src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 17 Nov 2011 12:40:15 -0800

author
johnc
date
Thu, 17 Nov 2011 12:40:15 -0800
changeset 3296
dc467e8b2c5e
parent 3294
bca17e38de00
child 3335
3c648b9ad052
permissions
-rw-r--r--

7112743: G1: Reduce overhead of marking closure during evacuation pauses
Summary: Parallelize the serial code that was used to mark objects reachable from survivor objects in the collection set. Some minor improvments in the timers used to track the freeing of the collection set along with some tweaks to PrintGCDetails.
Reviewed-by: tonyp, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   friend class G1ParCopyHelper;
   203   friend class G1IsAliveClosure;
   204   friend class G1EvacuateFollowersClosure;
   205   friend class G1ParScanThreadState;
   206   friend class G1ParScanClosureSuper;
   207   friend class G1ParEvacuateFollowersClosure;
   208   friend class G1ParTask;
   209   friend class G1FreeGarbageRegionClosure;
   210   friend class RefineCardTableEntryClosure;
   211   friend class G1PrepareCompactClosure;
   212   friend class RegionSorter;
   213   friend class RegionResetter;
   214   friend class CountRCClosure;
   215   friend class EvacPopObjClosure;
   216   friend class G1ParCleanupCTTask;
   218   // Other related classes.
   219   friend class G1MarkSweep;
   221 private:
   222   // The one and only G1CollectedHeap, so static functions can find it.
   223   static G1CollectedHeap* _g1h;
   225   static size_t _humongous_object_threshold_in_words;
   227   // Storage for the G1 heap (excludes the permanent generation).
   228   VirtualSpace _g1_storage;
   229   MemRegion    _g1_reserved;
   231   // The part of _g1_storage that is currently committed.
   232   MemRegion _g1_committed;
   234   // The master free list. It will satisfy all new region allocations.
   235   MasterFreeRegionList      _free_list;
   237   // The secondary free list which contains regions that have been
   238   // freed up during the cleanup process. This will be appended to the
   239   // master free list when appropriate.
   240   SecondaryFreeRegionList   _secondary_free_list;
   242   // It keeps track of the old regions.
   243   MasterOldRegionSet        _old_set;
   245   // It keeps track of the humongous regions.
   246   MasterHumongousRegionSet  _humongous_set;
   248   // The number of regions we could create by expansion.
   249   size_t _expansion_regions;
   251   // The block offset table for the G1 heap.
   252   G1BlockOffsetSharedArray* _bot_shared;
   254   // Tears down the region sets / lists so that they are empty and the
   255   // regions on the heap do not belong to a region set / list. The
   256   // only exception is the humongous set which we leave unaltered. If
   257   // free_list_only is true, it will only tear down the master free
   258   // list. It is called before a Full GC (free_list_only == false) or
   259   // before heap shrinking (free_list_only == true).
   260   void tear_down_region_sets(bool free_list_only);
   262   // Rebuilds the region sets / lists so that they are repopulated to
   263   // reflect the contents of the heap. The only exception is the
   264   // humongous set which was not torn down in the first place. If
   265   // free_list_only is true, it will only rebuild the master free
   266   // list. It is called after a Full GC (free_list_only == false) or
   267   // after heap shrinking (free_list_only == true).
   268   void rebuild_region_sets(bool free_list_only);
   270   // The sequence of all heap regions in the heap.
   271   HeapRegionSeq _hrs;
   273   // Alloc region used to satisfy mutator allocation requests.
   274   MutatorAllocRegion _mutator_alloc_region;
   276   // Alloc region used to satisfy allocation requests by the GC for
   277   // survivor objects.
   278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   280   // Alloc region used to satisfy allocation requests by the GC for
   281   // old objects.
   282   OldGCAllocRegion _old_gc_alloc_region;
   284   // The last old region we allocated to during the last GC.
   285   // Typically, it is not full so we should re-use it during the next GC.
   286   HeapRegion* _retained_old_gc_alloc_region;
   288   // It resets the mutator alloc region before new allocations can take place.
   289   void init_mutator_alloc_region();
   291   // It releases the mutator alloc region.
   292   void release_mutator_alloc_region();
   294   // It initializes the GC alloc regions at the start of a GC.
   295   void init_gc_alloc_regions();
   297   // It releases the GC alloc regions at the end of a GC.
   298   void release_gc_alloc_regions();
   300   // It does any cleanup that needs to be done on the GC alloc regions
   301   // before a Full GC.
   302   void abandon_gc_alloc_regions();
   304   // Helper for monitoring and management support.
   305   G1MonitoringSupport* _g1mm;
   307   // Determines PLAB size for a particular allocation purpose.
   308   static size_t desired_plab_sz(GCAllocPurpose purpose);
   310   // Outside of GC pauses, the number of bytes used in all regions other
   311   // than the current allocation region.
   312   size_t _summary_bytes_used;
   314   // This is used for a quick test on whether a reference points into
   315   // the collection set or not. Basically, we have an array, with one
   316   // byte per region, and that byte denotes whether the corresponding
   317   // region is in the collection set or not. The entry corresponding
   318   // the bottom of the heap, i.e., region 0, is pointed to by
   319   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   320   // biased so that it actually points to address 0 of the address
   321   // space, to make the test as fast as possible (we can simply shift
   322   // the address to address into it, instead of having to subtract the
   323   // bottom of the heap from the address before shifting it; basically
   324   // it works in the same way the card table works).
   325   bool* _in_cset_fast_test;
   327   // The allocated array used for the fast test on whether a reference
   328   // points into the collection set or not. This field is also used to
   329   // free the array.
   330   bool* _in_cset_fast_test_base;
   332   // The length of the _in_cset_fast_test_base array.
   333   size_t _in_cset_fast_test_length;
   335   volatile unsigned _gc_time_stamp;
   337   size_t* _surviving_young_words;
   339   G1HRPrinter _hr_printer;
   341   void setup_surviving_young_words();
   342   void update_surviving_young_words(size_t* surv_young_words);
   343   void cleanup_surviving_young_words();
   345   // It decides whether an explicit GC should start a concurrent cycle
   346   // instead of doing a STW GC. Currently, a concurrent cycle is
   347   // explicitly started if:
   348   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   349   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   350   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   352   // Keeps track of how many "full collections" (i.e., Full GCs or
   353   // concurrent cycles) we have completed. The number of them we have
   354   // started is maintained in _total_full_collections in CollectedHeap.
   355   volatile unsigned int _full_collections_completed;
   357   // This is a non-product method that is helpful for testing. It is
   358   // called at the end of a GC and artificially expands the heap by
   359   // allocating a number of dead regions. This way we can induce very
   360   // frequent marking cycles and stress the cleanup / concurrent
   361   // cleanup code more (as all the regions that will be allocated by
   362   // this method will be found dead by the marking cycle).
   363   void allocate_dummy_regions() PRODUCT_RETURN;
   365   // These are macros so that, if the assert fires, we get the correct
   366   // line number, file, etc.
   368 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   369   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   370           (_extra_message_),                                                  \
   371           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   372           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   373           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   375 #define assert_heap_locked()                                                  \
   376   do {                                                                        \
   377     assert(Heap_lock->owned_by_self(),                                        \
   378            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   379   } while (0)
   381 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   382   do {                                                                        \
   383     assert(Heap_lock->owned_by_self() ||                                      \
   384            (SafepointSynchronize::is_at_safepoint() &&                        \
   385              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   386            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   387                                         "should be at a safepoint"));         \
   388   } while (0)
   390 #define assert_heap_locked_and_not_at_safepoint()                             \
   391   do {                                                                        \
   392     assert(Heap_lock->owned_by_self() &&                                      \
   393                                     !SafepointSynchronize::is_at_safepoint(), \
   394           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   395                                        "should not be at a safepoint"));      \
   396   } while (0)
   398 #define assert_heap_not_locked()                                              \
   399   do {                                                                        \
   400     assert(!Heap_lock->owned_by_self(),                                       \
   401         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   402   } while (0)
   404 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   405   do {                                                                        \
   406     assert(!Heap_lock->owned_by_self() &&                                     \
   407                                     !SafepointSynchronize::is_at_safepoint(), \
   408       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   409                                    "should not be at a safepoint"));          \
   410   } while (0)
   412 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   413   do {                                                                        \
   414     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   415               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   416            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   417   } while (0)
   419 #define assert_not_at_safepoint()                                             \
   420   do {                                                                        \
   421     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   422            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   423   } while (0)
   425 protected:
   427   // The young region list.
