src/share/vm/c1/c1_LIRGenerator.cpp

Thu, 29 Sep 2011 23:09:54 -0700

author
iveresov
date
Thu, 29 Sep 2011 23:09:54 -0700
changeset 3160
dc45ae774613
parent 2953
c8f2186acf6d
child 3193
940513efe83a
permissions
-rw-r--r--

7096639: Tiered: Incorrect counter overflow handling for inlined methods
Summary: Enable invocation events for inlinees
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciCPCache.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/heapRegion.hpp"
    40 #endif
    42 #ifdef ASSERT
    43 #define __ gen()->lir(__FILE__, __LINE__)->
    44 #else
    45 #define __ gen()->lir()->
    46 #endif
    48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    49 #ifdef ARM
    50 #define PATCHED_ADDR  (204)
    51 #else
    52 #define PATCHED_ADDR  (max_jint)
    53 #endif
    55 void PhiResolverState::reset(int max_vregs) {
    56   // Initialize array sizes
    57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    58   _virtual_operands.trunc_to(0);
    59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    60   _other_operands.trunc_to(0);
    61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    62   _vreg_table.trunc_to(0);
    63 }
    67 //--------------------------------------------------------------
    68 // PhiResolver
    70 // Resolves cycles:
    71 //
    72 //  r1 := r2  becomes  temp := r1
    73 //  r2 := r1           r1 := r2
    74 //                     r2 := temp
    75 // and orders moves:
    76 //
    77 //  r2 := r3  becomes  r1 := r2
    78 //  r1 := r2           r2 := r3
    80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    81  : _gen(gen)
    82  , _state(gen->resolver_state())
    83  , _temp(LIR_OprFact::illegalOpr)
    84 {
    85   // reinitialize the shared state arrays
    86   _state.reset(max_vregs);
    87 }
    90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    91   assert(src->is_valid(), "");
    92   assert(dest->is_valid(), "");
    93   __ move(src, dest);
    94 }
    97 void PhiResolver::move_temp_to(LIR_Opr dest) {
    98   assert(_temp->is_valid(), "");
    99   emit_move(_temp, dest);
   100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   101 }
   104 void PhiResolver::move_to_temp(LIR_Opr src) {
   105   assert(_temp->is_illegal(), "");
   106   _temp = _gen->new_register(src->type());
   107   emit_move(src, _temp);
   108 }
   111 // Traverse assignment graph in depth first order and generate moves in post order
   112 // ie. two assignments: b := c, a := b start with node c:
   113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   114 // Generates moves in this order: move b to a and move c to b
   115 // ie. cycle a := b, b := a start with node a
   116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   117 // Generates moves in this order: move b to temp, move a to b, move temp to a
   118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   119   if (!dest->visited()) {
   120     dest->set_visited();
   121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   122       move(dest, dest->destination_at(i));
   123     }
   124   } else if (!dest->start_node()) {
   125     // cylce in graph detected
   126     assert(_loop == NULL, "only one loop valid!");
   127     _loop = dest;
   128     move_to_temp(src->operand());
   129     return;
   130   } // else dest is a start node
   132   if (!dest->assigned()) {
   133     if (_loop == dest) {
   134       move_temp_to(dest->operand());
   135       dest->set_assigned();
   136     } else if (src != NULL) {
   137       emit_move(src->operand(), dest->operand());
   138       dest->set_assigned();
   139     }
   140   }
   141 }
   144 PhiResolver::~PhiResolver() {
   145   int i;
   146   // resolve any cycles in moves from and to virtual registers
   147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   148     ResolveNode* node = virtual_operands()[i];
   149     if (!node->visited()) {
   150       _loop = NULL;
   151       move(NULL, node);
   152       node->set_start_node();
   153       assert(_temp->is_illegal(), "move_temp_to() call missing");
   154     }
   155   }
   157   // generate move for move from non virtual register to abitrary destination
   158   for (i = other_operands().length() - 1; i >= 0; i --) {
   159     ResolveNode* node = other_operands()[i];
   160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   161       emit_move(node->operand(), node->destination_at(j)->operand());
   162     }
   163   }
   164 }
   167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   168   ResolveNode* node;
   169   if (opr->is_virtual()) {
   170     int vreg_num = opr->vreg_number();
   171     node = vreg_table().at_grow(vreg_num, NULL);
   172     assert(node == NULL || node->operand() == opr, "");
   173     if (node == NULL) {
   174       node = new ResolveNode(opr);
   175       vreg_table()[vreg_num] = node;
   176     }
   177     // Make sure that all virtual operands show up in the list when
   178     // they are used as the source of a move.
