src/cpu/x86/vm/templateTable_x86_64.cpp

Wed, 27 Aug 2008 00:21:55 -0700

author
never
date
Wed, 27 Aug 2008 00:21:55 -0700
changeset 739
dc7f315e41f7
parent 631
d1605aabd0a1
child 797
f8199438385b
permissions
-rw-r--r--

5108146: Merge i486 and amd64 cpu directories
6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up
Reviewed-by: kvn

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #ifndef CC_INTERP
    30 #define __ _masm->
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No amd64 specific initialization
    36 }
    38 // Address computation: local variables
    40 static inline Address iaddress(int n) {
    41   return Address(r14, Interpreter::local_offset_in_bytes(n));
    42 }
    44 static inline Address laddress(int n) {
    45   return iaddress(n + 1);
    46 }
    48 static inline Address faddress(int n) {
    49   return iaddress(n);
    50 }
    52 static inline Address daddress(int n) {
    53   return laddress(n);
    54 }
    56 static inline Address aaddress(int n) {
    57   return iaddress(n);
    58 }
    60 static inline Address iaddress(Register r) {
    61   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
    62 }
    64 static inline Address laddress(Register r) {
    65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    66 }
    68 static inline Address faddress(Register r) {
    69   return iaddress(r);
    70 }
    72 static inline Address daddress(Register r) {
    73   return laddress(r);
    74 }
    76 static inline Address aaddress(Register r) {
    77   return iaddress(r);
    78 }
    80 static inline Address at_rsp() {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than esp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88 }
    90 static inline Address at_tos_p1() {
    91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    92 }
    94 static inline Address at_tos_p2() {
    95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    96 }
    98 static inline Address at_tos_p3() {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   100 }
   102 // Condition conversion
   103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   104   switch (cc) {
   105   case TemplateTable::equal        : return Assembler::notEqual;
   106   case TemplateTable::not_equal    : return Assembler::equal;
   107   case TemplateTable::less         : return Assembler::greaterEqual;
   108   case TemplateTable::less_equal   : return Assembler::greater;
   109   case TemplateTable::greater      : return Assembler::lessEqual;
   110   case TemplateTable::greater_equal: return Assembler::less;
   111   }
   112   ShouldNotReachHere();
   113   return Assembler::zero;
   114 }
   117 // Miscelaneous helper routines
   119 Address TemplateTable::at_bcp(int offset) {
   120   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   121   return Address(r13, offset);
   122 }
   124 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   125                                    Register scratch,
   126                                    bool load_bc_into_scratch/*=true*/) {
   127   if (!RewriteBytecodes) {
   128     return;
   129   }
   130   // the pair bytecodes have already done the load.
   131   if (load_bc_into_scratch) {
   132     __ movl(bc, bytecode);
   133   }
   134   Label patch_done;
   135   if (JvmtiExport::can_post_breakpoint()) {
   136     Label fast_patch;
   137     // if a breakpoint is present we can't rewrite the stream directly
   138     __ movzbl(scratch, at_bcp(0));
   139     __ cmpl(scratch, Bytecodes::_breakpoint);
   140     __ jcc(Assembler::notEqual, fast_patch);
   141     __ get_method(scratch);
   142     // Let breakpoint table handling rewrite to quicker bytecode
   143     __ call_VM(noreg,
   144                CAST_FROM_FN_PTR(address,
   145                                 InterpreterRuntime::set_original_bytecode_at),
   146                scratch, r13, bc);
   147 #ifndef ASSERT
   148     __ jmpb(patch_done);
   149     __ bind(fast_patch);
   150   }
   151 #else
   152     __ jmp(patch_done);
   153     __ bind(fast_patch);
   154   }
   155   Label okay;
   156   __ load_unsigned_byte(scratch, at_bcp(0));
   157   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   158   __ jcc(Assembler::equal, okay);
   159   __ cmpl(scratch, bc);
   160   __ jcc(Assembler::equal, okay);
   161   __ stop("patching the wrong bytecode");
   162   __ bind(okay);
   163 #endif
   164   // patch bytecode
   165   __ movb(at_bcp(0), bc);
   166   __ bind(patch_done);
   167 }
   170 // Individual instructions
   172 void TemplateTable::nop() {
   173   transition(vtos, vtos);
   174   // nothing to do
   175 }
   177 void TemplateTable::shouldnotreachhere() {
   178   transition(vtos, vtos);
   179   __ stop("shouldnotreachhere bytecode");
   180 }
   182 void TemplateTable::aconst_null() {
   183   transition(vtos, atos);
   184   __ xorl(rax, rax);
   185 }
   187 void TemplateTable::iconst(int value) {
   188   transition(vtos, itos);
   189   if (value == 0) {
   190     __ xorl(rax, rax);
   191   } else {
   192     __ movl(rax, value);
   193   }
   194 }
   196 void TemplateTable::lconst(int value) {
   197   transition(vtos, ltos);
   198   if (value == 0) {
   199     __ xorl(rax, rax);
   200   } else {
   201     __ movl(rax, value);
   202   }
   203 }
   205 void TemplateTable::fconst(int value) {
   206   transition(vtos, ftos);
   207   static float one = 1.0f, two = 2.0f;
   208   switch (value) {
   209   case 0:
   210     __ xorps(xmm0, xmm0);
   211     break;
   212   case 1:
   213     __ movflt(xmm0, ExternalAddress((address) &one));
   214     break;
   215   case 2:
   216     __ movflt(xmm0, ExternalAddress((address) &two));
   217     break;
   218   default:
   219     ShouldNotReachHere();
   220     break;
   221   }
   222 }
   224 void TemplateTable::dconst(int value) {
   225   transition(vtos, dtos);
   226   static double one = 1.0;
   227   switch (value) {
   228   case 0:
   229     __ xorpd(xmm0, xmm0);
   230     break;
   231   case 1:
   232     __ movdbl(xmm0, ExternalAddress((address) &one));
   233     break;
   234   default:
   235     ShouldNotReachHere();
   236     break;
   237   }
   238 }
   240 void TemplateTable::bipush() {
   241   transition(vtos, itos);
   242   __ load_signed_byte(rax, at_bcp(1));
   243 }
   245 void TemplateTable::sipush() {
   246   transition(vtos, itos);
   247   __ load_unsigned_word(rax, at_bcp(1));
   248   __ bswapl(rax);
   249   __ sarl(rax, 16);
   250 }
   252 void TemplateTable::ldc(bool wide) {
   253   transition(vtos, vtos);
   254   Label call_ldc, notFloat, notClass, Done;
   256   if (wide) {
   257     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   258   } else {
   259     __ load_unsigned_byte(rbx, at_bcp(1));
   260   }
   262   __ get_cpool_and_tags(rcx, rax);
   263   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   264   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   266   // get type
   267   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   269   // unresolved string - get the resolved string
   270   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   271   __ jccb(Assembler::equal, call_ldc);
   273   // unresolved class - get the resolved class
   274   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   275   __ jccb(Assembler::equal, call_ldc);
   277   // unresolved class in error state - call into runtime to throw the error
   278   // from the first resolution attempt
   279   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   280   __ jccb(Assembler::equal, call_ldc);
   282   // resolved class - need to call vm to get java mirror of the class
   283   __ cmpl(rdx, JVM_CONSTANT_Class);
   284   __ jcc(Assembler::notEqual, notClass);
   286   __ bind(call_ldc);
   287   __ movl(c_rarg1, wide);
   288   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   289   __ push_ptr(rax);
   290   __ verify_oop(rax);
   291   __ jmp(Done);
   293   __ bind(notClass);
   294   __ cmpl(rdx, JVM_CONSTANT_Float);
   295   __ jccb(Assembler::notEqual, notFloat);
   296   // ftos
   297   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   298   __ push_f();
   299   __ jmp(Done);
   301   __ bind(notFloat);
   302 #ifdef ASSERT
   303   {
   304     Label L;
   305     __ cmpl(rdx, JVM_CONSTANT_Integer);
   306     __ jcc(Assembler::equal, L);
   307     __ cmpl(rdx, JVM_CONSTANT_String);
   308     __ jcc(Assembler::equal, L);
   309     __ stop("unexpected tag type in ldc");
   310     __ bind(L);
   311   }
   312 #endif
   313   // atos and itos
   314   Label isOop;
   315   __ cmpl(rdx, JVM_CONSTANT_Integer);
   316   __ jcc(Assembler::notEqual, isOop);
   317   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   318   __ push_i(rax);
   319   __ jmp(Done);
   321   __ bind(isOop);
   322   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   323   __ push_ptr(rax);
   325   if (VerifyOops) {
   326     __ verify_oop(rax);
   327   }
   329   __ bind(Done);
   330 }
   332 void TemplateTable::ldc2_w() {
   333   transition(vtos, vtos);
   334   Label Long, Done;
   335   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   337   __ get_cpool_and_tags(rcx, rax);
   338   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   339   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   341   // get type
   342   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   343           JVM_CONSTANT_Double);
   344   __ jccb(Assembler::notEqual, Long);
   345   // dtos
   346   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   347   __ push_d();
   348   __ jmpb(Done);
   350   __ bind(Long);
   351   // ltos
   352   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   353   __ push_l();
   355   __ bind(Done);
   356 }
   358 void TemplateTable::locals_index(Register reg, int offset) {
   359   __ load_unsigned_byte(reg, at_bcp(offset));
   360   __ negptr(reg);
   361   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   362 }
   364 void TemplateTable::iload() {
   365   transition(vtos, itos);
   366   if (RewriteFrequentPairs) {
   367     Label rewrite, done;
   368     const Register bc = c_rarg3;
   369     assert(rbx != bc, "register damaged");
   371     // get next byte
   372     __ load_unsigned_byte(rbx,
   373                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   374     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   375     // last two iloads in a pair.  Comparing against fast_iload means that
   376     // the next bytecode is neither an iload or a caload, and therefore
   377     // an iload pair.
   378     __ cmpl(rbx, Bytecodes::_iload);
   379     __ jcc(Assembler::equal, done);
   381     __ cmpl(rbx, Bytecodes::_fast_iload);
   382     __ movl(bc, Bytecodes::_fast_iload2);
   383     __ jccb(Assembler::equal, rewrite);
   385     // if _caload, rewrite to fast_icaload
   386     __ cmpl(rbx, Bytecodes::_caload);
   387     __ movl(bc, Bytecodes::_fast_icaload);
   388     __ jccb(Assembler::equal, rewrite);
   390     // rewrite so iload doesn't check again.
