src/share/vm/runtime/deoptimization.cpp

Wed, 04 May 2011 22:31:18 -0700

author
never
date
Wed, 04 May 2011 22:31:18 -0700
changeset 2878
dcfb3dede009
parent 2877
bad7ecd0b6ed
child 2901
3d2ab563047a
permissions
-rw-r--r--

7042052: Xcomp crash with PopSynchronousTest
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/methodOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    87 #endif
    89 bool DeoptimizationMarker::_is_active = false;
    91 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    92                                          int  caller_adjustment,
    93                                          int  number_of_frames,
    94                                          intptr_t* frame_sizes,
    95                                          address* frame_pcs,
    96                                          BasicType return_type) {
    97   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    98   _caller_adjustment         = caller_adjustment;
    99   _number_of_frames          = number_of_frames;
   100   _frame_sizes               = frame_sizes;
   101   _frame_pcs                 = frame_pcs;
   102   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
   103   _return_type               = return_type;
   104   _initial_fp                = 0;
   105   // PD (x86 only)
   106   _counter_temp              = 0;
   107   _unpack_kind               = 0;
   108   _sender_sp_temp            = 0;
   110   _total_frame_sizes         = size_of_frames();
   111 }
   114 Deoptimization::UnrollBlock::~UnrollBlock() {
   115   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
   116   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
   117   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
   118 }
   121 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   122   assert(register_number < RegisterMap::reg_count, "checking register number");
   123   return &_register_block[register_number * 2];
   124 }
   128 int Deoptimization::UnrollBlock::size_of_frames() const {
   129   // Acount first for the adjustment of the initial frame
   130   int result = _caller_adjustment;
   131   for (int index = 0; index < number_of_frames(); index++) {
   132     result += frame_sizes()[index];
   133   }
   134   return result;
   135 }
   138 void Deoptimization::UnrollBlock::print() {
   139   ttyLocker ttyl;
   140   tty->print_cr("UnrollBlock");
   141   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   142   tty->print(   "  frame_sizes: ");
   143   for (int index = 0; index < number_of_frames(); index++) {
   144     tty->print("%d ", frame_sizes()[index]);
   145   }
   146   tty->cr();
   147 }
   150 // In order to make fetch_unroll_info work properly with escape
   151 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   152 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   153 // of previously eliminated objects occurs in realloc_objects, which is
   154 // called from the method fetch_unroll_info_helper below.
   155 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   156   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   157   // but makes the entry a little slower. There is however a little dance we have to
   158   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   160   // fetch_unroll_info() is called at the beginning of the deoptimization
   161   // handler. Note this fact before we start generating temporary frames
   162   // that can confuse an asynchronous stack walker. This counter is
   163   // decremented at the end of unpack_frames().
   164   thread->inc_in_deopt_handler();
   166   return fetch_unroll_info_helper(thread);
   167 JRT_END
   170 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   171 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   173   // Note: there is a safepoint safety issue here. No matter whether we enter
   174   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   175   // the vframeArray is created.
   176   //
   178   // Allocate our special deoptimization ResourceMark
   179   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   180   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   181   thread->set_deopt_mark(dmark);
   183   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   184   RegisterMap map(thread, true);
   185   RegisterMap dummy_map(thread, false);
   186   // Now get the deoptee with a valid map
   187   frame deoptee = stub_frame.sender(&map);
   188   // Set the deoptee nmethod
   189   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   190   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   192   if (VerifyStack) {
   193     thread->validate_frame_layout();
   194   }
   196   // Create a growable array of VFrames where each VFrame represents an inlined
   197   // Java frame.  This storage is allocated with the usual system arena.
   198   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   199   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   200   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   201   while (!vf->is_top()) {
   202     assert(vf->is_compiled_frame(), "Wrong frame type");
   203     chunk->push(compiledVFrame::cast(vf));
   204     vf = vf->sender();
   205   }
   206   assert(vf->is_compiled_frame(), "Wrong frame type");
   207   chunk->push(compiledVFrame::cast(vf));
   209 #ifdef COMPILER2
   210   // Reallocate the non-escaping objects and restore their fields. Then
   211   // relock objects if synchronization on them was eliminated.
   212   if (DoEscapeAnalysis) {
   213     if (EliminateAllocations) {
   214       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   215       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   217       // The flag return_oop() indicates call sites which return oop
   218       // in compiled code. Such sites include java method calls,
   219       // runtime calls (for example, used to allocate new objects/arrays
   220       // on slow code path) and any other calls generated in compiled code.
   221       // It is not guaranteed that we can get such information here only
   222       // by analyzing bytecode in deoptimized frames. This is why this flag
   223       // is set during method compilation (see Compile::Process_OopMap_Node()).
   224       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   225       Handle return_value;
   226       if (save_oop_result) {
   227         // Reallocation may trigger GC. If deoptimization happened on return from
   228         // call which returns oop we need to save it since it is not in oopmap.
   229         oop result = deoptee.saved_oop_result(&map);
   230         assert(result == NULL || result->is_oop(), "must be oop");
   231         return_value = Handle(thread, result);
   232         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   233         if (TraceDeoptimization) {
   234           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   235         }
   236       }
   237       bool reallocated = false;
   238       if (objects != NULL) {
   239         JRT_BLOCK
   240           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   241         JRT_END
   242       }
   243       if (reallocated) {
   244         reassign_fields(&deoptee, &map, objects);
   245 #ifndef PRODUCT
   246         if (TraceDeoptimization) {
   247           ttyLocker ttyl;
   248           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   249           print_objects(objects);
   250         }
   251 #endif
   252       }
   253       if (save_oop_result) {
   254         // Restore result.
   255         deoptee.set_saved_oop_result(&map, return_value());
   256       }
   257     }
   258     if (EliminateLocks) {
   259 #ifndef PRODUCT
   260       bool first = true;
   261 #endif
   262       for (int i = 0; i < chunk->length(); i++) {
   263         compiledVFrame* cvf = chunk->at(i);
   264         assert (cvf->scope() != NULL,"expect only compiled java frames");
   265         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   266         if (monitors->is_nonempty()) {
   267           relock_objects(monitors, thread);
   268 #ifndef PRODUCT
   269           if (TraceDeoptimization) {
   270             ttyLocker ttyl;
   271             for (int j = 0; j < monitors->length(); j++) {
   272               MonitorInfo* mi = monitors->at(j);
   273               if (mi->eliminated()) {
   274                 if (first) {
   275                   first = false;
   276                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   277                 }
   278                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   279               }
   280             }
   281           }
   282 #endif
   283         }
   284       }
   285     }
   286   }
   287 #endif // COMPILER2
   288   // Ensure that no safepoint is taken after pointers have been stored
   289   // in fields of rematerialized objects.  If a safepoint occurs from here on
   290   // out the java state residing in the vframeArray will be missed.
   291   No_Safepoint_Verifier no_safepoint;
   293   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   295   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   296   thread->set_vframe_array_head(array);
   298   // Now that the vframeArray has been created if we have any deferred local writes
   299   // added by jvmti then we can free up that structure as the data is now in the
   300   // vframeArray
   302   if (thread->deferred_locals() != NULL) {
   303     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   304     int i = 0;
   305     do {
   306       // Because of inlining we could have multiple vframes for a single frame
   307       // and several of the vframes could have deferred writes. Find them all.
