     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  1947     offsets_initialized = true;
  1949   // Fill in the signature array, for the calling-convention call.
  1950   int total_args_passed = method->size_of_parameters();
  1952   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1953   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1955   // The signature we are going to use for the trap that dtrace will see
  1956   // java/lang/String is converted. We drop "this" and any other object
  1957   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1958   // is converted to a two-slot long, which is why we double the allocation).
  1959   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1960   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1962   int i=0;
  1963   int total_strings = 0;
  1964   int first_arg_to_pass = 0;
  1965   int total_c_args = 0;
  1967   // Skip the receiver as dtrace doesn't want to see it
  1968   if( !method->is_static() ) {
  1969     in_sig_bt[i++] = T_OBJECT;
  1970     first_arg_to_pass = 1;
  1973   // We need to convert the java args to where a native (non-jni) function
  1974   // would expect them. To figure out where they go we convert the java
  1975   // signature to a C signature.
  1977   SignatureStream ss(method->signature());
  1978   for ( ; !ss.at_return_type(); ss.next()) {
  1979     BasicType bt = ss.type();
  1980     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1981     out_sig_bt[total_c_args++] = bt;
  1982     if( bt == T_OBJECT) {
  1983       symbolOop s = ss.as_symbol_or_null();
  1984       if (s == vmSymbols::java_lang_String()) {
  1985         total_strings++;
  1986         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1987       } else if (s == vmSymbols::java_lang_Boolean() ||
  1988                  s == vmSymbols::java_lang_Character() ||
  1989                  s == vmSymbols::java_lang_Byte() ||
  1990                  s == vmSymbols::java_lang_Short() ||
  1991                  s == vmSymbols::java_lang_Integer() ||
  1992                  s == vmSymbols::java_lang_Float()) {
  1993         out_sig_bt[total_c_args-1] = T_INT;
  1994       } else if (s == vmSymbols::java_lang_Long() ||
  1995                  s == vmSymbols::java_lang_Double()) {
  1996         out_sig_bt[total_c_args-1] = T_LONG;
  1997         out_sig_bt[total_c_args++] = T_VOID;
  1999     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2000       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2001       // We convert double to long
  2002       out_sig_bt[total_c_args-1] = T_LONG;
  2003       out_sig_bt[total_c_args++] = T_VOID;
  2004     } else if ( bt == T_FLOAT) {
  2005       // We convert float to int
  2006       out_sig_bt[total_c_args-1] = T_INT;
  2010   assert(i==total_args_passed, "validly parsed signature");
  2012   // Now get the compiled-Java layout as input arguments
  2013   int comp_args_on_stack;
  2014   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2015       in_sig_bt, in_regs, total_args_passed, false);
  2017   // Now figure out where the args must be stored and how much stack space
  2018   // they require (neglecting out_preserve_stack_slots but space for storing
  2019   // the 1st six register arguments). It's weird see int_stk_helper.
  2021   int out_arg_slots;
  2022   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2024   // Calculate the total number of stack slots we will need.
  2026   // First count the abi requirement plus all of the outgoing args
  2027   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2029   // Now space for the string(s) we must convert
  2030   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2031   for (i = 0; i < total_strings ; i++) {
  2032     string_locs[i] = stack_slots;
  2033     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2036   // Plus the temps we might need to juggle register args
  2037   // regs take two slots each
  2038   stack_slots += (Argument::n_int_register_parameters_c +
  2039                   Argument::n_float_register_parameters_c) * 2;
  2042   // + 4 for return address (which we own) and saved rbp,
  2044   stack_slots += 4;
  2046   // Ok The space we have allocated will look like:
  2047   //
  2048   //
  2049   // FP-> |                     |
  2050   //      |---------------------|
  2051   //      | string[n]           |
  2052   //      |---------------------| <- string_locs[n]
  2053   //      | string[n-1]         |
  2054   //      |---------------------| <- string_locs[n-1]
  2055   //      | ...                 |
  2056   //      | ...                 |
  2057   //      |---------------------| <- string_locs[1]
  2058   //      | string[0]           |
  2059   //      |---------------------| <- string_locs[0]
  2060   //      | outbound memory     |
  2061   //      | based arguments     |
  2062   //      |                     |
  2063   //      |---------------------|
  2064   //      |                     |
  2065   // SP-> | out_preserved_slots |
  2066   //
  2067   //
  2069   // Now compute actual number of stack words we need rounding to make
  2070   // stack properly aligned.
  2071   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2073   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2075   intptr_t start = (intptr_t)__ pc();
  2077   // First thing make an ic check to see if we should even be here
  2079   // We are free to use all registers as temps without saving them and
  2080   // restoring them except rbp. rbp, is the only callee save register
  2081   // as far as the interpreter and the compiler(s) are concerned.
  2083   const Register ic_reg = rax;
  2084   const Register receiver = rcx;
  2085   Label hit;
  2086   Label exception_pending;
  2089   __ verify_oop(receiver);
  2090   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2091   __ jcc(Assembler::equal, hit);
  2093   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2095   // verified entry must be aligned for code patching.
  2096   // and the first 5 bytes must be in the same cache line
  2097   // if we align at 8 then we will be sure 5 bytes are in the same line
  2098   __ align(8);
  2100   __ bind(hit);
  2102   int vep_offset = ((intptr_t)__ pc()) - start;
  2105   // The instruction at the verified entry point must be 5 bytes or longer
  2106   // because it can be patched on the fly by make_non_entrant. The stack bang
  2107   // instruction fits that requirement.
