src/cpu/x86/vm/assembler_x86.hpp

Wed, 27 Aug 2008 00:21:55 -0700

author
never
date
Wed, 27 Aug 2008 00:21:55 -0700
changeset 739
dc7f315e41f7
parent 631
src/cpu/x86/vm/assembler_x86_32.hpp@d1605aabd0a1
child 797
f8199438385b
permissions
-rw-r--r--

5108146: Merge i486 and amd64 cpu directories
6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up
Reviewed-by: kvn

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for x86 assembly code generation.
    29 // Calling convention
    30 class Argument VALUE_OBJ_CLASS_SPEC {
    31  public:
    32   enum {
    33 #ifdef _LP64
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif // _WIN64
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43 #else
    44     n_register_parameters = 0   // 0 registers used to pass arguments
    45 #endif // _LP64
    46   };
    47 };
    50 #ifdef _LP64
    51 // Symbolically name the register arguments used by the c calling convention.
    52 // Windows is different from linux/solaris. So much for standards...
    54 #ifdef _WIN64
    56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    58 REGISTER_DECLARATION(Register, c_rarg2, r8);
    59 REGISTER_DECLARATION(Register, c_rarg3, r9);
    61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    66 #else
    68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    72 REGISTER_DECLARATION(Register, c_rarg4, r8);
    73 REGISTER_DECLARATION(Register, c_rarg5, r9);
    75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    84 #endif // _WIN64
    86 // Symbolically name the register arguments used by the Java calling convention.
    87 // We have control over the convention for java so we can do what we please.
    88 // What pleases us is to offset the java calling convention so that when
    89 // we call a suitable jni method the arguments are lined up and we don't
    90 // have to do little shuffling. A suitable jni method is non-static and a
    91 // small number of arguments (two fewer args on windows)
    92 //
    93 //        |-------------------------------------------------------|
    94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    95 //        |-------------------------------------------------------|
    96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    98 //        |-------------------------------------------------------|
    99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   100 //        |-------------------------------------------------------|
   102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   105 // Windows runs out of register args here
   106 #ifdef _WIN64
   107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   109 #else
   110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   112 #endif /* _WIN64 */
   113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   130 #else
   131 // rscratch1 will apear in 32bit code that is dead but of course must compile
   132 // Using noreg ensures if the dead code is incorrectly live and executed it
   133 // will cause an assertion failure
   134 #define rscratch1 noreg
   136 #endif // _LP64
   138 // Address is an abstraction used to represent a memory location
   139 // using any of the amd64 addressing modes with one object.
   140 //
   141 // Note: A register location is represented via a Register, not
   142 //       via an address for efficiency & simplicity reasons.
   144 class ArrayAddress;
   146 class Address VALUE_OBJ_CLASS_SPEC {
   147  public:
   148   enum ScaleFactor {
   149     no_scale = -1,
   150     times_1  =  0,
   151     times_2  =  1,
   152     times_4  =  2,
   153     times_8  =  3,
   154     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   155   };
   157  private:
   158   Register         _base;
   159   Register         _index;
   160   ScaleFactor      _scale;
   161   int              _disp;
   162   RelocationHolder _rspec;
   164   // Easily misused constructors make them private
   165   // %%% can we make these go away?
   166   NOT_LP64(Address(address loc, RelocationHolder spec);)
   167   Address(int disp, address loc, relocInfo::relocType rtype);
   168   Address(int disp, address loc, RelocationHolder spec);
   170  public:
   172  int disp() { return _disp; }
   173   // creation
   174   Address()
   175     : _base(noreg),
   176       _index(noreg),
   177       _scale(no_scale),
   178       _disp(0) {
   179   }
   181   // No default displacement otherwise Register can be implicitly
   182   // converted to 0(Register) which is quite a different animal.
   184   Address(Register base, int disp)
   185     : _base(base),
   186       _index(noreg),
   187       _scale(no_scale),
   188       _disp(disp) {
   189   }
   191   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   192     : _base (base),
   193       _index(index),
   194       _scale(scale),
   195       _disp (disp) {
   196     assert(!index->is_valid() == (scale == Address::no_scale),
   197            "inconsistent address");
   198   }
   200   // The following two overloads are used in connection with the
   201   // ByteSize type (see sizes.hpp).  They simplify the use of
   202   // ByteSize'd arguments in assembly code. Note that their equivalent
   203   // for the optimized build are the member functions with int disp
   204   // argument since ByteSize is mapped to an int type in that case.
   205   //
   206   // Note: DO NOT introduce similar overloaded functions for WordSize
   207   // arguments as in the optimized mode, both ByteSize and WordSize
   208   // are mapped to the same type and thus the compiler cannot make a
   209   // distinction anymore (=> compiler errors).
   211 #ifdef ASSERT
   212   Address(Register base, ByteSize disp)
   213     : _base(base),
   214       _index(noreg),
   215       _scale(no_scale),
   216       _disp(in_bytes(disp)) {
   217   }
   219   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   220     : _base(base),
   221       _index(index),
   222       _scale(scale),
   223       _disp(in_bytes(disp)) {
   224     assert(!index->is_valid() == (scale == Address::no_scale),
   225            "inconsistent address");
   226   }
   227 #endif // ASSERT
   229   // accessors
   230   bool uses(Register reg) const {
   231     return _base == reg || _index == reg;
   232   }
   234   // Convert the raw encoding form into the form expected by the constructor for
   235   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   236   // that to noreg for the Address constructor.
   237   static Address make_raw(int base, int index, int scale, int disp);
   239   static Address make_array(ArrayAddress);
   242  private:
   243   bool base_needs_rex() const {
   244     return _base != noreg && _base->encoding() >= 8;
   245   }
   247   bool index_needs_rex() const {
   248     return _index != noreg &&_index->encoding() >= 8;
   249   }
   251   relocInfo::relocType reloc() const { return _rspec.type(); }
   253   friend class Assembler;
   254   friend class MacroAssembler;
   255   friend class LIR_Assembler; // base/index/scale/disp
   256 };
   258 //
   259 // AddressLiteral has been split out from Address because operands of this type
   260 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   261 // the few instructions that need to deal with address literals are unique and the
   262 // MacroAssembler does not have to implement every instruction in the Assembler
   263 // in order to search for address literals that may need special handling depending
   264 // on the instruction and the platform. As small step on the way to merging i486/amd64
   265 // directories.
   266 //
   267 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   268   friend class ArrayAddress;
   269   RelocationHolder _rspec;
   270   // Typically we use AddressLiterals we want to use their rval
   271   // However in some situations we want the lval (effect address) of the item.
   272   // We provide a special factory for making those lvals.
   273   bool _is_lval;
   275   // If the target is far we'll need to load the ea of this to
   276   // a register to reach it. Otherwise if near we can do rip
   277   // relative addressing.