   428   YoungList*  _young_list;
   430   // The current policy object for the collector.
   431   G1CollectorPolicy* _g1_policy;
   433   // This is the second level of trying to allocate a new region. If
   434   // new_region() didn't find a region on the free_list, this call will
   435   // check whether there's anything available on the
   436   // secondary_free_list and/or wait for more regions to appear on
   437   // that list, if _free_regions_coming is set.
   438   HeapRegion* new_region_try_secondary_free_list();
   440   // Try to allocate a single non-humongous HeapRegion sufficient for
   441   // an allocation of the given word_size. If do_expand is true,
   442   // attempt to expand the heap if necessary to satisfy the allocation
   443   // request.
   444   HeapRegion* new_region(size_t word_size, bool do_expand);
   446   // Attempt to satisfy a humongous allocation request of the given
   447   // size by finding a contiguous set of free regions of num_regions
   448   // length and remove them from the master free list. Return the
   449   // index of the first region or G1_NULL_HRS_INDEX if the search
   450   // was unsuccessful.
   451   size_t humongous_obj_allocate_find_first(size_t num_regions,
   452                                            size_t word_size);
   454   // Initialize a contiguous set of free regions of length num_regions
   455   // and starting at index first so that they appear as a single
   456   // humongous region.
   457   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   458                                                       size_t num_regions,
   459                                                       size_t word_size);
   461   // Attempt to allocate a humongous object of the given size. Return
   462   // NULL if unsuccessful.
   463   HeapWord* humongous_obj_allocate(size_t word_size);
   465   // The following two methods, allocate_new_tlab() and
   466   // mem_allocate(), are the two main entry points from the runtime
   467   // into the G1's allocation routines. They have the following
   468   // assumptions:
   469   //
   470   // * They should both be called outside safepoints.
   471   //
   472   // * They should both be called without holding the Heap_lock.
   473   //
   474   // * All allocation requests for new TLABs should go to
   475   //   allocate_new_tlab().
   476   //
   477   // * All non-TLAB allocation requests should go to mem_allocate().
   478   //
   479   // * If either call cannot satisfy the allocation request using the
   480   //   current allocating region, they will try to get a new one. If
   481   //   this fails, they will attempt to do an evacuation pause and
   482   //   retry the allocation.
   483   //
   484   // * If all allocation attempts fail, even after trying to schedule
   485   //   an evacuation pause, allocate_new_tlab() will return NULL,
   486   //   whereas mem_allocate() will attempt a heap expansion and/or
   487   //   schedule a Full GC.
   488   //
   489   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   490   //   should never be called with word_size being humongous. All
   491   //   humongous allocation requests should go to mem_allocate() which
   492   //   will satisfy them with a special path.
   494   virtual HeapWord* allocate_new_tlab(size_t word_size);
   496   virtual HeapWord* mem_allocate(size_t word_size,
   497                                  bool*  gc_overhead_limit_was_exceeded);
   499   // The following three methods take a gc_count_before_ret
   500   // parameter which is used to return the GC count if the method
   501   // returns NULL. Given that we are required to read the GC count
   502   // while holding the Heap_lock, and these paths will take the
   503   // Heap_lock at some point, it's easier to get them to read the GC
   504   // count while holding the Heap_lock before they return NULL instead
   505   // of the caller (namely: mem_allocate()) having to also take the
   506   // Heap_lock just to read the GC count.
   508   // First-level mutator allocation attempt: try to allocate out of
   509   // the mutator alloc region without taking the Heap_lock. This
   510   // should only be used for non-humongous allocations.
   511   inline HeapWord* attempt_allocation(size_t word_size,
   512                                       unsigned int* gc_count_before_ret);
   514   // Second-level mutator allocation attempt: take the Heap_lock and
   515   // retry the allocation attempt, potentially scheduling a GC
   516   // pause. This should only be used for non-humongous allocations.
   517   HeapWord* attempt_allocation_slow(size_t word_size,
   518                                     unsigned int* gc_count_before_ret);
   520   // Takes the Heap_lock and attempts a humongous allocation. It can
   521   // potentially schedule a GC pause.
   522   HeapWord* attempt_allocation_humongous(size_t word_size,
   523                                          unsigned int* gc_count_before_ret);
   525   // Allocation attempt that should be called during safepoints (e.g.,
   526   // at the end of a successful GC). expect_null_mutator_alloc_region
   527   // specifies whether the mutator alloc region is expected to be NULL
   528   // or not.
   529   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   530                                        bool expect_null_mutator_alloc_region);
   532   // It dirties the cards that cover the block so that so that the post
   533   // write barrier never queues anything when updating objects on this
   534   // block. It is assumed (and in fact we assert) that the block
   535   // belongs to a young region.
   536   inline void dirty_young_block(HeapWord* start, size_t word_size);
   538   // Allocate blocks during garbage collection. Will ensure an
   539   // allocation region, either by picking one or expanding the
   540   // heap, and then allocate a block of the given size. The block
   541   // may not be a humongous - it must fit into a single heap region.
   542   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   544   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   545                                     HeapRegion*    alloc_region,
   546                                     bool           par,
   547                                     size_t         word_size);
   549   // Ensure that no further allocations can happen in "r", bearing in mind
   550   // that parallel threads might be attempting allocations.
   551   void par_allocate_remaining_space(HeapRegion* r);
   553   // Allocation attempt during GC for a survivor object / PLAB.
   554   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   556   // Allocation attempt during GC for an old object / PLAB.
   557   inline HeapWord* old_attempt_allocation(size_t word_size);
   559   // These methods are the "callbacks" from the G1AllocRegion class.
   561   // For mutator alloc regions.
   562   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   563   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   564                                    size_t allocated_bytes);
   566   // For GC alloc regions.
   567   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   568                                   GCAllocPurpose ap);
   569   void retire_gc_alloc_region(HeapRegion* alloc_region,
   570                               size_t allocated_bytes, GCAllocPurpose ap);
   572   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   573   //   inspection request and should collect the entire heap
   574   // - if clear_all_soft_refs is true, all soft references should be
   575   //   cleared during the GC
   576   // - if explicit_gc is false, word_size describes the allocation that
   577   //   the GC should attempt (at least) to satisfy
   578   // - it returns false if it is unable to do the collection due to the
   579   //   GC locker being active, true otherwise
   580   bool do_collection(bool explicit_gc,
   581                      bool clear_all_soft_refs,
   582                      size_t word_size);
   584   // Callback from VM_G1CollectFull operation.
   585   // Perform a full collection.
   586   void do_full_collection(bool clear_all_soft_refs);
   588   // Resize the heap if necessary after a full collection.  If this is
   589   // after a collect-for allocation, "word_size" is the allocation size,
   590   // and will be considered part of the used portion of the heap.
   591   void resize_if_necessary_after_full_collection(size_t word_size);
   593   // Callback from VM_G1CollectForAllocation operation.
   594   // This function does everything necessary/possible to satisfy a
   595   // failed allocation request (including collection, expansion, etc.)
   596   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   598   // Attempting to expand the heap sufficiently
   599   // to support an allocation of the given "word_size".  If
   600   // successful, perform the allocation and return the address of the
   601   // allocated block, or else "NULL".
   602   HeapWord* expand_and_allocate(size_t word_size);
   604   // Process any reference objects discovered during
   605   // an incremental evacuation pause.
   606   void process_discovered_references();
   608   // Enqueue any remaining discovered references
   609   // after processing.
   610   void enqueue_discovered_references();
   612 public:
   614   G1MonitoringSupport* g1mm() {
   615     assert(_g1mm != NULL, "should have been initialized");
   616     return _g1mm;
   617   }
   619   // Expand the garbage-first heap by at least the given size (in bytes!).
   620   // Returns true if the heap was expanded by the requested amount;
   621   // false otherwise.
   622   // (Rounds up to a HeapRegion boundary.)
   623   bool expand(size_t expand_bytes);
   625   // Do anything common to GC's.
   626   virtual void gc_prologue(bool full);
   627   virtual void gc_epilogue(bool full);
   629   // We register a region with the fast "in collection set" test. We
   630   // simply set to true the array slot corresponding to this region.