   179     if (source && !virtual_operands().contains(node)) {
   180       virtual_operands().append(node);
   181     }
   182   } else {
   183     assert(source, "");
   184     node = new ResolveNode(opr);
   185     other_operands().append(node);
   186   }
   187   return node;
   188 }
   191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   192   assert(dest->is_virtual(), "");
   193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   194   assert(src->is_valid(), "");
   195   assert(dest->is_valid(), "");
   196   ResolveNode* source = source_node(src);
   197   source->append(destination_node(dest));
   198 }
   201 //--------------------------------------------------------------
   202 // LIRItem
   204 void LIRItem::set_result(LIR_Opr opr) {
   205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   206   value()->set_operand(opr);
   208   if (opr->is_virtual()) {
   209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   210   }
   212   _result = opr;
   213 }
   215 void LIRItem::load_item() {
   216   if (result()->is_illegal()) {
   217     // update the items result
   218     _result = value()->operand();
   219   }
   220   if (!result()->is_register()) {
   221     LIR_Opr reg = _gen->new_register(value()->type());
   222     __ move(result(), reg);
   223     if (result()->is_constant()) {
   224       _result = reg;
   225     } else {
   226       set_result(reg);
   227     }
   228   }
   229 }
   232 void LIRItem::load_for_store(BasicType type) {
   233   if (_gen->can_store_as_constant(value(), type)) {
   234     _result = value()->operand();
   235     if (!_result->is_constant()) {
   236       _result = LIR_OprFact::value_type(value()->type());
   237     }
   238   } else if (type == T_BYTE || type == T_BOOLEAN) {
   239     load_byte_item();
   240   } else {
   241     load_item();
   242   }
   243 }
   245 void LIRItem::load_item_force(LIR_Opr reg) {
   246   LIR_Opr r = result();
   247   if (r != reg) {
   248 #if !defined(ARM) && !defined(E500V2)
   249     if (r->type() != reg->type()) {
   250       // moves between different types need an intervening spill slot
   251       r = _gen->force_to_spill(r, reg->type());
   252     }
   253 #endif
   254     __ move(r, reg);
   255     _result = reg;
   256   }
   257 }
   259 ciObject* LIRItem::get_jobject_constant() const {
   260   ObjectType* oc = type()->as_ObjectType();
   261   if (oc) {
   262     return oc->constant_value();
   263   }
   264   return NULL;
   265 }
   268 jint LIRItem::get_jint_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_IntConstant() != NULL, "type check");
   271   return type()->as_IntConstant()->value();
   272 }
   275 jint LIRItem::get_address_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_AddressConstant() != NULL, "type check");
   278   return type()->as_AddressConstant()->value();
   279 }
   282 jfloat LIRItem::get_jfloat_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_FloatConstant() != NULL, "type check");
   285   return type()->as_FloatConstant()->value();
   286 }
   289 jdouble LIRItem::get_jdouble_constant() const {
   290   assert(is_constant() && value() != NULL, "");
   291   assert(type()->as_DoubleConstant() != NULL, "type check");
   292   return type()->as_DoubleConstant()->value();
   293 }
   296 jlong LIRItem::get_jlong_constant() const {
   297   assert(is_constant() && value() != NULL, "");
   298   assert(type()->as_LongConstant() != NULL, "type check");
   299   return type()->as_LongConstant()->value();
   300 }
   304 //--------------------------------------------------------------
   307 void LIRGenerator::init() {
   308   _bs = Universe::heap()->barrier_set();
   309 }
   312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   313 #ifndef PRODUCT
   314   if (PrintIRWithLIR) {
   315     block->print();
   316   }
   317 #endif
   319   // set up the list of LIR instructions
   320   assert(block->lir() == NULL, "LIR list already computed for this block");
   321   _lir = new LIR_List(compilation(), block);
   322   block->set_lir(_lir);
   324   __ branch_destination(block->label());
   326   if (LIRTraceExecution &&
   327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   328       !block->is_set(BlockBegin::exception_entry_flag)) {
   329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   330     trace_block_entry(block);
   331   }
   332 }
   335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   336 #ifndef PRODUCT
   337   if (PrintIRWithLIR) {
   338     tty->cr();
   339   }
   340 #endif
   342   // LIR_Opr for unpinned constants shouldn't be referenced by other
   343   // blocks so clear them out after processing the block.
   344   for (int i = 0; i < _unpinned_constants.length(); i++) {
   345     _unpinned_constants.at(i)->clear_operand();
   346   }
   347   _unpinned_constants.trunc_to(0);
   349   // clear our any registers for other local constants
   350   _constants.trunc_to(0);
   351   _reg_for_constants.trunc_to(0);
   352 }
   355 void LIRGenerator::block_do(BlockBegin* block) {
   356   CHECK_BAILOUT();
   358   block_do_prolog(block);
   359   set_block(block);
   361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   362     if (instr->is_pinned()) do_root(instr);
   363   }
   365   set_block(NULL);
   366   block_do_epilog(block);
   367 }
   370 //-------------------------LIRGenerator-----------------------------
   372 // This is where the tree-walk starts; instr must be root;
   373 void LIRGenerator::do_root(Value instr) {
   374   CHECK_BAILOUT();
   376   InstructionMark im(compilation(), instr);
   378   assert(instr->is_pinned(), "use only with roots");
   379   assert(instr->subst() == instr, "shouldn't have missed substitution");
   381   instr->visit(this);
   383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   385 }
   388 // This is called for each node in tree; the walk stops if a root is reached
   389 void LIRGenerator::walk(Value instr) {
   390   InstructionMark im(compilation(), instr);
   391   //stop walk when encounter a root
   392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   394   } else {
   395     assert(instr->subst() == instr, "shouldn't have missed substitution");
   396     instr->visit(this);
   397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   398   }
   399 }
   402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   403   assert(state != NULL, "state must be defined");
   405   ValueStack* s = state;
   406   for_each_state(s) {
   407     if (s->kind() == ValueStack::EmptyExceptionState) {
   408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   409       continue;
   410     }
   412     int index;
   413     Value value;
   414     for_each_stack_value(s, index, value) {
   415       assert(value->subst() == value, "missed substitution");
   416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   417         walk(value);
   418         assert(value->operand()->is_valid(), "must be evaluated now");
   419       }
   420     }
   422     int bci = s->bci();
   423     IRScope* scope = s->scope();
   424     ciMethod* method = scope->method();
   426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   427     if (bci == SynchronizationEntryBCI) {
   428       if (x->as_ExceptionObject() || x->as_Throw()) {
   429         // all locals are dead on exit from the synthetic unlocker
   430         liveness.clear();
   431       } else {
   432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   433       }
   434     }
   435     if (!liveness.is_valid()) {
   436       // Degenerate or breakpointed method.