   279   address          _target;
   281  protected:
   282   // creation
   283   AddressLiteral()
   284     : _is_lval(false),
   285       _target(NULL)
   286   {}
   288   public:
   291   AddressLiteral(address target, relocInfo::relocType rtype);
   293   AddressLiteral(address target, RelocationHolder const& rspec)
   294     : _rspec(rspec),
   295       _is_lval(false),
   296       _target(target)
   297   {}
   299   AddressLiteral addr() {
   300     AddressLiteral ret = *this;
   301     ret._is_lval = true;
   302     return ret;
   303   }
   306  private:
   308   address target() { return _target; }
   309   bool is_lval() { return _is_lval; }
   311   relocInfo::relocType reloc() const { return _rspec.type(); }
   312   const RelocationHolder& rspec() const { return _rspec; }
   314   friend class Assembler;
   315   friend class MacroAssembler;
   316   friend class Address;
   317   friend class LIR_Assembler;
   318 };
   320 // Convience classes
   321 class RuntimeAddress: public AddressLiteral {
   323   public:
   325   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   327 };
   329 class OopAddress: public AddressLiteral {
   331   public:
   333   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   335 };
   337 class ExternalAddress: public AddressLiteral {
   339   public:
   341   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   343 };
   345 class InternalAddress: public AddressLiteral {
   347   public:
   349   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   351 };
   353 // x86 can do array addressing as a single operation since disp can be an absolute
   354 // address amd64 can't. We create a class that expresses the concept but does extra
   355 // magic on amd64 to get the final result
   357 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   358   private:
   360   AddressLiteral _base;
   361   Address        _index;
   363   public:
   365   ArrayAddress() {};
   366   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   367   AddressLiteral base() { return _base; }
   368   Address index() { return _index; }
   370 };
   372 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   374 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   375 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   376 // is what you get. The Assembler is generating code into a CodeBuffer.
   378 class Assembler : public AbstractAssembler  {
   379   friend class AbstractAssembler; // for the non-virtual hack
   380   friend class LIR_Assembler; // as_Address()
   381   friend class StubGenerator;
   383  public:
   384   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   385     zero          = 0x4,
   386     notZero       = 0x5,
   387     equal         = 0x4,
   388     notEqual      = 0x5,
   389     less          = 0xc,
   390     lessEqual     = 0xe,
   391     greater       = 0xf,
   392     greaterEqual  = 0xd,
   393     below         = 0x2,
   394     belowEqual    = 0x6,
   395     above         = 0x7,
   396     aboveEqual    = 0x3,
   397     overflow      = 0x0,
   398     noOverflow    = 0x1,
   399     carrySet      = 0x2,
   400     carryClear    = 0x3,
   401     negative      = 0x8,
   402     positive      = 0x9,
   403     parity        = 0xa,
   404     noParity      = 0xb
   405   };
   407   enum Prefix {
   408     // segment overrides
   409     CS_segment = 0x2e,
   410     SS_segment = 0x36,
   411     DS_segment = 0x3e,
   412     ES_segment = 0x26,
   413     FS_segment = 0x64,
   414     GS_segment = 0x65,
   416     REX        = 0x40,
   418     REX_B      = 0x41,
   419     REX_X      = 0x42,
   420     REX_XB     = 0x43,
   421     REX_R      = 0x44,
   422     REX_RB     = 0x45,
   423     REX_RX     = 0x46,
   424     REX_RXB    = 0x47,
   426     REX_W      = 0x48,
   428     REX_WB     = 0x49,
   429     REX_WX     = 0x4A,
   430     REX_WXB    = 0x4B,
   431     REX_WR     = 0x4C,
   432     REX_WRB    = 0x4D,
   433     REX_WRX    = 0x4E,
   434     REX_WRXB   = 0x4F
   435   };
   437   enum WhichOperand {
   438     // input to locate_operand, and format code for relocations
   439     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   440     disp32_operand = 1,          // embedded 32-bit displacement or address
   441     call32_operand = 2,          // embedded 32-bit self-relative displacement
   442 #ifndef _LP64
   443     _WhichOperand_limit = 3
   444 #else
   445      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   446     _WhichOperand_limit = 4
   447 #endif
   448   };
   452   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   453   // of instructions are freely declared without the need for wrapping them an ifdef.
   454   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   455   // In the .cpp file the implementations are wrapped so that they are dropped out
   456   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   457   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   458   //
   459   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   460   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   462 private:
   465   // 64bit prefixes
   466   int prefix_and_encode(int reg_enc, bool byteinst = false);
   467   int prefixq_and_encode(int reg_enc);
   469   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   470   int prefixq_and_encode(int dst_enc, int src_enc);
   472   void prefix(Register reg);
   473   void prefix(Address adr);
   474   void prefixq(Address adr);
   476   void prefix(Address adr, Register reg,  bool byteinst = false);
   477   void prefixq(Address adr, Register reg);
   479   void prefix(Address adr, XMMRegister reg);
   481   void prefetch_prefix(Address src);
   483   // Helper functions for groups of instructions
   484   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   486   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   487   // only 32bit??
   488   void emit_arith(int op1, int op2, Register dst, jobject obj);
   489   void emit_arith(int op1, int op2, Register dst, Register src);
   491   void emit_operand(Register reg,
   492                     Register base, Register index, Address::ScaleFactor scale,
   493                     int disp,
   494                     RelocationHolder const& rspec,
   495                     int rip_relative_correction = 0);
   497   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   499   // operands that only take the original 32bit registers
   500   void emit_operand32(Register reg, Address adr);
   502   void emit_operand(XMMRegister reg,
   503                     Register base, Register index, Address::ScaleFactor scale,
   504                     int disp,
   505                     RelocationHolder const& rspec);
   507   void emit_operand(XMMRegister reg, Address adr);
   509   void emit_operand(MMXRegister reg, Address adr);
   511   // workaround gcc (3.2.1-7) bug
   512   void emit_operand(Address adr, MMXRegister reg);
   515   // Immediate-to-memory forms
   516   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   518   void emit_farith(int b1, int b2, int i);
   521  protected:
   522   #ifdef ASSERT
   523   void check_relocation(RelocationHolder const& rspec, int format);
   524   #endif
   526   inline void emit_long64(jlong x);
   528   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   529   void emit_data(jint data, RelocationHolder const& rspec, int format);
   530   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   531   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   534   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   536   // These are all easily abused and hence protected
   538   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
   540   // 32BIT ONLY SECTION
   541 #ifndef _LP64
   542   // Make these disappear in 64bit mode since they would never be correct
   543   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   544   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   546   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   548   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   549 #else
   550   // 64BIT ONLY SECTION
   551   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   552 #endif // _LP64
   554   // These are unique in that we are ensured by the caller that the 32bit
   555   // relative in these instructions will always be able to reach the potentially
   556   // 64bit address described by entry. Since they can take a 64bit address they
   557   // don't have the 32 suffix like the other instructions in this class.
   559   void call_literal(address entry, RelocationHolder const& rspec);
   560   void jmp_literal(address entry, RelocationHolder const& rspec);
   562   // Avoid using directly section
   563   // Instructions in this section are actually usable by anyone without danger
   564   // of failure but have performance issues that are addressed my enhanced
   565   // instructions which will do the proper thing base on the particular cpu.
   566   // We protect them because we don't trust you...
   568   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   569   // could cause a partial flag stall since they don't set CF flag.
   570   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   571   // which call inc() & dec() or add() & sub() in accordance with
   572   // the product flag UseIncDec value.