   631   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   632     assert(_in_cset_fast_test_base != NULL, "sanity");
   633     assert(r->in_collection_set(), "invariant");
   634     size_t index = r->hrs_index();
   635     assert(index < _in_cset_fast_test_length, "invariant");
   636     assert(!_in_cset_fast_test_base[index], "invariant");
   637     _in_cset_fast_test_base[index] = true;
   638   }
   640   // This is a fast test on whether a reference points into the
   641   // collection set or not. It does not assume that the reference
   642   // points into the heap; if it doesn't, it will return false.
   643   bool in_cset_fast_test(oop obj) {
   644     assert(_in_cset_fast_test != NULL, "sanity");
   645     if (_g1_committed.contains((HeapWord*) obj)) {
   646       // no need to subtract the bottom of the heap from obj,
   647       // _in_cset_fast_test is biased
   648       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   649       bool ret = _in_cset_fast_test[index];
   650       // let's make sure the result is consistent with what the slower
   651       // test returns
   652       assert( ret || !obj_in_cs(obj), "sanity");
   653       assert(!ret ||  obj_in_cs(obj), "sanity");
   654       return ret;
   655     } else {
   656       return false;
   657     }
   658   }
   660   void clear_cset_fast_test() {
   661     assert(_in_cset_fast_test_base != NULL, "sanity");
   662     memset(_in_cset_fast_test_base, false,
   663         _in_cset_fast_test_length * sizeof(bool));
   664   }
   666   // This is called at the end of either a concurrent cycle or a Full
   667   // GC to update the number of full collections completed. Those two
   668   // can happen in a nested fashion, i.e., we start a concurrent
   669   // cycle, a Full GC happens half-way through it which ends first,
   670   // and then the cycle notices that a Full GC happened and ends
   671   // too. The concurrent parameter is a boolean to help us do a bit
   672   // tighter consistency checking in the method. If concurrent is
   673   // false, the caller is the inner caller in the nesting (i.e., the
   674   // Full GC). If concurrent is true, the caller is the outer caller
   675   // in this nesting (i.e., the concurrent cycle). Further nesting is
   676   // not currently supported. The end of the this call also notifies
   677   // the FullGCCount_lock in case a Java thread is waiting for a full
   678   // GC to happen (e.g., it called System.gc() with
   679   // +ExplicitGCInvokesConcurrent).
   680   void increment_full_collections_completed(bool concurrent);
   682   unsigned int full_collections_completed() {
   683     return _full_collections_completed;
   684   }
   686   G1HRPrinter* hr_printer() { return &_hr_printer; }
   688 protected:
   690   // Shrink the garbage-first heap by at most the given size (in bytes!).
   691   // (Rounds down to a HeapRegion boundary.)
   692   virtual void shrink(size_t expand_bytes);
   693   void shrink_helper(size_t expand_bytes);
   695   #if TASKQUEUE_STATS
   696   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   697   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   698   void reset_taskqueue_stats();
   699   #endif // TASKQUEUE_STATS
   701   // Schedule the VM operation that will do an evacuation pause to
   702   // satisfy an allocation request of word_size. *succeeded will
   703   // return whether the VM operation was successful (it did do an
   704   // evacuation pause) or not (another thread beat us to it or the GC
   705   // locker was active). Given that we should not be holding the
   706   // Heap_lock when we enter this method, we will pass the
   707   // gc_count_before (i.e., total_collections()) as a parameter since
   708   // it has to be read while holding the Heap_lock. Currently, both
   709   // methods that call do_collection_pause() release the Heap_lock
   710   // before the call, so it's easy to read gc_count_before just before.
   711   HeapWord* do_collection_pause(size_t       word_size,
   712                                 unsigned int gc_count_before,
   713                                 bool*        succeeded);
   715   // The guts of the incremental collection pause, executed by the vm
   716   // thread. It returns false if it is unable to do the collection due
   717   // to the GC locker being active, true otherwise
   718   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   720   // Actually do the work of evacuating the collection set.
   721   void evacuate_collection_set();
   723   // The g1 remembered set of the heap.
   724   G1RemSet* _g1_rem_set;
   725   // And it's mod ref barrier set, used to track updates for the above.
   726   ModRefBarrierSet* _mr_bs;
   728   // A set of cards that cover the objects for which the Rsets should be updated
   729   // concurrently after the collection.
   730   DirtyCardQueueSet _dirty_card_queue_set;
   732   // The Heap Region Rem Set Iterator.
   733   HeapRegionRemSetIterator** _rem_set_iterator;
   735   // The closure used to refine a single card.
   736   RefineCardTableEntryClosure* _refine_cte_cl;
   738   // A function to check the consistency of dirty card logs.
   739   void check_ct_logs_at_safepoint();
   741   // A DirtyCardQueueSet that is used to hold cards that contain
   742   // references into the current collection set. This is used to
   743   // update the remembered sets of the regions in the collection
   744   // set in the event of an evacuation failure.
   745   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   747   // After a collection pause, make the regions in the CS into free
   748   // regions.
   749   void free_collection_set(HeapRegion* cs_head);
   751   // Abandon the current collection set without recording policy
   752   // statistics or updating free lists.
   753   void abandon_collection_set(HeapRegion* cs_head);
   755   // Applies "scan_non_heap_roots" to roots outside the heap,
   756   // "scan_rs" to roots inside the heap (having done "set_region" to
   757   // indicate the region in which the root resides), and does "scan_perm"
   758   // (setting the generation to the perm generation.)  If "scan_rs" is
   759   // NULL, then this step is skipped.  The "worker_i"
   760   // param is for use with parallel roots processing, and should be
   761   // the "i" of the calling parallel worker thread's work(i) function.
   762   // In the sequential case this param will be ignored.
   763   void g1_process_strong_roots(bool collecting_perm_gen,
   764                                SharedHeap::ScanningOption so,
   765                                OopClosure* scan_non_heap_roots,
   766                                OopsInHeapRegionClosure* scan_rs,
   767                                OopsInGenClosure* scan_perm,
   768                                int worker_i);
   770   // Apply "blk" to all the weak roots of the system.  These include
   771   // JNI weak roots, the code cache, system dictionary, symbol table,
   772   // string table, and referents of reachable weak refs.
   773   void g1_process_weak_roots(OopClosure* root_closure,
   774                              OopClosure* non_root_closure);
   776   // Frees a non-humongous region by initializing its contents and
   777   // adding it to the free list that's passed as a parameter (this is
   778   // usually a local list which will be appended to the master free
   779   // list later). The used bytes of freed regions are accumulated in
   780   // pre_used. If par is true, the region's RSet will not be freed
   781   // up. The assumption is that this will be done later.
   782   void free_region(HeapRegion* hr,
   783                    size_t* pre_used,
   784                    FreeRegionList* free_list,
   785                    bool par);
   787   // Frees a humongous region by collapsing it into individual regions
   788   // and calling free_region() for each of them. The freed regions
   789   // will be added to the free list that's passed as a parameter (this
   790   // is usually a local list which will be appended to the master free
   791   // list later). The used bytes of freed regions are accumulated in
   792   // pre_used. If par is true, the region's RSet will not be freed
   793   // up. The assumption is that this will be done later.
   794   void free_humongous_region(HeapRegion* hr,
   795                              size_t* pre_used,
   796                              FreeRegionList* free_list,
   797                              HumongousRegionSet* humongous_proxy_set,
   798                              bool par);
   800   // Notifies all the necessary spaces that the committed space has
   801   // been updated (either expanded or shrunk). It should be called
   802   // after _g1_storage is updated.
   803   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   805   // The concurrent marker (and the thread it runs in.)
   806   ConcurrentMark* _cm;
   807   ConcurrentMarkThread* _cmThread;
   808   bool _mark_in_progress;
   810   // The concurrent refiner.
   811   ConcurrentG1Refine* _cg1r;
   813   // The parallel task queues
   814   RefToScanQueueSet *_task_queues;
   816   // True iff a evacuation has failed in the current collection.
   817   bool _evacuation_failed;
   819   // Set the attribute indicating whether evacuation has failed in the
   820   // current collection.
   821   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   823   // Failed evacuations cause some logical from-space objects to have
   824   // forwarding pointers to themselves.  Reset them.
   825   void remove_self_forwarding_pointers();
   827   // When one is non-null, so is the other.  Together, they each pair is
   828   // an object with a preserved mark, and its mark value.
   829   GrowableArray<oop>*     _objs_with_preserved_marks;
   830   GrowableArray<markOop>* _preserved_marks_of_objs;
   832   // Preserve the mark of "obj", if necessary, in preparation for its mark
   833   // word being overwritten with a self-forwarding-pointer.