   308       if (list->at(i)->id() == array->original().id()) {
   309         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   310         list->remove_at(i);
   311         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   312         delete dlv;
   313       } else {
   314         i++;
   315       }
   316     } while ( i < list->length() );
   317     if (list->length() == 0) {
   318       thread->set_deferred_locals(NULL);
   319       // free the list and elements back to C heap.
   320       delete list;
   321     }
   323   }
   325 #ifndef SHARK
   326   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   327   CodeBlob* cb = stub_frame.cb();
   328   // Verify we have the right vframeArray
   329   assert(cb->frame_size() >= 0, "Unexpected frame size");
   330   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   332   // If the deopt call site is a MethodHandle invoke call site we have
   333   // to adjust the unpack_sp.
   334   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   335   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   336     unpack_sp = deoptee.unextended_sp();
   338 #ifdef ASSERT
   339   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   340   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   341 #endif
   342 #else
   343   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   344 #endif // !SHARK
   346   // This is a guarantee instead of an assert because if vframe doesn't match
   347   // we will unpack the wrong deoptimized frame and wind up in strange places
   348   // where it will be very difficult to figure out what went wrong. Better
   349   // to die an early death here than some very obscure death later when the
   350   // trail is cold.
   351   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   352   // in that it will fail to detect a problem when there is one. This needs
   353   // more work in tiger timeframe.
   354   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   356   int number_of_frames = array->frames();
   358   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   359   // virtual activation, which is the reverse of the elements in the vframes array.
   360   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   361   // +1 because we always have an interpreter return address for the final slot.
   362   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   363   int callee_parameters = 0;
   364   int callee_locals = 0;
   365   int popframe_extra_args = 0;
   366   // Create an interpreter return address for the stub to use as its return
   367   // address so the skeletal frames are perfectly walkable
   368   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   370   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   371   // activation be put back on the expression stack of the caller for reexecution
   372   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   373     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   374   }
   376   //
   377   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   378   // frame_sizes/frame_pcs[1] next oldest frame (int)
   379   // frame_sizes/frame_pcs[n] youngest frame (int)
   380   //
   381   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   382   // owns the space for the return address to it's caller).  Confusing ain't it.
   383   //
   384   // The vframe array can address vframes with indices running from
   385   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   386   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   387   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   388   // so things look a little strange in this loop.
   389   //
   390   for (int index = 0; index < array->frames(); index++ ) {
   391     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   392     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   393     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   394     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   395                                                                                                     callee_locals,
   396                                                                                                     index == 0,
   397                                                                                                     popframe_extra_args);
   398     // This pc doesn't have to be perfect just good enough to identify the frame
   399     // as interpreted so the skeleton frame will be walkable
   400     // The correct pc will be set when the skeleton frame is completely filled out
   401     // The final pc we store in the loop is wrong and will be overwritten below
   402     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   404     callee_parameters = array->element(index)->method()->size_of_parameters();
   405     callee_locals = array->element(index)->method()->max_locals();
   406     popframe_extra_args = 0;
   407   }
   409   // Compute whether the root vframe returns a float or double value.
   410   BasicType return_type;
   411   {
   412     HandleMark hm;
   413     methodHandle method(thread, array->element(0)->method());
   414     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   415     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   416   }
   418   // Compute information for handling adapters and adjusting the frame size of the caller.
   419   int caller_adjustment = 0;
   421   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   422   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   423   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   424   //
   425   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   426   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   428   // It's possible that the number of paramters at the call site is
   429   // different than number of arguments in the callee when method
   430   // handles are used.  If the caller is interpreted get the real
   431   // value so that the proper amount of space can be added to it's
   432   // frame.
   433   int sender_callee_parameters = callee_parameters;
   434   if (deopt_sender.is_interpreted_frame()) {
   435     methodHandle method = deopt_sender.interpreter_frame_method();
   436     Bytecode_invoke cur = Bytecode_invoke_check(method,
   437                                                 deopt_sender.interpreter_frame_bci());
   438     Symbol* signature = method->constants()->signature_ref_at(cur.index());
   439     ArgumentSizeComputer asc(signature);
   440     sender_callee_parameters = asc.size() + (cur.has_receiver() ? 1 : 0);
   441   }
   443   // Compute the amount the oldest interpreter frame will have to adjust
   444   // its caller's stack by. If the caller is a compiled frame then
   445   // we pretend that the callee has no parameters so that the
   446   // extension counts for the full amount of locals and not just
   447   // locals-parms. This is because without a c2i adapter the parm
   448   // area as created by the compiled frame will not be usable by
   449   // the interpreter. (Depending on the calling convention there
   450   // may not even be enough space).
   452   // QQQ I'd rather see this pushed down into last_frame_adjust
   453   // and have it take the sender (aka caller).
   455   if (deopt_sender.is_compiled_frame()) {
   456     caller_adjustment = last_frame_adjust(0, callee_locals);
   457   } else if (callee_locals > sender_callee_parameters) {
   458     // The caller frame may need extending to accommodate
   459     // non-parameter locals of the first unpacked interpreted frame.
   460     // Compute that adjustment.
   461     caller_adjustment = last_frame_adjust(sender_callee_parameters, callee_locals);
   462   }
   464   // If the sender is deoptimized the we must retrieve the address of the handler
   465   // since the frame will "magically" show the original pc before the deopt
   466   // and we'd undo the deopt.
   468   frame_pcs[0] = deopt_sender.raw_pc();
   470 #ifndef SHARK
   471   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   472 #endif // SHARK
   474   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   475                                       caller_adjustment * BytesPerWord,
   476                                       number_of_frames,
   477                                       frame_sizes,
   478                                       frame_pcs,
   479                                       return_type);
   480   // On some platforms, we need a way to pass fp to the unpacking code
   481   // so the skeletal frames come out correct.
   482   info->set_initial_fp((intptr_t) array->sender().fp());
   484   if (array->frames() > 1) {
   485     if (VerifyStack && TraceDeoptimization) {
   486       tty->print_cr("Deoptimizing method containing inlining");
   487     }
   488   }
   490   array->set_unroll_block(info);
   491   return info;
   492 }
   494 // Called to cleanup deoptimization data structures in normal case
   495 // after unpacking to stack and when stack overflow error occurs
   496 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   497                                         vframeArray *array) {
   499   // Get array if coming from exception
   500   if (array == NULL) {
   501     array = thread->vframe_array_head();
   502   }
   503   thread->set_vframe_array_head(NULL);
   505   // Free the previous UnrollBlock
   506   vframeArray* old_array = thread->vframe_array_last();
   507   thread->set_vframe_array_last(array);
   509   if (old_array != NULL) {
   510     UnrollBlock* old_info = old_array->unroll_block();
   511     old_array->set_unroll_block(NULL);
   512     delete old_info;
   513     delete old_array;
   514   }
   516   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   517   // inside the vframeArray (StackValueCollections)
   519   delete thread->deopt_mark();
   520   thread->set_deopt_mark(NULL);
   521   thread->set_deopt_nmethod(NULL);
   524   if (JvmtiExport::can_pop_frame()) {
   525 #ifndef CC_INTERP
   526     // Regardless of whether we entered this routine with the pending
   527     // popframe condition bit set, we should always clear it now
   528     thread->clear_popframe_condition();
   529 #else
   530     // C++ interpeter will clear has_pending_popframe when it enters
   531     // with method_resume. For deopt_resume2 we clear it now.
   532     if (thread->popframe_forcing_deopt_reexecution())
   533         thread->clear_popframe_condition();
   534 #endif /* CC_INTERP */
   535   }
   537   // unpack_frames() is called at the end of the deoptimization handler
   538   // and (in C2) at the end of the uncommon trap handler. Note this fact
   539   // so that an asynchronous stack walker can work again. This counter is
   540   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   541   // the beginning of uncommon_trap().