   574   void decl(Register dst);
   575   void decl(Address dst);
   576   void decq(Register dst);
   577   void decq(Address dst);
   579   void incl(Register dst);
   580   void incl(Address dst);
   581   void incq(Register dst);
   582   void incq(Address dst);
   584   // New cpus require use of movsd and movss to avoid partial register stall
   585   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   586   // The selection is done in MacroAssembler::movdbl() and movflt().
   588   // Move Scalar Single-Precision Floating-Point Values
   589   void movss(XMMRegister dst, Address src);
   590   void movss(XMMRegister dst, XMMRegister src);
   591   void movss(Address dst, XMMRegister src);
   593   // Move Scalar Double-Precision Floating-Point Values
   594   void movsd(XMMRegister dst, Address src);
   595   void movsd(XMMRegister dst, XMMRegister src);
   596   void movsd(Address dst, XMMRegister src);
   597   void movlpd(XMMRegister dst, Address src);
   599   // New cpus require use of movaps and movapd to avoid partial register stall
   600   // when moving between registers.
   601   void movaps(XMMRegister dst, XMMRegister src);
   602   void movapd(XMMRegister dst, XMMRegister src);
   604   // End avoid using directly
   607   // Instruction prefixes
   608   void prefix(Prefix p);
   610   public:
   612   // Creation
   613   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   615   // Decoding
   616   static address locate_operand(address inst, WhichOperand which);
   617   static address locate_next_instruction(address inst);
   619   // Utilities
   621 #ifdef _LP64
   622  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   623  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   624 #else
   625  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
   626  static bool is_simm32(int32_t x) { return true; }
   627 #endif // LP64
   629   // Generic instructions
   630   // Does 32bit or 64bit as needed for the platform. In some sense these
   631   // belong in macro assembler but there is no need for both varieties to exist
   633   void lea(Register dst, Address src);
   635   void mov(Register dst, Register src);
   637   void pusha();
   638   void popa();
   640   void pushf();
   641   void popf();
   643   void push(int32_t imm32);
   645   void push(Register src);
   647   void pop(Register dst);
   649   // These are dummies to prevent surprise implicit conversions to Register
   650   void push(void* v);
   651   void pop(void* v);
   654   // These do register sized moves/scans
   655   void rep_mov();
   656   void rep_set();
   657   void repne_scan();
   658 #ifdef _LP64
   659   void repne_scanl();
   660 #endif
   662   // Vanilla instructions in lexical order
   664   void adcl(Register dst, int32_t imm32);
   665   void adcl(Register dst, Address src);
   666   void adcl(Register dst, Register src);
   668   void adcq(Register dst, int32_t imm32);
   669   void adcq(Register dst, Address src);
   670   void adcq(Register dst, Register src);
   673   void addl(Address dst, int32_t imm32);
   674   void addl(Address dst, Register src);
   675   void addl(Register dst, int32_t imm32);
   676   void addl(Register dst, Address src);
   677   void addl(Register dst, Register src);
   679   void addq(Address dst, int32_t imm32);
   680   void addq(Address dst, Register src);
   681   void addq(Register dst, int32_t imm32);
   682   void addq(Register dst, Address src);
   683   void addq(Register dst, Register src);
   686   void addr_nop_4();
   687   void addr_nop_5();
   688   void addr_nop_7();
   689   void addr_nop_8();
   691   // Add Scalar Double-Precision Floating-Point Values
   692   void addsd(XMMRegister dst, Address src);
   693   void addsd(XMMRegister dst, XMMRegister src);
   695   // Add Scalar Single-Precision Floating-Point Values
   696   void addss(XMMRegister dst, Address src);
   697   void addss(XMMRegister dst, XMMRegister src);
   699   void andl(Register dst, int32_t imm32);
   700   void andl(Register dst, Address src);
   701   void andl(Register dst, Register src);
   703   void andq(Register dst, int32_t imm32);
   704   void andq(Register dst, Address src);
   705   void andq(Register dst, Register src);
   708   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   709   void andpd(XMMRegister dst, Address src);
   710   void andpd(XMMRegister dst, XMMRegister src);
   712   void bswapl(Register reg);
   714   void bswapq(Register reg);
   716   void call(Label& L, relocInfo::relocType rtype);
   717   void call(Register reg);  // push pc; pc <- reg
   718   void call(Address adr);   // push pc; pc <- adr
   720   void cdql();
   722   void cdqq();
   724   void cld() { emit_byte(0xfc); }
   726   void clflush(Address adr);
   728   void cmovl(Condition cc, Register dst, Register src);
   729   void cmovl(Condition cc, Register dst, Address src);
   731   void cmovq(Condition cc, Register dst, Register src);
   732   void cmovq(Condition cc, Register dst, Address src);
   735   void cmpb(Address dst, int imm8);
   737   void cmpl(Address dst, int32_t imm32);
   739   void cmpl(Register dst, int32_t imm32);
   740   void cmpl(Register dst, Register src);
   741   void cmpl(Register dst, Address src);
   743   void cmpq(Address dst, int32_t imm32);
   744   void cmpq(Address dst, Register src);
   746   void cmpq(Register dst, int32_t imm32);
   747   void cmpq(Register dst, Register src);
   748   void cmpq(Register dst, Address src);
   750   // these are dummies used to catch attempting to convert NULL to Register
   751   void cmpl(Register dst, void* junk); // dummy
   752   void cmpq(Register dst, void* junk); // dummy
   754   void cmpw(Address dst, int imm16);
   756   void cmpxchg8 (Address adr);
   758   void cmpxchgl(Register reg, Address adr);
   760   void cmpxchgq(Register reg, Address adr);
   762   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   763   void comisd(XMMRegister dst, Address src);
   765   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   766   void comiss(XMMRegister dst, Address src);
   768   // Identify processor type and features
   769   void cpuid() {
   770     emit_byte(0x0F);
   771     emit_byte(0xA2);
   772   }
   774   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   775   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   777   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   778   void cvtsi2sdl(XMMRegister dst, Register src);
   779   void cvtsi2sdq(XMMRegister dst, Register src);