   834   void preserve_mark_if_necessary(oop obj, markOop m);
   836   // The stack of evac-failure objects left to be scanned.
   837   GrowableArray<oop>*    _evac_failure_scan_stack;
   838   // The closure to apply to evac-failure objects.
   840   OopsInHeapRegionClosure* _evac_failure_closure;
   841   // Set the field above.
   842   void
   843   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   844     _evac_failure_closure = evac_failure_closure;
   845   }
   847   // Push "obj" on the scan stack.
   848   void push_on_evac_failure_scan_stack(oop obj);
   849   // Process scan stack entries until the stack is empty.
   850   void drain_evac_failure_scan_stack();
   851   // True iff an invocation of "drain_scan_stack" is in progress; to
   852   // prevent unnecessary recursion.
   853   bool _drain_in_progress;
   855   // Do any necessary initialization for evacuation-failure handling.
   856   // "cl" is the closure that will be used to process evac-failure
   857   // objects.
   858   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   859   // Do any necessary cleanup for evacuation-failure handling data
   860   // structures.
   861   void finalize_for_evac_failure();
   863   // An attempt to evacuate "obj" has failed; take necessary steps.
   864   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj,
   865                                     bool should_mark_root);
   866   void handle_evacuation_failure_common(oop obj, markOop m);
   868   // ("Weak") Reference processing support.
   869   //
   870   // G1 has 2 instances of the referece processor class. One
   871   // (_ref_processor_cm) handles reference object discovery
   872   // and subsequent processing during concurrent marking cycles.
   873   //
   874   // The other (_ref_processor_stw) handles reference object
   875   // discovery and processing during full GCs and incremental
   876   // evacuation pauses.
   877   //
   878   // During an incremental pause, reference discovery will be
   879   // temporarily disabled for _ref_processor_cm and will be
   880   // enabled for _ref_processor_stw. At the end of the evacuation
   881   // pause references discovered by _ref_processor_stw will be
   882   // processed and discovery will be disabled. The previous
   883   // setting for reference object discovery for _ref_processor_cm
   884   // will be re-instated.
   885   //
   886   // At the start of marking:
   887   //  * Discovery by the CM ref processor is verified to be inactive
   888   //    and it's discovered lists are empty.
   889   //  * Discovery by the CM ref processor is then enabled.
   890   //
   891   // At the end of marking:
   892   //  * Any references on the CM ref processor's discovered
   893   //    lists are processed (possibly MT).
   894   //
   895   // At the start of full GC we:
   896   //  * Disable discovery by the CM ref processor and
   897   //    empty CM ref processor's discovered lists
   898   //    (without processing any entries).
   899   //  * Verify that the STW ref processor is inactive and it's
   900   //    discovered lists are empty.
   901   //  * Temporarily set STW ref processor discovery as single threaded.
   902   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   903   //    field.
   904   //  * Finally enable discovery by the STW ref processor.
   905   //
   906   // The STW ref processor is used to record any discovered
   907   // references during the full GC.
   908   //
   909   // At the end of a full GC we:
   910   //  * Enqueue any reference objects discovered by the STW ref processor
   911   //    that have non-live referents. This has the side-effect of
   912   //    making the STW ref processor inactive by disabling discovery.
   913   //  * Verify that the CM ref processor is still inactive
   914   //    and no references have been placed on it's discovered
   915   //    lists (also checked as a precondition during initial marking).
   917   // The (stw) reference processor...
   918   ReferenceProcessor* _ref_processor_stw;
   920   // During reference object discovery, the _is_alive_non_header
   921   // closure (if non-null) is applied to the referent object to
   922   // determine whether the referent is live. If so then the
   923   // reference object does not need to be 'discovered' and can
   924   // be treated as a regular oop. This has the benefit of reducing
   925   // the number of 'discovered' reference objects that need to
   926   // be processed.
   927   //
   928   // Instance of the is_alive closure for embedding into the
   929   // STW reference processor as the _is_alive_non_header field.
   930   // Supplying a value for the _is_alive_non_header field is
   931   // optional but doing so prevents unnecessary additions to
   932   // the discovered lists during reference discovery.
   933   G1STWIsAliveClosure _is_alive_closure_stw;
   935   // The (concurrent marking) reference processor...
   936   ReferenceProcessor* _ref_processor_cm;
   938   // Instance of the concurrent mark is_alive closure for embedding
   939   // into the Concurrent Marking reference processor as the
   940   // _is_alive_non_header field. Supplying a value for the
   941   // _is_alive_non_header field is optional but doing so prevents
   942   // unnecessary additions to the discovered lists during reference
   943   // discovery.
   944   G1CMIsAliveClosure _is_alive_closure_cm;
   946   enum G1H_process_strong_roots_tasks {
   947     G1H_PS_mark_stack_oops_do,
   948     G1H_PS_refProcessor_oops_do,
   949     // Leave this one last.
   950     G1H_PS_NumElements
   951   };
   953   SubTasksDone* _process_strong_tasks;
   955   volatile bool _free_regions_coming;
   957 public:
   959   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   961   void set_refine_cte_cl_concurrency(bool concurrent);
   963   RefToScanQueue *task_queue(int i) const;
   965   // A set of cards where updates happened during the GC
   966   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   968   // A DirtyCardQueueSet that is used to hold cards that contain
   969   // references into the current collection set. This is used to
   970   // update the remembered sets of the regions in the collection
   971   // set in the event of an evacuation failure.
   972   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   973         { return _into_cset_dirty_card_queue_set; }
   975   // Create a G1CollectedHeap with the specified policy.
   976   // Must call the initialize method afterwards.
   977   // May not return if something goes wrong.
   978   G1CollectedHeap(G1CollectorPolicy* policy);
   980   // Initialize the G1CollectedHeap to have the initial and
   981   // maximum sizes, permanent generation, and remembered and barrier sets
   982   // specified by the policy object.
   983   jint initialize();
   985   // Initialize weak reference processing.
   986   virtual void ref_processing_init();
   988   void set_par_threads(int t) {
   989     SharedHeap::set_par_threads(t);
   990     // Done in SharedHeap but oddly there are
   991     // two _process_strong_tasks's in a G1CollectedHeap
   992     // so do it here too.
   993     _process_strong_tasks->set_n_threads(t);
   994   }
   996   // Set _n_par_threads according to a policy TBD.
   997   void set_par_threads();
   999   void set_n_termination(int t) {
  1000     _process_strong_tasks->set_n_threads(t);
  1003   virtual CollectedHeap::Name kind() const {
  1004     return CollectedHeap::G1CollectedHeap;
  1007   // The current policy object for the collector.
  1008   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1010   // Adaptive size policy.  No such thing for g1.
  1011   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1013   // The rem set and barrier set.
  1014   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1015   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1017   // The rem set iterator.
  1018   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1019     return _rem_set_iterator[i];
  1022   HeapRegionRemSetIterator* rem_set_iterator() {
  1023     return _rem_set_iterator[0];
  1026   unsigned get_gc_time_stamp() {
  1027     return _gc_time_stamp;
  1030   void reset_gc_time_stamp() {
  1031     _gc_time_stamp = 0;
  1032     OrderAccess::fence();
  1035   void increment_gc_time_stamp() {
  1036     ++_gc_time_stamp;
  1037     OrderAccess::fence();
  1040   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1041                                   DirtyCardQueue* into_cset_dcq,
  1042                                   bool concurrent, int worker_i);
  1044   // The shared block offset table array.
  1045   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1047   // Reference Processing accessors
  1049   // The STW reference processor....
  1050   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1052   // The Concurent Marking reference processor...
  1053   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1055   virtual size_t capacity() const;
  1056   virtual size_t used() const;
  1057   // This should be called when we're not holding the heap lock. The
  1058   // result might be a bit inaccurate.
  1059   size_t used_unlocked() const;
  1060   size_t recalculate_used() const;
  1062   // These virtual functions do the actual allocation.
  1063   // Some heaps may offer a contiguous region for shared non-blocking
  1064   // allocation, via inlined code (by exporting the address of the top and
  1065   // end fields defining the extent of the contiguous allocation region.)
  1066   // But G1CollectedHeap doesn't yet support this.