   542   thread->dec_in_deopt_handler();
   543 }
   546 // Return BasicType of value being returned
   547 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   549   // We are already active int he special DeoptResourceMark any ResourceObj's we
   550   // allocate will be freed at the end of the routine.
   552   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   553   // but makes the entry a little slower. There is however a little dance we have to
   554   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   555   ResetNoHandleMark rnhm; // No-op in release/product versions
   556   HandleMark hm;
   558   frame stub_frame = thread->last_frame();
   560   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   561   // must point to the vframeArray for the unpack frame.
   562   vframeArray* array = thread->vframe_array_head();
   564 #ifndef PRODUCT
   565   if (TraceDeoptimization) {
   566     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   567   }
   568 #endif
   570   UnrollBlock* info = array->unroll_block();
   572   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   573   array->unpack_to_stack(stub_frame, exec_mode);
   575   BasicType bt = info->return_type();
   577   // If we have an exception pending, claim that the return type is an oop
   578   // so the deopt_blob does not overwrite the exception_oop.
   580   if (exec_mode == Unpack_exception)
   581     bt = T_OBJECT;
   583   // Cleanup thread deopt data
   584   cleanup_deopt_info(thread, array);
   586 #ifndef PRODUCT
   587   if (VerifyStack) {
   588     ResourceMark res_mark;
   590     thread->validate_frame_layout();
   592     // Verify that the just-unpacked frames match the interpreter's
   593     // notions of expression stack and locals
   594     vframeArray* cur_array = thread->vframe_array_last();
   595     RegisterMap rm(thread, false);
   596     rm.set_include_argument_oops(false);
   597     bool is_top_frame = true;
   598     int callee_size_of_parameters = 0;
   599     int callee_max_locals = 0;
   600     for (int i = 0; i < cur_array->frames(); i++) {
   601       vframeArrayElement* el = cur_array->element(i);
   602       frame* iframe = el->iframe();
   603       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   605       // Get the oop map for this bci
   606       InterpreterOopMap mask;
   607       int cur_invoke_parameter_size = 0;
   608       bool try_next_mask = false;
   609       int next_mask_expression_stack_size = -1;
   610       int top_frame_expression_stack_adjustment = 0;
   611       methodHandle mh(thread, iframe->interpreter_frame_method());
   612       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   613       BytecodeStream str(mh);
   614       str.set_start(iframe->interpreter_frame_bci());
   615       int max_bci = mh->code_size();
   616       // Get to the next bytecode if possible
   617       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   618       // Check to see if we can grab the number of outgoing arguments
   619       // at an uncommon trap for an invoke (where the compiler
   620       // generates debug info before the invoke has executed)
   621       Bytecodes::Code cur_code = str.next();
   622       if (cur_code == Bytecodes::_invokevirtual ||
   623           cur_code == Bytecodes::_invokespecial ||
   624           cur_code == Bytecodes::_invokestatic  ||
   625           cur_code == Bytecodes::_invokeinterface) {
   626         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   627         Symbol* signature = invoke.signature();
   628         ArgumentSizeComputer asc(signature);
   629         cur_invoke_parameter_size = asc.size();
   630         if (cur_code != Bytecodes::_invokestatic) {
   631           // Add in receiver
   632           ++cur_invoke_parameter_size;
   633         }
   634       }
   635       if (str.bci() < max_bci) {
   636         Bytecodes::Code bc = str.next();
   637         if (bc >= 0) {
   638           // The interpreter oop map generator reports results before
   639           // the current bytecode has executed except in the case of
   640           // calls. It seems to be hard to tell whether the compiler
   641           // has emitted debug information matching the "state before"
   642           // a given bytecode or the state after, so we try both
   643           switch (cur_code) {
   644             case Bytecodes::_invokevirtual:
   645             case Bytecodes::_invokespecial:
   646             case Bytecodes::_invokestatic:
   647             case Bytecodes::_invokeinterface:
   648             case Bytecodes::_athrow:
   649               break;
   650             default: {
   651               InterpreterOopMap next_mask;
   652               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   653               next_mask_expression_stack_size = next_mask.expression_stack_size();
   654               // Need to subtract off the size of the result type of
   655               // the bytecode because this is not described in the
   656               // debug info but returned to the interpreter in the TOS
   657               // caching register
   658               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   659               if (bytecode_result_type != T_ILLEGAL) {
   660                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   661               }
   662               assert(top_frame_expression_stack_adjustment >= 0, "");
   663               try_next_mask = true;
   664               break;
   665             }
   666           }
   667         }
   668       }
   670       // Verify stack depth and oops in frame
   671       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   672       if (!(
   673             /* SPARC */
   674             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   675             /* x86 */
   676             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   677             (try_next_mask &&
   678              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   679                                                                     top_frame_expression_stack_adjustment))) ||
   680             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   681             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   682              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   683             )) {
   684         ttyLocker ttyl;
   686         // Print out some information that will help us debug the problem
   687         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   688         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   689         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   690                       iframe->interpreter_frame_expression_stack_size());
   691         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   692         tty->print_cr("  try_next_mask = %d", try_next_mask);
   693         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   694         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   695         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   696         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   697         tty->print_cr("  exec_mode = %d", exec_mode);
   698         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   699         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   700         tty->print_cr("  Interpreted frames:");
   701         for (int k = 0; k < cur_array->frames(); k++) {
   702           vframeArrayElement* el = cur_array->element(k);
   703           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   704         }
   705         cur_array->print_on_2(tty);
   706         guarantee(false, "wrong number of expression stack elements during deopt");
   707       }
   708       VerifyOopClosure verify;
   709       iframe->oops_interpreted_do(&verify, &rm, false);
   710       callee_size_of_parameters = mh->size_of_parameters();
   711       callee_max_locals = mh->max_locals();
   712       is_top_frame = false;
   713     }
   714   }
   715 #endif /* !PRODUCT */
   718   return bt;
   719 JRT_END
   722 int Deoptimization::deoptimize_dependents() {
   723   Threads::deoptimized_wrt_marked_nmethods();
   724   return 0;
   725 }
   728 #ifdef COMPILER2
   729 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   730   Handle pending_exception(thread->pending_exception());
   731   const char* exception_file = thread->exception_file();
   732   int exception_line = thread->exception_line();
   733   thread->clear_pending_exception();
   735   for (int i = 0; i < objects->length(); i++) {
   736     assert(objects->at(i)->is_object(), "invalid debug information");
   737     ObjectValue* sv = (ObjectValue*) objects->at(i);
   739     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   740     oop obj = NULL;
   742     if (k->oop_is_instance()) {
   743       instanceKlass* ik = instanceKlass::cast(k());
   744       obj = ik->allocate_instance(CHECK_(false));
   745     } else if (k->oop_is_typeArray()) {
   746       typeArrayKlass* ak = typeArrayKlass::cast(k());
   747       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   748       int len = sv->field_size() / type2size[ak->element_type()];
   749       obj = ak->allocate(len, CHECK_(false));
   750     } else if (k->oop_is_objArray()) {
   751       objArrayKlass* ak = objArrayKlass::cast(k());
   752       obj = ak->allocate(sv->field_size(), CHECK_(false));
   753     }
   755     assert(obj != NULL, "allocation failed");
   756     assert(sv->value().is_null(), "redundant reallocation");
   757     sv->set_value(obj);
   758   }
   760   if (pending_exception.not_null()) {
   761     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   762   }
   764   return true;
   765 }
   767 // This assumes that the fields are stored in ObjectValue in the same order
   768 // they are yielded by do_nonstatic_fields.