   437       bailout("Degenerate or breakpointed method");
   438     } else {
   439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   440       for_each_local_value(s, index, value) {
   441         assert(value->subst() == value, "missed substition");
   442         if (liveness.at(index) && !value->type()->is_illegal()) {
   443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   444             walk(value);
   445             assert(value->operand()->is_valid(), "must be evaluated now");
   446           }
   447         } else {
   448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   449           s->invalidate_local(index);
   450         }
   451       }
   452     }
   453   }
   455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   456 }
   459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   460   return state_for(x, x->exception_state());
   461 }
   464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   465   if (!obj->is_loaded() || PatchALot) {
   466     assert(info != NULL, "info must be set if class is not loaded");
   467     __ oop2reg_patch(NULL, r, info);
   468   } else {
   469     // no patching needed
   470     __ oop2reg(obj->constant_encoding(), r);
   471   }
   472 }
   475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   478   if (index->is_constant()) {
   479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   480                 index->as_jint(), null_check_info);
   481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   482   } else {
   483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   486   }
   487 }
   490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   491   CodeStub* stub = new RangeCheckStub(info, index, true);
   492   if (index->is_constant()) {
   493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   495   } else {
   496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   497                 java_nio_Buffer::limit_offset(), T_INT, info);
   498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   499   }
   500   __ move(index, result);
   501 }
   505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   506   LIR_Opr result_op = result;
   507   LIR_Opr left_op   = left;
   508   LIR_Opr right_op  = right;
   510   if (TwoOperandLIRForm && left_op != result_op) {
   511     assert(right_op != result_op, "malformed");
   512     __ move(left_op, result_op);
   513     left_op = result_op;
   514   }
   516   switch(code) {
   517     case Bytecodes::_dadd:
   518     case Bytecodes::_fadd:
   519     case Bytecodes::_ladd:
   520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   521     case Bytecodes::_fmul:
   522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   524     case Bytecodes::_dmul:
   525       {
   526         if (is_strictfp) {
   527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   528         } else {
   529           __ mul(left_op, right_op, result_op); break;
   530         }
   531       }
   532       break;
   534     case Bytecodes::_imul:
   535       {
   536         bool    did_strength_reduce = false;
   538         if (right->is_constant()) {
   539           int c = right->as_jint();
   540           if (is_power_of_2(c)) {
   541             // do not need tmp here
   542             __ shift_left(left_op, exact_log2(c), result_op);
   543             did_strength_reduce = true;
   544           } else {
   545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   546           }
   547         }
   548         // we couldn't strength reduce so just emit the multiply
   549         if (!did_strength_reduce) {
   550           __ mul(left_op, right_op, result_op);
   551         }
   552       }
   553       break;
   555     case Bytecodes::_dsub:
   556     case Bytecodes::_fsub:
   557     case Bytecodes::_lsub:
   558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   561     // ldiv and lrem are implemented with a direct runtime call
   563     case Bytecodes::_ddiv:
   564       {
   565         if (is_strictfp) {
   566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   567         } else {
   568           __ div (left_op, right_op, result_op); break;
   569         }
   570       }
   571       break;
   573     case Bytecodes::_drem:
   574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   576     default: ShouldNotReachHere();
   577   }
   578 }
   581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   582   arithmetic_op(code, result, left, right, false, tmp);
   583 }
   586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   588 }
   591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   593 }
   596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   597   if (TwoOperandLIRForm && value != result_op) {
   598     assert(count != result_op, "malformed");
   599     __ move(value, result_op);
   600     value = result_op;
   601   }
   603   assert(count->is_constant() || count->is_register(), "must be");
   604   switch(code) {
   605   case Bytecodes::_ishl:
   606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   607   case Bytecodes::_ishr:
   608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   609   case Bytecodes::_iushr:
   610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   611   default: ShouldNotReachHere();
   612   }
   613 }
   616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   617   if (TwoOperandLIRForm && left_op != result_op) {
   618     assert(right_op != result_op, "malformed");
   619     __ move(left_op, result_op);
   620     left_op = result_op;
   621   }
   623   switch(code) {
   624     case Bytecodes::_iand:
   625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   627     case Bytecodes::_ior:
   628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   630     case Bytecodes::_ixor:
   631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   633     default: ShouldNotReachHere();
   634   }
   635 }
   638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   639   if (!GenerateSynchronizationCode) return;
   640   // for slow path, use debug info for state after successful locking
   641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   642   __ load_stack_address_monitor(monitor_no, lock);
   643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   645 }
   648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   649   if (!GenerateSynchronizationCode) return;
   650   // setup registers
   651   LIR_Opr hdr = lock;
   652   lock = new_hdr;
   653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   654   __ load_stack_address_monitor(monitor_no, lock);
   655   __ unlock_object(hdr, object, lock, scratch, slow_path);
   656 }
   659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   660   jobject2reg_with_patching(klass_reg, klass, info);
   661   // If klass is not loaded we do not know if the klass has finalizers:
   662   if (UseFastNewInstance && klass->is_loaded()
   663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   669     assert(klass->is_loaded(), "must be loaded");
   670     // allocate space for instance
   671     assert(klass->size_helper() >= 0, "illegal instance size");
   672     const int instance_size = align_object_size(klass->size_helper());
   673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   675   } else {
   676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   678     __ branch_destination(slow_path->continuation());
   679   }
   680 }
   683 static bool is_constant_zero(Instruction* inst) {