  1068   // Return an estimate of the maximum allocation that could be performed
  1069   // without triggering any collection or expansion activity.  In a
  1070   // generational collector, for example, this is probably the largest
  1071   // allocation that could be supported (without expansion) in the youngest
  1072   // generation.  It is "unsafe" because no locks are taken; the result
  1073   // should be treated as an approximation, not a guarantee, for use in
  1074   // heuristic resizing decisions.
  1075   virtual size_t unsafe_max_alloc();
  1077   virtual bool is_maximal_no_gc() const {
  1078     return _g1_storage.uncommitted_size() == 0;
  1081   // The total number of regions in the heap.
  1082   size_t n_regions() { return _hrs.length(); }
  1084   // The max number of regions in the heap.
  1085   size_t max_regions() { return _hrs.max_length(); }
  1087   // The number of regions that are completely free.
  1088   size_t free_regions() { return _free_list.length(); }
  1090   // The number of regions that are not completely free.
  1091   size_t used_regions() { return n_regions() - free_regions(); }
  1093   // The number of regions available for "regular" expansion.
  1094   size_t expansion_regions() { return _expansion_regions; }
  1096   // Factory method for HeapRegion instances. It will return NULL if
  1097   // the allocation fails.
  1098   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
  1100   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1101   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1102   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1103   void verify_dirty_young_regions() PRODUCT_RETURN;
  1105   // verify_region_sets() performs verification over the region
  1106   // lists. It will be compiled in the product code to be used when
  1107   // necessary (i.e., during heap verification).
  1108   void verify_region_sets();
  1110   // verify_region_sets_optional() is planted in the code for
  1111   // list verification in non-product builds (and it can be enabled in
  1112   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1113 #if HEAP_REGION_SET_FORCE_VERIFY
  1114   void verify_region_sets_optional() {
  1115     verify_region_sets();
  1117 #else // HEAP_REGION_SET_FORCE_VERIFY
  1118   void verify_region_sets_optional() { }
  1119 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1121 #ifdef ASSERT
  1122   bool is_on_master_free_list(HeapRegion* hr) {
  1123     return hr->containing_set() == &_free_list;
  1126   bool is_in_humongous_set(HeapRegion* hr) {
  1127     return hr->containing_set() == &_humongous_set;
  1129 #endif // ASSERT
  1131   // Wrapper for the region list operations that can be called from
  1132   // methods outside this class.
  1134   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1135     _secondary_free_list.add_as_tail(list);
  1138   void append_secondary_free_list() {
  1139     _free_list.add_as_head(&_secondary_free_list);
  1142   void append_secondary_free_list_if_not_empty_with_lock() {
  1143     // If the secondary free list looks empty there's no reason to
  1144     // take the lock and then try to append it.
  1145     if (!_secondary_free_list.is_empty()) {
  1146       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1147       append_secondary_free_list();
  1151   void old_set_remove(HeapRegion* hr) {
  1152     _old_set.remove(hr);
  1155   void set_free_regions_coming();
  1156   void reset_free_regions_coming();
  1157   bool free_regions_coming() { return _free_regions_coming; }
  1158   void wait_while_free_regions_coming();
  1160   // Perform a collection of the heap; intended for use in implementing
  1161   // "System.gc".  This probably implies as full a collection as the
  1162   // "CollectedHeap" supports.
  1163   virtual void collect(GCCause::Cause cause);
  1165   // The same as above but assume that the caller holds the Heap_lock.
  1166   void collect_locked(GCCause::Cause cause);
  1168   // This interface assumes that it's being called by the
  1169   // vm thread. It collects the heap assuming that the
  1170   // heap lock is already held and that we are executing in
  1171   // the context of the vm thread.
  1172   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1174   // True iff a evacuation has failed in the most-recent collection.
  1175   bool evacuation_failed() { return _evacuation_failed; }
  1177   // It will free a region if it has allocated objects in it that are
  1178   // all dead. It calls either free_region() or
  1179   // free_humongous_region() depending on the type of the region that
  1180   // is passed to it.
  1181   void free_region_if_empty(HeapRegion* hr,
  1182                             size_t* pre_used,
  1183                             FreeRegionList* free_list,
  1184                             OldRegionSet* old_proxy_set,
  1185                             HumongousRegionSet* humongous_proxy_set,
  1186                             HRRSCleanupTask* hrrs_cleanup_task,
  1187                             bool par);
  1189   // It appends the free list to the master free list and updates the
  1190   // master humongous list according to the contents of the proxy
  1191   // list. It also adjusts the total used bytes according to pre_used
  1192   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1193   void update_sets_after_freeing_regions(size_t pre_used,
  1194                                        FreeRegionList* free_list,
  1195                                        OldRegionSet* old_proxy_set,
  1196                                        HumongousRegionSet* humongous_proxy_set,
  1197                                        bool par);
  1199   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1200   virtual bool is_in(const void* p) const;
  1202   // Return "TRUE" iff the given object address is within the collection
  1203   // set.
  1204   inline bool obj_in_cs(oop obj);
  1206   // Return "TRUE" iff the given object address is in the reserved
  1207   // region of g1 (excluding the permanent generation).
  1208   bool is_in_g1_reserved(const void* p) const {
  1209     return _g1_reserved.contains(p);
  1212   // Returns a MemRegion that corresponds to the space that has been
  1213   // reserved for the heap
  1214   MemRegion g1_reserved() {
  1215     return _g1_reserved;
  1218   // Returns a MemRegion that corresponds to the space that has been
  1219   // committed in the heap
  1220   MemRegion g1_committed() {
  1221     return _g1_committed;
  1224   virtual bool is_in_closed_subset(const void* p) const;
  1226   // This resets the card table to all zeros.  It is used after
  1227   // a collection pause which used the card table to claim cards.
  1228   void cleanUpCardTable();
  1230   // Iteration functions.
  1232   // Iterate over all the ref-containing fields of all objects, calling
  1233   // "cl.do_oop" on each.
  1234   virtual void oop_iterate(OopClosure* cl) {
  1235     oop_iterate(cl, true);
  1237   void oop_iterate(OopClosure* cl, bool do_perm);
  1239   // Same as above, restricted to a memory region.
  1240   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1241     oop_iterate(mr, cl, true);
  1243   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1245   // Iterate over all objects, calling "cl.do_object" on each.
  1246   virtual void object_iterate(ObjectClosure* cl) {
  1247     object_iterate(cl, true);
  1249   virtual void safe_object_iterate(ObjectClosure* cl) {
  1250     object_iterate(cl, true);
  1252   void object_iterate(ObjectClosure* cl, bool do_perm);
  1254   // Iterate over all objects allocated since the last collection, calling
  1255   // "cl.do_object" on each.  The heap must have been initialized properly
  1256   // to support this function, or else this call will fail.
  1257   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1259   // Iterate over all spaces in use in the heap, in ascending address order.
  1260   virtual void space_iterate(SpaceClosure* cl);
  1262   // Iterate over heap regions, in address order, terminating the
  1263   // iteration early if the "doHeapRegion" method returns "true".
  1264   void heap_region_iterate(HeapRegionClosure* blk) const;
  1266   // Iterate over heap regions starting with r (or the first region if "r"
  1267   // is NULL), in address order, terminating early if the "doHeapRegion"
  1268   // method returns "true".
  1269   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1271   // Return the region with the given index. It assumes the index is valid.
  1272   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1274   // Divide the heap region sequence into "chunks" of some size (the number
  1275   // of regions divided by the number of parallel threads times some
  1276   // overpartition factor, currently 4).  Assumes that this will be called
  1277   // in parallel by ParallelGCThreads worker threads with discinct worker
  1278   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1279   // calls will use the same "claim_value", and that that claim value is
  1280   // different from the claim_value of any heap region before the start of
  1281   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1282   // attempting to claim the first region in each chunk, and, if
  1283   // successful, applying the closure to each region in the chunk (and
  1284   // setting the claim value of the second and subsequent regions of the
  1285   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1286   // i.e., that a closure never attempt to abort a traversal.
  1287   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1288                                        int worker,
  1289                                        int no_of_par_workers,
  1290                                        jint claim_value);
  1292   // It resets all the region claim values to the default.
  1293   void reset_heap_region_claim_values();
  1295 #ifdef ASSERT
  1296   bool check_heap_region_claim_values(jint claim_value);
  1298   // Same as the routine above but only checks regions in the
  1299   // current collection set.
  1300   bool check_cset_heap_region_claim_values(jint claim_value);
  1301 #endif // ASSERT
  1303   // Given the id of a worker, calculate a suitable
  1304   // starting region for iterating over the current
  1305   // collection set.