   391     __ movl(bc, Bytecodes::_fast_iload);
   393     // rewrite
   394     // bc: fast bytecode
   395     __ bind(rewrite);
   396     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   397     __ bind(done);
   398   }
   400   // Get the local value into tos
   401   locals_index(rbx);
   402   __ movl(rax, iaddress(rbx));
   403   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   404 }
   406 void TemplateTable::fast_iload2() {
   407   transition(vtos, itos);
   408   locals_index(rbx);
   409   __ movl(rax, iaddress(rbx));
   410   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   411   __ push(itos);
   412   locals_index(rbx, 3);
   413   __ movl(rax, iaddress(rbx));
   414   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   415 }
   417 void TemplateTable::fast_iload() {
   418   transition(vtos, itos);
   419   locals_index(rbx);
   420   __ movl(rax, iaddress(rbx));
   421   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   422 }
   424 void TemplateTable::lload() {
   425   transition(vtos, ltos);
   426   locals_index(rbx);
   427   __ movq(rax, laddress(rbx));
   428   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   429 }
   431 void TemplateTable::fload() {
   432   transition(vtos, ftos);
   433   locals_index(rbx);
   434   __ movflt(xmm0, faddress(rbx));
   435   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   436 }
   438 void TemplateTable::dload() {
   439   transition(vtos, dtos);
   440   locals_index(rbx);
   441   __ movdbl(xmm0, daddress(rbx));
   442   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   443 }
   445 void TemplateTable::aload() {
   446   transition(vtos, atos);
   447   locals_index(rbx);
   448   __ movptr(rax, aaddress(rbx));
   449   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   450 }
   452 void TemplateTable::locals_index_wide(Register reg) {
   453   __ movl(reg, at_bcp(2));
   454   __ bswapl(reg);
   455   __ shrl(reg, 16);
   456   __ negptr(reg);
   457   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   458 }
   460 void TemplateTable::wide_iload() {
   461   transition(vtos, itos);
   462   locals_index_wide(rbx);
   463   __ movl(rax, iaddress(rbx));
   464   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   465 }
   467 void TemplateTable::wide_lload() {
   468   transition(vtos, ltos);
   469   locals_index_wide(rbx);
   470   __ movq(rax, laddress(rbx));
   471   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   472 }
   474 void TemplateTable::wide_fload() {
   475   transition(vtos, ftos);
   476   locals_index_wide(rbx);
   477   __ movflt(xmm0, faddress(rbx));
   478   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   479 }
   481 void TemplateTable::wide_dload() {
   482   transition(vtos, dtos);
   483   locals_index_wide(rbx);
   484   __ movdbl(xmm0, daddress(rbx));
   485   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   486 }
   488 void TemplateTable::wide_aload() {
   489   transition(vtos, atos);
   490   locals_index_wide(rbx);
   491   __ movptr(rax, aaddress(rbx));
   492   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   493 }
   495 void TemplateTable::index_check(Register array, Register index) {
   496   // destroys rbx
   497   // check array
   498   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   499   // sign extend index for use by indexed load
   500   __ movl2ptr(index, index);
   501   // check index
   502   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   503   if (index != rbx) {
   504     // ??? convention: move aberrant index into ebx for exception message
   505     assert(rbx != array, "different registers");
   506     __ movl(rbx, index);
   507   }
   508   __ jump_cc(Assembler::aboveEqual,
   509              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   510 }
   512 void TemplateTable::iaload() {
   513   transition(itos, itos);
   514   __ pop_ptr(rdx);
   515   // eax: index
   516   // rdx: array
   517   index_check(rdx, rax); // kills rbx
   518   __ movl(rax, Address(rdx, rax,
   519                        Address::times_4,
   520                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   521 }
   523 void TemplateTable::laload() {
   524   transition(itos, ltos);
   525   __ pop_ptr(rdx);
   526   // eax: index
   527   // rdx: array
   528   index_check(rdx, rax); // kills rbx
   529   __ movq(rax, Address(rdx, rbx,
   530                        Address::times_8,
   531                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   532 }
   534 void TemplateTable::faload() {
   535   transition(itos, ftos);
   536   __ pop_ptr(rdx);
   537   // eax: index
   538   // rdx: array
   539   index_check(rdx, rax); // kills rbx
   540   __ movflt(xmm0, Address(rdx, rax,
   541                          Address::times_4,
   542                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   543 }
   545 void TemplateTable::daload() {
   546   transition(itos, dtos);
   547   __ pop_ptr(rdx);
   548   // eax: index
   549   // rdx: array
   550   index_check(rdx, rax); // kills rbx
   551   __ movdbl(xmm0, Address(rdx, rax,
   552                           Address::times_8,
   553                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   554 }
   556 void TemplateTable::aaload() {
   557   transition(itos, atos);
   558   __ pop_ptr(rdx);
   559   // eax: index
   560   // rdx: array
   561   index_check(rdx, rax); // kills rbx
   562   __ load_heap_oop(rax, Address(rdx, rax,
   563                        UseCompressedOops ? Address::times_4 : Address::times_8,
   564                        arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   565 }
   567 void TemplateTable::baload() {
   568   transition(itos, itos);
   569   __ pop_ptr(rdx);
   570   // eax: index
   571   // rdx: array
   572   index_check(rdx, rax); // kills rbx
   573   __ load_signed_byte(rax,
   574                       Address(rdx, rax,
   575                               Address::times_1,
   576                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   577 }
   579 void TemplateTable::caload() {
   580   transition(itos, itos);
   581   __ pop_ptr(rdx);
   582   // eax: index
   583   // rdx: array
   584   index_check(rdx, rax); // kills rbx
   585   __ load_unsigned_word(rax,
   586                         Address(rdx, rax,
   587                                 Address::times_2,
   588                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   589 }
   591 // iload followed by caload frequent pair
   592 void TemplateTable::fast_icaload() {
   593   transition(vtos, itos);
   594   // load index out of locals
   595   locals_index(rbx);
   596   __ movl(rax, iaddress(rbx));
   597   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   599   // eax: index
   600   // rdx: array
   601   __ pop_ptr(rdx);
   602   index_check(rdx, rax); // kills rbx
   603   __ load_unsigned_word(rax,
   604                         Address(rdx, rax,
   605                                 Address::times_2,
   606                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   607 }
   609 void TemplateTable::saload() {
   610   transition(itos, itos);
   611   __ pop_ptr(rdx);
   612   // eax: index
   613   // rdx: array
   614   index_check(rdx, rax); // kills rbx
   615   __ load_signed_word(rax,
   616                       Address(rdx, rax,
   617                               Address::times_2,
   618                               arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   619 }
   621 void TemplateTable::iload(int n) {
   622   transition(vtos, itos);
   623   __ movl(rax, iaddress(n));
   624   debug_only(__ verify_local_tag(frame::TagValue, n));
   625 }
   627 void TemplateTable::lload(int n) {
   628   transition(vtos, ltos);
   629   __ movq(rax, laddress(n));
   630   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   631 }
   633 void TemplateTable::fload(int n) {
   634   transition(vtos, ftos);
   635   __ movflt(xmm0, faddress(n));
   636   debug_only(__ verify_local_tag(frame::TagValue, n));
   637 }
   639 void TemplateTable::dload(int n) {
   640   transition(vtos, dtos);
   641   __ movdbl(xmm0, daddress(n));
   642   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   643 }
   645 void TemplateTable::aload(int n) {
   646   transition(vtos, atos);
   647   __ movptr(rax, aaddress(n));
   648   debug_only(__ verify_local_tag(frame::TagReference, n));
   649 }
   651 void TemplateTable::aload_0() {
   652   transition(vtos, atos);
   653   // According to bytecode histograms, the pairs:
   654   //
   655   // _aload_0, _fast_igetfield
   656   // _aload_0, _fast_agetfield
   657   // _aload_0, _fast_fgetfield
   658   //
   659   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   660   // _aload_0 bytecode checks if the next bytecode is either
   661   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   662   // rewrites the current bytecode into a pair bytecode; otherwise it
   663   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   664   // the pair check anymore.
   665   //
   666   // Note: If the next bytecode is _getfield, the rewrite must be
   667   //       delayed, otherwise we may miss an opportunity for a pair.
   668   //
   669   // Also rewrite frequent pairs
   670   //   aload_0, aload_1
   671   //   aload_0, iload_1
   672   // These bytecodes with a small amount of code are most profitable
   673   // to rewrite
   674   if (RewriteFrequentPairs) {
   675     Label rewrite, done;
   676     const Register bc = c_rarg3;
   677     assert(rbx != bc, "register damaged");
   678     // get next byte
   679     __ load_unsigned_byte(rbx,
   680                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   682     // do actual aload_0
   683     aload(0);
   685     // if _getfield then wait with rewrite
   686     __ cmpl(rbx, Bytecodes::_getfield);
   687     __ jcc(Assembler::equal, done);
   689     // if _igetfield then reqrite to _fast_iaccess_0
   690     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   691            Bytecodes::_aload_0,
   692            "fix bytecode definition");
   693     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   694     __ movl(bc, Bytecodes::_fast_iaccess_0);
   695     __ jccb(Assembler::equal, rewrite);
   697     // if _agetfield then reqrite to _fast_aaccess_0
   698     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   699            Bytecodes::_aload_0,
   700            "fix bytecode definition");
   701     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   702     __ movl(bc, Bytecodes::_fast_aaccess_0);
   703     __ jccb(Assembler::equal, rewrite);
   705     // if _fgetfield then reqrite to _fast_faccess_0
   706     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   707            Bytecodes::_aload_0,
   708            "fix bytecode definition");
   709     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   710     __ movl(bc, Bytecodes::_fast_faccess_0);
   711     __ jccb(Assembler::equal, rewrite);
   713     // else rewrite to _fast_aload0
   714     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   715            Bytecodes::_aload_0,
   716            "fix bytecode definition");
   717     __ movl(bc, Bytecodes::_fast_aload_0);
   719     // rewrite
   720     // bc: fast bytecode
   721     __ bind(rewrite);
   722     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   724     __ bind(done);
   725   } else {
   726     aload(0);
   727   }
   728 }
   730 void TemplateTable::istore() {
   731   transition(itos, vtos);
   732   locals_index(rbx);
   733   __ movl(iaddress(rbx), rax);
   734   __ tag_local(frame::TagValue, rbx);
   735 }
   737 void TemplateTable::lstore() {
   738   transition(ltos, vtos);
   739   locals_index(rbx);
   740   __ movq(laddress(rbx), rax);
   741   __ tag_local(frame::TagCategory2, rbx);
   742 }
   744 void TemplateTable::fstore() {
   745   transition(ftos, vtos);
   746   locals_index(rbx);
   747   __ movflt(faddress(rbx), xmm0);
   748   __ tag_local(frame::TagValue, rbx);
   749 }
   751 void TemplateTable::dstore() {
   752   transition(dtos, vtos);
   753   locals_index(rbx);
   754   __ movdbl(daddress(rbx), xmm0);
   755   __ tag_local(frame::TagCategory2, rbx);
   756 }
   758 void TemplateTable::astore() {
   759   transition(vtos, vtos);
   760   __ pop_ptr(rax, rdx);    // will need to pop tag too
   761   locals_index(rbx);
   762   __ movptr(aaddress(rbx), rax);
   763   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   764 }
   766 void TemplateTable::wide_istore() {
   767   transition(vtos, vtos);
   768   __ pop_i();
   769   locals_index_wide(rbx);
   770   __ movl(iaddress(rbx), rax);
   771   __ tag_local(frame::TagValue, rbx);
   772 }
   774 void TemplateTable::wide_lstore() {
   775   transition(vtos, vtos);
   776   __ pop_l();
   777   locals_index_wide(rbx);
   778   __ movq(laddress(rbx), rax);
   779   __ tag_local(frame::TagCategory2, rbx);
   780 }
   782 void TemplateTable::wide_fstore() {
   783   transition(vtos, vtos);
   784   __ pop_f();
   785   locals_index_wide(rbx);
   786   __ movflt(faddress(rbx), xmm0);
   787   __ tag_local(frame::TagValue, rbx);
   788 }
   790 void TemplateTable::wide_dstore() {
   791   transition(vtos, vtos);
   792   __ pop_d();
   793   locals_index_wide(rbx);
   794   __ movdbl(daddress(rbx), xmm0);
   795   __ tag_local(frame::TagCategory2, rbx);
   796 }
   798 void TemplateTable::wide_astore() {
   799   transition(vtos, vtos);
   800   __ pop_ptr(rax, rdx);    // will need to pop tag too
   801   locals_index_wide(rbx);
   802   __ movptr(aaddress(rbx), rax);
   803   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   804 }
   806 void TemplateTable::iastore() {
   807   transition(itos, vtos);
   808   __ pop_i(rbx);
   809   __ pop_ptr(rdx);
   810   // eax: value
   811   // ebx: index
   812   // rdx: array
   813   index_check(rdx, rbx); // prefer index in ebx
   814   __ movl(Address(rdx, rbx,
   815                   Address::times_4,
   816                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   817           rax);
   818 }
   820 void TemplateTable::lastore() {
   821   transition(ltos, vtos);
   822   __ pop_i(rbx);
   823   __ pop_ptr(rdx);
   824   // rax: value
   825   // ebx: index
   826   // rdx: array
   827   index_check(rdx, rbx); // prefer index in ebx
   828   __ movq(Address(rdx, rbx,
   829                   Address::times_8,
   830                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   831           rax);
   832 }
   834 void TemplateTable::fastore() {
   835   transition(ftos, vtos);
   836   __ pop_i(rbx);
   837   __ pop_ptr(rdx);
   838   // xmm0: value
   839   // ebx:  index
   840   // rdx:  array
   841   index_check(rdx, rbx); // prefer index in ebx
   842   __ movflt(Address(rdx, rbx,
   843                    Address::times_4,
   844                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   845            xmm0);
   846 }
   848 void TemplateTable::dastore() {
   849   transition(dtos, vtos);
   850   __ pop_i(rbx);
   851   __ pop_ptr(rdx);
   852   // xmm0: value
   853   // ebx:  index
   854   // rdx:  array
   855   index_check(rdx, rbx); // prefer index in ebx
   856   __ movdbl(Address(rdx, rbx,
   857                    Address::times_8,
   858                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   859            xmm0);
   860 }
   862 void TemplateTable::aastore() {
   863   Label is_null, ok_is_subtype, done;
   864   transition(vtos, vtos);
   865   // stack: ..., array, index, value
   866   __ movptr(rax, at_tos());    // value
   867   __ movl(rcx, at_tos_p1()); // index
   868   __ movptr(rdx, at_tos_p2()); // array
   869   index_check(rdx, rcx);     // kills rbx
   870   // do array store check - check for NULL value first
   871   __ testptr(rax, rax);
   872   __ jcc(Assembler::zero, is_null);
   874   // Move subklass into rbx
   875   __ load_klass(rbx, rax);
   876   // Move superklass into rax
   877   __ load_klass(rax, rdx);
   878   __ movptr(rax, Address(rax,
   879                          sizeof(oopDesc) +
   880                          objArrayKlass::element_klass_offset_in_bytes()));
   881   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   882   __ lea(rdx, Address(rdx, rcx,
   883                       UseCompressedOops ? Address::times_4 : Address::times_8,
   884                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   886   // Generate subtype check.  Blows rcx, rdi
   887   // Superklass in rax.  Subklass in rbx.