   684   IntConstant* c = inst->type()->as_IntConstant();
   685   if (c) {
   686     return (c->value() == 0);
   687   }
   688   return false;
   689 }
   692 static bool positive_constant(Instruction* inst) {
   693   IntConstant* c = inst->type()->as_IntConstant();
   694   if (c) {
   695     return (c->value() >= 0);
   696   }
   697   return false;
   698 }
   701 static ciArrayKlass* as_array_klass(ciType* type) {
   702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   703     return (ciArrayKlass*)type;
   704   } else {
   705     return NULL;
   706   }
   707 }
   709 static Value maxvalue(IfOp* ifop) {
   710   switch (ifop->cond()) {
   711     case If::eql: return NULL;
   712     case If::neq: return NULL;
   713     case If::lss: // x <  y ? x : y
   714     case If::leq: // x <= y ? x : y
   715       if (ifop->x() == ifop->tval() &&
   716           ifop->y() == ifop->fval()) return ifop->y();
   717       return NULL;
   719     case If::gtr: // x >  y ? y : x
   720     case If::geq: // x >= y ? y : x
   721       if (ifop->x() == ifop->tval() &&
   722           ifop->y() == ifop->fval()) return ifop->y();
   723       return NULL;
   725   }
   726 }
   728 static ciType* phi_declared_type(Phi* phi) {
   729   ciType* t = phi->operand_at(0)->declared_type();
   730   if (t == NULL) {
   731     return NULL;
   732   }
   733   for(int i = 1; i < phi->operand_count(); i++) {
   734     if (t != phi->operand_at(i)->declared_type()) {
   735       return NULL;
   736     }
   737   }
   738   return t;
   739 }
   741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   742   Instruction* src     = x->argument_at(0);
   743   Instruction* src_pos = x->argument_at(1);
   744   Instruction* dst     = x->argument_at(2);
   745   Instruction* dst_pos = x->argument_at(3);
   746   Instruction* length  = x->argument_at(4);
   748   // first try to identify the likely type of the arrays involved
   749   ciArrayKlass* expected_type = NULL;
   750   bool is_exact = false, src_objarray = false, dst_objarray = false;
   751   {
   752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   754     Phi* phi;
   755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   756       src_declared_type = as_array_klass(phi_declared_type(phi));
   757     }
   758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   761       dst_declared_type = as_array_klass(phi_declared_type(phi));
   762     }
   764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   765       // the types exactly match so the type is fully known
   766       is_exact = true;
   767       expected_type = src_exact_type;
   768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   770       ciArrayKlass* src_type = NULL;
   771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   772         src_type = (ciArrayKlass*) src_exact_type;
   773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   774         src_type = (ciArrayKlass*) src_declared_type;
   775       }
   776       if (src_type != NULL) {
   777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   778           is_exact = true;
   779           expected_type = dst_type;
   780         }
   781       }
   782     }
   783     // at least pass along a good guess
   784     if (expected_type == NULL) expected_type = dst_exact_type;
   785     if (expected_type == NULL) expected_type = src_declared_type;
   786     if (expected_type == NULL) expected_type = dst_declared_type;
   788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   790   }
   792   // if a probable array type has been identified, figure out if any
   793   // of the required checks for a fast case can be elided.
   794   int flags = LIR_OpArrayCopy::all_flags;
   796   if (!src_objarray)
   797     flags &= ~LIR_OpArrayCopy::src_objarray;
   798   if (!dst_objarray)
   799     flags &= ~LIR_OpArrayCopy::dst_objarray;
   801   if (!x->arg_needs_null_check(0))
   802     flags &= ~LIR_OpArrayCopy::src_null_check;
   803   if (!x->arg_needs_null_check(2))
   804     flags &= ~LIR_OpArrayCopy::dst_null_check;
   807   if (expected_type != NULL) {
   808     Value length_limit = NULL;
   810     IfOp* ifop = length->as_IfOp();
   811     if (ifop != NULL) {
   812       // look for expressions like min(v, a.length) which ends up as
   813       //   x > y ? y : x  or  x >= y ? y : x
   814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   815           ifop->x() == ifop->fval() &&
   816           ifop->y() == ifop->tval()) {
   817         length_limit = ifop->y();
   818       }
   819     }
   821     // try to skip null checks and range checks
   822     NewArray* src_array = src->as_NewArray();
   823     if (src_array != NULL) {
   824       flags &= ~LIR_OpArrayCopy::src_null_check;
   825       if (length_limit != NULL &&
   826           src_array->length() == length_limit &&
   827           is_constant_zero(src_pos)) {
   828         flags &= ~LIR_OpArrayCopy::src_range_check;
   829       }
   830     }
   832     NewArray* dst_array = dst->as_NewArray();
   833     if (dst_array != NULL) {
   834       flags &= ~LIR_OpArrayCopy::dst_null_check;
   835       if (length_limit != NULL &&
   836           dst_array->length() == length_limit &&
   837           is_constant_zero(dst_pos)) {
   838         flags &= ~LIR_OpArrayCopy::dst_range_check;
   839       }
   840     }
   842     // check from incoming constant values
   843     if (positive_constant(src_pos))
   844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   845     if (positive_constant(dst_pos))
   846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   847     if (positive_constant(length))
   848       flags &= ~LIR_OpArrayCopy::length_positive_check;
   850     // see if the range check can be elided, which might also imply
   851     // that src or dst is non-null.
   852     ArrayLength* al = length->as_ArrayLength();
   853     if (al != NULL) {
   854       if (al->array() == src) {
   855         // it's the length of the source array
   856         flags &= ~LIR_OpArrayCopy::length_positive_check;
   857         flags &= ~LIR_OpArrayCopy::src_null_check;
   858         if (is_constant_zero(src_pos))
   859           flags &= ~LIR_OpArrayCopy::src_range_check;
   860       }
   861       if (al->array() == dst) {
   862         // it's the length of the destination array
   863         flags &= ~LIR_OpArrayCopy::length_positive_check;
   864         flags &= ~LIR_OpArrayCopy::dst_null_check;
   865         if (is_constant_zero(dst_pos))
   866           flags &= ~LIR_OpArrayCopy::dst_range_check;
   867       }
   868     }
   869     if (is_exact) {
   870       flags &= ~LIR_OpArrayCopy::type_check;
   871     }
   872   }
   874   IntConstant* src_int = src_pos->type()->as_IntConstant();
   875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   876   if (src_int && dst_int) {
   877     int s_offs = src_int->value();
   878     int d_offs = dst_int->value();
   879     if (src_int->value() >= dst_int->value()) {
   880       flags &= ~LIR_OpArrayCopy::overlapping;
   881     }
   882     if (expected_type != NULL) {
   883       BasicType t = expected_type->element_type()->basic_type();
   884       int element_size = type2aelembytes(t);
   885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   887         flags &= ~LIR_OpArrayCopy::unaligned;
   888       }
   889     }
   890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   891     // src and dest positions are the same, or dst is zero so assume
   892     // nonoverlapping copy.