  1306   HeapRegion* start_cset_region_for_worker(int worker_i);
  1308   // Iterate over the regions (if any) in the current collection set.
  1309   void collection_set_iterate(HeapRegionClosure* blk);
  1311   // As above but starting from region r
  1312   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1314   // Returns the first (lowest address) compactible space in the heap.
  1315   virtual CompactibleSpace* first_compactible_space();
  1317   // A CollectedHeap will contain some number of spaces.  This finds the
  1318   // space containing a given address, or else returns NULL.
  1319   virtual Space* space_containing(const void* addr) const;
  1321   // A G1CollectedHeap will contain some number of heap regions.  This
  1322   // finds the region containing a given address, or else returns NULL.
  1323   template <class T>
  1324   inline HeapRegion* heap_region_containing(const T addr) const;
  1326   // Like the above, but requires "addr" to be in the heap (to avoid a
  1327   // null-check), and unlike the above, may return an continuing humongous
  1328   // region.
  1329   template <class T>
  1330   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1332   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1333   // each address in the (reserved) heap is a member of exactly
  1334   // one block.  The defining characteristic of a block is that it is
  1335   // possible to find its size, and thus to progress forward to the next
  1336   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1337   // represent Java objects, or they might be free blocks in a
  1338   // free-list-based heap (or subheap), as long as the two kinds are
  1339   // distinguishable and the size of each is determinable.
  1341   // Returns the address of the start of the "block" that contains the
  1342   // address "addr".  We say "blocks" instead of "object" since some heaps
  1343   // may not pack objects densely; a chunk may either be an object or a
  1344   // non-object.
  1345   virtual HeapWord* block_start(const void* addr) const;
  1347   // Requires "addr" to be the start of a chunk, and returns its size.
  1348   // "addr + size" is required to be the start of a new chunk, or the end
  1349   // of the active area of the heap.
  1350   virtual size_t block_size(const HeapWord* addr) const;
  1352   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1353   // the block is an object.
  1354   virtual bool block_is_obj(const HeapWord* addr) const;
  1356   // Does this heap support heap inspection? (+PrintClassHistogram)
  1357   virtual bool supports_heap_inspection() const { return true; }
  1359   // Section on thread-local allocation buffers (TLABs)
  1360   // See CollectedHeap for semantics.
  1362   virtual bool supports_tlab_allocation() const;
  1363   virtual size_t tlab_capacity(Thread* thr) const;
  1364   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1366   // Can a compiler initialize a new object without store barriers?
  1367   // This permission only extends from the creation of a new object
  1368   // via a TLAB up to the first subsequent safepoint. If such permission
  1369   // is granted for this heap type, the compiler promises to call
  1370   // defer_store_barrier() below on any slow path allocation of
  1371   // a new object for which such initializing store barriers will
  1372   // have been elided. G1, like CMS, allows this, but should be
  1373   // ready to provide a compensating write barrier as necessary
  1374   // if that storage came out of a non-young region. The efficiency
  1375   // of this implementation depends crucially on being able to
  1376   // answer very efficiently in constant time whether a piece of
  1377   // storage in the heap comes from a young region or not.
  1378   // See ReduceInitialCardMarks.
  1379   virtual bool can_elide_tlab_store_barriers() const {
  1380     return true;
  1383   virtual bool card_mark_must_follow_store() const {
  1384     return true;
  1387   bool is_in_young(const oop obj) {
  1388     HeapRegion* hr = heap_region_containing(obj);
  1389     return hr != NULL && hr->is_young();
  1392 #ifdef ASSERT
  1393   virtual bool is_in_partial_collection(const void* p);
  1394 #endif
  1396   virtual bool is_scavengable(const void* addr);
  1398   // We don't need barriers for initializing stores to objects
  1399   // in the young gen: for the SATB pre-barrier, there is no
  1400   // pre-value that needs to be remembered; for the remembered-set
  1401   // update logging post-barrier, we don't maintain remembered set
  1402   // information for young gen objects.
  1403   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1404     return is_in_young(new_obj);
  1407   // Can a compiler elide a store barrier when it writes
  1408   // a permanent oop into the heap?  Applies when the compiler
  1409   // is storing x to the heap, where x->is_perm() is true.
  1410   virtual bool can_elide_permanent_oop_store_barriers() const {
  1411     // At least until perm gen collection is also G1-ified, at
  1412     // which point this should return false.
  1413     return true;
  1416   // Returns "true" iff the given word_size is "very large".
  1417   static bool isHumongous(size_t word_size) {
  1418     // Note this has to be strictly greater-than as the TLABs
  1419     // are capped at the humongous thresold and we want to
  1420     // ensure that we don't try to allocate a TLAB as
  1421     // humongous and that we don't allocate a humongous
  1422     // object in a TLAB.
  1423     return word_size > _humongous_object_threshold_in_words;
  1426   // Update mod union table with the set of dirty cards.
  1427   void updateModUnion();
  1429   // Set the mod union bits corresponding to the given memRegion.  Note
  1430   // that this is always a safe operation, since it doesn't clear any
  1431   // bits.
  1432   void markModUnionRange(MemRegion mr);
  1434   // Records the fact that a marking phase is no longer in progress.
  1435   void set_marking_complete() {
  1436     _mark_in_progress = false;
  1438   void set_marking_started() {
  1439     _mark_in_progress = true;
  1441   bool mark_in_progress() {
  1442     return _mark_in_progress;
  1445   // Print the maximum heap capacity.
  1446   virtual size_t max_capacity() const;
  1448   virtual jlong millis_since_last_gc();
  1450   // Perform any cleanup actions necessary before allowing a verification.
  1451   virtual void prepare_for_verify();
  1453   // Perform verification.
  1455   // vo == UsePrevMarking  -> use "prev" marking information,
  1456   // vo == UseNextMarking -> use "next" marking information
  1457   // vo == UseMarkWord    -> use the mark word in the object header
  1458   //
  1459   // NOTE: Only the "prev" marking information is guaranteed to be
  1460   // consistent most of the time, so most calls to this should use
  1461   // vo == UsePrevMarking.
  1462   // Currently, there is only one case where this is called with
  1463   // vo == UseNextMarking, which is to verify the "next" marking
  1464   // information at the end of remark.
  1465   // Currently there is only one place where this is called with
  1466   // vo == UseMarkWord, which is to verify the marking during a
  1467   // full GC.
  1468   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1470   // Override; it uses the "prev" marking information
  1471   virtual void verify(bool allow_dirty, bool silent);
  1472   virtual void print_on(outputStream* st) const;
  1473   virtual void print_extended_on(outputStream* st) const;
  1475   virtual void print_gc_threads_on(outputStream* st) const;
  1476   virtual void gc_threads_do(ThreadClosure* tc) const;
  1478   // Override
  1479   void print_tracing_info() const;
  1481   // The following two methods are helpful for debugging RSet issues.
  1482   void print_cset_rsets() PRODUCT_RETURN;
  1483   void print_all_rsets() PRODUCT_RETURN;
  1485   // Convenience function to be used in situations where the heap type can be
  1486   // asserted to be this type.
  1487   static G1CollectedHeap* heap();
  1489   void set_region_short_lived_locked(HeapRegion* hr);
  1490   // add appropriate methods for any other surv rate groups
  1492   YoungList* young_list() { return _young_list; }
  1494   // debugging
  1495   bool check_young_list_well_formed() {
  1496     return _young_list->check_list_well_formed();
  1499   bool check_young_list_empty(bool check_heap,
  1500                               bool check_sample = true);
  1502   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1503   // many of these need to be public.
  1505   // The functions below are helper functions that a subclass of
  1506   // "CollectedHeap" can use in the implementation of its virtual
  1507   // functions.
  1508   // This performs a concurrent marking of the live objects in a
  1509   // bitmap off to the side.
  1510   void doConcurrentMark();
  1512   bool isMarkedPrev(oop obj) const;
  1513   bool isMarkedNext(oop obj) const;
  1515   // vo == UsePrevMarking -> use "prev" marking information,
  1516   // vo == UseNextMarking -> use "next" marking information,
  1517   // vo == UseMarkWord    -> use mark word from object header
  1518   bool is_obj_dead_cond(const oop obj,
  1519                         const HeapRegion* hr,
  1520                         const VerifyOption vo) const {
  1522     switch (vo) {
  1523       case VerifyOption_G1UsePrevMarking:
  1524         return is_obj_dead(obj, hr);
  1525       case VerifyOption_G1UseNextMarking:
  1526         return is_obj_ill(obj, hr);
  1527       default:
  1528         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1529         return !obj->is_gc_marked();
  1533   // Determine if an object is dead, given the object and also
  1534   // the region to which the object belongs. An object is dead
  1535   // iff a) it was not allocated since the last mark and b) it
  1536   // is not marked.