  2109   // Generate stack overflow check
  2111   if (UseStackBanging) {
  2112     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2113       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2114     } else {
  2115       __ movl(rax, stack_size);
  2116       __ bang_stack_size(rax, rbx);
  2118   } else {
  2119     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2120     __ fat_nop();
  2123   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2124          "valid size for make_non_entrant");
  2126   // Generate a new frame for the wrapper.
  2127   __ enter();
  2129   // -4 because return address is already present and so is saved rbp,
  2130   if (stack_size - 2*wordSize != 0) {
  2131     __ subq(rsp, stack_size - 2*wordSize);
  2134   // Frame is now completed as far a size and linkage.
  2136   int frame_complete = ((intptr_t)__ pc()) - start;
  2138   int c_arg, j_arg;
  2140   // State of input register args
  2142   bool  live[ConcreteRegisterImpl::number_of_registers];
  2144   live[j_rarg0->as_VMReg()->value()] = false;
  2145   live[j_rarg1->as_VMReg()->value()] = false;
  2146   live[j_rarg2->as_VMReg()->value()] = false;
  2147   live[j_rarg3->as_VMReg()->value()] = false;
  2148   live[j_rarg4->as_VMReg()->value()] = false;
  2149   live[j_rarg5->as_VMReg()->value()] = false;
  2151   live[j_farg0->as_VMReg()->value()] = false;
  2152   live[j_farg1->as_VMReg()->value()] = false;
  2153   live[j_farg2->as_VMReg()->value()] = false;
  2154   live[j_farg3->as_VMReg()->value()] = false;
  2155   live[j_farg4->as_VMReg()->value()] = false;
  2156   live[j_farg5->as_VMReg()->value()] = false;
  2157   live[j_farg6->as_VMReg()->value()] = false;
  2158   live[j_farg7->as_VMReg()->value()] = false;
  2161   bool rax_is_zero = false;
  2163   // All args (except strings) destined for the stack are moved first
  2164   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2165        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2166     VMRegPair src = in_regs[j_arg];
  2167     VMRegPair dst = out_regs[c_arg];
  2169     // Get the real reg value or a dummy (rsp)
  2171     int src_reg = src.first()->is_reg() ?
  2172                   src.first()->value() :
  2173                   rsp->as_VMReg()->value();
  2175     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2176                     (in_sig_bt[j_arg] == T_OBJECT &&
  2177                      out_sig_bt[c_arg] != T_INT &&
  2178                      out_sig_bt[c_arg] != T_ADDRESS &&
  2179                      out_sig_bt[c_arg] != T_LONG);
  2181     live[src_reg] = !useless;
  2183     if (dst.first()->is_stack()) {
  2185       // Even though a string arg in a register is still live after this loop
  2186       // after the string conversion loop (next) it will be dead so we take
  2187       // advantage of that now for simpler code to manage live.
  2189       live[src_reg] = false;
  2190       switch (in_sig_bt[j_arg]) {
  2192         case T_ARRAY:
  2193         case T_OBJECT:
  2195             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2197             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2198               // need to unbox a one-word value
  2199               Register in_reg = rax;
  2200               if ( src.first()->is_reg() ) {
  2201                 in_reg = src.first()->as_Register();
  2202               } else {
  2203                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2204                 rax_is_zero = false;
  2206               Label skipUnbox;
  2207               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2208                         (int32_t)NULL_WORD);
  2209               __ testq(in_reg, in_reg);
  2210               __ jcc(Assembler::zero, skipUnbox);
  2212               BasicType bt = out_sig_bt[c_arg];
  2213               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2214               Address src1(in_reg, box_offset);
  2215               if ( bt == T_LONG ) {
  2216                 __ movq(in_reg,  src1);
  2217                 __ movq(stack_dst, in_reg);
  2218                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2219                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2220               } else {
  2221                 __ movl(in_reg,  src1);
  2222                 __ movl(stack_dst, in_reg);
  2225               __ bind(skipUnbox);
  2226             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2227               // Convert the arg to NULL
  2228               if (!rax_is_zero) {
  2229                 __ xorq(rax, rax);
  2230                 rax_is_zero = true;
  2232               __ movq(stack_dst, rax);
  2235           break;
  2237         case T_VOID:
  2238           break;
  2240         case T_FLOAT:
  2241           // This does the right thing since we know it is destined for the
  2242           // stack
  2243           float_move(masm, src, dst);
  2244           break;
  2246         case T_DOUBLE:
  2247           // This does the right thing since we know it is destined for the
  2248           // stack
  2249           double_move(masm, src, dst);
  2250           break;
  2252         case T_LONG :
  2253           long_move(masm, src, dst);
  2254           break;
  2256         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2258         default:
  2259           move32_64(masm, src, dst);
  2265   // If we have any strings we must store any register based arg to the stack
  2266   // This includes any still live xmm registers too.