   893     flags &= ~LIR_OpArrayCopy::overlapping;
   894   }
   896   if (src == dst) {
   897     // moving within a single array so no type checks are needed
   898     if (flags & LIR_OpArrayCopy::type_check) {
   899       flags &= ~LIR_OpArrayCopy::type_check;
   900     }
   901   }
   902   *flagsp = flags;
   903   *expected_typep = (ciArrayKlass*)expected_type;
   904 }
   907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   908   assert(opr->is_register(), "why spill if item is not register?");
   910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   911     LIR_Opr result = new_register(T_FLOAT);
   912     set_vreg_flag(result, must_start_in_memory);
   913     assert(opr->is_register(), "only a register can be spilled");
   914     assert(opr->value_type()->is_float(), "rounding only for floats available");
   915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   916     return result;
   917   }
   918   return opr;
   919 }
   922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   923   assert(type2size[t] == type2size[value->type()], "size mismatch");
   924   if (!value->is_register()) {
   925     // force into a register
   926     LIR_Opr r = new_register(value->type());
   927     __ move(value, r);
   928     value = r;
   929   }
   931   // create a spill location
   932   LIR_Opr tmp = new_register(t);
   933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   935   // move from register to spill
   936   __ move(value, tmp);
   937   return tmp;
   938 }
   940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   941   if (if_instr->should_profile()) {
   942     ciMethod* method = if_instr->profiled_method();
   943     assert(method != NULL, "method should be set if branch is profiled");
   944     ciMethodData* md = method->method_data_or_null();
   945     assert(md != NULL, "Sanity");
   946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   947     assert(data != NULL, "must have profiling data");
   948     assert(data->is_BranchData(), "need BranchData for two-way branches");
   949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   951     if (if_instr->is_swapped()) {
   952       int t = taken_count_offset;
   953       taken_count_offset = not_taken_count_offset;
   954       not_taken_count_offset = t;
   955     }
   957     LIR_Opr md_reg = new_register(T_OBJECT);
   958     __ oop2reg(md->constant_encoding(), md_reg);
   960     LIR_Opr data_offset_reg = new_pointer_register();
   961     __ cmove(lir_cond(cond),
   962              LIR_OprFact::intptrConst(taken_count_offset),
   963              LIR_OprFact::intptrConst(not_taken_count_offset),
   964              data_offset_reg, as_BasicType(if_instr->x()->type()));
   966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   967     LIR_Opr data_reg = new_pointer_register();
   968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   969     __ move(data_addr, data_reg);
   970     // Use leal instead of add to avoid destroying condition codes on x86
   971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   973     __ move(data_reg, data_addr);
   974   }
   975 }
   977 // Phi technique:
   978 // This is about passing live values from one basic block to the other.
   979 // In code generated with Java it is rather rare that more than one
   980 // value is on the stack from one basic block to the other.
   981 // We optimize our technique for efficient passing of one value
   982 // (of type long, int, double..) but it can be extended.
   983 // When entering or leaving a basic block, all registers and all spill
   984 // slots are release and empty. We use the released registers
   985 // and spill slots to pass the live values from one block
   986 // to the other. The topmost value, i.e., the value on TOS of expression
   987 // stack is passed in registers. All other values are stored in spilling
   988 // area. Every Phi has an index which designates its spill slot
   989 // At exit of a basic block, we fill the register(s) and spill slots.
   990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   991 // and locks necessary registers and spilling slots.
   994 // move current value to referenced phi function
   995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   996   Phi* phi = sux_val->as_Phi();
   997   // cur_val can be null without phi being null in conjunction with inlining
   998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   999     LIR_Opr operand = cur_val->operand();
  1000     if (cur_val->operand()->is_illegal()) {
  1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1002              "these can be produced lazily");
  1003       operand = operand_for_instruction(cur_val);
  1005     resolver->move(operand, operand_for_instruction(phi));
  1010 // Moves all stack values into their PHI position
  1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1012   BlockBegin* bb = block();
  1013   if (bb->number_of_sux() == 1) {
  1014     BlockBegin* sux = bb->sux_at(0);
  1015     assert(sux->number_of_preds() > 0, "invalid CFG");
  1017     // a block with only one predecessor never has phi functions
  1018     if (sux->number_of_preds() > 1) {
  1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1022       ValueStack* sux_state = sux->state();
  1023       Value sux_value;
  1024       int index;
  1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1030       for_each_stack_value(sux_state, index, sux_value) {
  1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1034       for_each_local_value(sux_state, index, sux_value) {
  1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1045   int vreg = _virtual_register_number;
  1046   // add a little fudge factor for the bailout, since the bailout is
  1047   // only checked periodically.  This gives a few extra registers to
  1048   // hand out before we really run out, which helps us keep from
  1049   // tripping over assertions.
  1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1051     bailout("out of virtual registers");
  1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1053       // wrap it around
  1054       _virtual_register_number = LIR_OprDesc::vreg_base;
  1057   _virtual_register_number += 1;
  1058   return LIR_OprFact::virtual_register(vreg, type);
  1062 // Try to lock using register in hint
  1063 LIR_Opr LIRGenerator::rlock(Value instr) {
  1064   return new_register(instr->type());
  1068 // does an rlock and sets result
  1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1070   LIR_Opr reg = rlock(x);
  1071   set_result(x, reg);
  1072   return reg;
  1076 // does an rlock and sets result
  1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1078   LIR_Opr reg;
  1079   switch (type) {
  1080   case T_BYTE:
  1081   case T_BOOLEAN:
  1082     reg = rlock_byte(type);
  1083     break;
  1084   default:
  1085     reg = rlock(x);
  1086     break;
  1089   set_result(x, reg);
  1090   return reg;
  1094 //---------------------------------------------------------------------
  1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1096   ObjectType* oc = value->type()->as_ObjectType();
  1097   if (oc) {
  1098     return oc->constant_value();
  1100   return NULL;
  1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1108   // no moves are created for phi functions at the begin of exception
  1109   // handlers, so assign operands manually here
  1110   for_each_phi_fun(block(), phi,
  1111                    operand_for_instruction(phi));
  1113   LIR_Opr thread_reg = getThreadPointer();
  1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1115                exceptionOopOpr());
  1116   __ move_wide(LIR_OprFact::oopConst(NULL),
  1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1118   __ move_wide(LIR_OprFact::oopConst(NULL),
  1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1121   LIR_Opr result = new_register(T_OBJECT);
  1122   __ move(exceptionOopOpr(), result);
  1123   set_result(x, result);
  1127 //----------------------------------------------------------------------
  1128 //----------------------------------------------------------------------
  1129 //----------------------------------------------------------------------
  1130 //----------------------------------------------------------------------
  1131 //                        visitor functions
  1132 //----------------------------------------------------------------------
  1133 //----------------------------------------------------------------------
  1134 //----------------------------------------------------------------------
  1135 //----------------------------------------------------------------------
  1137 void LIRGenerator::do_Phi(Phi* x) {
  1138   // phi functions are never visited directly
  1139   ShouldNotReachHere();
  1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1144 void LIRGenerator::do_Constant(Constant* x) {
  1145   if (x->state_before() != NULL) {
  1146     // Any constant with a ValueStack requires patching so emit the patch here
  1147     LIR_Opr reg = rlock_result(x);
  1148     CodeEmitInfo* info = state_for(x, x->state_before());
  1149     __ oop2reg_patch(NULL, reg, info);
  1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1151     if (!x->is_pinned()) {
  1152       // unpinned constants are handled specially so that they can be
  1153       // put into registers when they are used multiple times within a
  1154       // block.  After the block completes their operand will be
  1155       // cleared so that other blocks can't refer to that register.