  1538   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1539     return
  1540       !hr->obj_allocated_since_prev_marking(obj) &&
  1541       !isMarkedPrev(obj);
  1544   // This is used when copying an object to survivor space.
  1545   // If the object is marked live, then we mark the copy live.
  1546   // If the object is allocated since the start of this mark
  1547   // cycle, then we mark the copy live.
  1548   // If the object has been around since the previous mark
  1549   // phase, and hasn't been marked yet during this phase,
  1550   // then we don't mark it, we just wait for the
  1551   // current marking cycle to get to it.
  1553   // This function returns true when an object has been
  1554   // around since the previous marking and hasn't yet
  1555   // been marked during this marking.
  1557   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1558     return
  1559       !hr->obj_allocated_since_next_marking(obj) &&
  1560       !isMarkedNext(obj);
  1563   // Determine if an object is dead, given only the object itself.
  1564   // This will find the region to which the object belongs and
  1565   // then call the region version of the same function.
  1567   // Added if it is in permanent gen it isn't dead.
  1568   // Added if it is NULL it isn't dead.
  1570   // vo == UsePrevMarking -> use "prev" marking information,
  1571   // vo == UseNextMarking -> use "next" marking information,
  1572   // vo == UseMarkWord    -> use mark word from object header
  1573   bool is_obj_dead_cond(const oop obj,
  1574                         const VerifyOption vo) const {
  1576     switch (vo) {
  1577       case VerifyOption_G1UsePrevMarking:
  1578         return is_obj_dead(obj);
  1579       case VerifyOption_G1UseNextMarking:
  1580         return is_obj_ill(obj);
  1581       default:
  1582         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1583         return !obj->is_gc_marked();
  1587   bool is_obj_dead(const oop obj) const {
  1588     const HeapRegion* hr = heap_region_containing(obj);
  1589     if (hr == NULL) {
  1590       if (Universe::heap()->is_in_permanent(obj))
  1591         return false;
  1592       else if (obj == NULL) return false;
  1593       else return true;
  1595     else return is_obj_dead(obj, hr);
  1598   bool is_obj_ill(const oop obj) const {
  1599     const HeapRegion* hr = heap_region_containing(obj);
  1600     if (hr == NULL) {
  1601       if (Universe::heap()->is_in_permanent(obj))
  1602         return false;
  1603       else if (obj == NULL) return false;
  1604       else return true;
  1606     else return is_obj_ill(obj, hr);
  1609   // The following is just to alert the verification code
  1610   // that a full collection has occurred and that the
  1611   // remembered sets are no longer up to date.
  1612   bool _full_collection;
  1613   void set_full_collection() { _full_collection = true;}
  1614   void clear_full_collection() {_full_collection = false;}
  1615   bool full_collection() {return _full_collection;}
  1617   ConcurrentMark* concurrent_mark() const { return _cm; }
  1618   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1620   // The dirty cards region list is used to record a subset of regions
  1621   // whose cards need clearing. The list if populated during the
  1622   // remembered set scanning and drained during the card table
  1623   // cleanup. Although the methods are reentrant, population/draining
  1624   // phases must not overlap. For synchronization purposes the last
  1625   // element on the list points to itself.
  1626   HeapRegion* _dirty_cards_region_list;
  1627   void push_dirty_cards_region(HeapRegion* hr);
  1628   HeapRegion* pop_dirty_cards_region();
  1630 public:
  1631   void stop_conc_gc_threads();
  1633   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1634   void check_if_region_is_too_expensive(double predicted_time_ms);
  1635   size_t pending_card_num();
  1636   size_t max_pending_card_num();
  1637   size_t cards_scanned();
  1639 protected:
  1640   size_t _max_heap_capacity;
  1641 };
  1643 #define use_local_bitmaps         1
  1644 #define verify_local_bitmaps      0
  1645 #define oop_buffer_length       256
  1647 #ifndef PRODUCT
  1648 class GCLabBitMap;
  1649 class GCLabBitMapClosure: public BitMapClosure {
  1650 private:
  1651   ConcurrentMark* _cm;
  1652   GCLabBitMap*    _bitmap;
  1654 public:
  1655   GCLabBitMapClosure(ConcurrentMark* cm,
  1656                      GCLabBitMap* bitmap) {
  1657     _cm     = cm;
  1658     _bitmap = bitmap;
  1661   virtual bool do_bit(size_t offset);
  1662 };
  1663 #endif // !PRODUCT
  1665 class GCLabBitMap: public BitMap {
  1666 private:
  1667   ConcurrentMark* _cm;
  1669   int       _shifter;
  1670   size_t    _bitmap_word_covers_words;
  1672   // beginning of the heap
  1673   HeapWord* _heap_start;
  1675   // this is the actual start of the GCLab
  1676   HeapWord* _real_start_word;
  1678   // this is the actual end of the GCLab
  1679   HeapWord* _real_end_word;
  1681   // this is the first word, possibly located before the actual start
  1682   // of the GCLab, that corresponds to the first bit of the bitmap
  1683   HeapWord* _start_word;
  1685   // size of a GCLab in words
  1686   size_t _gclab_word_size;
  1688   static int shifter() {
  1689     return MinObjAlignment - 1;
  1692   // how many heap words does a single bitmap word corresponds to?
  1693   static size_t bitmap_word_covers_words() {
  1694     return BitsPerWord << shifter();
  1697   size_t gclab_word_size() const {
  1698     return _gclab_word_size;
  1701   // Calculates actual GCLab size in words
  1702   size_t gclab_real_word_size() const {
  1703     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1704            / BitsPerWord;
  1707   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1708     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1709     // We are going to ensure that the beginning of a word in this
  1710     // bitmap also corresponds to the beginning of a word in the
  1711     // global marking bitmap. To handle the case where a GCLab
  1712     // starts from the middle of the bitmap, we need to add enough
  1713     // space (i.e. up to a bitmap word) to ensure that we have
  1714     // enough bits in the bitmap.