   888   __ gen_subtype_check(rbx, ok_is_subtype);
   890   // Come here on failure
   891   // object is at TOS
   892   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   894   // Come here on success
   895   __ bind(ok_is_subtype);
   896   __ movptr(rax, at_tos()); // Value
   897   __ store_heap_oop(Address(rdx, 0), rax);
   898   __ store_check(rdx);
   899   __ jmp(done);
   901   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   902   __ bind(is_null);
   903   __ profile_null_seen(rbx);
   904   __ store_heap_oop(Address(rdx, rcx,
   905                             UseCompressedOops ? Address::times_4 : Address::times_8,
   906                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
   907                     rax);
   909   // Pop stack arguments
   910   __ bind(done);
   911   __ addptr(rsp, 3 * Interpreter::stackElementSize());
   912 }
   914 void TemplateTable::bastore() {
   915   transition(itos, vtos);
   916   __ pop_i(rbx);
   917   __ pop_ptr(rdx);
   918   // eax: value
   919   // ebx: index
   920   // rdx: array
   921   index_check(rdx, rbx); // prefer index in ebx
   922   __ movb(Address(rdx, rbx,
   923                   Address::times_1,
   924                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   925           rax);
   926 }
   928 void TemplateTable::castore() {
   929   transition(itos, vtos);
   930   __ pop_i(rbx);
   931   __ pop_ptr(rdx);
   932   // eax: value
   933   // ebx: index
   934   // rdx: array
   935   index_check(rdx, rbx);  // prefer index in ebx
   936   __ movw(Address(rdx, rbx,
   937                   Address::times_2,
   938                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
   939           rax);
   940 }
   942 void TemplateTable::sastore() {
   943   castore();
   944 }
   946 void TemplateTable::istore(int n) {
   947   transition(itos, vtos);
   948   __ movl(iaddress(n), rax);
   949   __ tag_local(frame::TagValue, n);
   950 }
   952 void TemplateTable::lstore(int n) {
   953   transition(ltos, vtos);
   954   __ movq(laddress(n), rax);
   955   __ tag_local(frame::TagCategory2, n);
   956 }
   958 void TemplateTable::fstore(int n) {
   959   transition(ftos, vtos);
   960   __ movflt(faddress(n), xmm0);
   961   __ tag_local(frame::TagValue, n);
   962 }
   964 void TemplateTable::dstore(int n) {
   965   transition(dtos, vtos);
   966   __ movdbl(daddress(n), xmm0);
   967   __ tag_local(frame::TagCategory2, n);
   968 }
   970 void TemplateTable::astore(int n) {
   971   transition(vtos, vtos);
   972   __ pop_ptr(rax, rdx);
   973   __ movptr(aaddress(n), rax);
   974   __ tag_local(rdx, n);
   975 }
   977 void TemplateTable::pop() {
   978   transition(vtos, vtos);
   979   __ addptr(rsp, Interpreter::stackElementSize());
   980 }
   982 void TemplateTable::pop2() {
   983   transition(vtos, vtos);
   984   __ addptr(rsp, 2 * Interpreter::stackElementSize());
   985 }
   987 void TemplateTable::dup() {
   988   transition(vtos, vtos);
   989   __ load_ptr_and_tag(0, rax, rdx);
   990   __ push_ptr(rax, rdx);
   991   // stack: ..., a, a
   992 }
   994 void TemplateTable::dup_x1() {
   995   transition(vtos, vtos);
   996   // stack: ..., a, b
   997   __ load_ptr_and_tag(0, rax, rdx);  // load b
   998   __ load_ptr_and_tag(1, rcx, rbx);  // load a
   999   __ store_ptr_and_tag(1, rax, rdx); // store b
  1000   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1001   __ push_ptr(rax, rdx);             // push b
  1002   // stack: ..., b, a, b
  1005 void TemplateTable::dup_x2() {
  1006   transition(vtos, vtos);
  1007   // stack: ..., a, b, c
  1008   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1009   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1010   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1011   __ push_ptr(rax, rdx);             // push c
  1012   // stack: ..., c, b, c, c
  1013   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1014   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1015   // stack: ..., c, a, c, c
  1016   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1017   // stack: ..., c, a, b, c
  1020 void TemplateTable::dup2() {
  1021   transition(vtos, vtos);
  1022   // stack: ..., a, b
  1023   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1024   __ push_ptr(rax, rdx);             // push a
  1025   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1026   __ push_ptr(rax, rdx);             // push b
  1027   // stack: ..., a, b, a, b
  1030 void TemplateTable::dup2_x1() {
  1031   transition(vtos, vtos);
  1032   // stack: ..., a, b, c
  1033   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1034   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1035   __ push_ptr(rax, rdx);             // push b
  1036   __ push_ptr(rcx, rbx);             // push c
  1037   // stack: ..., a, b, c, b, c
  1038   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1039   // stack: ..., a, c, c, b, c
  1040   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1041   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1042   // stack: ..., a, c, a, b, c
  1043   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1044   // stack: ..., b, c, a, b, c
  1047 void TemplateTable::dup2_x2() {
  1048   transition(vtos, vtos);
  1049   // stack: ..., a, b, c, d
  1050   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1051   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1052   __ push_ptr(rax, rdx);             // push c
  1053   __ push_ptr(rcx, rbx);             // push d
  1054   // stack: ..., a, b, c, d, c, d
  1055   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1056   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1057   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1058   // stack: ..., a, d, c, b, c, d
  1059   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1060   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1061   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1062   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1063   // stack: ..., c, d, a, b, c, d
  1066 void TemplateTable::swap() {
  1067   transition(vtos, vtos);
  1068   // stack: ..., a, b
  1069   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1070   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1071   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1072   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1073   // stack: ..., b, a
  1076 void TemplateTable::iop2(Operation op) {
  1077   transition(itos, itos);
  1078   switch (op) {
  1079   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1080   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1081   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1082   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1083   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1084   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1085   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1086   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1087   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1088   default   : ShouldNotReachHere();
  1092 void TemplateTable::lop2(Operation op) {
  1093   transition(ltos, ltos);
  1094   switch (op) {
  1095   case add  :                    __ pop_l(rdx); __ addptr (rax, rdx); break;
  1096   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr (rax, rdx); break;
  1097   case _and :                    __ pop_l(rdx); __ andptr (rax, rdx); break;
  1098   case _or  :                    __ pop_l(rdx); __ orptr  (rax, rdx); break;
  1099   case _xor :                    __ pop_l(rdx); __ xorptr (rax, rdx); break;
  1100   default : ShouldNotReachHere();
  1104 void TemplateTable::idiv() {
  1105   transition(itos, itos);
  1106   __ movl(rcx, rax);
  1107   __ pop_i(rax);
  1108   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1109   //       they are not equal, one could do a normal division (no correction
  1110   //       needed), which may speed up this implementation for the common case.
  1111   //       (see also JVM spec., p.243 & p.271)
  1112   __ corrected_idivl(rcx);
  1115 void TemplateTable::irem() {
  1116   transition(itos, itos);
  1117   __ movl(rcx, rax);
  1118   __ pop_i(rax);
  1119   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1120   //       they are not equal, one could do a normal division (no correction
  1121   //       needed), which may speed up this implementation for the common case.
  1122   //       (see also JVM spec., p.243 & p.271)
  1123   __ corrected_idivl(rcx);
  1124   __ movl(rax, rdx);
  1127 void TemplateTable::lmul() {
  1128   transition(ltos, ltos);
  1129   __ pop_l(rdx);
  1130   __ imulq(rax, rdx);
  1133 void TemplateTable::ldiv() {
  1134   transition(ltos, ltos);
  1135   __ mov(rcx, rax);
  1136   __ pop_l(rax);
  1137   // generate explicit div0 check
  1138   __ testq(rcx, rcx);
  1139   __ jump_cc(Assembler::zero,
  1140              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1141   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1142   //       they are not equal, one could do a normal division (no correction
  1143   //       needed), which may speed up this implementation for the common case.
  1144   //       (see also JVM spec., p.243 & p.271)
  1145   __ corrected_idivq(rcx); // kills rbx
  1148 void TemplateTable::lrem() {
  1149   transition(ltos, ltos);
  1150   __ mov(rcx, rax);
  1151   __ pop_l(rax);
  1152   __ testq(rcx, rcx);
  1153   __ jump_cc(Assembler::zero,
  1154              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1155   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1156   //       they are not equal, one could do a normal division (no correction
  1157   //       needed), which may speed up this implementation for the common case.
  1158   //       (see also JVM spec., p.243 & p.271)
  1159   __ corrected_idivq(rcx); // kills rbx
  1160   __ mov(rax, rdx);
  1163 void TemplateTable::lshl() {
  1164   transition(itos, ltos);
  1165   __ movl(rcx, rax);                             // get shift count
  1166   __ pop_l(rax);                                 // get shift value
  1167   __ shlq(rax);
  1170 void TemplateTable::lshr() {
  1171   transition(itos, ltos);
  1172   __ movl(rcx, rax);                             // get shift count
  1173   __ pop_l(rax);                                 // get shift value
  1174   __ sarq(rax);
  1177 void TemplateTable::lushr() {
  1178   transition(itos, ltos);
  1179   __ movl(rcx, rax);                             // get shift count
  1180   __ pop_l(rax);                                 // get shift value
  1181   __ shrq(rax);
  1184 void TemplateTable::fop2(Operation op) {
  1185   transition(ftos, ftos);
  1186   switch (op) {
  1187   case add:
  1188     __ addss(xmm0, at_rsp());
  1189     __ addptr(rsp, Interpreter::stackElementSize());
  1190     break;
  1191   case sub:
  1192     __ movflt(xmm1, xmm0);
  1193     __ pop_f(xmm0);
  1194     __ subss(xmm0, xmm1);
  1195     break;
  1196   case mul:
  1197     __ mulss(xmm0, at_rsp());
  1198     __ addptr(rsp, Interpreter::stackElementSize());
  1199     break;
  1200   case div:
  1201     __ movflt(xmm1, xmm0);
  1202     __ pop_f(xmm0);
  1203     __ divss(xmm0, xmm1);
  1204     break;
  1205   case rem:
  1206     __ movflt(xmm1, xmm0);
  1207     __ pop_f(xmm0);
  1208     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1209     break;
  1210   default:
  1211     ShouldNotReachHere();
  1212     break;
  1216 void TemplateTable::dop2(Operation op) {
  1217   transition(dtos, dtos);
  1218   switch (op) {
  1219   case add:
  1220     __ addsd(xmm0, at_rsp());
  1221     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1222     break;
  1223   case sub:
  1224     __ movdbl(xmm1, xmm0);
  1225     __ pop_d(xmm0);
  1226     __ subsd(xmm0, xmm1);
  1227     break;
  1228   case mul:
  1229     __ mulsd(xmm0, at_rsp());
  1230     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1231     break;
  1232   case div:
  1233     __ movdbl(xmm1, xmm0);
  1234     __ pop_d(xmm0);
  1235     __ divsd(xmm0, xmm1);
  1236     break;
  1237   case rem:
  1238     __ movdbl(xmm1, xmm0);
  1239     __ pop_d(xmm0);
  1240     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1241     break;
  1242   default:
  1243     ShouldNotReachHere();
  1244     break;
  1248 void TemplateTable::ineg() {
  1249   transition(itos, itos);
  1250   __ negl(rax);
  1253 void TemplateTable::lneg() {
  1254   transition(ltos, ltos);
  1255   __ negq(rax);
  1258 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1259 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1260   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1261   // of 128-bits operands for SSE instructions.
  1262   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1263   // Store the value to a 128-bits operand.
  1264   operand[0] = lo;
  1265   operand[1] = hi;
  1266   return operand;
  1269 // Buffer for 128-bits masks used by SSE instructions.
  1270 static jlong float_signflip_pool[2*2];
  1271 static jlong double_signflip_pool[2*2];
  1273 void TemplateTable::fneg() {
  1274   transition(ftos, ftos);
  1275   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1276   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1279 void TemplateTable::dneg() {
  1280   transition(dtos, dtos);
  1281   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1282   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1285 void TemplateTable::iinc() {
  1286   transition(vtos, vtos);
  1287   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1288   locals_index(rbx);
  1289   __ addl(iaddress(rbx), rdx);
  1292 void TemplateTable::wide_iinc() {
  1293   transition(vtos, vtos);
  1294   __ movl(rdx, at_bcp(4)); // get constant
  1295   locals_index_wide(rbx);
  1296   __ bswapl(rdx); // swap bytes & sign-extend constant
  1297   __ sarl(rdx, 16);
  1298   __ addl(iaddress(rbx), rdx);
  1299   // Note: should probably use only one movl to get both
  1300   //       the index and the constant -> fix this
  1303 void TemplateTable::convert() {
  1304   // Checking
  1305 #ifdef ASSERT
  1307     TosState tos_in  = ilgl;
  1308     TosState tos_out = ilgl;
  1309     switch (bytecode()) {
  1310     case Bytecodes::_i2l: // fall through
  1311     case Bytecodes::_i2f: // fall through
  1312     case Bytecodes::_i2d: // fall through
  1313     case Bytecodes::_i2b: // fall through
  1314     case Bytecodes::_i2c: // fall through
  1315     case Bytecodes::_i2s: tos_in = itos; break;
  1316     case Bytecodes::_l2i: // fall through
  1317     case Bytecodes::_l2f: // fall through
  1318     case Bytecodes::_l2d: tos_in = ltos; break;
  1319     case Bytecodes::_f2i: // fall through
  1320     case Bytecodes::_f2l: // fall through
  1321     case Bytecodes::_f2d: tos_in = ftos; break;
  1322     case Bytecodes::_d2i: // fall through
  1323     case Bytecodes::_d2l: // fall through
  1324     case Bytecodes::_d2f: tos_in = dtos; break;
  1325     default             : ShouldNotReachHere();
  1327     switch (bytecode()) {
  1328     case Bytecodes::_l2i: // fall through
  1329     case Bytecodes::_f2i: // fall through
  1330     case Bytecodes::_d2i: // fall through
  1331     case Bytecodes::_i2b: // fall through
  1332     case Bytecodes::_i2c: // fall through
  1333     case Bytecodes::_i2s: tos_out = itos; break;
  1334     case Bytecodes::_i2l: // fall through
  1335     case Bytecodes::_f2l: // fall through
  1336     case Bytecodes::_d2l: tos_out = ltos; break;
  1337     case Bytecodes::_i2f: // fall through
  1338     case Bytecodes::_l2f: // fall through
  1339     case Bytecodes::_d2f: tos_out = ftos; break;
  1340     case Bytecodes::_i2d: // fall through
  1341     case Bytecodes::_l2d: // fall through
  1342     case Bytecodes::_f2d: tos_out = dtos; break;
  1343     default             : ShouldNotReachHere();
  1345     transition(tos_in, tos_out);
  1347 #endif // ASSERT
  1349   static const int64_t is_nan = 0x8000000000000000L;
  1351   // Conversion
  1352   switch (bytecode()) {
  1353   case Bytecodes::_i2l:
  1354     __ movslq(rax, rax);
  1355     break;
  1356   case Bytecodes::_i2f:
  1357     __ cvtsi2ssl(xmm0, rax);
  1358     break;
  1359   case Bytecodes::_i2d:
  1360     __ cvtsi2sdl(xmm0, rax);
  1361     break;
  1362   case Bytecodes::_i2b:
  1363     __ movsbl(rax, rax);
  1364     break;
  1365   case Bytecodes::_i2c:
  1366     __ movzwl(rax, rax);
  1367     break;
  1368   case Bytecodes::_i2s:
  1369     __ movswl(rax, rax);
  1370     break;
  1371   case Bytecodes::_l2i:
  1372     __ movl(rax, rax);
  1373     break;
  1374   case Bytecodes::_l2f:
  1375     __ cvtsi2ssq(xmm0, rax);
  1376     break;
  1377   case Bytecodes::_l2d:
  1378     __ cvtsi2sdq(xmm0, rax);
  1379     break;
  1380   case Bytecodes::_f2i:
  1382     Label L;
  1383     __ cvttss2sil(rax, xmm0);
  1384     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1385     __ jcc(Assembler::notEqual, L);
  1386     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1387     __ bind(L);
  1389     break;
  1390   case Bytecodes::_f2l:
  1392     Label L;
  1393     __ cvttss2siq(rax, xmm0);
  1394     // NaN or overflow/underflow?