   769 class FieldReassigner: public FieldClosure {
   770   frame* _fr;
   771   RegisterMap* _reg_map;
   772   ObjectValue* _sv;
   773   instanceKlass* _ik;
   774   oop _obj;
   776   int _i;
   777 public:
   778   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   779     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   781   int i() const { return _i; }
   784   void do_field(fieldDescriptor* fd) {
   785     intptr_t val;
   786     StackValue* value =
   787       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   788     int offset = fd->offset();
   789     switch (fd->field_type()) {
   790     case T_OBJECT: case T_ARRAY:
   791       assert(value->type() == T_OBJECT, "Agreement.");
   792       _obj->obj_field_put(offset, value->get_obj()());
   793       break;
   795     case T_LONG: case T_DOUBLE: {
   796       assert(value->type() == T_INT, "Agreement.");
   797       StackValue* low =
   798         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   799 #ifdef _LP64
   800       jlong res = (jlong)low->get_int();
   801 #else
   802 #ifdef SPARC
   803       // For SPARC we have to swap high and low words.
   804       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   805 #else
   806       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   807 #endif //SPARC
   808 #endif
   809       _obj->long_field_put(offset, res);
   810       break;
   811     }
   812     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   813     case T_INT: case T_FLOAT: // 4 bytes.
   814       assert(value->type() == T_INT, "Agreement.");
   815       val = value->get_int();
   816       _obj->int_field_put(offset, (jint)*((jint*)&val));
   817       break;
   819     case T_SHORT: case T_CHAR: // 2 bytes
   820       assert(value->type() == T_INT, "Agreement.");
   821       val = value->get_int();
   822       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   823       break;
   825     case T_BOOLEAN: case T_BYTE: // 1 byte
   826       assert(value->type() == T_INT, "Agreement.");
   827       val = value->get_int();
   828       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   829       break;
   831     default:
   832       ShouldNotReachHere();
   833     }
   834     _i++;
   835   }
   836 };
   838 // restore elements of an eliminated type array
   839 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   840   int index = 0;
   841   intptr_t val;
   843   for (int i = 0; i < sv->field_size(); i++) {
   844     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   845     switch(type) {
   846     case T_LONG: case T_DOUBLE: {
   847       assert(value->type() == T_INT, "Agreement.");
   848       StackValue* low =
   849         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   850 #ifdef _LP64
   851       jlong res = (jlong)low->get_int();
   852 #else
   853 #ifdef SPARC
   854       // For SPARC we have to swap high and low words.
   855       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   856 #else
   857       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   858 #endif //SPARC
   859 #endif
   860       obj->long_at_put(index, res);
   861       break;
   862     }
   864     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   865     case T_INT: case T_FLOAT: // 4 bytes.
   866       assert(value->type() == T_INT, "Agreement.");
   867       val = value->get_int();
   868       obj->int_at_put(index, (jint)*((jint*)&val));
   869       break;
   871     case T_SHORT: case T_CHAR: // 2 bytes
   872       assert(value->type() == T_INT, "Agreement.");
   873       val = value->get_int();
   874       obj->short_at_put(index, (jshort)*((jint*)&val));
   875       break;
   877     case T_BOOLEAN: case T_BYTE: // 1 byte
   878       assert(value->type() == T_INT, "Agreement.");
   879       val = value->get_int();
   880       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   881       break;
   883       default:
   884         ShouldNotReachHere();
   885     }
   886     index++;
   887   }
   888 }
   891 // restore fields of an eliminated object array
   892 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   893   for (int i = 0; i < sv->field_size(); i++) {
   894     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   895     assert(value->type() == T_OBJECT, "object element expected");
   896     obj->obj_at_put(i, value->get_obj()());
   897   }
   898 }
   901 // restore fields of all eliminated objects and arrays
   902 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   903   for (int i = 0; i < objects->length(); i++) {
   904     ObjectValue* sv = (ObjectValue*) objects->at(i);
   905     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   906     Handle obj = sv->value();
   907     assert(obj.not_null(), "reallocation was missed");
   909     if (k->oop_is_instance()) {
   910       instanceKlass* ik = instanceKlass::cast(k());
   911       FieldReassigner reassign(fr, reg_map, sv, obj());
   912       ik->do_nonstatic_fields(&reassign);
   913     } else if (k->oop_is_typeArray()) {
   914       typeArrayKlass* ak = typeArrayKlass::cast(k());
   915       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   916     } else if (k->oop_is_objArray()) {
   917       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   918     }
   919   }
   920 }
   923 // relock objects for which synchronization was eliminated
   924 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   925   for (int i = 0; i < monitors->length(); i++) {
   926     MonitorInfo* mon_info = monitors->at(i);
   927     if (mon_info->eliminated()) {
   928       assert(mon_info->owner() != NULL, "reallocation was missed");
   929       Handle obj = Handle(mon_info->owner());
   930       markOop mark = obj->mark();
   931       if (UseBiasedLocking && mark->has_bias_pattern()) {
   932         // New allocated objects may have the mark set to anonymously biased.
   933         // Also the deoptimized method may called methods with synchronization
   934         // where the thread-local object is bias locked to the current thread.
   935         assert(mark->is_biased_anonymously() ||
   936                mark->biased_locker() == thread, "should be locked to current thread");
   937         // Reset mark word to unbiased prototype.
   938         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   939         obj->set_mark(unbiased_prototype);
   940       }
   941       BasicLock* lock = mon_info->lock();
   942       ObjectSynchronizer::slow_enter(obj, lock, thread);
   943     }
   944     assert(mon_info->owner()->is_locked(), "object must be locked now");
   945   }
   946 }
   949 #ifndef PRODUCT
   950 // print information about reallocated objects
   951 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   952   fieldDescriptor fd;
   954   for (int i = 0; i < objects->length(); i++) {
   955     ObjectValue* sv = (ObjectValue*) objects->at(i);
   956     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   957     Handle obj = sv->value();
   959     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   960     k->as_klassOop()->print_value();
   961     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   962     tty->cr();
   964     if (Verbose) {
   965       k->oop_print_on(obj(), tty);
   966     }
   967   }
   968 }
   969 #endif
   970 #endif // COMPILER2
   972 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   974 #ifndef PRODUCT
   975   if (TraceDeoptimization) {
   976     ttyLocker ttyl;
   977     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   978     fr.print_on(tty);
   979     tty->print_cr("     Virtual frames (innermost first):");
   980     for (int index = 0; index < chunk->length(); index++) {
   981       compiledVFrame* vf = chunk->at(index);
   982       tty->print("       %2d - ", index);
   983       vf->print_value();
   984       int bci = chunk->at(index)->raw_bci();
   985       const char* code_name;
   986       if (bci == SynchronizationEntryBCI) {
   987         code_name = "sync entry";
   988       } else {
   989         Bytecodes::Code code = vf->method()->code_at(bci);
   990         code_name = Bytecodes::name(code);
   991       }
   992       tty->print(" - %s", code_name);
   993       tty->print_cr(" @ bci %d ", bci);
   994       if (Verbose) {
   995         vf->print();
   996         tty->cr();
   997       }
   998     }
   999   }
  1000 #endif
  1002   // Register map for next frame (used for stack crawl).  We capture
  1003   // the state of the deopt'ing frame's caller.  Thus if we need to
  1004   // stuff a C2I adapter we can properly fill in the callee-save
  1005   // register locations.