  1715     return bits_in_bitmap + BitsPerWord - 1;
  1717 public:
  1718   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1719     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1720       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1721       _shifter(shifter()),
  1722       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1723       _heap_start(heap_start),
  1724       _gclab_word_size(gclab_word_size),
  1725       _real_start_word(NULL),
  1726       _real_end_word(NULL),
  1727       _start_word(NULL)
  1729     guarantee( size_in_words() >= bitmap_size_in_words(),
  1730                "just making sure");
  1733   inline unsigned heapWordToOffset(HeapWord* addr) {
  1734     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1735     assert(offset < size(), "offset should be within bounds");
  1736     return offset;
  1739   inline HeapWord* offsetToHeapWord(size_t offset) {
  1740     HeapWord* addr =  _start_word + (offset << _shifter);
  1741     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1742     return addr;
  1745   bool fields_well_formed() {
  1746     bool ret1 = (_real_start_word == NULL) &&
  1747                 (_real_end_word == NULL) &&
  1748                 (_start_word == NULL);
  1749     if (ret1)
  1750       return true;
  1752     bool ret2 = _real_start_word >= _start_word &&
  1753       _start_word < _real_end_word &&
  1754       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1755       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1756                                                               > _real_end_word;
  1757     return ret2;
  1760   inline bool mark(HeapWord* addr) {
  1761     guarantee(use_local_bitmaps, "invariant");
  1762     assert(fields_well_formed(), "invariant");
  1764     if (addr >= _real_start_word && addr < _real_end_word) {
  1765       assert(!isMarked(addr), "should not have already been marked");
  1767       // first mark it on the bitmap
  1768       at_put(heapWordToOffset(addr), true);
  1770       return true;
  1771     } else {
  1772       return false;
  1776   inline bool isMarked(HeapWord* addr) {
  1777     guarantee(use_local_bitmaps, "invariant");
  1778     assert(fields_well_formed(), "invariant");
  1780     return at(heapWordToOffset(addr));
  1783   void set_buffer(HeapWord* start) {
  1784     guarantee(use_local_bitmaps, "invariant");
  1785     clear();
  1787     assert(start != NULL, "invariant");
  1788     _real_start_word = start;
  1789     _real_end_word   = start + _gclab_word_size;
  1791     size_t diff =
  1792       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1793     _start_word = start - diff;
  1795     assert(fields_well_formed(), "invariant");
  1798 #ifndef PRODUCT
  1799   void verify() {
  1800     // verify that the marks have been propagated
  1801     GCLabBitMapClosure cl(_cm, this);
  1802     iterate(&cl);
  1804 #endif // PRODUCT
  1806   void retire() {
  1807     guarantee(use_local_bitmaps, "invariant");
  1808     assert(fields_well_formed(), "invariant");
  1810     if (_start_word != NULL) {
  1811       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1813       // this means that the bitmap was set up for the GCLab
  1814       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1816       mark_bitmap->mostly_disjoint_range_union(this,
  1817                                 0, // always start from the start of the bitmap
  1818                                 _start_word,
  1819                                 gclab_real_word_size());
  1820       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1822 #ifndef PRODUCT
  1823       if (use_local_bitmaps && verify_local_bitmaps)
  1824         verify();
  1825 #endif // PRODUCT
  1826     } else {
  1827       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1831   size_t bitmap_size_in_words() const {
  1832     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1835 };
  1837 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1838 private:
  1839   bool        _retired;
  1840   bool        _should_mark_objects;
  1841   GCLabBitMap _bitmap;
  1843 public:
  1844   G1ParGCAllocBuffer(size_t gclab_word_size);
  1846   inline bool mark(HeapWord* addr) {
  1847     guarantee(use_local_bitmaps, "invariant");
  1848     assert(_should_mark_objects, "invariant");
  1849     return _bitmap.mark(addr);
  1852   inline void set_buf(HeapWord* buf) {
  1853     if (use_local_bitmaps && _should_mark_objects) {
  1854       _bitmap.set_buffer(buf);
  1856     ParGCAllocBuffer::set_buf(buf);
  1857     _retired = false;
  1860   inline void retire(bool end_of_gc, bool retain) {
  1861     if (_retired)
  1862       return;
  1863     if (use_local_bitmaps && _should_mark_objects) {
  1864       _bitmap.retire();
  1866     ParGCAllocBuffer::retire(end_of_gc, retain);
  1867     _retired = true;
  1869 };
  1871 class G1ParScanThreadState : public StackObj {
  1872 protected:
  1873   G1CollectedHeap* _g1h;
  1874   RefToScanQueue*  _refs;
  1875   DirtyCardQueue   _dcq;
  1876   CardTableModRefBS* _ct_bs;
  1877   G1RemSet* _g1_rem;
  1879   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1880   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1881   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1882   ageTable            _age_table;
  1884   size_t           _alloc_buffer_waste;
  1885   size_t           _undo_waste;
  1887   OopsInHeapRegionClosure*      _evac_failure_cl;
  1888   G1ParScanHeapEvacClosure*     _evac_cl;
  1889   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1891   int _hash_seed;
  1892   int _queue_num;
  1894   size_t _term_attempts;
  1896   double _start;
  1897   double _start_strong_roots;
  1898   double _strong_roots_time;
  1899   double _start_term;
  1900   double _term_time;
  1902   // Map from young-age-index (0 == not young, 1 is youngest) to
  1903   // surviving words. base is what we get back from the malloc call
  1904   size_t* _surviving_young_words_base;
  1905   // this points into the array, as we use the first few entries for padding
  1906   size_t* _surviving_young_words;
  1908 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1910   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1912   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1914   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1915   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1917   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1918     if (!from->is_survivor()) {
  1919       _g1_rem->par_write_ref(from, p, tid);
  1923   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1924     // If the new value of the field points to the same region or
  1925     // is the to-space, we don't need to include it in the Rset updates.
  1926     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1927       size_t card_index = ctbs()->index_for(p);
  1928       // If the card hasn't been added to the buffer, do it.
  1929       if (ctbs()->mark_card_deferred(card_index)) {
  1930         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1935 public:
  1936   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1938   ~G1ParScanThreadState() {
  1939     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1942   RefToScanQueue*   refs()            { return _refs;             }
  1943   ageTable*         age_table()       { return &_age_table;       }
  1945   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1946     return _alloc_buffers[purpose];
  1949   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1950   size_t undo_waste() const                      { return _undo_waste; }
  1952 #ifdef ASSERT
  1953   bool verify_ref(narrowOop* ref) const;
  1954   bool verify_ref(oop* ref) const;
  1955   bool verify_task(StarTask ref) const;
  1956 #endif // ASSERT
  1958   template <class T> void push_on_queue(T* ref) {
  1959     assert(verify_ref(ref), "sanity");
  1960     refs()->push(ref);
  1963   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1964     if (G1DeferredRSUpdate) {
  1965       deferred_rs_update(from, p, tid);
  1966     } else {
  1967       immediate_rs_update(from, p, tid);
  1971   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1973     HeapWord* obj = NULL;
  1974     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1975     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1976       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1977       assert(gclab_word_size == alloc_buf->word_sz(),
  1978              "dynamic resizing is not supported");
  1979       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1980       alloc_buf->retire(false, false);
  1982       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1983       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1984       // Otherwise.
  1985       alloc_buf->set_buf(buf);
  1987       obj = alloc_buf->allocate(word_sz);
  1988       assert(obj != NULL, "buffer was definitely big enough...");
  1989     } else {
  1990       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1992     return obj;
  1995   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1996     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1997     if (obj != NULL) return obj;
  1998     return allocate_slow(purpose, word_sz);
  2001   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  2002     if (alloc_buffer(purpose)->contains(obj)) {
  2003       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  2004              "should contain whole object");
  2005       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  2006     } else {
  2007       CollectedHeap::fill_with_object(obj, word_sz);
  2008       add_to_undo_waste(word_sz);
  2012   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  2013     _evac_failure_cl = evac_failure_cl;
  2015   OopsInHeapRegionClosure* evac_failure_closure() {
  2016     return _evac_failure_cl;
  2019   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  2020     _evac_cl = evac_cl;
  2023   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  2024     _partial_scan_cl = partial_scan_cl;
  2027   int* hash_seed() { return &_hash_seed; }
  2028   int  queue_num() { return _queue_num; }
  2030   size_t term_attempts() const  { return _term_attempts; }
  2031   void note_term_attempt() { _term_attempts++; }
  2033   void start_strong_roots() {
  2034     _start_strong_roots = os::elapsedTime();
  2036   void end_strong_roots() {
  2037     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  2039   double strong_roots_time() const { return _strong_roots_time; }
  2041   void start_term_time() {
  2042     note_term_attempt();
  2043     _start_term = os::elapsedTime();
  2045   void end_term_time() {
  2046     _term_time += (os::elapsedTime() - _start_term);
  2048   double term_time() const { return _term_time; }
  2050   double elapsed_time() const {
  2051     return os::elapsedTime() - _start;
  2054   static void
  2055     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  2056   void
  2057     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  2059   size_t* surviving_young_words() {
  2060     // We add on to hide entry 0 which accumulates surviving words for
  2061     // age -1 regions (i.e. non-young ones)
  2062     return _surviving_young_words;
  2065   void retire_alloc_buffers() {
  2066     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2067       size_t waste = _alloc_buffers[ap]->words_remaining();
  2068       add_to_alloc_buffer_waste(waste);
  2069       _alloc_buffers[ap]->retire(true, false);
  2073   template <class T> void deal_with_reference(T* ref_to_scan) {
  2074     if (has_partial_array_mask(ref_to_scan)) {
  2075       _partial_scan_cl->do_oop_nv(ref_to_scan);
  2076     } else {
  2077       // Note: we can use "raw" versions of "region_containing" because
  2078       // "obj_to_scan" is definitely in the heap, and is not in a
  2079       // humongous region.
  2080       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2081       _evac_cl->set_region(r);
  2082       _evac_cl->do_oop_nv(ref_to_scan);
  2086   void deal_with_reference(StarTask ref) {
  2087     assert(verify_task(ref), "sanity");
  2088     if (ref.is_narrow()) {
  2089       deal_with_reference((narrowOop*)ref);
  2090     } else {
  2091       deal_with_reference((oop*)ref);
  2095 public:
  2096   void trim_queue();
  2097 };
  2099 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial