src/cpu/sparc/vm/c1_MacroAssembler_sparc.cpp

Mon, 10 Jan 2011 18:46:29 -0800

author
iveresov
date
Mon, 10 Jan 2011 18:46:29 -0800
changeset 2438
dd031b2226de
parent 2344
ac637b7220d1
child 2423
b1a2afa37ec4
permissions
-rw-r--r--

4930919: race condition in MDO creation at back branch locations
Summary: Reuse set_method_data_for_bcp() to setup mdp after MDO creation.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_MacroAssembler.hpp"
    27 #include "c1/c1_Runtime1.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "oops/arrayOop.hpp"
    32 #include "oops/markOop.hpp"
    33 #include "runtime/basicLock.hpp"
    34 #include "runtime/biasedLocking.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/stubRoutines.hpp"
    38 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
    39   Label L;
    40   const Register temp_reg = G3_scratch;
    41   // Note: needs more testing of out-of-line vs. inline slow case
    42   verify_oop(receiver);
    43   load_klass(receiver, temp_reg);
    44   cmp(temp_reg, iCache);
    45   brx(Assembler::equal, true, Assembler::pt, L);
    46   delayed()->nop();
    47   AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
    48   jump_to(ic_miss, temp_reg);
    49   delayed()->nop();
    50   align(CodeEntryAlignment);
    51   bind(L);
    52 }
    55 void C1_MacroAssembler::explicit_null_check(Register base) {
    56   Unimplemented();
    57 }
    60 void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
    62   generate_stack_overflow_check(frame_size_in_bytes);
    63   // Create the frame.
    64   save_frame_c1(frame_size_in_bytes);
    65 }
    68 void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
    69   if (C1Breakpoint) breakpoint_trap();
    70   inline_cache_check(receiver, ic_klass);
    71 }
    74 void C1_MacroAssembler::verified_entry() {
    75   if (C1Breakpoint) breakpoint_trap();
    76   // build frame
    77   verify_FPU(0, "method_entry");
    78 }
    81 void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
    82   assert_different_registers(Rmark, Roop, Rbox, Rscratch);
    84   Label done;
    86   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
    88   // The following move must be the first instruction of emitted since debug
    89   // information may be generated for it.
    90   // Load object header
    91   ld_ptr(mark_addr, Rmark);
    93   verify_oop(Roop);
    95   // save object being locked into the BasicObjectLock
    96   st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
    98   if (UseBiasedLocking) {
    99     biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
   100   }
   102   // Save Rbox in Rscratch to be used for the cas operation
   103   mov(Rbox, Rscratch);
   105   // and mark it unlocked
   106   or3(Rmark, markOopDesc::unlocked_value, Rmark);
   108   // save unlocked object header into the displaced header location on the stack
   109   st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
   111   // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
   112   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
   113   casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
   114   // if compare/exchange succeeded we found an unlocked object and we now have locked it
   115   // hence we are done
   116   cmp(Rmark, Rscratch);
   117   brx(Assembler::equal, false, Assembler::pt, done);
   118   delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
   119   // we did not find an unlocked object so see if this is a recursive case
   120   // sub(Rscratch, SP, Rscratch);
   121   assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
   122   andcc(Rscratch, 0xfffff003, Rscratch);
   123   brx(Assembler::notZero, false, Assembler::pn, slow_case);
   124   delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
   125   bind(done);
   126 }
   129 void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
   130   assert_different_registers(Rmark, Roop, Rbox);
   132   Label done;
   134   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
   135   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
   137   if (UseBiasedLocking) {
   138     // load the object out of the BasicObjectLock
   139     ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
   140     verify_oop(Roop);
   141     biased_locking_exit(mark_addr, Rmark, done);
   142   }
   143   // Test first it it is a fast recursive unlock
   144   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
   145   br_null(Rmark, false, Assembler::pt, done);
   146   delayed()->nop();
   147   if (!UseBiasedLocking) {
   148     // load object
   149     ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
   150     verify_oop(Roop);
   151   }
   153   // Check if it is still a light weight lock, this is is true if we see
   154   // the stack address of the basicLock in the markOop of the object
   155   casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
   156   cmp(Rbox, Rmark);