  1006   frame caller = fr.sender(reg_map);
  1007   int frame_size = caller.sp() - fr.sp();
  1009   frame sender = caller;
  1011   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1012   // the vframeArray containing the unpacking information is allocated in the C heap.
  1013   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1014   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1016   // Compare the vframeArray to the collected vframes
  1017   assert(array->structural_compare(thread, chunk), "just checking");
  1018   Events::log("# vframes = %d", (intptr_t)chunk->length());
  1020 #ifndef PRODUCT
  1021   if (TraceDeoptimization) {
  1022     ttyLocker ttyl;
  1023     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1025 #endif // PRODUCT
  1027   return array;
  1031 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1032   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1033   for (int i = 0; i < monitors->length(); i++) {
  1034     MonitorInfo* mon_info = monitors->at(i);
  1035     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1036       objects_to_revoke->append(Handle(mon_info->owner()));
  1042 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1043   if (!UseBiasedLocking) {
  1044     return;
  1047   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1049   // Unfortunately we don't have a RegisterMap available in most of
  1050   // the places we want to call this routine so we need to walk the
  1051   // stack again to update the register map.
  1052   if (map == NULL || !map->update_map()) {
  1053     StackFrameStream sfs(thread, true);
  1054     bool found = false;
  1055     while (!found && !sfs.is_done()) {
  1056       frame* cur = sfs.current();
  1057       sfs.next();
  1058       found = cur->id() == fr.id();
  1060     assert(found, "frame to be deoptimized not found on target thread's stack");
  1061     map = sfs.register_map();
  1064   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1065   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1066   // Revoke monitors' biases in all scopes
  1067   while (!cvf->is_top()) {
  1068     collect_monitors(cvf, objects_to_revoke);
  1069     cvf = compiledVFrame::cast(cvf->sender());
  1071   collect_monitors(cvf, objects_to_revoke);
  1073   if (SafepointSynchronize::is_at_safepoint()) {
  1074     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1075   } else {
  1076     BiasedLocking::revoke(objects_to_revoke);
  1081 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1082   if (!UseBiasedLocking) {
  1083     return;
  1086   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1087   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1088   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1089     if (jt->has_last_Java_frame()) {
  1090       StackFrameStream sfs(jt, true);
  1091       while (!sfs.is_done()) {
  1092         frame* cur = sfs.current();
  1093         if (cb->contains(cur->pc())) {
  1094           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1095           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1096           // Revoke monitors' biases in all scopes
  1097           while (!cvf->is_top()) {
  1098             collect_monitors(cvf, objects_to_revoke);
  1099             cvf = compiledVFrame::cast(cvf->sender());
  1101           collect_monitors(cvf, objects_to_revoke);
  1103         sfs.next();
  1107   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1111 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1112   assert(fr.can_be_deoptimized(), "checking frame type");
  1114   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1116   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1118   // Patch the nmethod so that when execution returns to it we will
  1119   // deopt the execution state and return to the interpreter.
  1120   fr.deoptimize(thread);
  1123 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1124   // Deoptimize only if the frame comes from compile code.
  1125   // Do not deoptimize the frame which is already patched
  1126   // during the execution of the loops below.
  1127   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1128     return;
  1130   ResourceMark rm;
  1131   DeoptimizationMarker dm;
  1132   if (UseBiasedLocking) {
  1133     revoke_biases_of_monitors(thread, fr, map);
  1135   deoptimize_single_frame(thread, fr);
  1140 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1141   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1142          "can only deoptimize other thread at a safepoint");
  1143   // Compute frame and register map based on thread and sp.
  1144   RegisterMap reg_map(thread, UseBiasedLocking);
  1145   frame fr = thread->last_frame();
  1146   while (fr.id() != id) {
  1147     fr = fr.sender(&reg_map);
  1149   deoptimize(thread, fr, &reg_map);
  1153 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1154   if (thread == Thread::current()) {
  1155     Deoptimization::deoptimize_frame_internal(thread, id);
  1156   } else {
  1157     VM_DeoptimizeFrame deopt(thread, id);
  1158     VMThread::execute(&deopt);
  1163 // JVMTI PopFrame support
  1164 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1166   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1168 JRT_END
  1171 #if defined(COMPILER2) || defined(SHARK)
  1172 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1173   // in case of an unresolved klass entry, load the class.
  1174   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1175     klassOop tk = constant_pool->klass_at(index, CHECK);
  1176     return;
  1179   if (!constant_pool->tag_at(index).is_symbol()) return;
  1181   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1182   Symbol*  symbol  = constant_pool->symbol_at(index);
  1184   // class name?
  1185   if (symbol->byte_at(0) != '(') {
  1186     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1187     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1188     return;
  1191   // then it must be a signature!
  1192   ResourceMark rm(THREAD);
  1193   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1194     if (ss.is_object()) {
  1195       Symbol* class_name = ss.as_symbol(CHECK);
  1196       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1197       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1203 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1204   EXCEPTION_MARK;
  1205   load_class_by_index(constant_pool, index, THREAD);
  1206   if (HAS_PENDING_EXCEPTION) {
  1207     // Exception happened during classloading. We ignore the exception here, since it
  1208     // is going to be rethrown since the current activation is going to be deoptimzied and
  1209     // the interpreter will re-execute the bytecode.
  1210     CLEAR_PENDING_EXCEPTION;
  1214 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1215   HandleMark hm;
  1217   // uncommon_trap() is called at the beginning of the uncommon trap
  1218   // handler. Note this fact before we start generating temporary frames
  1219   // that can confuse an asynchronous stack walker. This counter is
  1220   // decremented at the end of unpack_frames().
  1221   thread->inc_in_deopt_handler();
  1223   // We need to update the map if we have biased locking.
  1224   RegisterMap reg_map(thread, UseBiasedLocking);
  1225   frame stub_frame = thread->last_frame();
  1226   frame fr = stub_frame.sender(&reg_map);
  1227   // Make sure the calling nmethod is not getting deoptimized and removed
  1228   // before we are done with it.
  1229   nmethodLocker nl(fr.pc());
  1232     ResourceMark rm;
  1234     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1235     revoke_biases_of_monitors(thread, fr, &reg_map);
  1237     DeoptReason reason = trap_request_reason(trap_request);
  1238     DeoptAction action = trap_request_action(trap_request);
  1239     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1241     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1242     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1243     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1245     nmethod* nm = cvf->code();
  1247     ScopeDesc*      trap_scope  = cvf->scope();
  1248     methodHandle    trap_method = trap_scope->method();
  1249     int             trap_bci    = trap_scope->bci();
  1250     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1252     // Record this event in the histogram.
  1253     gather_statistics(reason, action, trap_bc);
  1255     // Ensure that we can record deopt. history:
  1256     bool create_if_missing = ProfileTraps;
  1258     methodDataHandle trap_mdo
  1259       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1261     // Print a bunch of diagnostics, if requested.
  1262     if (TraceDeoptimization || LogCompilation) {
  1263       ResourceMark rm;
  1264       ttyLocker ttyl;
  1265       char buf[100];
  1266       if (xtty != NULL) {
  1267         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1268                          os::current_thread_id(),
  1269                          format_trap_request(buf, sizeof(buf), trap_request));
  1270         nm->log_identity(xtty);
  1272       Symbol* class_name = NULL;
  1273       bool unresolved = false;
  1274       if (unloaded_class_index >= 0) {
  1275         constantPoolHandle constants (THREAD, trap_method->constants());
  1276         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1277           class_name = constants->klass_name_at(unloaded_class_index);
  1278           unresolved = true;
  1279           if (xtty != NULL)
  1280             xtty->print(" unresolved='1'");
  1281         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1282           class_name = constants->symbol_at(unloaded_class_index);
  1284         if (xtty != NULL)
  1285           xtty->name(class_name);
  1287       if (xtty != NULL && trap_mdo.not_null()) {
  1288         // Dump the relevant MDO state.
  1289         // This is the deopt count for the current reason, any previous
  1290         // reasons or recompiles seen at this point.
  1291         int dcnt = trap_mdo->trap_count(reason);
  1292         if (dcnt != 0)
  1293           xtty->print(" count='%d'", dcnt);
  1294         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1295         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1296         if (dos != 0) {
  1297           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1298           if (trap_state_is_recompiled(dos)) {
  1299             int recnt2 = trap_mdo->overflow_recompile_count();
  1300             if (recnt2 != 0)
  1301               xtty->print(" recompiles2='%d'", recnt2);
  1305       if (xtty != NULL) {
  1306         xtty->stamp();
  1307         xtty->end_head();
  1309       if (TraceDeoptimization) {  // make noise on the tty
  1310         tty->print("Uncommon trap occurred in");
  1311         nm->method()->print_short_name(tty);
  1312         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1313                    fr.pc(),
  1314                    (int) os::current_thread_id(),
  1315                    trap_reason_name(reason),
  1316                    trap_action_name(action),
  1317                    unloaded_class_index);
  1318         if (class_name != NULL) {
  1319           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1320           class_name->print_symbol_on(tty);
  1322         tty->cr();
  1324       if (xtty != NULL) {
  1325         // Log the precise location of the trap.
  1326         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1327           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1328           xtty->method(sd->method());
  1329           xtty->end_elem();
  1330           if (sd->is_top())  break;
  1332         xtty->tail("uncommon_trap");
  1335     // (End diagnostic printout.)
  1337     // Load class if necessary
  1338     if (unloaded_class_index >= 0) {
  1339       constantPoolHandle constants(THREAD, trap_method->constants());
  1340       load_class_by_index(constants, unloaded_class_index);
  1343     // Flush the nmethod if necessary and desirable.
  1344     //
  1345     // We need to avoid situations where we are re-flushing the nmethod
  1346     // because of a hot deoptimization site.  Repeated flushes at the same
  1347     // point need to be detected by the compiler and avoided.  If the compiler
  1348     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1349     // module must take measures to avoid an infinite cycle of recompilation
  1350     // and deoptimization.  There are several such measures:
  1351     //
  1352     //   1. If a recompilation is ordered a second time at some site X
  1353     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1354     //   to give the interpreter time to exercise the method more thoroughly.
  1355     //   If this happens, the method's overflow_recompile_count is incremented.
  1356     //
  1357     //   2. If the compiler fails to reduce the deoptimization rate, then
  1358     //   the method's overflow_recompile_count will begin to exceed the set
  1359     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1360     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1361     //   to the interpreter.  This is a performance hit for hot methods,
  1362     //   but is better than a disastrous infinite cycle of recompilations.
  1363     //   (Actually, only the method containing the site X is abandoned.)
  1364     //
  1365     //   3. In parallel with the previous measures, if the total number of
  1366     //   recompilations of a method exceeds the much larger set limit
  1367     //   PerMethodRecompilationCutoff, the method is abandoned.
  1368     //   This should only happen if the method is very large and has
  1369     //   many "lukewarm" deoptimizations.  The code which enforces this
  1370     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1371     //
  1372     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1373     // to recompile at each bytecode independently of the per-BCI cutoff.
  1374     //
  1375     // The decision to update code is up to the compiler, and is encoded
  1376     // in the Action_xxx code.  If the compiler requests Action_none
  1377     // no trap state is changed, no compiled code is changed, and the
  1378     // computation suffers along in the interpreter.
  1379     //
  1380     // The other action codes specify various tactics for decompilation
  1381     // and recompilation.  Action_maybe_recompile is the loosest, and
  1382     // allows the compiled code to stay around until enough traps are seen,
  1383     // and until the compiler gets around to recompiling the trapping method.
  1384     //
  1385     // The other actions cause immediate removal of the present code.
  1387     bool update_trap_state = true;
  1388     bool make_not_entrant = false;
  1389     bool make_not_compilable = false;
  1390     bool reprofile = false;
  1391     switch (action) {
  1392     case Action_none:
  1393       // Keep the old code.
  1394       update_trap_state = false;
  1395       break;
  1396     case Action_maybe_recompile:
  1397       // Do not need to invalidate the present code, but we can
  1398       // initiate another
  1399       // Start compiler without (necessarily) invalidating the nmethod.
  1400       // The system will tolerate the old code, but new code should be
  1401       // generated when possible.
  1402       break;
  1403     case Action_reinterpret:
  1404       // Go back into the interpreter for a while, and then consider
  1405       // recompiling form scratch.
  1406       make_not_entrant = true;
  1407       // Reset invocation counter for outer most method.
  1408       // This will allow the interpreter to exercise the bytecodes
  1409       // for a while before recompiling.
  1410       // By contrast, Action_make_not_entrant is immediate.
  1411       //
  1412       // Note that the compiler will track null_check, null_assert,
  1413       // range_check, and class_check events and log them as if they
  1414       // had been traps taken from compiled code.  This will update
  1415       // the MDO trap history so that the next compilation will
  1416       // properly detect hot trap sites.
  1417       reprofile = true;
  1418       break;
  1419     case Action_make_not_entrant:
  1420       // Request immediate recompilation, and get rid of the old code.
  1421       // Make them not entrant, so next time they are called they get
  1422       // recompiled.  Unloaded classes are loaded now so recompile before next
  1423       // time they are called.  Same for uninitialized.  The interpreter will
  1424       // link the missing class, if any.
  1425       make_not_entrant = true;
  1426       break;
  1427     case Action_make_not_compilable:
  1428       // Give up on compiling this method at all.
  1429       make_not_entrant = true;
  1430       make_not_compilable = true;
  1431       break;
  1432     default:
  1433       ShouldNotReachHere();
  1436     // Setting +ProfileTraps fixes the following, on all platforms:
  1437     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1438     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1439     // recompile relies on a methodDataOop to record heroic opt failures.
  1441     // Whether the interpreter is producing MDO data or not, we also need
  1442     // to use the MDO to detect hot deoptimization points and control
  1443     // aggressive optimization.
  1444     bool inc_recompile_count = false;
  1445     ProfileData* pdata = NULL;
  1446     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1447       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1448       uint this_trap_count = 0;
  1449       bool maybe_prior_trap = false;
  1450       bool maybe_prior_recompile = false;
  1451       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1452                                    //outputs:
  1453                                    this_trap_count,
  1454                                    maybe_prior_trap,
  1455                                    maybe_prior_recompile);
  1456       // Because the interpreter also counts null, div0, range, and class
  1457       // checks, these traps from compiled code are double-counted.
  1458       // This is harmless; it just means that the PerXTrapLimit values
  1459       // are in effect a little smaller than they look.
  1461       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1462       if (per_bc_reason != Reason_none) {
  1463         // Now take action based on the partially known per-BCI history.
  1464         if (maybe_prior_trap
  1465             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1466           // If there are too many traps at this BCI, force a recompile.