  1395     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1396     __ jcc(Assembler::notEqual, L);
  1397     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1398     __ bind(L);
  1400     break;
  1401   case Bytecodes::_f2d:
  1402     __ cvtss2sd(xmm0, xmm0);
  1403     break;
  1404   case Bytecodes::_d2i:
  1406     Label L;
  1407     __ cvttsd2sil(rax, xmm0);
  1408     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1409     __ jcc(Assembler::notEqual, L);
  1410     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1411     __ bind(L);
  1413     break;
  1414   case Bytecodes::_d2l:
  1416     Label L;
  1417     __ cvttsd2siq(rax, xmm0);
  1418     // NaN or overflow/underflow?
  1419     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1420     __ jcc(Assembler::notEqual, L);
  1421     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1422     __ bind(L);
  1424     break;
  1425   case Bytecodes::_d2f:
  1426     __ cvtsd2ss(xmm0, xmm0);
  1427     break;
  1428   default:
  1429     ShouldNotReachHere();
  1433 void TemplateTable::lcmp() {
  1434   transition(ltos, itos);
  1435   Label done;
  1436   __ pop_l(rdx);
  1437   __ cmpq(rdx, rax);
  1438   __ movl(rax, -1);
  1439   __ jccb(Assembler::less, done);
  1440   __ setb(Assembler::notEqual, rax);
  1441   __ movzbl(rax, rax);
  1442   __ bind(done);
  1445 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1446   Label done;
  1447   if (is_float) {
  1448     // XXX get rid of pop here, use ... reg, mem32
  1449     __ pop_f(xmm1);
  1450     __ ucomiss(xmm1, xmm0);
  1451   } else {
  1452     // XXX get rid of pop here, use ... reg, mem64
  1453     __ pop_d(xmm1);
  1454     __ ucomisd(xmm1, xmm0);
  1456   if (unordered_result < 0) {
  1457     __ movl(rax, -1);
  1458     __ jccb(Assembler::parity, done);
  1459     __ jccb(Assembler::below, done);
  1460     __ setb(Assembler::notEqual, rdx);
  1461     __ movzbl(rax, rdx);
  1462   } else {
  1463     __ movl(rax, 1);
  1464     __ jccb(Assembler::parity, done);
  1465     __ jccb(Assembler::above, done);
  1466     __ movl(rax, 0);
  1467     __ jccb(Assembler::equal, done);
  1468     __ decrementl(rax);
  1470   __ bind(done);
  1473 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1474   __ get_method(rcx); // rcx holds method
  1475   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1476                                      // holds bumped taken count
  1478   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1479                              InvocationCounter::counter_offset();
  1480   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1481                               InvocationCounter::counter_offset();
  1482   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1484   // Load up edx with the branch displacement
  1485   __ movl(rdx, at_bcp(1));
  1486   __ bswapl(rdx);
  1488   if (!is_wide) {
  1489     __ sarl(rdx, 16);
  1491   __ movl2ptr(rdx, rdx);
  1493   // Handle all the JSR stuff here, then exit.
  1494   // It's much shorter and cleaner than intermingling with the non-JSR
  1495   // normal-branch stuff occuring below.
  1496   if (is_jsr) {
  1497     // Pre-load the next target bytecode into rbx
  1498     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1500     // compute return address as bci in rax
  1501     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1502                         in_bytes(constMethodOopDesc::codes_offset())));
  1503     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1504     // Adjust the bcp in r13 by the displacement in rdx
  1505     __ addptr(r13, rdx);
  1506     // jsr returns atos that is not an oop
  1507     __ push_i(rax);
  1508     __ dispatch_only(vtos);
  1509     return;
  1512   // Normal (non-jsr) branch handling
  1514   // Adjust the bcp in r13 by the displacement in rdx
  1515   __ addptr(r13, rdx);
  1517   assert(UseLoopCounter || !UseOnStackReplacement,
  1518          "on-stack-replacement requires loop counters");
  1519   Label backedge_counter_overflow;
  1520   Label profile_method;
  1521   Label dispatch;
  1522   if (UseLoopCounter) {
  1523     // increment backedge counter for backward branches
  1524     // rax: MDO
  1525     // ebx: MDO bumped taken-count
  1526     // rcx: method
  1527     // rdx: target offset
  1528     // r13: target bcp
  1529     // r14: locals pointer
  1530     __ testl(rdx, rdx);             // check if forward or backward branch
  1531     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1533     // increment counter
  1534     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1535     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1536                                                             // counter
  1537     __ movl(Address(rcx, be_offset), rax);        // store counter
  1539     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1540     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1541     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1543     if (ProfileInterpreter) {
  1544       // Test to see if we should create a method data oop
  1545       __ cmp32(rax,
  1546                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1547       __ jcc(Assembler::less, dispatch);
  1549       // if no method data exists, go to profile method
  1550       __ test_method_data_pointer(rax, profile_method);
  1552       if (UseOnStackReplacement) {
  1553         // check for overflow against ebx which is the MDO taken count
  1554         __ cmp32(rbx,
  1555                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1556         __ jcc(Assembler::below, dispatch);
  1558         // When ProfileInterpreter is on, the backedge_count comes
  1559         // from the methodDataOop, which value does not get reset on
  1560         // the call to frequency_counter_overflow().  To avoid
  1561         // excessive calls to the overflow routine while the method is
  1562         // being compiled, add a second test to make sure the overflow
  1563         // function is called only once every overflow_frequency.
  1564         const int overflow_frequency = 1024;
  1565         __ andl(rbx, overflow_frequency - 1);
  1566         __ jcc(Assembler::zero, backedge_counter_overflow);
  1569     } else {
  1570       if (UseOnStackReplacement) {
  1571         // check for overflow against eax, which is the sum of the
  1572         // counters
  1573         __ cmp32(rax,
  1574                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1575         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1579     __ bind(dispatch);
  1582   // Pre-load the next target bytecode into rbx
  1583   __ load_unsigned_byte(rbx, Address(r13, 0));
  1585   // continue with the bytecode @ target
  1586   // eax: return bci for jsr's, unused otherwise
  1587   // ebx: target bytecode
  1588   // r13: target bcp
  1589   __ dispatch_only(vtos);
  1591   if (UseLoopCounter) {
  1592     if (ProfileInterpreter) {
  1593       // Out-of-line code to allocate method data oop.
  1594       __ bind(profile_method);
  1595       __ call_VM(noreg,
  1596                  CAST_FROM_FN_PTR(address,
  1597                                   InterpreterRuntime::profile_method), r13);
  1598       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1599       __ movptr(rcx, Address(rbp, method_offset));
  1600       __ movptr(rcx, Address(rcx,
  1601                              in_bytes(methodOopDesc::method_data_offset())));
  1602       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1603                 rcx);
  1604       __ test_method_data_pointer(rcx, dispatch);
  1605       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1606       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1607       __ addptr(rcx, rax);
  1608       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1609                 rcx);
  1610       __ jmp(dispatch);
  1613     if (UseOnStackReplacement) {
  1614       // invocation counter overflow
  1615       __ bind(backedge_counter_overflow);
  1616       __ negptr(rdx);
  1617       __ addptr(rdx, r13); // branch bcp
  1618       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1619       __ call_VM(noreg,
  1620                  CAST_FROM_FN_PTR(address,
  1621                                   InterpreterRuntime::frequency_counter_overflow),
  1622                  rdx);
  1623       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1625       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1626       // ebx: target bytecode
  1627       // rdx: scratch
  1628       // r14: locals pointer
  1629       // r13: bcp
  1630       __ testptr(rax, rax);                        // test result
  1631       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1632       // nmethod may have been invalidated (VM may block upon call_VM return)
  1633       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1634       __ cmpl(rcx, InvalidOSREntryBci);
  1635       __ jcc(Assembler::equal, dispatch);
  1637       // We have the address of an on stack replacement routine in eax
  1638       // We need to prepare to execute the OSR method. First we must
  1639       // migrate the locals and monitors off of the stack.
  1641       __ mov(r13, rax);                             // save the nmethod
  1643       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1645       // eax is OSR buffer, move it to expected parameter location
  1646       __ mov(j_rarg0, rax);
  1648       // We use j_rarg definitions here so that registers don't conflict as parameter
  1649       // registers change across platforms as we are in the midst of a calling
  1650       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1652       const Register retaddr = j_rarg2;
  1653       const Register sender_sp = j_rarg1;
  1655       // pop the interpreter frame
  1656       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1657       __ leave();                                // remove frame anchor
  1658       __ pop(retaddr);                           // get return address
  1659       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1660       // Ensure compiled code always sees stack at proper alignment
  1661       __ andptr(rsp, -(StackAlignmentInBytes));
  1663       // unlike x86 we need no specialized return from compiled code
  1664       // to the interpreter or the call stub.
  1666       // push the return address
  1667       __ push(retaddr);
  1669       // and begin the OSR nmethod
  1670       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1676 void TemplateTable::if_0cmp(Condition cc) {
  1677   transition(itos, vtos);
  1678   // assume branch is more often taken than not (loops use backward branches)
  1679   Label not_taken;
  1680   __ testl(rax, rax);
  1681   __ jcc(j_not(cc), not_taken);
  1682   branch(false, false);
  1683   __ bind(not_taken);
  1684   __ profile_not_taken_branch(rax);
  1687 void TemplateTable::if_icmp(Condition cc) {
  1688   transition(itos, vtos);
  1689   // assume branch is more often taken than not (loops use backward branches)
  1690   Label not_taken;
  1691   __ pop_i(rdx);
  1692   __ cmpl(rdx, rax);
  1693   __ jcc(j_not(cc), not_taken);
  1694   branch(false, false);
  1695   __ bind(not_taken);
  1696   __ profile_not_taken_branch(rax);
  1699 void TemplateTable::if_nullcmp(Condition cc) {
  1700   transition(atos, vtos);
  1701   // assume branch is more often taken than not (loops use backward branches)
  1702   Label not_taken;
  1703   __ testptr(rax, rax);
  1704   __ jcc(j_not(cc), not_taken);
  1705   branch(false, false);
  1706   __ bind(not_taken);
  1707   __ profile_not_taken_branch(rax);
  1710 void TemplateTable::if_acmp(Condition cc) {
  1711   transition(atos, vtos);
  1712   // assume branch is more often taken than not (loops use backward branches)
  1713   Label not_taken;
  1714   __ pop_ptr(rdx);
  1715   __ cmpptr(rdx, rax);
  1716   __ jcc(j_not(cc), not_taken);
  1717   branch(false, false);
  1718   __ bind(not_taken);
  1719   __ profile_not_taken_branch(rax);
  1722 void TemplateTable::ret() {
  1723   transition(vtos, vtos);
  1724   locals_index(rbx);
  1725   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1726   __ profile_ret(rbx, rcx);
  1727   __ get_method(rax);
  1728   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1729   __ lea(r13, Address(r13, rbx, Address::times_1,
  1730                       constMethodOopDesc::codes_offset()));
  1731   __ dispatch_next(vtos);
  1734 void TemplateTable::wide_ret() {
  1735   transition(vtos, vtos);
  1736   locals_index_wide(rbx);
  1737   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1738   __ profile_ret(rbx, rcx);
  1739   __ get_method(rax);
  1740   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1741   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1742   __ dispatch_next(vtos);
  1745 void TemplateTable::tableswitch() {
  1746   Label default_case, continue_execution;
  1747   transition(itos, vtos);
  1748   // align r13
  1749   __ lea(rbx, at_bcp(BytesPerInt));
  1750   __ andptr(rbx, -BytesPerInt);
  1751   // load lo & hi
  1752   __ movl(rcx, Address(rbx, BytesPerInt));
  1753   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1754   __ bswapl(rcx);
  1755   __ bswapl(rdx);
  1756   // check against lo & hi
  1757   __ cmpl(rax, rcx);
  1758   __ jcc(Assembler::less, default_case);
  1759   __ cmpl(rax, rdx);
  1760   __ jcc(Assembler::greater, default_case);
  1761   // lookup dispatch offset
  1762   __ subl(rax, rcx);
  1763   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1764   __ profile_switch_case(rax, rbx, rcx);
  1765   // continue execution
  1766   __ bind(continue_execution);
  1767   __ bswapl(rdx);
  1768   __ movl2ptr(rdx, rdx);
  1769   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1770   __ addptr(r13, rdx);
  1771   __ dispatch_only(vtos);
  1772   // handle default
  1773   __ bind(default_case);
  1774   __ profile_switch_default(rax);
  1775   __ movl(rdx, Address(rbx, 0));
  1776   __ jmp(continue_execution);
  1779 void TemplateTable::lookupswitch() {
  1780   transition(itos, itos);
  1781   __ stop("lookupswitch bytecode should have been rewritten");
  1784 void TemplateTable::fast_linearswitch() {
  1785   transition(itos, vtos);
  1786   Label loop_entry, loop, found, continue_execution;
  1787   // bswap rax so we can avoid bswapping the table entries
  1788   __ bswapl(rax);
  1789   // align r13
  1790   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1791                                     // this instruction (change offsets
  1792                                     // below)
  1793   __ andptr(rbx, -BytesPerInt);
  1794   // set counter
  1795   __ movl(rcx, Address(rbx, BytesPerInt));
  1796   __ bswapl(rcx);
  1797   __ jmpb(loop_entry);
  1798   // table search
  1799   __ bind(loop);
  1800   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1801   __ jcc(Assembler::equal, found);
  1802   __ bind(loop_entry);
  1803   __ decrementl(rcx);
  1804   __ jcc(Assembler::greaterEqual, loop);
  1805   // default case
  1806   __ profile_switch_default(rax);
  1807   __ movl(rdx, Address(rbx, 0));
  1808   __ jmp(continue_execution);
  1809   // entry found -> get offset
  1810   __ bind(found);
  1811   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1812   __ profile_switch_case(rcx, rax, rbx);
  1813   // continue execution
  1814   __ bind(continue_execution);
  1815   __ bswapl(rdx);
  1816   __ movl2ptr(rdx, rdx);
  1817   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1818   __ addptr(r13, rdx);
  1819   __ dispatch_only(vtos);
  1822 void TemplateTable::fast_binaryswitch() {
  1823   transition(itos, vtos);
  1824   // Implementation using the following core algorithm:
  1825   //
  1826   // int binary_search(int key, LookupswitchPair* array, int n) {
  1827   //   // Binary search according to "Methodik des Programmierens" by
  1828   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1829   //   int i = 0;
  1830   //   int j = n;
  1831   //   while (i+1 < j) {
  1832   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1833   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1834   //     // where a stands for the array and assuming that the (inexisting)
  1835   //     // element a[n] is infinitely big.