   781   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   782   void cvtsi2ssl(XMMRegister dst, Register src);
   783   void cvtsi2ssq(XMMRegister dst, Register src);
   785   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   786   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   788   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   789   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   791   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   792   void cvtss2sd(XMMRegister dst, XMMRegister src);
   794   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   795   void cvttsd2sil(Register dst, Address src);
   796   void cvttsd2sil(Register dst, XMMRegister src);
   797   void cvttsd2siq(Register dst, XMMRegister src);
   799   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   800   void cvttss2sil(Register dst, XMMRegister src);
   801   void cvttss2siq(Register dst, XMMRegister src);
   803   // Divide Scalar Double-Precision Floating-Point Values
   804   void divsd(XMMRegister dst, Address src);
   805   void divsd(XMMRegister dst, XMMRegister src);
   807   // Divide Scalar Single-Precision Floating-Point Values
   808   void divss(XMMRegister dst, Address src);
   809   void divss(XMMRegister dst, XMMRegister src);
   811   void emms();
   813   void fabs();
   815   void fadd(int i);
   817   void fadd_d(Address src);
   818   void fadd_s(Address src);
   820   // "Alternate" versions of x87 instructions place result down in FPU
   821   // stack instead of on TOS
   823   void fadda(int i); // "alternate" fadd
   824   void faddp(int i = 1);
   826   void fchs();
   828   void fcom(int i);
   830   void fcomp(int i = 1);
   831   void fcomp_d(Address src);
   832   void fcomp_s(Address src);
   834   void fcompp();
   836   void fcos();
   838   void fdecstp();
   840   void fdiv(int i);
   841   void fdiv_d(Address src);
   842   void fdivr_s(Address src);
   843   void fdiva(int i);  // "alternate" fdiv
   844   void fdivp(int i = 1);
   846   void fdivr(int i);
   847   void fdivr_d(Address src);
   848   void fdiv_s(Address src);
   850   void fdivra(int i); // "alternate" reversed fdiv
   852   void fdivrp(int i = 1);
   854   void ffree(int i = 0);
   856   void fild_d(Address adr);
   857   void fild_s(Address adr);
   859   void fincstp();
   861   void finit();
   863   void fist_s (Address adr);
   864   void fistp_d(Address adr);
   865   void fistp_s(Address adr);
   867   void fld1();
   869   void fld_d(Address adr);
   870   void fld_s(Address adr);
   871   void fld_s(int index);
   872   void fld_x(Address adr);  // extended-precision (80-bit) format
   874   void fldcw(Address src);
   876   void fldenv(Address src);
   878   void fldlg2();
   880   void fldln2();
   882   void fldz();
   884   void flog();
   885   void flog10();
   887   void fmul(int i);
   889   void fmul_d(Address src);
   890   void fmul_s(Address src);
   892   void fmula(int i);  // "alternate" fmul
   894   void fmulp(int i = 1);
   896   void fnsave(Address dst);
   898   void fnstcw(Address src);
   900   void fnstsw_ax();
   902   void fprem();
   903   void fprem1();
   905   void frstor(Address src);
   907   void fsin();
   909   void fsqrt();
   911   void fst_d(Address adr);
   912   void fst_s(Address adr);
   914   void fstp_d(Address adr);
   915   void fstp_d(int index);
   916   void fstp_s(Address adr);
   917   void fstp_x(Address adr); // extended-precision (80-bit) format
   919   void fsub(int i);
   920   void fsub_d(Address src);
   921   void fsub_s(Address src);
   923   void fsuba(int i);  // "alternate" fsub
   925   void fsubp(int i = 1);
   927   void fsubr(int i);
   928   void fsubr_d(Address src);
   929   void fsubr_s(Address src);
   931   void fsubra(int i); // "alternate" reversed fsub
   933   void fsubrp(int i = 1);
   935   void ftan();
   937   void ftst();
   939   void fucomi(int i = 1);
   940   void fucomip(int i = 1);
   942   void fwait();
   944   void fxch(int i = 1);
   946   void fxrstor(Address src);
   948   void fxsave(Address dst);
   950   void fyl2x();
   952   void hlt();
   954   void idivl(Register src);
   956   void idivq(Register src);
   958   void imull(Register dst, Register src);
   959   void imull(Register dst, Register src, int value);
   961   void imulq(Register dst, Register src);
   962   void imulq(Register dst, Register src, int value);
   965   // jcc is the generic conditional branch generator to run-
   966   // time routines, jcc is used for branches to labels. jcc
   967   // takes a branch opcode (cc) and a label (L) and generates
   968   // either a backward branch or a forward branch and links it
   969   // to the label fixup chain. Usage:
   970   //
   971   // Label L;      // unbound label
   972   // jcc(cc, L);   // forward branch to unbound label
   973   // bind(L);      // bind label to the current pc
   974   // jcc(cc, L);   // backward branch to bound label
   975   // bind(L);      // illegal: a label may be bound only once
   976   //
   977   // Note: The same Label can be used for forward and backward branches
   978   // but it may be bound only once.
   980   void jcc(Condition cc, Label& L,
   981            relocInfo::relocType rtype = relocInfo::none);
   983   // Conditional jump to a 8-bit offset to L.
   984   // WARNING: be very careful using this for forward jumps.  If the label is
   985   // not bound within an 8-bit offset of this instruction, a run-time error
   986   // will occur.
   987   void jccb(Condition cc, Label& L);
   989   void jmp(Address entry);    // pc <- entry
   991   // Label operations & relative jumps (PPUM Appendix D)
   992   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
   994   void jmp(Register entry); // pc <- entry
   996   // Unconditional 8-bit offset jump to L.
   997   // WARNING: be very careful using this for forward jumps.  If the label is
   998   // not bound within an 8-bit offset of this instruction, a run-time error
   999   // will occur.
  1000   void jmpb(Label& L);
  1002   void ldmxcsr( Address src );
  1004   void leal(Register dst, Address src);
  1006   void leaq(Register dst, Address src);
  1008   void lfence() {
  1009     emit_byte(0x0F);
  1010     emit_byte(0xAE);
  1011     emit_byte(0xE8);
  1014   void lock();
  1016   enum Membar_mask_bits {
  1017     StoreStore = 1 << 3,
  1018     LoadStore  = 1 << 2,
  1019     StoreLoad  = 1 << 1,
  1020     LoadLoad   = 1 << 0
  1021   };
  1023   // Serializes memory.