  1467           // This will allow the compiler to see the limit overflow, and
  1468           // take corrective action, if possible.  The compiler generally
  1469           // does not use the exact PerBytecodeTrapLimit value, but instead
  1470           // changes its tactics if it sees any traps at all.  This provides
  1471           // a little hysteresis, delaying a recompile until a trap happens
  1472           // several times.
  1473           //
  1474           // Actually, since there is only one bit of counter per BCI,
  1475           // the possible per-BCI counts are {0,1,(per-method count)}.
  1476           // This produces accurate results if in fact there is only
  1477           // one hot trap site, but begins to get fuzzy if there are
  1478           // many sites.  For example, if there are ten sites each
  1479           // trapping two or more times, they each get the blame for
  1480           // all of their traps.
  1481           make_not_entrant = true;
  1484         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1485         if (make_not_entrant && maybe_prior_recompile) {
  1486           // More than one recompile at this point.
  1487           inc_recompile_count = maybe_prior_trap;
  1489       } else {
  1490         // For reasons which are not recorded per-bytecode, we simply
  1491         // force recompiles unconditionally.
  1492         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1493         make_not_entrant = true;
  1496       // Go back to the compiler if there are too many traps in this method.
  1497       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1498         // If there are too many traps in this method, force a recompile.
  1499         // This will allow the compiler to see the limit overflow, and
  1500         // take corrective action, if possible.
  1501         // (This condition is an unlikely backstop only, because the
  1502         // PerBytecodeTrapLimit is more likely to take effect first,
  1503         // if it is applicable.)
  1504         make_not_entrant = true;
  1507       // Here's more hysteresis:  If there has been a recompile at
  1508       // this trap point already, run the method in the interpreter
  1509       // for a while to exercise it more thoroughly.
  1510       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1511         reprofile = true;
  1516     // Take requested actions on the method:
  1518     // Recompile
  1519     if (make_not_entrant) {
  1520       if (!nm->make_not_entrant()) {
  1521         return; // the call did not change nmethod's state
  1524       if (pdata != NULL) {
  1525         // Record the recompilation event, if any.
  1526         int tstate0 = pdata->trap_state();
  1527         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1528         if (tstate1 != tstate0)
  1529           pdata->set_trap_state(tstate1);
  1533     if (inc_recompile_count) {
  1534       trap_mdo->inc_overflow_recompile_count();
  1535       if ((uint)trap_mdo->overflow_recompile_count() >
  1536           (uint)PerBytecodeRecompilationCutoff) {
  1537         // Give up on the method containing the bad BCI.
  1538         if (trap_method() == nm->method()) {
  1539           make_not_compilable = true;
  1540         } else {
  1541           trap_method->set_not_compilable(CompLevel_full_optimization);
  1542           // But give grace to the enclosing nm->method().
  1547     // Reprofile
  1548     if (reprofile) {
  1549       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1552     // Give up compiling
  1553     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1554       assert(make_not_entrant, "consistent");
  1555       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1558   } // Free marked resources
  1561 JRT_END
  1563 methodDataOop
  1564 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1565                                 bool create_if_missing) {
  1566   Thread* THREAD = thread;
  1567   methodDataOop mdo = m()->method_data();
  1568   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1569     // Build an MDO.  Ignore errors like OutOfMemory;
  1570     // that simply means we won't have an MDO to update.
  1571     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1572     if (HAS_PENDING_EXCEPTION) {
  1573       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1574       CLEAR_PENDING_EXCEPTION;
  1576     mdo = m()->method_data();
  1578   return mdo;
  1581 ProfileData*
  1582 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1583                                          int trap_bci,
  1584                                          Deoptimization::DeoptReason reason,
  1585                                          //outputs:
  1586                                          uint& ret_this_trap_count,
  1587                                          bool& ret_maybe_prior_trap,
  1588                                          bool& ret_maybe_prior_recompile) {
  1589   uint prior_trap_count = trap_mdo->trap_count(reason);
  1590   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1592   // If the runtime cannot find a place to store trap history,
  1593   // it is estimated based on the general condition of the method.
  1594   // If the method has ever been recompiled, or has ever incurred
  1595   // a trap with the present reason , then this BCI is assumed
  1596   // (pessimistically) to be the culprit.
  1597   bool maybe_prior_trap      = (prior_trap_count != 0);
  1598   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1599   ProfileData* pdata = NULL;
  1602   // For reasons which are recorded per bytecode, we check per-BCI data.
  1603   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1604   if (per_bc_reason != Reason_none) {
  1605     // Find the profile data for this BCI.  If there isn't one,
  1606     // try to allocate one from the MDO's set of spares.
  1607     // This will let us detect a repeated trap at this point.
  1608     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1610     if (pdata != NULL) {
  1611       // Query the trap state of this profile datum.
  1612       int tstate0 = pdata->trap_state();
  1613       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1614         maybe_prior_trap = false;
  1615       if (!trap_state_is_recompiled(tstate0))
  1616         maybe_prior_recompile = false;
  1618       // Update the trap state of this profile datum.
  1619       int tstate1 = tstate0;
  1620       // Record the reason.
  1621       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1622       // Store the updated state on the MDO, for next time.
  1623       if (tstate1 != tstate0)
  1624         pdata->set_trap_state(tstate1);
  1625     } else {
  1626       if (LogCompilation && xtty != NULL) {
  1627         ttyLocker ttyl;
  1628         // Missing MDP?  Leave a small complaint in the log.
  1629         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1634   // Return results:
  1635   ret_this_trap_count = this_trap_count;
  1636   ret_maybe_prior_trap = maybe_prior_trap;
  1637   ret_maybe_prior_recompile = maybe_prior_recompile;
  1638   return pdata;
  1641 void
  1642 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1643   ResourceMark rm;
  1644   // Ignored outputs:
  1645   uint ignore_this_trap_count;
  1646   bool ignore_maybe_prior_trap;
  1647   bool ignore_maybe_prior_recompile;
  1648   query_update_method_data(trap_mdo, trap_bci,
  1649                            (DeoptReason)reason,
  1650                            ignore_this_trap_count,
  1651                            ignore_maybe_prior_trap,
  1652                            ignore_maybe_prior_recompile);
  1655 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1657   // Still in Java no safepoints
  1659     // This enters VM and may safepoint
  1660     uncommon_trap_inner(thread, trap_request);
  1662   return fetch_unroll_info_helper(thread);
  1665 // Local derived constants.
  1666 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1667 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1668 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1670 //---------------------------trap_state_reason---------------------------------
  1671 Deoptimization::DeoptReason
  1672 Deoptimization::trap_state_reason(int trap_state) {
  1673   // This assert provides the link between the width of DataLayout::trap_bits
  1674   // and the encoding of "recorded" reasons.  It ensures there are enough
  1675   // bits to store all needed reasons in the per-BCI MDO profile.