  1836   //     int h = (i + j) >> 1;
  1837   //     // i < h < j
  1838   //     if (key < array[h].fast_match()) {
  1839   //       j = h;
  1840   //     } else {
  1841   //       i = h;
  1842   //     }
  1843   //   }
  1844   //   // R: a[i] <= key < a[i+1] or Q
  1845   //   // (i.e., if key is within array, i is the correct index)
  1846   //   return i;
  1847   // }
  1849   // Register allocation
  1850   const Register key   = rax; // already set (tosca)
  1851   const Register array = rbx;
  1852   const Register i     = rcx;
  1853   const Register j     = rdx;
  1854   const Register h     = rdi;
  1855   const Register temp  = rsi;
  1857   // Find array start
  1858   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1859                                           // get rid of this
  1860                                           // instruction (change
  1861                                           // offsets below)
  1862   __ andptr(array, -BytesPerInt);
  1864   // Initialize i & j
  1865   __ xorl(i, i);                            // i = 0;
  1866   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1868   // Convert j into native byteordering
  1869   __ bswapl(j);
  1871   // And start
  1872   Label entry;
  1873   __ jmp(entry);
  1875   // binary search loop
  1877     Label loop;
  1878     __ bind(loop);
  1879     // int h = (i + j) >> 1;
  1880     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1881     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1882     // if (key < array[h].fast_match()) {
  1883     //   j = h;
  1884     // } else {
  1885     //   i = h;
  1886     // }
  1887     // Convert array[h].match to native byte-ordering before compare
  1888     __ movl(temp, Address(array, h, Address::times_8));
  1889     __ bswapl(temp);
  1890     __ cmpl(key, temp);
  1891     // j = h if (key <  array[h].fast_match())
  1892     __ cmovl(Assembler::less, j, h);
  1893     // i = h if (key >= array[h].fast_match())
  1894     __ cmovl(Assembler::greaterEqual, i, h);
  1895     // while (i+1 < j)
  1896     __ bind(entry);
  1897     __ leal(h, Address(i, 1)); // i+1
  1898     __ cmpl(h, j);             // i+1 < j
  1899     __ jcc(Assembler::less, loop);
  1902   // end of binary search, result index is i (must check again!)
  1903   Label default_case;
  1904   // Convert array[i].match to native byte-ordering before compare
  1905   __ movl(temp, Address(array, i, Address::times_8));
  1906   __ bswapl(temp);
  1907   __ cmpl(key, temp);
  1908   __ jcc(Assembler::notEqual, default_case);
  1910   // entry found -> j = offset
  1911   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1912   __ profile_switch_case(i, key, array);
  1913   __ bswapl(j);
  1914   __ movl2ptr(j, j);
  1915   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1916   __ addptr(r13, j);
  1917   __ dispatch_only(vtos);
  1919   // default case -> j = default offset
  1920   __ bind(default_case);
  1921   __ profile_switch_default(i);
  1922   __ movl(j, Address(array, -2 * BytesPerInt));
  1923   __ bswapl(j);
  1924   __ movl2ptr(j, j);
  1925   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1926   __ addptr(r13, j);
  1927   __ dispatch_only(vtos);
  1931 void TemplateTable::_return(TosState state) {
  1932   transition(state, state);
  1933   assert(_desc->calls_vm(),
  1934          "inconsistent calls_vm information"); // call in remove_activation
  1936   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1937     assert(state == vtos, "only valid state");
  1938     __ movptr(c_rarg1, aaddress(0));
  1939     __ load_klass(rdi, c_rarg1);
  1940     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1941     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1942     Label skip_register_finalizer;
  1943     __ jcc(Assembler::zero, skip_register_finalizer);
  1945     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  1947     __ bind(skip_register_finalizer);
  1950   __ remove_activation(state, r13);
  1951   __ jmp(r13);
  1954 // ----------------------------------------------------------------------------
  1955 // Volatile variables demand their effects be made known to all CPU's
  1956 // in order.  Store buffers on most chips allow reads & writes to
  1957 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  1958 // without some kind of memory barrier (i.e., it's not sufficient that
  1959 // the interpreter does not reorder volatile references, the hardware
  1960 // also must not reorder them).
  1961 //
  1962 // According to the new Java Memory Model (JMM):
  1963 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  1964 //     writes act as aquire & release, so:
  1965 // (2) A read cannot let unrelated NON-volatile memory refs that
  1966 //     happen after the read float up to before the read.  It's OK for
  1967 //     non-volatile memory refs that happen before the volatile read to
  1968 //     float down below it.
  1969 // (3) Similar a volatile write cannot let unrelated NON-volatile
  1970 //     memory refs that happen BEFORE the write float down to after the
  1971 //     write.  It's OK for non-volatile memory refs that happen after the
  1972 //     volatile write to float up before it.
  1973 //
  1974 // We only put in barriers around volatile refs (they are expensive),
  1975 // not _between_ memory refs (that would require us to track the
  1976 // flavor of the previous memory refs).  Requirements (2) and (3)
  1977 // require some barriers before volatile stores and after volatile
  1978 // loads.  These nearly cover requirement (1) but miss the
  1979 // volatile-store-volatile-load case.  This final case is placed after
  1980 // volatile-stores although it could just as well go before
  1981 // volatile-loads.
  1982 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  1983                                      order_constraint) {
  1984   // Helper function to insert a is-volatile test and memory barrier
  1985   if (os::is_MP()) { // Not needed on single CPU
  1986     __ membar(order_constraint);
  1990 void TemplateTable::resolve_cache_and_index(int byte_no,
  1991                                             Register Rcache,
  1992                                             Register index) {
  1993   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  1995   const Register temp = rbx;
  1996   assert_different_registers(Rcache, index, temp);
  1998   const int shift_count = (1 + byte_no) * BitsPerByte;
  1999   Label resolved;
  2000   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2001   __ movl(temp, Address(Rcache,
  2002                         index, Address::times_8,
  2003                         constantPoolCacheOopDesc::base_offset() +
  2004                         ConstantPoolCacheEntry::indices_offset()));
  2005   __ shrl(temp, shift_count);
  2006   // have we resolved this bytecode?
  2007   __ andl(temp, 0xFF);
  2008   __ cmpl(temp, (int) bytecode());
  2009   __ jcc(Assembler::equal, resolved);
  2011   // resolve first time through
  2012   address entry;
  2013   switch (bytecode()) {
  2014   case Bytecodes::_getstatic:
  2015   case Bytecodes::_putstatic:
  2016   case Bytecodes::_getfield:
  2017   case Bytecodes::_putfield:
  2018     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2019     break;
  2020   case Bytecodes::_invokevirtual:
  2021   case Bytecodes::_invokespecial:
  2022   case Bytecodes::_invokestatic:
  2023   case Bytecodes::_invokeinterface:
  2024     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2025     break;
  2026   default:
  2027     ShouldNotReachHere();
  2028     break;
  2030   __ movl(temp, (int) bytecode());
  2031   __ call_VM(noreg, entry, temp);
  2033   // Update registers with resolved info
  2034   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2035   __ bind(resolved);
  2038 // The Rcache and index registers must be set before call
  2039 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2040                                               Register cache,
  2041                                               Register index,
  2042                                               Register off,
  2043                                               Register flags,
  2044                                               bool is_static = false) {
  2045   assert_different_registers(cache, index, flags, off);
  2047   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2048   // Field offset
  2049   __ movptr(off, Address(cache, index, Address::times_8,
  2050                          in_bytes(cp_base_offset +
  2051                                   ConstantPoolCacheEntry::f2_offset())));
  2052   // Flags
  2053   __ movl(flags, Address(cache, index, Address::times_8,
  2054                          in_bytes(cp_base_offset +
  2055                                   ConstantPoolCacheEntry::flags_offset())));
  2057   // klass overwrite register
  2058   if (is_static) {
  2059     __ movptr(obj, Address(cache, index, Address::times_8,
  2060                            in_bytes(cp_base_offset +
  2061                                     ConstantPoolCacheEntry::f1_offset())));
  2065 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2066                                                Register method,
  2067                                                Register itable_index,
  2068                                                Register flags,
  2069                                                bool is_invokevirtual,
  2070                                                bool is_invokevfinal /*unused*/) {
  2071   // setup registers
  2072   const Register cache = rcx;
  2073   const Register index = rdx;
  2074   assert_different_registers(method, flags);
  2075   assert_different_registers(method, cache, index);
  2076   assert_different_registers(itable_index, flags);
  2077   assert_different_registers(itable_index, cache, index);
  2078   // determine constant pool cache field offsets
  2079   const int method_offset = in_bytes(
  2080     constantPoolCacheOopDesc::base_offset() +
  2081       (is_invokevirtual
  2082        ? ConstantPoolCacheEntry::f2_offset()
  2083        : ConstantPoolCacheEntry::f1_offset()));
  2084   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2085                                     ConstantPoolCacheEntry::flags_offset());
  2086   // access constant pool cache fields
  2087   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2088                                     ConstantPoolCacheEntry::f2_offset());
  2090   resolve_cache_and_index(byte_no, cache, index);
  2092   assert(wordSize == 8, "adjust code below");
  2093   __ movptr(method, Address(cache, index, Address::times_8, method_offset));
  2094   if (itable_index != noreg) {
  2095     __ movptr(itable_index,
  2096             Address(cache, index, Address::times_8, index_offset));
  2098   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
  2102 // The registers cache and index expected to be set before call.
  2103 // Correct values of the cache and index registers are preserved.
  2104 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2105                                             bool is_static, bool has_tos) {
  2106   // do the JVMTI work here to avoid disturbing the register state below
  2107   // We use c_rarg registers here because we want to use the register used in
  2108   // the call to the VM
  2109   if (JvmtiExport::can_post_field_access()) {
  2110     // Check to see if a field access watch has been set before we
  2111     // take the time to call into the VM.
  2112     Label L1;
  2113     assert_different_registers(cache, index, rax);
  2114     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2115     __ testl(rax, rax);
  2116     __ jcc(Assembler::zero, L1);
  2118     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2120     // cache entry pointer
  2121     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2122     __ shll(c_rarg3, LogBytesPerWord);
  2123     __ addptr(c_rarg2, c_rarg3);
  2124     if (is_static) {
  2125       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2126     } else {
  2127       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2128       __ verify_oop(c_rarg1);
  2130     // c_rarg1: object pointer or NULL
  2131     // c_rarg2: cache entry pointer
  2132     // c_rarg3: jvalue object on the stack
  2133     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2134                                        InterpreterRuntime::post_field_access),
  2135                c_rarg1, c_rarg2, c_rarg3);
  2136     __ get_cache_and_index_at_bcp(cache, index, 1);
  2137     __ bind(L1);
  2141 void TemplateTable::pop_and_check_object(Register r) {
  2142   __ pop_ptr(r);
  2143   __ null_check(r);  // for field access must check obj.