  2268   int sid = 0;
  2270   if (total_strings > 0 ) {
  2271     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2272          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2273       VMRegPair src = in_regs[j_arg];
  2274       VMRegPair dst = out_regs[c_arg];
  2276       if (src.first()->is_reg()) {
  2277         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2279         // string oops were left untouched by the previous loop even if the
  2280         // eventual (converted) arg is destined for the stack so park them
  2281         // away now (except for first)
  2283         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2284           Address utf8_addr = Address(
  2285               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2286           if (sid != 1) {
  2287             // The first string arg won't be killed until after the utf8
  2288             // conversion
  2289             __ movq(utf8_addr, src.first()->as_Register());
  2291         } else if (dst.first()->is_reg()) {
  2292           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  2294             // Convert the xmm register to an int and store it in the reserved
  2295             // location for the eventual c register arg
  2296             XMMRegister f = src.first()->as_XMMRegister();
  2297             if (in_sig_bt[j_arg] == T_FLOAT) {
  2298               __ movflt(src_tmp, f);
  2299             } else {
  2300               __ movdbl(src_tmp, f);
  2302           } else {
  2303             // If the arg is an oop type we don't support don't bother to store
  2304             // it remember string was handled above.
  2305             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2306                             (in_sig_bt[j_arg] == T_OBJECT &&
  2307                              out_sig_bt[c_arg] != T_INT &&
  2308                              out_sig_bt[c_arg] != T_LONG);
  2310             if (!useless) {
  2311               __ movq(src_tmp, src.first()->as_Register());
  2316       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2317         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2318         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2322     // Now that the volatile registers are safe, convert all the strings
  2323     sid = 0;
  2325     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2326          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2327       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2328         // It's a string
  2329         Address utf8_addr = Address(
  2330             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2331         // The first string we find might still be in the original java arg
  2332         // register
  2334         VMReg src = in_regs[j_arg].first();
  2336         // We will need to eventually save the final argument to the trap
  2337         // in the von-volatile location dedicated to src. This is the offset
  2338         // from fp we will use.
  2339         int src_off = src->is_reg() ?
  2340             fp_offset[src->value()] : reg2offset_in(src);
  2342         // This is where the argument will eventually reside
  2343         VMRegPair dst = out_regs[c_arg];
  2345         if (src->is_reg()) {
  2346           if (sid == 1) {
  2347             __ movq(c_rarg0, src->as_Register());
  2348           } else {
  2349             __ movq(c_rarg0, utf8_addr);
  2351         } else {
  2352           // arg is still in the original location
  2353           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  2355         Label done, convert;
  2357         // see if the oop is NULL
  2358         __ testq(c_rarg0, c_rarg0);
  2359         __ jcc(Assembler::notEqual, convert);
  2361         if (dst.first()->is_reg()) {
  2362           // Save the ptr to utf string in the origina src loc or the tmp
  2363           // dedicated to it
  2364           __ movq(Address(rbp, src_off), c_rarg0);
  2365         } else {
  2366           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  2368         __ jmp(done);
  2370         __ bind(convert);
  2372         __ lea(c_rarg1, utf8_addr);
  2373         if (dst.first()->is_reg()) {
  2374           __ movq(Address(rbp, src_off), c_rarg1);
  2375         } else {
  2376           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  2378         // And do the conversion
  2379         __ call(RuntimeAddress(
  2380                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  2382         __ bind(done);
  2384       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2385         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2386         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2389     // The get_utf call killed all the c_arg registers
  2390     live[c_rarg0->as_VMReg()->value()] = false;
  2391     live[c_rarg1->as_VMReg()->value()] = false;
  2392     live[c_rarg2->as_VMReg()->value()] = false;
  2393     live[c_rarg3->as_VMReg()->value()] = false;
  2394     live[c_rarg4->as_VMReg()->value()] = false;
  2395     live[c_rarg5->as_VMReg()->value()] = false;
  2397     live[c_farg0->as_VMReg()->value()] = false;
  2398     live[c_farg1->as_VMReg()->value()] = false;
  2399     live[c_farg2->as_VMReg()->value()] = false;
  2400     live[c_farg3->as_VMReg()->value()] = false;
  2401     live[c_farg4->as_VMReg()->value()] = false;
  2402     live[c_farg5->as_VMReg()->value()] = false;
  2403     live[c_farg6->as_VMReg()->value()] = false;
  2404     live[c_farg7->as_VMReg()->value()] = false;
  2407   // Now we can finally move the register args to their desired locations
  2409   rax_is_zero = false;
  2411   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2412        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2414     VMRegPair src = in_regs[j_arg];
  2415     VMRegPair dst = out_regs[c_arg];
  2417     // Only need to look for args destined for the interger registers (since we
  2418     // convert float/double args to look like int/long outbound)
  2419     if (dst.first()->is_reg()) {
  2420       Register r =  dst.first()->as_Register();
  2422       // Check if the java arg is unsupported and thereofre useless
  2423       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2424                       (in_sig_bt[j_arg] == T_OBJECT &&
  2425                        out_sig_bt[c_arg] != T_INT &&
  2426                        out_sig_bt[c_arg] != T_ADDRESS &&
  2427                        out_sig_bt[c_arg] != T_LONG);
  2430       // If we're going to kill an existing arg save it first
  2431       if (live[dst.first()->value()]) {
  2432         // you can't kill yourself
  2433         if (src.first() != dst.first()) {
  2434           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  2437       if (src.first()->is_reg()) {
  2438         if (live[src.first()->value()] ) {
  2439           if (in_sig_bt[j_arg] == T_FLOAT) {
  2440             __ movdl(r, src.first()->as_XMMRegister());
  2441           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  2442             __ movdq(r, src.first()->as_XMMRegister());
  2443           } else if (r != src.first()->as_Register()) {