  1156       set_result(x, load_constant(x));
  1157     } else {
  1158       LIR_Opr res = x->operand();
  1159       if (!res->is_valid()) {
  1160         res = LIR_OprFact::value_type(x->type());
  1162       if (res->is_constant()) {
  1163         LIR_Opr reg = rlock_result(x);
  1164         __ move(res, reg);
  1165       } else {
  1166         set_result(x, res);
  1169   } else {
  1170     set_result(x, LIR_OprFact::value_type(x->type()));
  1175 void LIRGenerator::do_Local(Local* x) {
  1176   // operand_for_instruction has the side effect of setting the result
  1177   // so there's no need to do it here.
  1178   operand_for_instruction(x);
  1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1183   Unimplemented();
  1187 void LIRGenerator::do_Return(Return* x) {
  1188   if (compilation()->env()->dtrace_method_probes()) {
  1189     BasicTypeList signature;
  1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1191     signature.append(T_OBJECT); // methodOop
  1192     LIR_OprList* args = new LIR_OprList();
  1193     args->append(getThreadPointer());
  1194     LIR_Opr meth = new_register(T_OBJECT);
  1195     __ oop2reg(method()->constant_encoding(), meth);
  1196     args->append(meth);
  1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1200   if (x->type()->is_void()) {
  1201     __ return_op(LIR_OprFact::illegalOpr);
  1202   } else {
  1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1204     LIRItem result(x->result(), this);
  1206     result.load_item_force(reg);
  1207     __ return_op(result.result());
  1209   set_no_result(x);
  1212 // Examble: ref.get()
  1213 // Combination of LoadField and g1 pre-write barrier
  1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1217   guarantee(referent_offset > 0, "referent offset not initialized");
  1219   assert(x->number_of_arguments() == 1, "wrong type");
  1221   LIRItem reference(x->argument_at(0), this);
  1222   reference.load_item();
  1224   // need to perform the null check on the reference objecy
  1225   CodeEmitInfo* info = NULL;
  1226   if (x->needs_null_check()) {
  1227     info = state_for(x);
  1230   LIR_Address* referent_field_adr =
  1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1233   LIR_Opr result = rlock_result(x);
  1235   __ load(referent_field_adr, result, info);
  1237   // Register the value in the referent field with the pre-barrier
  1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1239               result /* pre_val */,
  1240               false  /* do_load */,
  1241               false  /* patch */,
  1242               NULL   /* info */);
  1245 // Example: object.getClass ()
  1246 void LIRGenerator::do_getClass(Intrinsic* x) {
  1247   assert(x->number_of_arguments() == 1, "wrong type");
  1249   LIRItem rcvr(x->argument_at(0), this);
  1250   rcvr.load_item();
  1251   LIR_Opr result = rlock_result(x);
  1253   // need to perform the null check on the rcvr
  1254   CodeEmitInfo* info = NULL;
  1255   if (x->needs_null_check()) {
  1256     info = state_for(x);
  1258   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1259   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1260                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1264 // Example: Thread.currentThread()
  1265 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1266   assert(x->number_of_arguments() == 0, "wrong type");
  1267   LIR_Opr reg = rlock_result(x);
  1268   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1272 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1273   assert(x->number_of_arguments() == 1, "wrong type");
  1274   LIRItem receiver(x->argument_at(0), this);
  1276   receiver.load_item();
  1277   BasicTypeList signature;
  1278   signature.append(T_OBJECT); // receiver
  1279   LIR_OprList* args = new LIR_OprList();
  1280   args->append(receiver.result());
  1281   CodeEmitInfo* info = state_for(x, x->state());
  1282   call_runtime(&signature, args,
  1283                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1284                voidType, info);
  1286   set_no_result(x);
  1290 //------------------------local access--------------------------------------
  1292 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1293   if (x->operand()->is_illegal()) {
  1294     Constant* c = x->as_Constant();
  1295     if (c != NULL) {
  1296       x->set_operand(LIR_OprFact::value_type(c->type()));
  1297     } else {
  1298       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1299       // allocate a virtual register for this local or phi
  1300       x->set_operand(rlock(x));
  1301       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1304   return x->operand();
  1308 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1309   if (opr->is_virtual()) {
  1310     return instruction_for_vreg(opr->vreg_number());
  1312   return NULL;
  1316 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1317   if (reg_num < _instruction_for_operand.length()) {
  1318     return _instruction_for_operand.at(reg_num);
  1320   return NULL;
  1324 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1325   if (_vreg_flags.size_in_bits() == 0) {
  1326     BitMap2D temp(100, num_vreg_flags);
  1327     temp.clear();
  1328     _vreg_flags = temp;
  1330   _vreg_flags.at_put_grow(vreg_num, f, true);
  1333 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1334   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1335     return false;
  1337   return _vreg_flags.at(vreg_num, f);
  1341 // Block local constant handling.  This code is useful for keeping
  1342 // unpinned constants and constants which aren't exposed in the IR in
  1343 // registers.  Unpinned Constant instructions have their operands
  1344 // cleared when the block is finished so that other blocks can't end
  1345 // up referring to their registers.