  2144   __ verify_oop(r);
  2147 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2148   transition(vtos, vtos);
  2150   const Register cache = rcx;
  2151   const Register index = rdx;
  2152   const Register obj   = c_rarg3;
  2153   const Register off   = rbx;
  2154   const Register flags = rax;
  2155   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2157   resolve_cache_and_index(byte_no, cache, index);
  2158   jvmti_post_field_access(cache, index, is_static, false);
  2159   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2161   if (!is_static) {
  2162     // obj is on the stack
  2163     pop_and_check_object(obj);
  2166   const Address field(obj, off, Address::times_1);
  2168   Label Done, notByte, notInt, notShort, notChar,
  2169               notLong, notFloat, notObj, notDouble;
  2171   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2172   assert(btos == 0, "change code, btos != 0");
  2174   __ andl(flags, 0x0F);
  2175   __ jcc(Assembler::notZero, notByte);
  2176   // btos
  2177   __ load_signed_byte(rax, field);
  2178   __ push(btos);
  2179   // Rewrite bytecode to be faster
  2180   if (!is_static) {
  2181     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2183   __ jmp(Done);
  2185   __ bind(notByte);
  2186   __ cmpl(flags, atos);
  2187   __ jcc(Assembler::notEqual, notObj);
  2188   // atos
  2189   __ load_heap_oop(rax, field);
  2190   __ push(atos);
  2191   if (!is_static) {
  2192     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2194   __ jmp(Done);
  2196   __ bind(notObj);
  2197   __ cmpl(flags, itos);
  2198   __ jcc(Assembler::notEqual, notInt);
  2199   // itos
  2200   __ movl(rax, field);
  2201   __ push(itos);
  2202   // Rewrite bytecode to be faster
  2203   if (!is_static) {
  2204     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2206   __ jmp(Done);
  2208   __ bind(notInt);
  2209   __ cmpl(flags, ctos);
  2210   __ jcc(Assembler::notEqual, notChar);
  2211   // ctos
  2212   __ load_unsigned_word(rax, field);
  2213   __ push(ctos);
  2214   // Rewrite bytecode to be faster
  2215   if (!is_static) {
  2216     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2218   __ jmp(Done);
  2220   __ bind(notChar);
  2221   __ cmpl(flags, stos);
  2222   __ jcc(Assembler::notEqual, notShort);
  2223   // stos
  2224   __ load_signed_word(rax, field);
  2225   __ push(stos);
  2226   // Rewrite bytecode to be faster
  2227   if (!is_static) {
  2228     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2230   __ jmp(Done);
  2232   __ bind(notShort);
  2233   __ cmpl(flags, ltos);
  2234   __ jcc(Assembler::notEqual, notLong);
  2235   // ltos
  2236   __ movq(rax, field);
  2237   __ push(ltos);
  2238   // Rewrite bytecode to be faster
  2239   if (!is_static) {
  2240     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2242   __ jmp(Done);
  2244   __ bind(notLong);
  2245   __ cmpl(flags, ftos);
  2246   __ jcc(Assembler::notEqual, notFloat);
  2247   // ftos
  2248   __ movflt(xmm0, field);
  2249   __ push(ftos);
  2250   // Rewrite bytecode to be faster
  2251   if (!is_static) {
  2252     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2254   __ jmp(Done);
  2256   __ bind(notFloat);
  2257 #ifdef ASSERT
  2258   __ cmpl(flags, dtos);
  2259   __ jcc(Assembler::notEqual, notDouble);
  2260 #endif
  2261   // dtos
  2262   __ movdbl(xmm0, field);
  2263   __ push(dtos);
  2264   // Rewrite bytecode to be faster
  2265   if (!is_static) {
  2266     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2268 #ifdef ASSERT
  2269   __ jmp(Done);
  2271   __ bind(notDouble);
  2272   __ stop("Bad state");
  2273 #endif
  2275   __ bind(Done);
  2276   // [jk] not needed currently
  2277   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2278   //                                              Assembler::LoadStore));
  2282 void TemplateTable::getfield(int byte_no) {
  2283   getfield_or_static(byte_no, false);
  2286 void TemplateTable::getstatic(int byte_no) {
  2287   getfield_or_static(byte_no, true);
  2290 // The registers cache and index expected to be set before call.
  2291 // The function may destroy various registers, just not the cache and index registers.
  2292 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2293   transition(vtos, vtos);
  2295   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2297   if (JvmtiExport::can_post_field_modification()) {
  2298     // Check to see if a field modification watch has been set before
  2299     // we take the time to call into the VM.
  2300     Label L1;
  2301     assert_different_registers(cache, index, rax);
  2302     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2303     __ testl(rax, rax);
  2304     __ jcc(Assembler::zero, L1);
  2306     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2308     if (is_static) {
  2309       // Life is simple.  Null out the object pointer.
  2310       __ xorl(c_rarg1, c_rarg1);
  2311     } else {
  2312       // Life is harder. The stack holds the value on top, followed by
  2313       // the object.  We don't know the size of the value, though; it
  2314       // could be one or two words depending on its type. As a result,
  2315       // we must find the type to determine where the object is.
  2316       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2317                            Address::times_8,
  2318                            in_bytes(cp_base_offset +
  2319                                      ConstantPoolCacheEntry::flags_offset())));
  2320       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2321       // Make sure we don't need to mask rcx for tosBits after the
  2322       // above shift
  2323       ConstantPoolCacheEntry::verify_tosBits();
  2324       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2325       __ cmpl(c_rarg3, ltos);
  2326       __ cmovptr(Assembler::equal,
  2327                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2328       __ cmpl(c_rarg3, dtos);
  2329       __ cmovptr(Assembler::equal,
  2330                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2332     // cache entry pointer
  2333     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2334     __ shll(rscratch1, LogBytesPerWord);
  2335     __ addptr(c_rarg2, rscratch1);
  2336     // object (tos)
  2337     __ mov(c_rarg3, rsp);
  2338     // c_rarg1: object pointer set up above (NULL if static)
  2339     // c_rarg2: cache entry pointer
  2340     // c_rarg3: jvalue object on the stack
  2341     __ call_VM(noreg,
  2342                CAST_FROM_FN_PTR(address,
  2343                                 InterpreterRuntime::post_field_modification),
  2344                c_rarg1, c_rarg2, c_rarg3);
  2345     __ get_cache_and_index_at_bcp(cache, index, 1);
  2346     __ bind(L1);
  2350 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2351   transition(vtos, vtos);
  2353   const Register cache = rcx;
  2354   const Register index = rdx;
  2355   const Register obj   = rcx;
  2356   const Register off   = rbx;
  2357   const Register flags = rax;
  2358   const Register bc    = c_rarg3;
  2360   resolve_cache_and_index(byte_no, cache, index);
  2361   jvmti_post_field_mod(cache, index, is_static);
  2362   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2364   // [jk] not needed currently
  2365   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2366   //                                              Assembler::StoreStore));
  2368   Label notVolatile, Done;
  2369   __ movl(rdx, flags);
  2370   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2371   __ andl(rdx, 0x1);
  2373   // field address
  2374   const Address field(obj, off, Address::times_1);
  2376   Label notByte, notInt, notShort, notChar,
  2377         notLong, notFloat, notObj, notDouble;
  2379   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2381   assert(btos == 0, "change code, btos != 0");
  2382   __ andl(flags, 0x0f);
  2383   __ jcc(Assembler::notZero, notByte);
  2384   // btos
  2385   __ pop(btos);
  2386   if (!is_static) pop_and_check_object(obj);
  2387   __ movb(field, rax);
  2388   if (!is_static) {
  2389     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2391   __ jmp(Done);
  2393   __ bind(notByte);
  2394   __ cmpl(flags, atos);
  2395   __ jcc(Assembler::notEqual, notObj);
  2396   // atos
  2397   __ pop(atos);
  2398   if (!is_static) pop_and_check_object(obj);
  2399   __ store_heap_oop(field, rax);
  2400   __ store_check(obj, field); // Need to mark card
  2401   if (!is_static) {
  2402     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2404   __ jmp(Done);
  2406   __ bind(notObj);
  2407   __ cmpl(flags, itos);
  2408   __ jcc(Assembler::notEqual, notInt);
  2409   // itos
  2410   __ pop(itos);
  2411   if (!is_static) pop_and_check_object(obj);
  2412   __ movl(field, rax);
  2413   if (!is_static) {
  2414     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2416   __ jmp(Done);
  2418   __ bind(notInt);
  2419   __ cmpl(flags, ctos);
  2420   __ jcc(Assembler::notEqual, notChar);
  2421   // ctos
  2422   __ pop(ctos);
  2423   if (!is_static) pop_and_check_object(obj);
  2424   __ movw(field, rax);
  2425   if (!is_static) {
  2426     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2428   __ jmp(Done);
  2430   __ bind(notChar);
  2431   __ cmpl(flags, stos);
  2432   __ jcc(Assembler::notEqual, notShort);
  2433   // stos
  2434   __ pop(stos);
  2435   if (!is_static) pop_and_check_object(obj);
  2436   __ movw(field, rax);
  2437   if (!is_static) {
  2438     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2440   __ jmp(Done);
  2442   __ bind(notShort);
  2443   __ cmpl(flags, ltos);
  2444   __ jcc(Assembler::notEqual, notLong);
  2445   // ltos
  2446   __ pop(ltos);
  2447   if (!is_static) pop_and_check_object(obj);
  2448   __ movq(field, rax);
  2449   if (!is_static) {
  2450     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2452   __ jmp(Done);
  2454   __ bind(notLong);
  2455   __ cmpl(flags, ftos);
  2456   __ jcc(Assembler::notEqual, notFloat);
  2457   // ftos
  2458   __ pop(ftos);
  2459   if (!is_static) pop_and_check_object(obj);
  2460   __ movflt(field, xmm0);
  2461   if (!is_static) {
  2462     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2464   __ jmp(Done);
  2466   __ bind(notFloat);
  2467 #ifdef ASSERT
  2468   __ cmpl(flags, dtos);
  2469   __ jcc(Assembler::notEqual, notDouble);
  2470 #endif
  2471   // dtos
  2472   __ pop(dtos);
  2473   if (!is_static) pop_and_check_object(obj);
  2474   __ movdbl(field, xmm0);
  2475   if (!is_static) {
  2476     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2479 #ifdef ASSERT
  2480   __ jmp(Done);
  2482   __ bind(notDouble);
  2483   __ stop("Bad state");
  2484 #endif
  2486   __ bind(Done);
  2487   // Check for volatile store
  2488   __ testl(rdx, rdx);
  2489   __ jcc(Assembler::zero, notVolatile);
  2490   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2491                                                Assembler::StoreStore));
  2493   __ bind(notVolatile);
  2496 void TemplateTable::putfield(int byte_no) {
  2497   putfield_or_static(byte_no, false);
  2500 void TemplateTable::putstatic(int byte_no) {
  2501   putfield_or_static(byte_no, true);
  2504 void TemplateTable::jvmti_post_fast_field_mod() {
  2505   if (JvmtiExport::can_post_field_modification()) {
  2506     // Check to see if a field modification watch has been set before
  2507     // we take the time to call into the VM.
  2508     Label L2;
  2509     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2510     __ testl(c_rarg3, c_rarg3);
  2511     __ jcc(Assembler::zero, L2);
  2512     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2513     __ verify_oop(rbx);
  2514     __ push_ptr(rbx);                 // put the object pointer back on tos
  2515     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2516     __ mov(c_rarg3, rsp);
  2517     const Address field(c_rarg3, 0);
  2519     switch (bytecode()) {          // load values into the jvalue object
  2520     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2521     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2522     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2523     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2524     case Bytecodes::_fast_sputfield: // fall through
  2525     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2526     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2527     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2528     default:
  2529       ShouldNotReachHere();
  2532     // Save rax because call_VM() will clobber it, then use it for
  2533     // JVMTI purposes
  2534     __ push(rax);
  2535     // access constant pool cache entry
  2536     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2537     __ verify_oop(rbx);
  2538     // rbx: object pointer copied above
  2539     // c_rarg2: cache entry pointer
  2540     // c_rarg3: jvalue object on the stack
  2541     __ call_VM(noreg,
  2542                CAST_FROM_FN_PTR(address,
  2543                                 InterpreterRuntime::post_field_modification),
  2544                rbx, c_rarg2, c_rarg3);
  2545     __ pop(rax);     // restore lower value
  2546     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2547     __ bind(L2);
  2551 void TemplateTable::fast_storefield(TosState state) {
  2552   transition(state, vtos);
  2554   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2556   jvmti_post_fast_field_mod();
  2558   // access constant pool cache
  2559   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2561   // test for volatile with rdx
  2562   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2563                        in_bytes(base +
  2564                                 ConstantPoolCacheEntry::flags_offset())));
  2566   // replace index with field offset from cache entry
  2567   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2568                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2570   // [jk] not needed currently
  2571   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2572   //                                              Assembler::StoreStore));
  2574   Label notVolatile;
  2575   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2576   __ andl(rdx, 0x1);
  2578   // Get object from stack
  2579   pop_and_check_object(rcx);
  2581   // field address
  2582   const Address field(rcx, rbx, Address::times_1);
  2584   // access field
  2585   switch (bytecode()) {
  2586   case Bytecodes::_fast_aputfield:
  2587     __ store_heap_oop(field, rax);
  2588     __ store_check(rcx, field);
  2589     break;
  2590   case Bytecodes::_fast_lputfield:
  2591     __ movq(field, rax);
  2592     break;
  2593   case Bytecodes::_fast_iputfield:
  2594     __ movl(field, rax);
  2595     break;
  2596   case Bytecodes::_fast_bputfield:
  2597     __ movb(field, rax);
  2598     break;
  2599   case Bytecodes::_fast_sputfield:
  2600     // fall through
  2601   case Bytecodes::_fast_cputfield:
  2602     __ movw(field, rax);
  2603     break;
  2604   case Bytecodes::_fast_fputfield:
  2605     __ movflt(field, xmm0);
  2606     break;
  2607   case Bytecodes::_fast_dputfield:
  2608     __ movdbl(field, xmm0);
  2609     break;
  2610   default:
  2611     ShouldNotReachHere();
  2614   // Check for volatile store
  2615   __ testl(rdx, rdx);
  2616   __ jcc(Assembler::zero, notVolatile);
  2617   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2618                                                Assembler::StoreStore));
  2619   __ bind(notVolatile);
  2623 void TemplateTable::fast_accessfield(TosState state) {
  2624   transition(atos, state);
  2626   // Do the JVMTI work here to avoid disturbing the register state below
  2627   if (JvmtiExport::can_post_field_access()) {
  2628     // Check to see if a field access watch has been set before we
  2629     // take the time to call into the VM.