  1676   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1677   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1678   trap_state -= recompile_bit;
  1679   if (trap_state == DS_REASON_MASK) {
  1680     return Reason_many;
  1681   } else {
  1682     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1683     return (DeoptReason)trap_state;
  1686 //-------------------------trap_state_has_reason-------------------------------
  1687 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1688   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1689   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1690   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1691   trap_state -= recompile_bit;
  1692   if (trap_state == DS_REASON_MASK) {
  1693     return -1;  // true, unspecifically (bottom of state lattice)
  1694   } else if (trap_state == reason) {
  1695     return 1;   // true, definitely
  1696   } else if (trap_state == 0) {
  1697     return 0;   // false, definitely (top of state lattice)
  1698   } else {
  1699     return 0;   // false, definitely
  1702 //-------------------------trap_state_add_reason-------------------------------
  1703 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1704   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1705   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1706   trap_state -= recompile_bit;
  1707   if (trap_state == DS_REASON_MASK) {
  1708     return trap_state + recompile_bit;     // already at state lattice bottom
  1709   } else if (trap_state == reason) {
  1710     return trap_state + recompile_bit;     // the condition is already true
  1711   } else if (trap_state == 0) {
  1712     return reason + recompile_bit;          // no condition has yet been true
  1713   } else {
  1714     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1717 //-----------------------trap_state_is_recompiled------------------------------
  1718 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1719   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1721 //-----------------------trap_state_set_recompiled-----------------------------
  1722 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1723   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1724   else    return trap_state & ~DS_RECOMPILE_BIT;
  1726 //---------------------------format_trap_state---------------------------------
  1727 // This is used for debugging and diagnostics, including hotspot.log output.
  1728 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1729                                               int trap_state) {
  1730   DeoptReason reason      = trap_state_reason(trap_state);
  1731   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1732   // Re-encode the state from its decoded components.
  1733   int decoded_state = 0;
  1734   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1735     decoded_state = trap_state_add_reason(decoded_state, reason);
  1736   if (recomp_flag)
  1737     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1738   // If the state re-encodes properly, format it symbolically.
  1739   // Because this routine is used for debugging and diagnostics,
  1740   // be robust even if the state is a strange value.
  1741   size_t len;
  1742   if (decoded_state != trap_state) {
  1743     // Random buggy state that doesn't decode??
  1744     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1745   } else {
  1746     len = jio_snprintf(buf, buflen, "%s%s",
  1747                        trap_reason_name(reason),
  1748                        recomp_flag ? " recompiled" : "");
  1750   if (len >= buflen)
  1751     buf[buflen-1] = '\0';
  1752   return buf;
  1756 //--------------------------------statics--------------------------------------
  1757 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1758   = Deoptimization::Action_reinterpret;
  1759 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1760   // Note:  Keep this in sync. with enum DeoptReason.
  1761   "none",
  1762   "null_check",
  1763   "null_assert",
  1764   "range_check",
  1765   "class_check",
  1766   "array_check",
  1767   "intrinsic",
  1768   "bimorphic",
  1769   "unloaded",
  1770   "uninitialized",
  1771   "unreached",
  1772   "unhandled",
  1773   "constraint",
  1774   "div0_check",
  1775   "age",
  1776   "predicate",
  1777   "loop_limit_check"
  1778 };
  1779 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1780   // Note:  Keep this in sync. with enum DeoptAction.
  1781   "none",
  1782   "maybe_recompile",
  1783   "reinterpret",
  1784   "make_not_entrant",
  1785   "make_not_compilable"
  1786 };
  1788 const char* Deoptimization::trap_reason_name(int reason) {
  1789   if (reason == Reason_many)  return "many";
  1790   if ((uint)reason < Reason_LIMIT)
  1791     return _trap_reason_name[reason];
  1792   static char buf[20];
  1793   sprintf(buf, "reason%d", reason);
  1794   return buf;
  1796 const char* Deoptimization::trap_action_name(int action) {
  1797   if ((uint)action < Action_LIMIT)
  1798     return _trap_action_name[action];
  1799   static char buf[20];
  1800   sprintf(buf, "action%d", action);
  1801   return buf;
  1804 // This is used for debugging and diagnostics, including hotspot.log output.
  1805 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1806                                                 int trap_request) {
  1807   jint unloaded_class_index = trap_request_index(trap_request);
  1808   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1809   const char* action = trap_action_name(trap_request_action(trap_request));
  1810   size_t len;
  1811   if (unloaded_class_index < 0) {
  1812     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1813                        reason, action);
  1814   } else {
  1815     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1816                        reason, action, unloaded_class_index);
  1818   if (len >= buflen)
  1819     buf[buflen-1] = '\0';
  1820   return buf;
  1823 juint Deoptimization::_deoptimization_hist
  1824         [Deoptimization::Reason_LIMIT]
  1825     [1 + Deoptimization::Action_LIMIT]
  1826         [Deoptimization::BC_CASE_LIMIT]
  1827   = {0};
  1829 enum {
  1830   LSB_BITS = 8,
  1831   LSB_MASK = right_n_bits(LSB_BITS)
  1832 };
  1834 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1835                                        Bytecodes::Code bc) {
  1836   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1837   assert(action >= 0 && action < Action_LIMIT, "oob");
  1838   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1839   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1840   juint* cases = _deoptimization_hist[reason][1+action];
  1841   juint* bc_counter_addr = NULL;
  1842   juint  bc_counter      = 0;
  1843   // Look for an unused counter, or an exact match to this BC.
  1844   if (bc != Bytecodes::_illegal) {
  1845     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1846       juint* counter_addr = &cases[bc_case];
  1847       juint  counter = *counter_addr;
  1848       if ((counter == 0 && bc_counter_addr == NULL)
  1849           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1850         // this counter is either free or is already devoted to this BC
  1851         bc_counter_addr = counter_addr;
  1852         bc_counter = counter | bc;
  1856   if (bc_counter_addr == NULL) {
  1857     // Overflow, or no given bytecode.
  1858     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1859     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1861   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1864 jint Deoptimization::total_deoptimization_count() {
  1865   return _deoptimization_hist[Reason_none][0][0];
  1868 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1869   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1870   return _deoptimization_hist[reason][0][0];
  1873 void Deoptimization::print_statistics() {
  1874   juint total = total_deoptimization_count();
  1875   juint account = total;
  1876   if (total != 0) {
  1877     ttyLocker ttyl;
  1878     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1879     tty->print_cr("Deoptimization traps recorded:");
  1880     #define PRINT_STAT_LINE(name, r) \
  1881       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1882     PRINT_STAT_LINE("total", total);
  1883     // For each non-zero entry in the histogram, print the reason,
  1884     // the action, and (if specifically known) the type of bytecode.
  1885     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1886       for (int action = 0; action < Action_LIMIT; action++) {
  1887         juint* cases = _deoptimization_hist[reason][1+action];
  1888         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1889           juint counter = cases[bc_case];
  1890           if (counter != 0) {
  1891             char name[1*K];
  1892             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1893             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1894               bc = Bytecodes::_illegal;
  1895             sprintf(name, "%s/%s/%s",
  1896                     trap_reason_name(reason),
  1897                     trap_action_name(action),
  1898                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1899             juint r = counter >> LSB_BITS;
  1900             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1901             account -= r;
  1906     if (account != 0) {
  1907       PRINT_STAT_LINE("unaccounted", account);
  1909     #undef PRINT_STAT_LINE
  1910     if (xtty != NULL)  xtty->tail("statistics");
  1913 #else // COMPILER2 || SHARK
  1916 // Stubs for C1 only system.
  1917 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1918   return false;
  1921 const char* Deoptimization::trap_reason_name(int reason) {
  1922   return "unknown";
  1925 void Deoptimization::print_statistics() {
  1926   // no output
  1929 void
  1930 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1931   // no udpate
  1934 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1935   return 0;
  1938 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1939                                        Bytecodes::Code bc) {
  1940   // no update
  1943 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1944                                               int trap_state) {
  1945   jio_snprintf(buf, buflen, "#%d", trap_state);
  1946   return buf;
  1949 #endif // COMPILER2 || SHARK

mercurial