  2444             if (!useless) {
  2445               __ movq(r, src.first()->as_Register());
  2448         } else {
  2449           // If the arg is an oop type we don't support don't bother to store
  2450           // it
  2451           if (!useless) {
  2452             if (in_sig_bt[j_arg] == T_DOUBLE ||
  2453                 in_sig_bt[j_arg] == T_LONG  ||
  2454                 in_sig_bt[j_arg] == T_OBJECT ) {
  2455               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  2456             } else {
  2457               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  2461         live[src.first()->value()] = false;
  2462       } else if (!useless) {
  2463         // full sized move even for int should be ok
  2464         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  2467       // At this point r has the original java arg in the final location
  2468       // (assuming it wasn't useless). If the java arg was an oop
  2469       // we have a bit more to do
  2471       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  2472         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2473           // need to unbox a one-word value
  2474           Label skip;
  2475           __ testq(r, r);
  2476           __ jcc(Assembler::equal, skip);
  2477           BasicType bt = out_sig_bt[c_arg];
  2478           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2479           Address src1(r, box_offset);
  2480           if ( bt == T_LONG ) {
  2481             __ movq(r, src1);
  2482           } else {
  2483             __ movl(r, src1);
  2485           __ bind(skip);
  2487         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2488           // Convert the arg to NULL
  2489           __ xorq(r, r);
  2493       // dst can longer be holding an input value
  2494       live[dst.first()->value()] = false;
  2496     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2497       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2498       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2503   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2504   // patch in the trap
  2505   int patch_offset = ((intptr_t)__ pc()) - start;
  2507   __ nop();
  2510   // Return
  2512   __ leave();
  2513   __ ret(0);
  2515   __ flush();
  2517   nmethod *nm = nmethod::new_dtrace_nmethod(
  2518       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2519       stack_slots / VMRegImpl::slots_per_word);
  2520   return nm;
  2524 #endif // HAVE_DTRACE_H
  2526 // this function returns the adjust size (in number of words) to a c2i adapter
  2527 // activation for use during deoptimization
  2528 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2529   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2533 uint SharedRuntime::out_preserve_stack_slots() {
  2534   return 0;
  2538 //------------------------------generate_deopt_blob----------------------------
  2539 void SharedRuntime::generate_deopt_blob() {
  2540   // Allocate space for the code
  2541   ResourceMark rm;
  2542   // Setup code generation tools
  2543   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2544   MacroAssembler* masm = new MacroAssembler(&buffer);
  2545   int frame_size_in_words;
  2546   OopMap* map = NULL;
  2547   OopMapSet *oop_maps = new OopMapSet();
  2549   // -------------
  2550   // This code enters when returning to a de-optimized nmethod.  A return
  2551   // address has been pushed on the the stack, and return values are in
  2552   // registers.
  2553   // If we are doing a normal deopt then we were called from the patched
  2554   // nmethod from the point we returned to the nmethod. So the return
  2555   // address on the stack is wrong by NativeCall::instruction_size
  2556   // We will adjust the value so it looks like we have the original return
  2557   // address on the stack (like when we eagerly deoptimized).
  2558   // In the case of an exception pending when deoptimizing, we enter
  2559   // with a return address on the stack that points after the call we patched
  2560   // into the exception handler. We have the following register state from,
  2561   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  2562   //    rax: exception oop
  2563   //    rbx: exception handler
  2564   //    rdx: throwing pc
  2565   // So in this case we simply jam rdx into the useless return address and
  2566   // the stack looks just like we want.
  2567   //
  2568   // At this point we need to de-opt.  We save the argument return
  2569   // registers.  We call the first C routine, fetch_unroll_info().  This
  2570   // routine captures the return values and returns a structure which
  2571   // describes the current frame size and the sizes of all replacement frames.
  2572   // The current frame is compiled code and may contain many inlined
  2573   // functions, each with their own JVM state.  We pop the current frame, then
  2574   // push all the new frames.  Then we call the C routine unpack_frames() to
  2575   // populate these frames.  Finally unpack_frames() returns us the new target
  2576   // address.  Notice that callee-save registers are BLOWN here; they have
  2577   // already been captured in the vframeArray at the time the return PC was
  2578   // patched.
  2579   address start = __ pc();
  2580   Label cont;
  2582   // Prolog for non exception case!
  2584   // Save everything in sight.
  2585   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2587   // Normal deoptimization.  Save exec mode for unpack_frames.
  2588   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  2589   __ jmp(cont);
  2591   int reexecute_offset = __ pc() - start;
  2593   // Reexecute case
  2594   // return address is the pc describes what bci to do re-execute at
  2596   // No need to update map as each call to save_live_registers will produce identical oopmap
  2597   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2599   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  2600   __ jmp(cont);
  2602   int exception_offset = __ pc() - start;
  2604   // Prolog for exception case
  2606   // all registers are dead at this entry point, except for rax, and
  2607   // rdx which contain the exception oop and exception pc
  2608   // respectively.  Set them in TLS and fall thru to the
  2609   // unpack_with_exception_in_tls entry point.
  2611   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  2612   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  2614   int exception_in_tls_offset = __ pc() - start;
  2616   // new implementation because exception oop is now passed in JavaThread
  2618   // Prolog for exception case
  2619   // All registers must be preserved because they might be used by LinearScan
  2620   // Exceptiop oop and throwing PC are passed in JavaThread
  2621   // tos: stack at point of call to method that threw the exception (i.e. only
  2622   // args are on the stack, no return address)
  2624   // make room on stack for the return address
  2625   // It will be patched later with the throwing pc. The correct value is not
  2626   // available now because loading it from memory would destroy registers.