   158   brx(Assembler::notEqual, false, Assembler::pn, slow_case);
   159   delayed()->nop();
   160   // Done
   161   bind(done);
   162 }
   165 void C1_MacroAssembler::try_allocate(
   166   Register obj,                        // result: pointer to object after successful allocation
   167   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
   168   int      con_size_in_bytes,          // object size in bytes if   known at compile time
   169   Register t1,                         // temp register
   170   Register t2,                         // temp register
   171   Label&   slow_case                   // continuation point if fast allocation fails
   172 ) {
   173   if (UseTLAB) {
   174     tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
   175   } else {
   176     eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
   177   }
   178 }
   181 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
   182   assert_different_registers(obj, klass, len, t1, t2);
   183   if (UseBiasedLocking && !len->is_valid()) {
   184     ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1);
   185   } else {
   186     set((intx)markOopDesc::prototype(), t1);
   187   }
   188   st_ptr(t1, obj, oopDesc::mark_offset_in_bytes());
   189   if (UseCompressedOops) {
   190     // Save klass
   191     mov(klass, t1);
   192     encode_heap_oop_not_null(t1);
   193     stw(t1, obj, oopDesc::klass_offset_in_bytes());
   194   } else {
   195     st_ptr(klass, obj, oopDesc::klass_offset_in_bytes());
   196   }
   197   if (len->is_valid()) st(len, obj, arrayOopDesc::length_offset_in_bytes());
   198   else if (UseCompressedOops) {
   199     store_klass_gap(G0, obj);
   200   }
   201 }
   204 void C1_MacroAssembler::initialize_body(Register base, Register index) {
   205   assert_different_registers(base, index);
   206   Label loop;
   207   bind(loop);
   208   subcc(index, HeapWordSize, index);
   209   brx(Assembler::greaterEqual, true, Assembler::pt, loop);
   210   delayed()->st_ptr(G0, base, index);
   211 }
   214 void C1_MacroAssembler::allocate_object(
   215   Register obj,                        // result: pointer to object after successful allocation
   216   Register t1,                         // temp register
   217   Register t2,                         // temp register
   218   Register t3,                         // temp register
   219   int      hdr_size,                   // object header size in words
   220   int      obj_size,                   // object size in words
   221   Register klass,                      // object klass
   222   Label&   slow_case                   // continuation point if fast allocation fails
   223 ) {
   224   assert_different_registers(obj, t1, t2, t3, klass);
   225   assert(klass == G5, "must be G5");
   227   // allocate space & initialize header
   228   if (!is_simm13(obj_size * wordSize)) {
   229     // would need to use extra register to load
   230     // object size => go the slow case for now
   231     br(Assembler::always, false, Assembler::pt, slow_case);
   232     delayed()->nop();
   233     return;
   234   }
   235   try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
   237   initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
   238 }
   240 void C1_MacroAssembler::initialize_object(
   241   Register obj,                        // result: pointer to object after successful allocation
   242   Register klass,                      // object klass
   243   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
   244   int      con_size_in_bytes,          // object size in bytes if   known at compile time
   245   Register t1,                         // temp register
   246   Register t2                          // temp register
   247   ) {
   248   const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
   250   initialize_header(obj, klass, noreg, t1, t2);
   252 #ifdef ASSERT
   253   {
   254     Label ok;
   255     ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1);
   256     if (var_size_in_bytes != noreg) {
   257       cmp(t1, var_size_in_bytes);
   258     } else {
   259       cmp(t1, con_size_in_bytes);
   260     }
   261     brx(Assembler::equal, false, Assembler::pt, ok);
   262     delayed()->nop();
   263     stop("bad size in initialize_object");
   264     should_not_reach_here();
   266     bind(ok);
   267   }
   269 #endif
   271   // initialize body
   272   const int threshold = 5 * HeapWordSize;              // approximate break even point for code size
   273   if (var_size_in_bytes != noreg) {
   274     // use a loop
   275     add(obj, hdr_size_in_bytes, t1);               // compute address of first element
   276     sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
   277     initialize_body(t1, t2);
   278 #ifndef _LP64
   279   } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) {
   280     // on v9 we can do double word stores to fill twice as much space.