  1024   void membar(Membar_mask_bits order_constraint) {
  1025     // We only have to handle StoreLoad and LoadLoad
  1026     if (order_constraint & StoreLoad) {
  1027       // MFENCE subsumes LFENCE
  1028       mfence();
  1029     } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
  1030          lfence();
  1031     } */
  1034   void mfence();
  1036   // Moves
  1038   void mov64(Register dst, int64_t imm64);
  1040   void movb(Address dst, Register src);
  1041   void movb(Address dst, int imm8);
  1042   void movb(Register dst, Address src);
  1044   void movdl(XMMRegister dst, Register src);
  1045   void movdl(Register dst, XMMRegister src);
  1047   // Move Double Quadword
  1048   void movdq(XMMRegister dst, Register src);
  1049   void movdq(Register dst, XMMRegister src);
  1051   // Move Aligned Double Quadword
  1052   void movdqa(Address     dst, XMMRegister src);
  1053   void movdqa(XMMRegister dst, Address src);
  1054   void movdqa(XMMRegister dst, XMMRegister src);
  1056   void movl(Register dst, int32_t imm32);
  1057   void movl(Address dst, int32_t imm32);
  1058   void movl(Register dst, Register src);
  1059   void movl(Register dst, Address src);
  1060   void movl(Address dst, Register src);
  1062   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1063   // by giving the compiler two choices it can't resolve
  1065   void movl(Address  dst, void* junk);
  1066   void movl(Register dst, void* junk);
  1068 #ifdef _LP64
  1069   void movq(Register dst, Register src);
  1070   void movq(Register dst, Address src);
  1071   void movq(Address dst, Register src);
  1072 #endif
  1074   void movq(Address     dst, MMXRegister src );
  1075   void movq(MMXRegister dst, Address src );
  1077 #ifdef _LP64
  1078   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1079   // by giving the compiler two choices it can't resolve
  1081   void movq(Address  dst, void* dummy);
  1082   void movq(Register dst, void* dummy);
  1083 #endif
  1085   // Move Quadword
  1086   void movq(Address     dst, XMMRegister src);
  1087   void movq(XMMRegister dst, Address src);
  1089   void movsbl(Register dst, Address src);
  1090   void movsbl(Register dst, Register src);
  1092 #ifdef _LP64
  1093   // Move signed 32bit immediate to 64bit extending sign
  1094   void movslq(Address dst, int32_t imm64);
  1095   void movslq(Register dst, int32_t imm64);
  1097   void movslq(Register dst, Address src);
  1098   void movslq(Register dst, Register src);
  1099   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1100 #endif
  1102   void movswl(Register dst, Address src);
  1103   void movswl(Register dst, Register src);
  1105   void movw(Address dst, int imm16);
  1106   void movw(Register dst, Address src);
  1107   void movw(Address dst, Register src);
  1109   void movzbl(Register dst, Address src);
  1110   void movzbl(Register dst, Register src);
  1112   void movzwl(Register dst, Address src);
  1113   void movzwl(Register dst, Register src);
  1115   void mull(Address src);
  1116   void mull(Register src);
  1118   // Multiply Scalar Double-Precision Floating-Point Values
  1119   void mulsd(XMMRegister dst, Address src);
  1120   void mulsd(XMMRegister dst, XMMRegister src);
  1122   // Multiply Scalar Single-Precision Floating-Point Values
  1123   void mulss(XMMRegister dst, Address src);
  1124   void mulss(XMMRegister dst, XMMRegister src);
  1126   void negl(Register dst);
  1128 #ifdef _LP64
  1129   void negq(Register dst);
  1130 #endif
  1132   void nop(int i = 1);
  1134   void notl(Register dst);
  1136 #ifdef _LP64
  1137   void notq(Register dst);
  1138 #endif
  1140   void orl(Address dst, int32_t imm32);
  1141   void orl(Register dst, int32_t imm32);
  1142   void orl(Register dst, Address src);
  1143   void orl(Register dst, Register src);
  1145   void orq(Address dst, int32_t imm32);
  1146   void orq(Register dst, int32_t imm32);
  1147   void orq(Register dst, Address src);
  1148   void orq(Register dst, Register src);
  1150   void popl(Address dst);
  1152 #ifdef _LP64
  1153   void popq(Address dst);
  1154 #endif
  1156   // Prefetches (SSE, SSE2, 3DNOW only)
  1158   void prefetchnta(Address src);
  1159   void prefetchr(Address src);
  1160   void prefetcht0(Address src);
  1161   void prefetcht1(Address src);
  1162   void prefetcht2(Address src);
  1163   void prefetchw(Address src);
  1165   // Shuffle Packed Doublewords
  1166   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1167   void pshufd(XMMRegister dst, Address src,     int mode);
  1169   // Shuffle Packed Low Words
  1170   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1171   void pshuflw(XMMRegister dst, Address src,     int mode);
  1173   // Shift Right Logical Quadword Immediate
  1174   void psrlq(XMMRegister dst, int shift);
  1176   // Interleave Low Bytes
  1177   void punpcklbw(XMMRegister dst, XMMRegister src);
  1179   void pushl(Address src);
  1181   void pushq(Address src);
  1183   // Xor Packed Byte Integer Values
  1184   void pxor(XMMRegister dst, Address src);
  1185   void pxor(XMMRegister dst, XMMRegister src);
  1187   void rcll(Register dst, int imm8);
  1189   void rclq(Register dst, int imm8);
  1191   void ret(int imm16);
  1193   void sahf();
  1195   void sarl(Register dst, int imm8);
  1196   void sarl(Register dst);
  1198   void sarq(Register dst, int imm8);
  1199   void sarq(Register dst);
  1201   void sbbl(Address dst, int32_t imm32);
  1202   void sbbl(Register dst, int32_t imm32);
  1203   void sbbl(Register dst, Address src);
  1204   void sbbl(Register dst, Register src);
  1206   void sbbq(Address dst, int32_t imm32);
  1207   void sbbq(Register dst, int32_t imm32);
  1208   void sbbq(Register dst, Address src);
  1209   void sbbq(Register dst, Register src);
  1211   void setb(Condition cc, Register dst);
  1213   void shldl(Register dst, Register src);
  1215   void shll(Register dst, int imm8);
  1216   void shll(Register dst);
  1218   void shlq(Register dst, int imm8);
  1219   void shlq(Register dst);
  1221   void shrdl(Register dst, Register src);
  1223   void shrl(Register dst, int imm8);
  1224   void shrl(Register dst);
  1226   void shrq(Register dst, int imm8);
  1227   void shrq(Register dst);
  1229   void smovl(); // QQQ generic?
  1231   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1232   void sqrtsd(XMMRegister dst, Address src);
  1233   void sqrtsd(XMMRegister dst, XMMRegister src);
  1235   void std() { emit_byte(0xfd); }
  1237   void stmxcsr( Address dst );
  1239   void subl(Address dst, int32_t imm32);
  1240   void subl(Address dst, Register src);
  1241   void subl(Register dst, int32_t imm32);
  1242   void subl(Register dst, Address src);
  1243   void subl(Register dst, Register src);
  1245   void subq(Address dst, int32_t imm32);
  1246   void subq(Address dst, Register src);
  1247   void subq(Register dst, int32_t imm32);
  1248   void subq(Register dst, Address src);
  1249   void subq(Register dst, Register src);
  1252   // Subtract Scalar Double-Precision Floating-Point Values
  1253   void subsd(XMMRegister dst, Address src);
  1254   void subsd(XMMRegister dst, XMMRegister src);
  1256   // Subtract Scalar Single-Precision Floating-Point Values
  1257   void subss(XMMRegister dst, Address src);
  1258   void subss(XMMRegister dst, XMMRegister src);
  1260   void testb(Register dst, int imm8);
  1262   void testl(Register dst, int32_t imm32);
  1263   void testl(Register dst, Register src);
  1264   void testl(Register dst, Address src);
  1266   void testq(Register dst, int32_t imm32);
  1267   void testq(Register dst, Register src);
  1270   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1271   void ucomisd(XMMRegister dst, Address src);
  1272   void ucomisd(XMMRegister dst, XMMRegister src);
  1274   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1275   void ucomiss(XMMRegister dst, Address src);
  1276   void ucomiss(XMMRegister dst, XMMRegister src);
  1278   void xaddl(Address dst, Register src);
  1280   void xaddq(Address dst, Register src);
  1282   void xchgl(Register reg, Address adr);
  1283   void xchgl(Register dst, Register src);
  1285   void xchgq(Register reg, Address adr);
  1286   void xchgq(Register dst, Register src);
  1288   void xorl(Register dst, int32_t imm32);
  1289   void xorl(Register dst, Address src);
  1290   void xorl(Register dst, Register src);
  1292   void xorq(Register dst, Address src);
  1293   void xorq(Register dst, Register src);
  1295   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1296   void xorpd(XMMRegister dst, Address src);
  1297   void xorpd(XMMRegister dst, XMMRegister src);
  1299   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1300   void xorps(XMMRegister dst, Address src);
  1301   void xorps(XMMRegister dst, XMMRegister src);
  1303   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1304 };
  1307 // MacroAssembler extends Assembler by frequently used macros.