  2627   __ push(0);
  2629   // Save everything in sight.
  2630   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2632   // Now it is safe to overwrite any register
  2634   // Deopt during an exception.  Save exec mode for unpack_frames.
  2635   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  2637   // load throwing pc from JavaThread and patch it as the return address
  2638   // of the current frame. Then clear the field in JavaThread
  2640   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2641   __ movptr(Address(rbp, wordSize), rdx);
  2642   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2644 #ifdef ASSERT
  2645   // verify that there is really an exception oop in JavaThread
  2646   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2647   __ verify_oop(rax);
  2649   // verify that there is no pending exception
  2650   Label no_pending_exception;
  2651   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  2652   __ testptr(rax, rax);
  2653   __ jcc(Assembler::zero, no_pending_exception);
  2654   __ stop("must not have pending exception here");
  2655   __ bind(no_pending_exception);
  2656 #endif
  2658   __ bind(cont);
  2660   // Call C code.  Need thread and this frame, but NOT official VM entry
  2661   // crud.  We cannot block on this call, no GC can happen.
  2662   //
  2663   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  2665   // fetch_unroll_info needs to call last_java_frame().
  2667   __ set_last_Java_frame(noreg, noreg, NULL);
  2668 #ifdef ASSERT
  2669   { Label L;
  2670     __ cmpptr(Address(r15_thread,
  2671                     JavaThread::last_Java_fp_offset()),
  2672             (int32_t)0);
  2673     __ jcc(Assembler::equal, L);
  2674     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  2675     __ bind(L);
  2677 #endif // ASSERT
  2678   __ mov(c_rarg0, r15_thread);
  2679   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2681   // Need to have an oopmap that tells fetch_unroll_info where to
  2682   // find any register it might need.
  2683   oop_maps->add_gc_map(__ pc() - start, map);
  2685   __ reset_last_Java_frame(false, false);
  2687   // Load UnrollBlock* into rdi
  2688   __ mov(rdi, rax);
  2690    Label noException;
  2691   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  2692   __ jcc(Assembler::notEqual, noException);
  2693   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2694   // QQQ this is useless it was NULL above
  2695   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2696   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  2697   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2699   __ verify_oop(rax);
  2701   // Overwrite the result registers with the exception results.
  2702   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2703   // I think this is useless
  2704   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  2706   __ bind(noException);
  2708   // Only register save data is on the stack.
  2709   // Now restore the result registers.  Everything else is either dead
  2710   // or captured in the vframeArray.
  2711   RegisterSaver::restore_result_registers(masm);
  2713   // All of the register save area has been popped of the stack. Only the
  2714   // return address remains.
  2716   // Pop all the frames we must move/replace.
  2717   //
  2718   // Frame picture (youngest to oldest)
  2719   // 1: self-frame (no frame link)
  2720   // 2: deopting frame  (no frame link)
  2721   // 3: caller of deopting frame (could be compiled/interpreted).
  2722   //
  2723   // Note: by leaving the return address of self-frame on the stack
  2724   // and using the size of frame 2 to adjust the stack
  2725   // when we are done the return to frame 3 will still be on the stack.
  2727   // Pop deoptimized frame
  2728   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2729   __ addptr(rsp, rcx);
  2731   // rsp should be pointing at the return address to the caller (3)
  2733   // Stack bang to make sure there's enough room for these interpreter frames.
  2734   if (UseStackBanging) {
  2735     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2736     __ bang_stack_size(rbx, rcx);
  2739   // Load address of array of frame pcs into rcx
  2740   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2742   // Trash the old pc
  2743   __ addptr(rsp, wordSize);
  2745   // Load address of array of frame sizes into rsi
  2746   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2748   // Load counter into rdx
  2749   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2751   // Pick up the initial fp we should save
  2752   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2754   // Now adjust the caller's stack to make up for the extra locals
  2755   // but record the original sp so that we can save it in the skeletal interpreter
  2756   // frame and the stack walking of interpreter_sender will get the unextended sp
  2757   // value and not the "real" sp value.
  2759   const Register sender_sp = r8;
  2761   __ mov(sender_sp, rsp);
  2762   __ movl(rbx, Address(rdi,
  2763                        Deoptimization::UnrollBlock::
  2764                        caller_adjustment_offset_in_bytes()));
  2765   __ subptr(rsp, rbx);
  2767   // Push interpreter frames in a loop
  2768   Label loop;
  2769   __ bind(loop);
  2770   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2771 #ifdef CC_INTERP
  2772   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2773 #ifdef ASSERT
  2774   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2775   __ push(0xDEADDEAD);
  2776 #else /* ASSERT */
  2777   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2778 #endif /* ASSERT */
  2779 #else
  2780   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  2781 #endif // CC_INTERP
  2782   __ pushptr(Address(rcx, 0));          // Save return address
  2783   __ enter();                           // Save old & set new ebp
  2784   __ subptr(rsp, rbx);                  // Prolog
  2785 #ifdef CC_INTERP
  2786   __ movptr(Address(rbp,
  2787                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2788             sender_sp); // Make it walkable
  2789 #else /* CC_INTERP */
  2790   // This value is corrected by layout_activation_impl
  2791   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2792   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  2793 #endif /* CC_INTERP */
  2794   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  2795   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2796   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2797   __ decrementl(rdx);                   // Decrement counter
  2798   __ jcc(Assembler::notZero, loop);
  2799   __ pushptr(Address(rcx, 0));          // Save final return address
  2801   // Re-push self-frame
  2802   __ enter();                           // Save old & set new ebp
  2804   // Allocate a full sized register save area.