  1347 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1348   assert(!x->is_pinned(), "only for unpinned constants");
  1349   _unpinned_constants.append(x);
  1350   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1354 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1355   BasicType t = c->type();
  1356   for (int i = 0; i < _constants.length(); i++) {
  1357     LIR_Const* other = _constants.at(i);
  1358     if (t == other->type()) {
  1359       switch (t) {
  1360       case T_INT:
  1361       case T_FLOAT:
  1362         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1363         break;
  1364       case T_LONG:
  1365       case T_DOUBLE:
  1366         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1367         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1368         break;
  1369       case T_OBJECT:
  1370         if (c->as_jobject() != other->as_jobject()) continue;
  1371         break;
  1373       return _reg_for_constants.at(i);
  1377   LIR_Opr result = new_register(t);
  1378   __ move((LIR_Opr)c, result);
  1379   _constants.append(c);
  1380   _reg_for_constants.append(result);
  1381   return result;
  1384 // Various barriers
  1386 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1387                                bool do_load, bool patch, CodeEmitInfo* info) {
  1388   // Do the pre-write barrier, if any.
  1389   switch (_bs->kind()) {
  1390 #ifndef SERIALGC
  1391     case BarrierSet::G1SATBCT:
  1392     case BarrierSet::G1SATBCTLogging:
  1393       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1394       break;
  1395 #endif // SERIALGC
  1396     case BarrierSet::CardTableModRef:
  1397     case BarrierSet::CardTableExtension:
  1398       // No pre barriers
  1399       break;
  1400     case BarrierSet::ModRef:
  1401     case BarrierSet::Other:
  1402       // No pre barriers
  1403       break;
  1404     default      :
  1405       ShouldNotReachHere();
  1410 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1411   switch (_bs->kind()) {
  1412 #ifndef SERIALGC
  1413     case BarrierSet::G1SATBCT:
  1414     case BarrierSet::G1SATBCTLogging:
  1415       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1416       break;
  1417 #endif // SERIALGC
  1418     case BarrierSet::CardTableModRef:
  1419     case BarrierSet::CardTableExtension:
  1420       CardTableModRef_post_barrier(addr,  new_val);
  1421       break;
  1422     case BarrierSet::ModRef:
  1423     case BarrierSet::Other:
  1424       // No post barriers
  1425       break;
  1426     default      :
  1427       ShouldNotReachHere();
  1431 ////////////////////////////////////////////////////////////////////////
  1432 #ifndef SERIALGC
  1434 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1435                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1436   // First we test whether marking is in progress.
  1437   BasicType flag_type;
  1438   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1439     flag_type = T_INT;
  1440   } else {
  1441     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1442               "Assumption");
  1443     flag_type = T_BYTE;
  1445   LIR_Opr thrd = getThreadPointer();
  1446   LIR_Address* mark_active_flag_addr =
  1447     new LIR_Address(thrd,
  1448                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1449                              PtrQueue::byte_offset_of_active()),
  1450                     flag_type);
  1451   // Read the marking-in-progress flag.
  1452   LIR_Opr flag_val = new_register(T_INT);
  1453   __ load(mark_active_flag_addr, flag_val);
  1454   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1456   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1458   CodeStub* slow;
  1460   if (do_load) {
  1461     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1462     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1464     if (patch)
  1465       pre_val_patch_code = lir_patch_normal;
  1467     pre_val = new_register(T_OBJECT);
  1469     if (!addr_opr->is_address()) {
  1470       assert(addr_opr->is_register(), "must be");
  1471       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1473     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1474   } else {
  1475     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1476     assert(pre_val->is_register(), "must be");
  1477     assert(pre_val->type() == T_OBJECT, "must be an object");
  1478     assert(info == NULL, "sanity");
  1480     slow = new G1PreBarrierStub(pre_val);
  1483   __ branch(lir_cond_notEqual, T_INT, slow);
  1484   __ branch_destination(slow->continuation());
  1487 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1488   // If the "new_val" is a constant NULL, no barrier is necessary.
  1489   if (new_val->is_constant() &&
  1490       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1492   if (!new_val->is_register()) {
  1493     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1494     if (new_val->is_constant()) {
  1495       __ move(new_val, new_val_reg);
  1496     } else {
  1497       __ leal(new_val, new_val_reg);
  1499     new_val = new_val_reg;
  1501   assert(new_val->is_register(), "must be a register at this point");
  1503   if (addr->is_address()) {
  1504     LIR_Address* address = addr->as_address_ptr();
  1505     LIR_Opr ptr = new_pointer_register();
  1506     if (!address->index()->is_valid() && address->disp() == 0) {
  1507       __ move(address->base(), ptr);
  1508     } else {
  1509       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1510       __ leal(addr, ptr);
  1512     addr = ptr;
  1514   assert(addr->is_register(), "must be a register at this point");
  1516   LIR_Opr xor_res = new_pointer_register();
  1517   LIR_Opr xor_shift_res = new_pointer_register();
  1518   if (TwoOperandLIRForm ) {
  1519     __ move(addr, xor_res);
  1520     __ logical_xor(xor_res, new_val, xor_res);
  1521     __ move(xor_res, xor_shift_res);
  1522     __ unsigned_shift_right(xor_shift_res,
  1523                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1524                             xor_shift_res,
  1525                             LIR_OprDesc::illegalOpr());
  1526   } else {
  1527     __ logical_xor(addr, new_val, xor_res);
  1528     __ unsigned_shift_right(xor_res,
  1529                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1530                             xor_shift_res,
  1531                             LIR_OprDesc::illegalOpr());
  1534   if (!new_val->is_register()) {
  1535     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1536     __ leal(new_val, new_val_reg);
  1537     new_val = new_val_reg;
  1539   assert(new_val->is_register(), "must be a register at this point");
  1541   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1543   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1544   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1545   __ branch_destination(slow->continuation());
  1548 #endif // SERIALGC
  1549 ////////////////////////////////////////////////////////////////////////
  1551 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1553   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1554   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1555   if (addr->is_address()) {
  1556     LIR_Address* address = addr->as_address_ptr();
  1557     // ptr cannot be an object because we use this barrier for array card marks
  1558     // and addr can point in the middle of an array.