  1308 //
  1309 // Instructions for which a 'better' code sequence exists depending
  1310 // on arguments should also go in here.
  1312 class MacroAssembler: public Assembler {
  1313  friend class LIR_Assembler;
  1314  protected:
  1316   Address as_Address(AddressLiteral adr);
  1317   Address as_Address(ArrayAddress adr);
  1319   // Support for VM calls
  1320   //
  1321   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1322   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1323   // additional registers when doing a VM call).
  1324 #ifdef CC_INTERP
  1325   // c++ interpreter never wants to use interp_masm version of call_VM
  1326   #define VIRTUAL
  1327 #else
  1328   #define VIRTUAL virtual
  1329 #endif
  1331   VIRTUAL void call_VM_leaf_base(
  1332     address entry_point,               // the entry point
  1333     int     number_of_arguments        // the number of arguments to pop after the call
  1334   );
  1336   // This is the base routine called by the different versions of call_VM. The interpreter
  1337   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1338   // additional registers when doing a VM call).
  1339   //
  1340   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1341   // returns the register which contains the thread upon return. If a thread register has been
  1342   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1343   // (noreg) than rsp will be used instead.
  1344   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1345     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1346     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1347     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1348     address  entry_point,              // the entry point
  1349     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1350     bool     check_exceptions          // whether to check for pending exceptions after return
  1351   );
  1353   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1354   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1355   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1356   virtual void check_and_handle_popframe(Register java_thread);
  1357   virtual void check_and_handle_earlyret(Register java_thread);
  1359   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1361   // helpers for FPU flag access
  1362   // tmp is a temporary register, if none is available use noreg
  1363   void save_rax   (Register tmp);
  1364   void restore_rax(Register tmp);
  1366  public:
  1367   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1369   // Support for NULL-checks
  1370   //
  1371   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1372   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1373   // offset. No explicit code generation is needed if the offset is within a certain
  1374   // range (0 <= offset <= page_size).
  1376   void null_check(Register reg, int offset = -1);
  1377   static bool needs_explicit_null_check(intptr_t offset);
  1379   // Required platform-specific helpers for Label::patch_instructions.
  1380   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1381   void pd_patch_instruction(address branch, address target);
  1382 #ifndef PRODUCT
  1383   static void pd_print_patched_instruction(address branch);
  1384 #endif
  1386   // The following 4 methods return the offset of the appropriate move instruction
  1388   // Support for fast byte/word loading with zero extension (depending on particular CPU)
  1389   int load_unsigned_byte(Register dst, Address src);
  1390   int load_unsigned_word(Register dst, Address src);
  1392   // Support for fast byte/word loading with sign extension (depending on particular CPU)
  1393   int load_signed_byte(Register dst, Address src);
  1394   int load_signed_word(Register dst, Address src);
  1396   // Support for sign-extension (hi:lo = extend_sign(lo))
  1397   void extend_sign(Register hi, Register lo);
  1399   // Support for inc/dec with optimal instruction selection depending on value
  1401   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1402   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1404   void decrementl(Address dst, int value = 1);
  1405   void decrementl(Register reg, int value = 1);
  1407   void decrementq(Register reg, int value = 1);
  1408   void decrementq(Address dst, int value = 1);
  1410   void incrementl(Address dst, int value = 1);
  1411   void incrementl(Register reg, int value = 1);
  1413   void incrementq(Register reg, int value = 1);
  1414   void incrementq(Address dst, int value = 1);
  1417   // Support optimal SSE move instructions.
  1418   void movflt(XMMRegister dst, XMMRegister src) {
  1419     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1420     else                       { movss (dst, src); return; }
  1422   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1423   void movflt(XMMRegister dst, AddressLiteral src);
  1424   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1426   void movdbl(XMMRegister dst, XMMRegister src) {
  1427     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1428     else                       { movsd (dst, src); return; }
  1431   void movdbl(XMMRegister dst, AddressLiteral src);
  1433   void movdbl(XMMRegister dst, Address src) {
  1434     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1435     else                         { movlpd(dst, src); return; }
  1437   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1439   void incrementl(AddressLiteral dst);
  1440   void incrementl(ArrayAddress dst);
  1442   // Alignment
  1443   void align(int modulus);
  1445   // Misc
  1446   void fat_nop(); // 5 byte nop
  1448   // Stack frame creation/removal
  1449   void enter();
  1450   void leave();
  1452   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1453   // The pointer will be loaded into the thread register.
  1454   void get_thread(Register thread);
  1456   // Support for VM calls
  1457   //
  1458   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1459   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1460   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1463   void call_VM(Register oop_result,
  1464                address entry_point,
  1465                bool check_exceptions = true);
  1466   void call_VM(Register oop_result,
  1467                address entry_point,
  1468                Register arg_1,
  1469                bool check_exceptions = true);
  1470   void call_VM(Register oop_result,
  1471                address entry_point,
  1472                Register arg_1, Register arg_2,
  1473                bool check_exceptions = true);
  1474   void call_VM(Register oop_result,
  1475                address entry_point,
  1476                Register arg_1, Register arg_2, Register arg_3,
  1477                bool check_exceptions = true);
  1479   // Overloadings with last_Java_sp
  1480   void call_VM(Register oop_result,
  1481                Register last_java_sp,
  1482                address entry_point,
  1483                int number_of_arguments = 0,
  1484                bool check_exceptions = true);
  1485   void call_VM(Register oop_result,
  1486                Register last_java_sp,
  1487                address entry_point,
  1488                Register arg_1, bool
  1489                check_exceptions = true);
  1490   void call_VM(Register oop_result,
  1491                Register last_java_sp,
  1492                address entry_point,
  1493                Register arg_1, Register arg_2,
  1494                bool check_exceptions = true);
  1495   void call_VM(Register oop_result,
  1496                Register last_java_sp,
  1497                address entry_point,
  1498                Register arg_1, Register arg_2, Register arg_3,
  1499                bool check_exceptions = true);
  1501   void call_VM_leaf(address entry_point,
  1502                     int number_of_arguments = 0);
  1503   void call_VM_leaf(address entry_point,
  1504                     Register arg_1);
  1505   void call_VM_leaf(address entry_point,
  1506                     Register arg_1, Register arg_2);
  1507   void call_VM_leaf(address entry_point,
  1508                     Register arg_1, Register arg_2, Register arg_3);
  1510   // last Java Frame (fills frame anchor)
  1511   void set_last_Java_frame(Register thread,
  1512                            Register last_java_sp,
  1513                            Register last_java_fp,
  1514                            address last_java_pc);
  1516   // thread in the default location (r15_thread on 64bit)
  1517   void set_last_Java_frame(Register last_java_sp,
  1518                            Register last_java_fp,
  1519                            address last_java_pc);
  1521   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1523   // thread in the default location (r15_thread on 64bit)
  1524   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1526   // Stores
  1527   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1528   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1530   // split store_check(Register obj) to enhance instruction interleaving
  1531   void store_check_part_1(Register obj);
  1532   void store_check_part_2(Register obj);
  1534   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1535   void c2bool(Register x);
  1537   // C++ bool manipulation
  1539   void movbool(Register dst, Address src);
  1540   void movbool(Address dst, bool boolconst);
  1541   void movbool(Address dst, Register src);
  1542   void testbool(Register dst);
  1544   // oop manipulations
  1545   void load_klass(Register dst, Register src);
  1546   void store_klass(Register dst, Register src);
  1548   void load_prototype_header(Register dst, Register src);
  1550 #ifdef _LP64
  1551   void store_klass_gap(Register dst, Register src);
  1553   void load_heap_oop(Register dst, Address src);
  1554   void store_heap_oop(Address dst, Register src);
  1555   void encode_heap_oop(Register r);
  1556   void decode_heap_oop(Register r);
  1557   void encode_heap_oop_not_null(Register r);
  1558   void decode_heap_oop_not_null(Register r);
  1559   void encode_heap_oop_not_null(Register dst, Register src);
  1560   void decode_heap_oop_not_null(Register dst, Register src);
  1562   void set_narrow_oop(Register dst, jobject obj);
  1564   // if heap base register is used - reinit it with the correct value
  1565   void reinit_heapbase();
  1566 #endif // _LP64
  1568   // Int division/remainder for Java
  1569   // (as idivl, but checks for special case as described in JVM spec.)