  2805   // Return address and rbp are in place, so we allocate two less words.
  2806   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  2808   // Restore frame locals after moving the frame
  2809   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  2810   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2812   // Call C code.  Need thread but NOT official VM entry
  2813   // crud.  We cannot block on this call, no GC can happen.  Call should
  2814   // restore return values to their stack-slots with the new SP.
  2815   //
  2816   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  2818   // Use rbp because the frames look interpreted now
  2819   __ set_last_Java_frame(noreg, rbp, NULL);
  2821   __ mov(c_rarg0, r15_thread);
  2822   __ movl(c_rarg1, r14); // second arg: exec_mode
  2823   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2825   // Set an oopmap for the call site
  2826   oop_maps->add_gc_map(__ pc() - start,
  2827                        new OopMap( frame_size_in_words, 0 ));
  2829   __ reset_last_Java_frame(true, false);
  2831   // Collect return values
  2832   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  2833   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  2834   // I think this is useless (throwing pc?)
  2835   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  2837   // Pop self-frame.
  2838   __ leave();                           // Epilog
  2840   // Jump to interpreter
  2841   __ ret(0);
  2843   // Make sure all code is generated
  2844   masm->flush();
  2846   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2847   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2850 #ifdef COMPILER2
  2851 //------------------------------generate_uncommon_trap_blob--------------------
  2852 void SharedRuntime::generate_uncommon_trap_blob() {
  2853   // Allocate space for the code
  2854   ResourceMark rm;
  2855   // Setup code generation tools
  2856   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2857   MacroAssembler* masm = new MacroAssembler(&buffer);
  2859   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  2861   address start = __ pc();
  2863   // Push self-frame.  We get here with a return address on the
  2864   // stack, so rsp is 8-byte aligned until we allocate our frame.
  2865   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  2867   // No callee saved registers. rbp is assumed implicitly saved
  2868   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  2870   // compiler left unloaded_class_index in j_rarg0 move to where the
  2871   // runtime expects it.
  2872   __ movl(c_rarg1, j_rarg0);
  2874   __ set_last_Java_frame(noreg, noreg, NULL);
  2876   // Call C code.  Need thread but NOT official VM entry
  2877   // crud.  We cannot block on this call, no GC can happen.  Call should
  2878   // capture callee-saved registers as well as return values.
  2879   // Thread is in rdi already.
  2880   //
  2881   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  2883   __ mov(c_rarg0, r15_thread);
  2884   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2886   // Set an oopmap for the call site
  2887   OopMapSet* oop_maps = new OopMapSet();
  2888   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  2890   // location of rbp is known implicitly by the frame sender code
  2892   oop_maps->add_gc_map(__ pc() - start, map);
  2894   __ reset_last_Java_frame(false, false);
  2896   // Load UnrollBlock* into rdi
  2897   __ mov(rdi, rax);
  2899   // Pop all the frames we must move/replace.
  2900   //
  2901   // Frame picture (youngest to oldest)
  2902   // 1: self-frame (no frame link)
  2903   // 2: deopting frame  (no frame link)
  2904   // 3: caller of deopting frame (could be compiled/interpreted).
  2906   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  2907   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  2909   // Pop deoptimized frame (int)
  2910   __ movl(rcx, Address(rdi,
  2911                        Deoptimization::UnrollBlock::
  2912                        size_of_deoptimized_frame_offset_in_bytes()));
  2913   __ addptr(rsp, rcx);
  2915   // rsp should be pointing at the return address to the caller (3)
  2917   // Stack bang to make sure there's enough room for these interpreter frames.
  2918   if (UseStackBanging) {
  2919     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2920     __ bang_stack_size(rbx, rcx);
  2923   // Load address of array of frame pcs into rcx (address*)
  2924   __ movptr(rcx,
  2925             Address(rdi,
  2926                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2928   // Trash the return pc
  2929   __ addptr(rsp, wordSize);
  2931   // Load address of array of frame sizes into rsi (intptr_t*)
  2932   __ movptr(rsi, Address(rdi,
  2933                          Deoptimization::UnrollBlock::
  2934                          frame_sizes_offset_in_bytes()));
  2936   // Counter
  2937   __ movl(rdx, Address(rdi,
  2938                        Deoptimization::UnrollBlock::
  2939                        number_of_frames_offset_in_bytes())); // (int)
  2941   // Pick up the initial fp we should save
  2942   __ movptr(rbp,
  2943             Address(rdi,
  2944                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2946   // Now adjust the caller's stack to make up for the extra locals but
  2947   // record the original sp so that we can save it in the skeletal
  2948   // interpreter frame and the stack walking of interpreter_sender
  2949   // will get the unextended sp value and not the "real" sp value.