  2630     Label L1;
  2631     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2632     __ testl(rcx, rcx);
  2633     __ jcc(Assembler::zero, L1);
  2634     // access constant pool cache entry
  2635     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2636     __ verify_oop(rax);
  2637     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
  2638     __ mov(c_rarg1, rax);
  2639     // c_rarg1: object pointer copied above
  2640     // c_rarg2: cache entry pointer
  2641     __ call_VM(noreg,
  2642                CAST_FROM_FN_PTR(address,
  2643                                 InterpreterRuntime::post_field_access),
  2644                c_rarg1, c_rarg2);
  2645     __ mov(rax, r12); // restore object pointer
  2646     __ reinit_heapbase();
  2647     __ bind(L1);
  2650   // access constant pool cache
  2651   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2652   // replace index with field offset from cache entry
  2653   // [jk] not needed currently
  2654   // if (os::is_MP()) {
  2655   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2656   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2657   //                                 ConstantPoolCacheEntry::flags_offset())));
  2658   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2659   //   __ andl(rdx, 0x1);
  2660   // }
  2661   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2662                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2663                                   ConstantPoolCacheEntry::f2_offset())));
  2665   // rax: object
  2666   __ verify_oop(rax);
  2667   __ null_check(rax);
  2668   Address field(rax, rbx, Address::times_1);
  2670   // access field
  2671   switch (bytecode()) {
  2672   case Bytecodes::_fast_agetfield:
  2673     __ load_heap_oop(rax, field);
  2674     __ verify_oop(rax);
  2675     break;
  2676   case Bytecodes::_fast_lgetfield:
  2677     __ movq(rax, field);
  2678     break;
  2679   case Bytecodes::_fast_igetfield:
  2680     __ movl(rax, field);
  2681     break;
  2682   case Bytecodes::_fast_bgetfield:
  2683     __ movsbl(rax, field);
  2684     break;
  2685   case Bytecodes::_fast_sgetfield:
  2686     __ load_signed_word(rax, field);
  2687     break;
  2688   case Bytecodes::_fast_cgetfield:
  2689     __ load_unsigned_word(rax, field);
  2690     break;
  2691   case Bytecodes::_fast_fgetfield:
  2692     __ movflt(xmm0, field);
  2693     break;
  2694   case Bytecodes::_fast_dgetfield:
  2695     __ movdbl(xmm0, field);
  2696     break;
  2697   default:
  2698     ShouldNotReachHere();
  2700   // [jk] not needed currently
  2701   // if (os::is_MP()) {
  2702   //   Label notVolatile;
  2703   //   __ testl(rdx, rdx);
  2704   //   __ jcc(Assembler::zero, notVolatile);
  2705   //   __ membar(Assembler::LoadLoad);
  2706   //   __ bind(notVolatile);
  2707   //};
  2710 void TemplateTable::fast_xaccess(TosState state) {
  2711   transition(vtos, state);
  2713   // get receiver
  2714   __ movptr(rax, aaddress(0));
  2715   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2716   // access constant pool cache
  2717   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2718   __ movptr(rbx,
  2719             Address(rcx, rdx, Address::times_8,
  2720                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2721                              ConstantPoolCacheEntry::f2_offset())));
  2722   // make sure exception is reported in correct bcp range (getfield is
  2723   // next instruction)
  2724   __ increment(r13);
  2725   __ null_check(rax);
  2726   switch (state) {
  2727   case itos:
  2728     __ movl(rax, Address(rax, rbx, Address::times_1));
  2729     break;
  2730   case atos:
  2731     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2732     __ verify_oop(rax);
  2733     break;
  2734   case ftos:
  2735     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2736     break;
  2737   default:
  2738     ShouldNotReachHere();
  2741   // [jk] not needed currently
  2742   // if (os::is_MP()) {
  2743   //   Label notVolatile;
  2744   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2745   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2746   //                                 ConstantPoolCacheEntry::flags_offset())));
  2747   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2748   //   __ testl(rdx, 0x1);
  2749   //   __ jcc(Assembler::zero, notVolatile);
  2750   //   __ membar(Assembler::LoadLoad);
  2751   //   __ bind(notVolatile);
  2752   // }
  2754   __ decrement(r13);
  2759 //-----------------------------------------------------------------------------
  2760 // Calls
  2762 void TemplateTable::count_calls(Register method, Register temp) {
  2763   // implemented elsewhere
  2764   ShouldNotReachHere();
  2767 void TemplateTable::prepare_invoke(Register method,
  2768                                    Register index,
  2769                                    int byte_no,
  2770                                    Bytecodes::Code code) {
  2771   // determine flags
  2772   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2773   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2774   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2775   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2776   const bool receiver_null_check = is_invokespecial;
  2777   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2778   // setup registers & access constant pool cache
  2779   const Register recv   = rcx;
  2780   const Register flags  = rdx;
  2781   assert_different_registers(method, index, recv, flags);
  2783   // save 'interpreter return address'
  2784   __ save_bcp();
  2786   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2788   // load receiver if needed (note: no return address pushed yet)
  2789   if (load_receiver) {
  2790     __ movl(recv, flags);
  2791     __ andl(recv, 0xFF);
  2792     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
  2793     __ movptr(recv, Address(rsp, recv, Address::times_8,
  2794                                  -Interpreter::expr_offset_in_bytes(1)));
  2795     __ verify_oop(recv);
  2798   // do null check if needed
  2799   if (receiver_null_check) {
  2800     __ null_check(recv);
  2803   if (save_flags) {
  2804     __ movl(r13, flags);
  2807   // compute return type
  2808   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2809   // Make sure we don't need to mask flags for tosBits after the above shift
  2810   ConstantPoolCacheEntry::verify_tosBits();
  2811   // load return address
  2813     ExternalAddress return_5((address)Interpreter::return_5_addrs_by_index_table());
  2814     ExternalAddress return_3((address)Interpreter::return_3_addrs_by_index_table());
  2815     __ lea(rscratch1, (is_invokeinterface ? return_5 : return_3));
  2816     __ movptr(flags, Address(rscratch1, flags, Address::times_8));
  2819   // push return address
  2820   __ push(flags);
  2822   // Restore flag field from the constant pool cache, and restore esi
  2823   // for later null checks.  r13 is the bytecode pointer
  2824   if (save_flags) {
  2825     __ movl(flags, r13);
  2826     __ restore_bcp();
  2831 void TemplateTable::invokevirtual_helper(Register index,
  2832                                          Register recv,
  2833                                          Register flags) {
  2834   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2836   // Test for an invoke of a final method
  2837   Label notFinal;
  2838   __ movl(rax, flags);
  2839   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2840   __ jcc(Assembler::zero, notFinal);
  2842   const Register method = index;  // method must be rbx
  2843   assert(method == rbx,
  2844          "methodOop must be rbx for interpreter calling convention");
  2846   // do the call - the index is actually the method to call
  2847   __ verify_oop(method);
  2849   // It's final, need a null check here!
  2850   __ null_check(recv);
  2852   // profile this call
  2853   __ profile_final_call(rax);
  2855   __ jump_from_interpreted(method, rax);
  2857   __ bind(notFinal);
  2859   // get receiver klass
  2860   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2861   __ load_klass(rax, recv);
  2863   __ verify_oop(rax);
  2865   // profile this call
  2866   __ profile_virtual_call(rax, r14, rdx);
  2868   // get target methodOop & entry point
  2869   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2870   assert(vtableEntry::size() * wordSize == 8,
  2871          "adjust the scaling in the code below");
  2872   __ movptr(method, Address(rax, index,
  2873                                  Address::times_8,
  2874                                  base + vtableEntry::method_offset_in_bytes()));
  2875   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2876   __ jump_from_interpreted(method, rdx);
  2880 void TemplateTable::invokevirtual(int byte_no) {
  2881   transition(vtos, vtos);
  2882   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2884   // rbx: index
  2885   // rcx: receiver
  2886   // rdx: flags
  2888   invokevirtual_helper(rbx, rcx, rdx);
  2892 void TemplateTable::invokespecial(int byte_no) {
  2893   transition(vtos, vtos);
  2894   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2895   // do the call
  2896   __ verify_oop(rbx);
  2897   __ profile_call(rax);
  2898   __ jump_from_interpreted(rbx, rax);
  2902 void TemplateTable::invokestatic(int byte_no) {
  2903   transition(vtos, vtos);
  2904   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2905   // do the call
  2906   __ verify_oop(rbx);
  2907   __ profile_call(rax);
  2908   __ jump_from_interpreted(rbx, rax);
  2911 void TemplateTable::fast_invokevfinal(int byte_no) {
  2912   transition(vtos, vtos);
  2913   __ stop("fast_invokevfinal not used on amd64");
  2916 void TemplateTable::invokeinterface(int byte_no) {
  2917   transition(vtos, vtos);
  2918   prepare_invoke(rax, rbx, byte_no, bytecode());
  2920   // rax: Interface
  2921   // rbx: index
  2922   // rcx: receiver
  2923   // rdx: flags
  2925   // Special case of invokeinterface called for virtual method of
  2926   // java.lang.Object.  See cpCacheOop.cpp for details.
  2927   // This code isn't produced by javac, but could be produced by
  2928   // another compliant java compiler.
  2929   Label notMethod;
  2930   __ movl(r14, rdx);
  2931   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  2932   __ jcc(Assembler::zero, notMethod);
  2934   invokevirtual_helper(rbx, rcx, rdx);
  2935   __ bind(notMethod);
  2937   // Get receiver klass into rdx - also a null check
  2938   __ restore_locals(); // restore r14
  2939   __ load_klass(rdx, rcx);
  2940   __ verify_oop(rdx);
  2942   // profile this call
  2943   __ profile_virtual_call(rdx, r13, r14);
  2945   __ mov(r14, rdx); // Save klassOop in r14
  2947   // Compute start of first itableOffsetEntry (which is at the end of
  2948   // the vtable)
  2949   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2950   // Get length of vtable
  2951   assert(vtableEntry::size() * wordSize == 8,
  2952          "adjust the scaling in the code below");
  2953   __ movl(r13, Address(rdx,
  2954                        instanceKlass::vtable_length_offset() * wordSize));
  2955   __ lea(rdx, Address(rdx, r13, Address::times_8, base));
  2957   if (HeapWordsPerLong > 1) {
  2958     // Round up to align_object_offset boundary
  2959     __ round_to(rdx, BytesPerLong);
  2962   Label entry, search, interface_ok;
  2964   __ jmpb(entry);
  2965   __ bind(search);
  2966   __ addptr(rdx, itableOffsetEntry::size() * wordSize);
  2968   __ bind(entry);
  2970   // Check that the entry is non-null.  A null entry means that the
  2971   // receiver class doesn't implement the interface, and wasn't the
  2972   // same as the receiver class checked when the interface was
  2973   // resolved.
  2974   __ push(rdx);
  2975   __ movptr(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2976   __ testptr(rdx, rdx);
  2977   __ jcc(Assembler::notZero, interface_ok);
  2978   // throw exception
  2979   __ pop(rdx); // pop saved register first.
  2980   __ pop(rbx); // pop return address (pushed by prepare_invoke)
  2981   __ restore_bcp(); // r13 must be correct for exception handler (was
  2982                     // destroyed)
  2983   __ restore_locals(); // make sure locals pointer is correct as well
  2984                        // (was destroyed)
  2985   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2986                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  2987   // the call_VM checks for exception, so we should never return here.
  2988   __ should_not_reach_here();
  2989   __ bind(interface_ok);
  2991   __ pop(rdx);
  2993   __ cmpptr(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2994   __ jcc(Assembler::notEqual, search);
  2996   __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  2998   __ addptr(rdx, r14); // Add offset to klassOop
  2999   assert(itableMethodEntry::size() * wordSize == 8,
  3000          "adjust the scaling in the code below");
  3001   __ movptr(rbx, Address(rdx, rbx, Address::times_8));
  3002   // rbx: methodOop to call
  3003   // rcx: receiver
  3004   // Check for abstract method error
  3005   // Note: This should be done more efficiently via a
  3006   // throw_abstract_method_error interpreter entry point and a
  3007   // conditional jump to it in case of a null method.
  3009     Label L;
  3010     __ testptr(rbx, rbx);
  3011     __ jcc(Assembler::notZero, L);
  3012     // throw exception
  3013     // note: must restore interpreter registers to canonical
  3014     //       state for exception handling to work correctly!
  3015     __ pop(rbx);  // pop return address (pushed by prepare_invoke)
  3016     __ restore_bcp(); // r13 must be correct for exception handler
  3017                       // (was destroyed)
  3018     __ restore_locals(); // make sure locals pointer is correct as
  3019                          // well (was destroyed)
  3020     __ call_VM(noreg,
  3021                CAST_FROM_FN_PTR(address,
  3022                              InterpreterRuntime::throw_AbstractMethodError));
  3023     // the call_VM checks for exception, so we should never return here.
  3024     __ should_not_reach_here();
  3025     __ bind(L);
  3028   __ movptr(rcx, Address(rbx, methodOopDesc::interpreter_entry_offset()));
  3030   // do the call
  3031   // rcx: receiver
  3032   // rbx: methodOop
  3033   __ jump_from_interpreted(rbx, rdx);
  3036 //-----------------------------------------------------------------------------
  3037 // Allocation
  3039 void TemplateTable::_new() {
  3040   transition(vtos, atos);
  3041   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3042   Label slow_case;
  3043   Label done;
  3044   Label initialize_header;
  3045   Label initialize_object; // including clearing the fields
  3046   Label allocate_shared;
  3047   ExternalAddress top((address)Universe::heap()->top_addr());
  3048   ExternalAddress end((address)Universe::heap()->end_addr());
  3050   __ get_cpool_and_tags(rsi, rax);
  3051   // get instanceKlass
  3052   __ movptr(rsi, Address(rsi, rdx,
  3053                          Address::times_8, sizeof(constantPoolOopDesc)));
  3055   // make sure the class we're about to instantiate has been
  3056   // resolved. Note: slow_case does a pop of stack, which is why we
  3057   // loaded class/pushed above
  3058   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3059   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3060           JVM_CONSTANT_Class);
  3061   __ jcc(Assembler::notEqual, slow_case);
  3063   // make sure klass is initialized & doesn't have finalizer
  3064   // make sure klass is fully initialized
  3065   __ cmpl(Address(rsi,
  3066                   instanceKlass::init_state_offset_in_bytes() +
  3067                   sizeof(oopDesc)),
  3068           instanceKlass::fully_initialized);
  3069   __ jcc(Assembler::notEqual, slow_case);
  3071   // get instance_size in instanceKlass (scaled to a count of bytes)
  3072   __ movl(rdx,
  3073           Address(rsi,
  3074                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3075   // test to see if it has a finalizer or is malformed in some way
  3076   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3077   __ jcc(Assembler::notZero, slow_case);
  3079   // Allocate the instance
  3080   // 1) Try to allocate in the TLAB
  3081   // 2) if fail and the object is large allocate in the shared Eden
  3082   // 3) if the above fails (or is not applicable), go to a slow case
  3083   // (creates a new TLAB, etc.)