   281     assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
   282     assert(con_size_in_bytes % 8 == 0, "double word aligned");
   283     for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
   284 #endif
   285   } else if (con_size_in_bytes <= threshold) {
   286     // use explicit NULL stores
   287     for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize)     st_ptr(G0, obj, i);
   288   } else if (con_size_in_bytes > hdr_size_in_bytes) {
   289     // use a loop
   290     const Register base  = t1;
   291     const Register index = t2;
   292     add(obj, hdr_size_in_bytes, base);               // compute address of first element
   293     // compute index = number of words to clear
   294     set(con_size_in_bytes - hdr_size_in_bytes, index);
   295     initialize_body(base, index);
   296   }
   298   if (CURRENT_ENV->dtrace_alloc_probes()) {
   299     assert(obj == O0, "must be");
   300     call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
   301          relocInfo::runtime_call_type);
   302     delayed()->nop();
   303   }
   305   verify_oop(obj);
   306 }
   309 void C1_MacroAssembler::allocate_array(
   310   Register obj,                        // result: pointer to array after successful allocation
   311   Register len,                        // array length
   312   Register t1,                         // temp register
   313   Register t2,                         // temp register
   314   Register t3,                         // temp register
   315   int      hdr_size,                   // object header size in words
   316   int      elt_size,                   // element size in bytes
   317   Register klass,                      // object klass
   318   Label&   slow_case                   // continuation point if fast allocation fails
   319 ) {
   320   assert_different_registers(obj, len, t1, t2, t3, klass);
   321   assert(klass == G5, "must be G5");
   322   assert(t1 == G1, "must be G1");
   324   // determine alignment mask
   325   assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
   327   // check for negative or excessive length
   328   // note: the maximum length allowed is chosen so that arrays of any
   329   //       element size with this length are always smaller or equal
   330   //       to the largest integer (i.e., array size computation will
   331   //       not overflow)
   332   set(max_array_allocation_length, t1);
   333   cmp(len, t1);
   334   br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
   336   // compute array size
   337   // note: if 0 <= len <= max_length, len*elt_size + header + alignment is
   338   //       smaller or equal to the largest integer; also, since top is always
   339   //       aligned, we can do the alignment here instead of at the end address
   340   //       computation
   341   const Register arr_size = t1;
   342   switch (elt_size) {
   343     case  1: delayed()->mov(len,    arr_size); break;
   344     case  2: delayed()->sll(len, 1, arr_size); break;
   345     case  4: delayed()->sll(len, 2, arr_size); break;
   346     case  8: delayed()->sll(len, 3, arr_size); break;
   347     default: ShouldNotReachHere();
   348   }
   349   add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
   350   and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size);                     // align array size
   352   // allocate space & initialize header
   353   if (UseTLAB) {
   354     tlab_allocate(obj, arr_size, 0, t2, slow_case);
   355   } else {
   356     eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
   357   }
   358   initialize_header(obj, klass, len, t2, t3);
   360   // initialize body
   361   const Register base  = t2;
   362   const Register index = t3;
   363   add(obj, hdr_size * wordSize, base);               // compute address of first element
   364   sub(arr_size, hdr_size * wordSize, index);         // compute index = number of words to clear
   365   initialize_body(base, index);
   367   if (CURRENT_ENV->dtrace_alloc_probes()) {
   368     assert(obj == O0, "must be");
   369     call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
   370          relocInfo::runtime_call_type);
   371     delayed()->nop();
   372   }
   374   verify_oop(obj);
   375 }
   378 #ifndef PRODUCT
   380 void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
   381   if (!VerifyOops) return;
   382   verify_oop_addr(Address(SP, stack_offset + STACK_BIAS));
   383 }
   385 void C1_MacroAssembler::verify_not_null_oop(Register r) {
   386   Label not_null;
   387   br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null);
   388   delayed()->nop();
   389   stop("non-null oop required");
   390   bind(not_null);
   391   if (!VerifyOops) return;
   392   verify_oop(r);
   393 }
   395 void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
   396                                              Register preserve1, Register preserve2) {
   397   if (iregisters) {
   398     for (int i = 0; i < 6; i++) {
   399       Register r = as_iRegister(i);
   400       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   401     }
   402   }
   403   if (oregisters) {
   404     for (int i = 0; i < 6; i++) {
   405       Register r = as_oRegister(i);
   406       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   407     }
   408   }
   409   if (lregisters) {
   410     for (int i = 0; i < 8; i++) {
   411       Register r = as_lRegister(i);
   412       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   413     }
   414   }
   415 }
   418 #endif

mercurial