  2951   const Register sender_sp = r8;
  2953   __ mov(sender_sp, rsp);
  2954   __ movl(rbx, Address(rdi,
  2955                        Deoptimization::UnrollBlock::
  2956                        caller_adjustment_offset_in_bytes())); // (int)
  2957   __ subptr(rsp, rbx);
  2959   // Push interpreter frames in a loop
  2960   Label loop;
  2961   __ bind(loop);
  2962   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  2963   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  2964   __ pushptr(Address(rcx, 0));     // Save return address
  2965   __ enter();                      // Save old & set new rbp
  2966   __ subptr(rsp, rbx);             // Prolog
  2967 #ifdef CC_INTERP
  2968   __ movptr(Address(rbp,
  2969                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2970             sender_sp); // Make it walkable
  2971 #else // CC_INTERP
  2972   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  2973             sender_sp);            // Make it walkable
  2974   // This value is corrected by layout_activation_impl
  2975   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2976 #endif // CC_INTERP
  2977   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  2978   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  2979   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  2980   __ decrementl(rdx);              // Decrement counter
  2981   __ jcc(Assembler::notZero, loop);
  2982   __ pushptr(Address(rcx, 0));     // Save final return address
  2984   // Re-push self-frame
  2985   __ enter();                 // Save old & set new rbp
  2986   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  2987                               // Prolog
  2989   // Use rbp because the frames look interpreted now
  2990   __ set_last_Java_frame(noreg, rbp, NULL);
  2992   // Call C code.  Need thread but NOT official VM entry
  2993   // crud.  We cannot block on this call, no GC can happen.  Call should
  2994   // restore return values to their stack-slots with the new SP.
  2995   // Thread is in rdi already.
  2996   //
  2997   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  2999   __ mov(c_rarg0, r15_thread);
  3000   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3001   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3003   // Set an oopmap for the call site
  3004   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3006   __ reset_last_Java_frame(true, false);
  3008   // Pop self-frame.
  3009   __ leave();                 // Epilog
  3011   // Jump to interpreter
  3012   __ ret(0);
  3014   // Make sure all code is generated
  3015   masm->flush();
  3017   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3018                                                  SimpleRuntimeFrame::framesize >> 1);
  3020 #endif // COMPILER2
  3023 //------------------------------generate_handler_blob------
  3024 //
  3025 // Generate a special Compile2Runtime blob that saves all registers,
  3026 // and setup oopmap.
  3027 //
  3028 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3029   assert(StubRoutines::forward_exception_entry() != NULL,
  3030          "must be generated before");
  3032   ResourceMark rm;
  3033   OopMapSet *oop_maps = new OopMapSet();
  3034   OopMap* map;
  3036   // Allocate space for the code.  Setup code generation tools.
  3037   CodeBuffer buffer("handler_blob", 2048, 1024);
  3038   MacroAssembler* masm = new MacroAssembler(&buffer);
  3040   address start   = __ pc();
  3041   address call_pc = NULL;
  3042   int frame_size_in_words;
  3044   // Make room for return address (or push it again)
  3045   if (!cause_return) {
  3046     __ push(rbx);
  3049   // Save registers, fpu state, and flags
  3050   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3052   // The following is basically a call_VM.  However, we need the precise
  3053   // address of the call in order to generate an oopmap. Hence, we do all the
  3054   // work outselves.
  3056   __ set_last_Java_frame(noreg, noreg, NULL);
  3058   // The return address must always be correct so that frame constructor never
  3059   // sees an invalid pc.
  3061   if (!cause_return) {
  3062     // overwrite the dummy value we pushed on entry
  3063     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3064     __ movptr(Address(rbp, wordSize), c_rarg0);
  3067   // Do the call
  3068   __ mov(c_rarg0, r15_thread);
  3069   __ call(RuntimeAddress(call_ptr));
  3071   // Set an oopmap for the call site.  This oopmap will map all
  3072   // oop-registers and debug-info registers as callee-saved.  This
  3073   // will allow deoptimization at this safepoint to find all possible
  3074   // debug-info recordings, as well as let GC find all oops.
  3076   oop_maps->add_gc_map( __ pc() - start, map);
  3078   Label noException;
  3080   __ reset_last_Java_frame(false, false);
  3082   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3083   __ jcc(Assembler::equal, noException);
  3085   // Exception pending
  3087   RegisterSaver::restore_live_registers(masm);
  3089   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3091   // No exception case
  3092   __ bind(noException);
  3094   // Normal exit, restore registers and exit.
  3095   RegisterSaver::restore_live_registers(masm);
  3097   __ ret(0);
  3099   // Make sure all code is generated
  3100   masm->flush();
  3102   // Fill-out other meta info
  3103   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3106 //
  3107 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3108 //
  3109 // Generate a stub that calls into vm to find out the proper destination
  3110 // of a java call. All the argument registers are live at this point
  3111 // but since this is generic code we don't know what they are and the caller
  3112 // must do any gc of the args.
  3113 //
  3114 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3115   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3117   // allocate space for the code
  3118   ResourceMark rm;
  3120   CodeBuffer buffer(name, 1000, 512);
  3121   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3123   int frame_size_in_words;
  3125   OopMapSet *oop_maps = new OopMapSet();
  3126   OopMap* map = NULL;
  3128   int start = __ offset();
  3130   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3132   int frame_complete = __ offset();
  3134   __ set_last_Java_frame(noreg, noreg, NULL);
  3136   __ mov(c_rarg0, r15_thread);
  3138   __ call(RuntimeAddress(destination));
  3141   // Set an oopmap for the call site.
  3142   // We need this not only for callee-saved registers, but also for volatile
  3143   // registers that the compiler might be keeping live across a safepoint.
  3145   oop_maps->add_gc_map( __ offset() - start, map);
  3147   // rax contains the address we are going to jump to assuming no exception got installed
  3149   // clear last_Java_sp
  3150   __ reset_last_Java_frame(false, false);
  3151   // check for pending exceptions
  3152   Label pending;
  3153   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3154   __ jcc(Assembler::notEqual, pending);
  3156   // get the returned methodOop
  3157   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  3158   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3160   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3162   RegisterSaver::restore_live_registers(masm);
  3164   // We are back the the original state on entry and ready to go.