  1570   // returns idivl instruction offset for implicit exception handling
  1571   int corrected_idivl(Register reg);
  1573   // Long division/remainder for Java
  1574   // (as idivq, but checks for special case as described in JVM spec.)
  1575   // returns idivq instruction offset for implicit exception handling
  1576   int corrected_idivq(Register reg);
  1578   void int3();
  1580   // Long operation macros for a 32bit cpu
  1581   // Long negation for Java
  1582   void lneg(Register hi, Register lo);
  1584   // Long multiplication for Java
  1585   // (destroys contents of eax, ebx, ecx and edx)
  1586   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1588   // Long shifts for Java
  1589   // (semantics as described in JVM spec.)
  1590   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1591   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1593   // Long compare for Java
  1594   // (semantics as described in JVM spec.)
  1595   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1598   // misc
  1600   // Sign extension
  1601   void sign_extend_short(Register reg);
  1602   void sign_extend_byte(Register reg);
  1604   // Division by power of 2, rounding towards 0
  1605   void division_with_shift(Register reg, int shift_value);
  1607   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1608   //
  1609   // CF (corresponds to C0) if x < y
  1610   // PF (corresponds to C2) if unordered
  1611   // ZF (corresponds to C3) if x = y
  1612   //
  1613   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1614   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1615   void fcmp(Register tmp);
  1616   // Variant of the above which allows y to be further down the stack
  1617   // and which only pops x and y if specified. If pop_right is
  1618   // specified then pop_left must also be specified.
  1619   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1621   // Floating-point comparison for Java
  1622   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1623   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1624   // (semantics as described in JVM spec.)
  1625   void fcmp2int(Register dst, bool unordered_is_less);
  1626   // Variant of the above which allows y to be further down the stack
  1627   // and which only pops x and y if specified. If pop_right is
  1628   // specified then pop_left must also be specified.
  1629   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1631   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1632   // tmp is a temporary register, if none is available use noreg
  1633   void fremr(Register tmp);
  1636   // same as fcmp2int, but using SSE2
  1637   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1638   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1640   // Inlined sin/cos generator for Java; must not use CPU instruction
  1641   // directly on Intel as it does not have high enough precision
  1642   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1643   // number of FPU stack slots in use; all but the topmost will
  1644   // require saving if a slow case is necessary. Assumes argument is
  1645   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1646   // this code.
  1647   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1649   // branch to L if FPU flag C2 is set/not set
  1650   // tmp is a temporary register, if none is available use noreg
  1651   void jC2 (Register tmp, Label& L);
  1652   void jnC2(Register tmp, Label& L);
  1654   // Pop ST (ffree & fincstp combined)
  1655   void fpop();
  1657   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1658   void push_fTOS();
  1660   // pops double TOS element from CPU stack and pushes on FPU stack
  1661   void pop_fTOS();
  1663   void empty_FPU_stack();
  1665   void push_IU_state();
  1666   void pop_IU_state();
  1668   void push_FPU_state();
  1669   void pop_FPU_state();
  1671   void push_CPU_state();
  1672   void pop_CPU_state();
  1674   // Round up to a power of two
  1675   void round_to(Register reg, int modulus);
  1677   // Callee saved registers handling
  1678   void push_callee_saved_registers();
  1679   void pop_callee_saved_registers();
  1681   // allocation
  1682   void eden_allocate(
  1683     Register obj,                      // result: pointer to object after successful allocation
  1684     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1685     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1686     Register t1,                       // temp register
  1687     Label&   slow_case                 // continuation point if fast allocation fails
  1688   );
  1689   void tlab_allocate(
  1690     Register obj,                      // result: pointer to object after successful allocation
  1691     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1692     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1693     Register t1,                       // temp register
  1694     Register t2,                       // temp register
  1695     Label&   slow_case                 // continuation point if fast allocation fails
  1696   );
  1697   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1699   //----
  1700   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1702   // Debugging
  1704   // only if +VerifyOops
  1705   void verify_oop(Register reg, const char* s = "broken oop");
  1706   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1708   // only if +VerifyFPU
  1709   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1711   // prints msg, dumps registers and stops execution
  1712   void stop(const char* msg);
  1714   // prints msg and continues
  1715   void warn(const char* msg);
  1717   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1718   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1720   void os_breakpoint();
  1722   void untested()                                { stop("untested"); }
  1724   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  1726   void should_not_reach_here()                   { stop("should not reach here"); }
  1728   void print_CPU_state();
  1730   // Stack overflow checking
  1731   void bang_stack_with_offset(int offset) {
  1732     // stack grows down, caller passes positive offset
  1733     assert(offset > 0, "must bang with negative offset");
  1734     movl(Address(rsp, (-offset)), rax);
  1737   // Writes to stack successive pages until offset reached to check for
  1738   // stack overflow + shadow pages.  Also, clobbers tmp
  1739   void bang_stack_size(Register size, Register tmp);
  1741   // Support for serializing memory accesses between threads
  1742   void serialize_memory(Register thread, Register tmp);
  1744   void verify_tlab();
  1746   // Biased locking support
  1747   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1748   // swap_reg must be rax, and is killed.
  1749   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1750   // be killed; if not supplied, push/pop will be used internally to
  1751   // allocate a temporary (inefficient, avoid if possible).
  1752   // Optional slow case is for implementations (interpreter and C1) which branch to
  1753   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1754   // Returns offset of first potentially-faulting instruction for null
  1755   // check info (currently consumed only by C1). If
  1756   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1757   // the calling code has already passed any potential faults.