  3085   const bool allow_shared_alloc =
  3086     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3088   if (UseTLAB) {
  3089     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3090     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3091     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3092     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3093     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3094     if (ZeroTLAB) {
  3095       // the fields have been already cleared
  3096       __ jmp(initialize_header);
  3097     } else {
  3098       // initialize both the header and fields
  3099       __ jmp(initialize_object);
  3103   // Allocation in the shared Eden, if allowed.
  3104   //
  3105   // rdx: instance size in bytes
  3106   if (allow_shared_alloc) {
  3107     __ bind(allocate_shared);
  3109     const Register RtopAddr = rscratch1;
  3110     const Register RendAddr = rscratch2;
  3112     __ lea(RtopAddr, top);
  3113     __ lea(RendAddr, end);
  3114     __ movptr(rax, Address(RtopAddr, 0));
  3116     // For retries rax gets set by cmpxchgq
  3117     Label retry;
  3118     __ bind(retry);
  3119     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3120     __ cmpptr(rbx, Address(RendAddr, 0));
  3121     __ jcc(Assembler::above, slow_case);
  3123     // Compare rax with the top addr, and if still equal, store the new
  3124     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3125     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3126     //
  3127     // rax: object begin
  3128     // rbx: object end
  3129     // rdx: instance size in bytes
  3130     if (os::is_MP()) {
  3131       __ lock();
  3133     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3135     // if someone beat us on the allocation, try again, otherwise continue
  3136     __ jcc(Assembler::notEqual, retry);
  3139   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3140     // The object is initialized before the header.  If the object size is
  3141     // zero, go directly to the header initialization.
  3142     __ bind(initialize_object);
  3143     __ decrementl(rdx, sizeof(oopDesc));
  3144     __ jcc(Assembler::zero, initialize_header);
  3146     // Initialize object fields
  3147     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3148     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3150       Label loop;
  3151       __ bind(loop);
  3152       __ movq(Address(rax, rdx, Address::times_8,
  3153                       sizeof(oopDesc) - oopSize),
  3154               rcx);
  3155       __ decrementl(rdx);
  3156       __ jcc(Assembler::notZero, loop);
  3159     // initialize object header only.
  3160     __ bind(initialize_header);
  3161     if (UseBiasedLocking) {
  3162       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3163       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3164     } else {
  3165       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3166                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3168     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3169     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3170     __ store_klass(rax, rsi);      // store klass last
  3171     __ jmp(done);
  3175     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3176     // Trigger dtrace event for fastpath
  3177     __ push(atos); // save the return value
  3178     __ call_VM_leaf(
  3179          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3180     __ pop(atos); // restore the return value
  3183   // slow case
  3184   __ bind(slow_case);
  3185   __ get_constant_pool(c_rarg1);
  3186   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3187   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3188   __ verify_oop(rax);
  3190   // continue
  3191   __ bind(done);
  3194 void TemplateTable::newarray() {
  3195   transition(itos, atos);
  3196   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3197   __ movl(c_rarg2, rax);
  3198   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3199           c_rarg1, c_rarg2);
  3202 void TemplateTable::anewarray() {
  3203   transition(itos, atos);
  3204   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3205   __ get_constant_pool(c_rarg1);
  3206   __ movl(c_rarg3, rax);
  3207   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3208           c_rarg1, c_rarg2, c_rarg3);
  3211 void TemplateTable::arraylength() {
  3212   transition(atos, itos);
  3213   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3214   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3217 void TemplateTable::checkcast() {
  3218   transition(atos, atos);
  3219   Label done, is_null, ok_is_subtype, quicked, resolved;
  3220   __ testptr(rax, rax); // object is in rax
  3221   __ jcc(Assembler::zero, is_null);
  3223   // Get cpool & tags index
  3224   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3225   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3226   // See if bytecode has already been quicked
  3227   __ cmpb(Address(rdx, rbx,
  3228                   Address::times_1,
  3229                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3230           JVM_CONSTANT_Class);
  3231   __ jcc(Assembler::equal, quicked);
  3232   __ push(atos); // save receiver for result, and for GC
  3233   __ mov(r12, rcx); // save rcx XXX
  3234   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3235   __ movq(rcx, r12); // restore rcx XXX
  3236   __ reinit_heapbase();
  3237   __ pop_ptr(rdx); // restore receiver
  3238   __ jmpb(resolved);
  3240   // Get superklass in rax and subklass in rbx
  3241   __ bind(quicked);
  3242   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3243   __ movptr(rax, Address(rcx, rbx,
  3244                        Address::times_8, sizeof(constantPoolOopDesc)));
  3246   __ bind(resolved);
  3247   __ load_klass(rbx, rdx);
  3249   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3250   // Superklass in rax.  Subklass in rbx.
  3251   __ gen_subtype_check(rbx, ok_is_subtype);
  3253   // Come here on failure
  3254   __ push_ptr(rdx);
  3255   // object is at TOS
  3256   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3258   // Come here on success
  3259   __ bind(ok_is_subtype);
  3260   __ mov(rax, rdx); // Restore object in rdx
  3262   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3263   if (ProfileInterpreter) {
  3264     __ jmp(done);
  3265     __ bind(is_null);
  3266     __ profile_null_seen(rcx);
  3267   } else {
  3268     __ bind(is_null);   // same as 'done'
  3270   __ bind(done);
  3273 void TemplateTable::instanceof() {
  3274   transition(atos, itos);
  3275   Label done, is_null, ok_is_subtype, quicked, resolved;
  3276   __ testptr(rax, rax);
  3277   __ jcc(Assembler::zero, is_null);
  3279   // Get cpool & tags index
  3280   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3281   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3282   // See if bytecode has already been quicked
  3283   __ cmpb(Address(rdx, rbx,
  3284                   Address::times_1,
  3285                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3286           JVM_CONSTANT_Class);
  3287   __ jcc(Assembler::equal, quicked);
  3289   __ push(atos); // save receiver for result, and for GC
  3290   __ mov(r12, rcx); // save rcx
  3291   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3292   __ movq(rcx, r12); // restore rcx
  3293   __ reinit_heapbase();
  3294   __ pop_ptr(rdx); // restore receiver
  3295   __ load_klass(rdx, rdx);
  3296   __ jmpb(resolved);
  3298   // Get superklass in rax and subklass in rdx
  3299   __ bind(quicked);
  3300   __ load_klass(rdx, rax);
  3301   __ movptr(rax, Address(rcx, rbx,
  3302                          Address::times_8, sizeof(constantPoolOopDesc)));
  3304   __ bind(resolved);
  3306   // Generate subtype check.  Blows rcx, rdi
  3307   // Superklass in rax.  Subklass in rdx.
  3308   __ gen_subtype_check(rdx, ok_is_subtype);
  3310   // Come here on failure
  3311   __ xorl(rax, rax);
  3312   __ jmpb(done);
  3313   // Come here on success
  3314   __ bind(ok_is_subtype);
  3315   __ movl(rax, 1);
  3317   // Collect counts on whether this test sees NULLs a lot or not.
  3318   if (ProfileInterpreter) {
  3319     __ jmp(done);
  3320     __ bind(is_null);
  3321     __ profile_null_seen(rcx);
  3322   } else {
  3323     __ bind(is_null);   // same as 'done'
  3325   __ bind(done);
  3326   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3327   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3330 //-----------------------------------------------------------------------------
  3331 // Breakpoints
  3332 void TemplateTable::_breakpoint() {
  3333   // Note: We get here even if we are single stepping..
  3334   // jbug inists on setting breakpoints at every bytecode
  3335   // even if we are in single step mode.
  3337   transition(vtos, vtos);
  3339   // get the unpatched byte code
  3340   __ get_method(c_rarg1);
  3341   __ call_VM(noreg,
  3342              CAST_FROM_FN_PTR(address,
  3343                               InterpreterRuntime::get_original_bytecode_at),
  3344              c_rarg1, r13);
  3345   __ mov(rbx, rax);
  3347   // post the breakpoint event
  3348   __ get_method(c_rarg1);
  3349   __ call_VM(noreg,
  3350              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3351              c_rarg1, r13);
  3353   // complete the execution of original bytecode
  3354   __ dispatch_only_normal(vtos);
  3357 //-----------------------------------------------------------------------------
  3358 // Exceptions
  3360 void TemplateTable::athrow() {
  3361   transition(atos, vtos);
  3362   __ null_check(rax);
  3363   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3366 //-----------------------------------------------------------------------------
  3367 // Synchronization
  3368 //
  3369 // Note: monitorenter & exit are symmetric routines; which is reflected
  3370 //       in the assembly code structure as well
  3371 //
  3372 // Stack layout:
  3373 //
  3374 // [expressions  ] <--- rsp               = expression stack top
  3375 // ..
  3376 // [expressions  ]
  3377 // [monitor entry] <--- monitor block top = expression stack bot
  3378 // ..
  3379 // [monitor entry]
  3380 // [frame data   ] <--- monitor block bot
  3381 // ...
  3382 // [saved rbp    ] <--- rbp
  3383 void TemplateTable::monitorenter() {
  3384   transition(atos, vtos);
  3386   // check for NULL object
  3387   __ null_check(rax);
  3389   const Address monitor_block_top(
  3390         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3391   const Address monitor_block_bot(
  3392         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3393   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3395   Label allocated;
  3397   // initialize entry pointer
  3398   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3400   // find a free slot in the monitor block (result in c_rarg1)
  3402     Label entry, loop, exit;
  3403     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3404                                      // starting with top-most entry
  3405     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3406                                      // of monitor block
  3407     __ jmpb(entry);
  3409     __ bind(loop);
  3410     // check if current entry is used
  3411     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3412     // if not used then remember entry in c_rarg1
  3413     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3414     // check if current entry is for same object
  3415     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3416     // if same object then stop searching
  3417     __ jccb(Assembler::equal, exit);
  3418     // otherwise advance to next entry
  3419     __ addptr(c_rarg3, entry_size);
  3420     __ bind(entry);
  3421     // check if bottom reached
  3422     __ cmpptr(c_rarg3, c_rarg2);
  3423     // if not at bottom then check this entry
  3424     __ jcc(Assembler::notEqual, loop);
  3425     __ bind(exit);
  3428   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3429   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3431   // allocate one if there's no free slot
  3433     Label entry, loop;
  3434     // 1. compute new pointers             // rsp: old expression stack top
  3435     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3436     __ subptr(rsp, entry_size);            // move expression stack top
  3437     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3438     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3439     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3440     __ jmp(entry);
  3441     // 2. move expression stack contents
  3442     __ bind(loop);
  3443     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3444                                                       // word from old location
  3445     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3446     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3447     __ bind(entry);
  3448     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3449     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3450                                             // copy next word
  3453   // call run-time routine
  3454   // c_rarg1: points to monitor entry
  3455   __ bind(allocated);
  3457   // Increment bcp to point to the next bytecode, so exception
  3458   // handling for async. exceptions work correctly.
  3459   // The object has already been poped from the stack, so the
  3460   // expression stack looks correct.
  3461   __ increment(r13);
  3463   // store object
  3464   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3465   __ lock_object(c_rarg1);
  3467   // check to make sure this monitor doesn't cause stack overflow after locking
  3468   __ save_bcp();  // in case of exception
  3469   __ generate_stack_overflow_check(0);
  3471   // The bcp has already been incremented. Just need to dispatch to
  3472   // next instruction.
  3473   __ dispatch_next(vtos);
  3477 void TemplateTable::monitorexit() {
  3478   transition(atos, vtos);
  3480   // check for NULL object
  3481   __ null_check(rax);
  3483   const Address monitor_block_top(
  3484         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3485   const Address monitor_block_bot(
  3486         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3487   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3489   Label found;
  3491   // find matching slot
  3493     Label entry, loop;
  3494     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3495                                      // starting with top-most entry
  3496     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3497                                      // of monitor block
  3498     __ jmpb(entry);
  3500     __ bind(loop);
  3501     // check if current entry is for same object
  3502     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3503     // if same object then stop searching
  3504     __ jcc(Assembler::equal, found);
  3505     // otherwise advance to next entry
  3506     __ addptr(c_rarg1, entry_size);
  3507     __ bind(entry);
  3508     // check if bottom reached
  3509     __ cmpptr(c_rarg1, c_rarg2);
  3510     // if not at bottom then check this entry
  3511     __ jcc(Assembler::notEqual, loop);
  3514   // error handling. Unlocking was not block-structured
  3515   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3516                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3517   __ should_not_reach_here();
  3519   // call run-time routine
  3520   // rsi: points to monitor entry
  3521   __ bind(found);
  3522   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3523   __ unlock_object(c_rarg1);
  3524   __ pop_ptr(rax); // discard object
  3528 // Wide instructions
  3529 void TemplateTable::wide() {
  3530   transition(vtos, vtos);
  3531   __ load_unsigned_byte(rbx, at_bcp(1));
  3532   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3533   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3534   // Note: the r13 increment step is part of the individual wide
  3535   // bytecode implementations
  3539 // Multi arrays
  3540 void TemplateTable::multianewarray() {
  3541   transition(vtos, atos);
  3542   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3543   // last dim is on top of stack; we want address of first one:
  3544   // first_addr = last_addr + (ndims - 1) * wordSize
  3545   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
  3546   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3547   call_VM(rax,
  3548           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3549           c_rarg1);
  3550   __ load_unsigned_byte(rbx, at_bcp(3));
  3551   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
  3552   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3554 #endif // !CC_INTERP

mercurial