  3166   __ jmp(rax);
  3168   // Pending exception after the safepoint
  3170   __ bind(pending);
  3172   RegisterSaver::restore_live_registers(masm);
  3174   // exception pending => remove activation and forward to exception handler
  3176   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3178   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3179   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3181   // -------------
  3182   // make sure all code is generated
  3183   masm->flush();
  3185   // return the  blob
  3186   // frame_size_words or bytes??
  3187   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3191 void SharedRuntime::generate_stubs() {
  3193   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3194                                         "wrong_method_stub");
  3195   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3196                                         "ic_miss_stub");
  3197   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3198                                         "resolve_opt_virtual_call");
  3200   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3201                                         "resolve_virtual_call");
  3203   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3204                                         "resolve_static_call");
  3205   _polling_page_safepoint_handler_blob =
  3206     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3207                    SafepointSynchronize::handle_polling_page_exception), false);
  3209   _polling_page_return_handler_blob =
  3210     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3211                    SafepointSynchronize::handle_polling_page_exception), true);
  3213   generate_deopt_blob();
  3215 #ifdef COMPILER2
  3216   generate_uncommon_trap_blob();
  3217 #endif // COMPILER2
  3221 #ifdef COMPILER2
  3222 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3223 //
  3224 //------------------------------generate_exception_blob---------------------------
  3225 // creates exception blob at the end
  3226 // Using exception blob, this code is jumped from a compiled method.
  3227 // (see emit_exception_handler in x86_64.ad file)
  3228 //
  3229 // Given an exception pc at a call we call into the runtime for the
  3230 // handler in this method. This handler might merely restore state
  3231 // (i.e. callee save registers) unwind the frame and jump to the
  3232 // exception handler for the nmethod if there is no Java level handler
  3233 // for the nmethod.
  3234 //
  3235 // This code is entered with a jmp.
  3236 //
  3237 // Arguments:
  3238 //   rax: exception oop
  3239 //   rdx: exception pc
  3240 //
  3241 // Results:
  3242 //   rax: exception oop
  3243 //   rdx: exception pc in caller or ???
  3244 //   destination: exception handler of caller
  3245 //
  3246 // Note: the exception pc MUST be at a call (precise debug information)
  3247 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3248 //
  3250 void OptoRuntime::generate_exception_blob() {
  3251   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3252   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3253   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3255   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3257   // Allocate space for the code
  3258   ResourceMark rm;
  3259   // Setup code generation tools
  3260   CodeBuffer buffer("exception_blob", 2048, 1024);
  3261   MacroAssembler* masm = new MacroAssembler(&buffer);
  3264   address start = __ pc();
  3266   // Exception pc is 'return address' for stack walker
  3267   __ push(rdx);
  3268   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3270   // Save callee-saved registers.  See x86_64.ad.
  3272   // rbp is an implicitly saved callee saved register (i.e. the calling
  3273   // convention will save restore it in prolog/epilog) Other than that
  3274   // there are no callee save registers now that adapter frames are gone.
  3276   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3278   // Store exception in Thread object. We cannot pass any arguments to the
  3279   // handle_exception call, since we do not want to make any assumption
  3280   // about the size of the frame where the exception happened in.
  3281   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3282   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3283   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3285   // This call does all the hard work.  It checks if an exception handler
  3286   // exists in the method.
  3287   // If so, it returns the handler address.
  3288   // If not, it prepares for stack-unwinding, restoring the callee-save
  3289   // registers of the frame being removed.
  3290   //
  3291   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3293   __ set_last_Java_frame(noreg, noreg, NULL);
  3294   __ mov(c_rarg0, r15_thread);
  3295   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3297   // Set an oopmap for the call site.  This oopmap will only be used if we
  3298   // are unwinding the stack.  Hence, all locations will be dead.
  3299   // Callee-saved registers will be the same as the frame above (i.e.,
  3300   // handle_exception_stub), since they were restored when we got the
  3301   // exception.
  3303   OopMapSet* oop_maps = new OopMapSet();
  3305   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3307   __ reset_last_Java_frame(false, false);
  3309   // Restore callee-saved registers
  3311   // rbp is an implicitly saved callee saved register (i.e. the calling
  3312   // convention will save restore it in prolog/epilog) Other than that
  3313   // there are no callee save registers no that adapter frames are gone.
  3315   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  3317   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  3318   __ pop(rdx);                  // No need for exception pc anymore
  3320   // rax: exception handler
  3322   // Restore SP from BP if the exception PC is a MethodHandle call site.
  3323   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  3324   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  3326   // We have a handler in rax (could be deopt blob).
  3327   __ mov(r8, rax);
  3329   // Get the exception oop
  3330   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3331   // Get the exception pc in case we are deoptimized
  3332   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3333 #ifdef ASSERT
  3334   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  3335   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  3336 #endif
  3337   // Clear the exception oop so GC no longer processes it as a root.
  3338   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  3340   // rax: exception oop
  3341   // r8:  exception handler
  3342   // rdx: exception pc
  3343   // Jump to handler
  3345   __ jmp(r8);
  3347   // Make sure all code is generated
  3348   masm->flush();
  3350   // Set exception blob
  3351   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  3353 #endif // COMPILER2

mercurial