  1758   int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
  1759                            bool swap_reg_contains_mark,
  1760                            Label& done, Label* slow_case = NULL,
  1761                            BiasedLockingCounters* counters = NULL);
  1762   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1765   Condition negate_condition(Condition cond);
  1767   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1768   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1769   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1770   // here in MacroAssembler. The major exception to this rule is call
  1772   // Arithmetics
  1775   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  1776   void addptr(Address dst, Register src);
  1778   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  1779   void addptr(Register dst, int32_t src);
  1780   void addptr(Register dst, Register src);
  1782   void andptr(Register dst, int32_t src);
  1783   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  1785   void cmp8(AddressLiteral src1, int imm);
  1787   // renamed to drag out the casting of address to int32_t/intptr_t
  1788   void cmp32(Register src1, int32_t imm);
  1790   void cmp32(AddressLiteral src1, int32_t imm);
  1791   // compare reg - mem, or reg - &mem
  1792   void cmp32(Register src1, AddressLiteral src2);
  1794   void cmp32(Register src1, Address src2);
  1796 #ifndef _LP64
  1797   void cmpoop(Address dst, jobject obj);
  1798   void cmpoop(Register dst, jobject obj);
  1799 #endif // _LP64
  1801   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  1802   void cmpptr(Address src1, AddressLiteral src2);
  1804   void cmpptr(Register src1, AddressLiteral src2);
  1806   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1807   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1808   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1810   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1811   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1813   // cmp64 to avoild hiding cmpq
  1814   void cmp64(Register src1, AddressLiteral src);
  1816   void cmpxchgptr(Register reg, Address adr);
  1818   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  1821   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  1824   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  1826   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  1828   void shlptr(Register dst, int32_t shift);
  1829   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  1831   void shrptr(Register dst, int32_t shift);
  1832   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  1834   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  1835   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  1837   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1839   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1840   void subptr(Register dst, int32_t src);
  1841   void subptr(Register dst, Register src);
  1844   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1845   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1847   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1848   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1850   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  1854   // Helper functions for statistics gathering.
  1855   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  1856   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  1857   // Unconditional atomic increment.
  1858   void atomic_incl(AddressLiteral counter_addr);
  1860   void lea(Register dst, AddressLiteral adr);
  1861   void lea(Address dst, AddressLiteral adr);
  1862   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  1864   void leal32(Register dst, Address src) { leal(dst, src); }
  1866   void test32(Register src1, AddressLiteral src2);
  1868   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1869   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1870   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1872   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  1873   void testptr(Register src1, Register src2);
  1875   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1876   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1878   // Calls
  1880   void call(Label& L, relocInfo::relocType rtype);
  1881   void call(Register entry);
  1883   // NOTE: this call tranfers to the effective address of entry NOT
  1884   // the address contained by entry. This is because this is more natural
  1885   // for jumps/calls.
  1886   void call(AddressLiteral entry);
  1888   // Jumps
  1890   // NOTE: these jumps tranfer to the effective address of dst NOT
  1891   // the address contained by dst. This is because this is more natural
  1892   // for jumps/calls.
  1893   void jump(AddressLiteral dst);
  1894   void jump_cc(Condition cc, AddressLiteral dst);
  1896   // 32bit can do a case table jump in one instruction but we no longer allow the base
  1897   // to be installed in the Address class. This jump will tranfers to the address
  1898   // contained in the location described by entry (not the address of entry)
  1899   void jump(ArrayAddress entry);
  1901   // Floating
  1903   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  1904   void andpd(XMMRegister dst, AddressLiteral src);
  1906   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  1907   void comiss(XMMRegister dst, AddressLiteral src);
  1909   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  1910   void comisd(XMMRegister dst, AddressLiteral src);
  1912   void fldcw(Address src) { Assembler::fldcw(src); }
  1913   void fldcw(AddressLiteral src);
  1915   void fld_s(int index)   { Assembler::fld_s(index); }
  1916   void fld_s(Address src) { Assembler::fld_s(src); }
  1917   void fld_s(AddressLiteral src);
  1919   void fld_d(Address src) { Assembler::fld_d(src); }
  1920   void fld_d(AddressLiteral src);
  1922   void fld_x(Address src) { Assembler::fld_x(src); }
  1923   void fld_x(AddressLiteral src);
  1925   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  1926   void ldmxcsr(AddressLiteral src);
  1928 private:
  1929   // these are private because users should be doing movflt/movdbl
  1931   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  1932   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  1933   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  1934   void movss(XMMRegister dst, AddressLiteral src);
  1936   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  1937   void movlpd(XMMRegister dst, AddressLiteral src);
  1939 public:
  1941   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  1942   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  1943   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  1944   void movsd(XMMRegister dst, AddressLiteral src);
  1946   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  1947   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  1948   void ucomiss(XMMRegister dst, AddressLiteral src);
  1950   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  1951   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  1952   void ucomisd(XMMRegister dst, AddressLiteral src);
  1954   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1955   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  1956   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  1957   void xorpd(XMMRegister dst, AddressLiteral src);
  1959   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1960   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  1961   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  1962   void xorps(XMMRegister dst, AddressLiteral src);
  1964   // Data
  1966   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1968   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1969   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1971   void movoop(Register dst, jobject obj);
  1972   void movoop(Address dst, jobject obj);
  1974   void movptr(ArrayAddress dst, Register src);
  1975   // can this do an lea?
  1976   void movptr(Register dst, ArrayAddress src);
  1978   void movptr(Register dst, Address src);
  1980   void movptr(Register dst, AddressLiteral src);
  1982   void movptr(Register dst, intptr_t src);
  1983   void movptr(Register dst, Register src);
  1984   void movptr(Address dst, intptr_t src);
  1986   void movptr(Address dst, Register src);
  1988 #ifdef _LP64
  1989   // Generally the next two are only used for moving NULL
  1990   // Although there are situations in initializing the mark word where
  1991   // they could be used. They are dangerous.
  1993   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1994   // and we have ambiguous declarations.
  1996   void movptr(Address dst, int32_t imm32);
  1997   void movptr(Register dst, int32_t imm32);
  1998 #endif // _LP64
  2000   // to avoid hiding movl
  2001   void mov32(AddressLiteral dst, Register src);
  2002   void mov32(Register dst, AddressLiteral src);
  2004   // to avoid hiding movb
  2005   void movbyte(ArrayAddress dst, int src);
  2007   // Can push value or effective address
  2008   void pushptr(AddressLiteral src);
  2010   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2011   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2013   void pushoop(jobject obj);
  2015   // sign extend as need a l to ptr sized element
  2016   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2017   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2020 #undef VIRTUAL
  2022 };
  2024 /**
  2025  * class SkipIfEqual:
  2027  * Instantiating this class will result in assembly code being output that will
  2028  * jump around any code emitted between the creation of the instance and it's
  2029  * automatic destruction at the end of a scope block, depending on the value of
  2030  * the flag passed to the constructor, which will be checked at run-time.
  2031  */
  2032 class SkipIfEqual {
  2033  private:
  2034   MacroAssembler* _masm;
  2035   Label _label;
  2037  public:
  2038    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2039    ~SkipIfEqual();
  2040 };
  2042 #ifdef ASSERT
  2043 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2044 #endif

mercurial