  1559     LIR_Opr ptr = new_pointer_register();
  1560     if (!address->index()->is_valid() && address->disp() == 0) {
  1561       __ move(address->base(), ptr);
  1562     } else {
  1563       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1564       __ leal(addr, ptr);
  1566     addr = ptr;
  1568   assert(addr->is_register(), "must be a register at this point");
  1570 #ifdef ARM
  1571   // TODO: ARM - move to platform-dependent code
  1572   LIR_Opr tmp = FrameMap::R14_opr;
  1573   if (VM_Version::supports_movw()) {
  1574     __ move((LIR_Opr)card_table_base, tmp);
  1575   } else {
  1576     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1579   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1580   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1581   if(((int)ct->byte_map_base & 0xff) == 0) {
  1582     __ move(tmp, card_addr);
  1583   } else {
  1584     LIR_Opr tmp_zero = new_register(T_INT);
  1585     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1586     __ move(tmp_zero, card_addr);
  1588 #else // ARM
  1589   LIR_Opr tmp = new_pointer_register();
  1590   if (TwoOperandLIRForm) {
  1591     __ move(addr, tmp);
  1592     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1593   } else {
  1594     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1596   if (can_inline_as_constant(card_table_base)) {
  1597     __ move(LIR_OprFact::intConst(0),
  1598               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1599   } else {
  1600     __ move(LIR_OprFact::intConst(0),
  1601               new LIR_Address(tmp, load_constant(card_table_base),
  1602                               T_BYTE));
  1604 #endif // ARM
  1608 //------------------------field access--------------------------------------
  1610 // Comment copied form templateTable_i486.cpp
  1611 // ----------------------------------------------------------------------------
  1612 // Volatile variables demand their effects be made known to all CPU's in
  1613 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1614 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1615 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1616 // reorder volatile references, the hardware also must not reorder them).
  1617 //
  1618 // According to the new Java Memory Model (JMM):
  1619 // (1) All volatiles are serialized wrt to each other.
  1620 // ALSO reads & writes act as aquire & release, so:
  1621 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1622 // the read float up to before the read.  It's OK for non-volatile memory refs
  1623 // that happen before the volatile read to float down below it.
  1624 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1625 // that happen BEFORE the write float down to after the write.  It's OK for
  1626 // non-volatile memory refs that happen after the volatile write to float up
  1627 // before it.
  1628 //
  1629 // We only put in barriers around volatile refs (they are expensive), not
  1630 // _between_ memory refs (that would require us to track the flavor of the
  1631 // previous memory refs).  Requirements (2) and (3) require some barriers
  1632 // before volatile stores and after volatile loads.  These nearly cover
  1633 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1634 // case is placed after volatile-stores although it could just as well go
  1635 // before volatile-loads.
  1638 void LIRGenerator::do_StoreField(StoreField* x) {
  1639   bool needs_patching = x->needs_patching();
  1640   bool is_volatile = x->field()->is_volatile();
  1641   BasicType field_type = x->field_type();
  1642   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1644   CodeEmitInfo* info = NULL;
  1645   if (needs_patching) {
  1646     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1647     info = state_for(x, x->state_before());
  1648   } else if (x->needs_null_check()) {
  1649     NullCheck* nc = x->explicit_null_check();
  1650     if (nc == NULL) {
  1651       info = state_for(x);
  1652     } else {
  1653       info = state_for(nc);
  1658   LIRItem object(x->obj(), this);
  1659   LIRItem value(x->value(),  this);
  1661   object.load_item();
  1663   if (is_volatile || needs_patching) {
  1664     // load item if field is volatile (fewer special cases for volatiles)
  1665     // load item if field not initialized
  1666     // load item if field not constant
  1667     // because of code patching we cannot inline constants
  1668     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1669       value.load_byte_item();
  1670     } else  {
  1671       value.load_item();
  1673   } else {
  1674     value.load_for_store(field_type);
  1677   set_no_result(x);
  1679 #ifndef PRODUCT
  1680   if (PrintNotLoaded && needs_patching) {
  1681     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1682                   x->is_static() ?  "static" : "field", x->printable_bci());
  1684 #endif
  1686   if (x->needs_null_check() &&
  1687       (needs_patching ||
  1688        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1689     // emit an explicit null check because the offset is too large
  1690     __ null_check(object.result(), new CodeEmitInfo(info));
  1693   LIR_Address* address;
  1694   if (needs_patching) {
  1695     // we need to patch the offset in the instruction so don't allow
  1696     // generate_address to try to be smart about emitting the -1.
  1697     // Otherwise the patching code won't know how to find the
  1698     // instruction to patch.
  1699     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1700   } else {
  1701     address = generate_address(object.result(), x->offset(), field_type);
  1704   if (is_volatile && os::is_MP()) {
  1705     __ membar_release();
  1708   if (is_oop) {
  1709     // Do the pre-write barrier, if any.
  1710     pre_barrier(LIR_OprFact::address(address),
  1711                 LIR_OprFact::illegalOpr /* pre_val */,
  1712                 true /* do_load*/,
  1713                 needs_patching,
  1714                 (info ? new CodeEmitInfo(info) : NULL));
  1717   if (is_volatile && !needs_patching) {
  1718     volatile_field_store(value.result(), address, info);
  1719   } else {
  1720     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1721     __ store(value.result(), address, info, patch_code);
  1724   if (is_oop) {
  1725     // Store to object so mark the card of the header
  1726     post_barrier(object.result(), value.result());
  1729   if (is_volatile && os::is_MP()) {
  1730     __ membar();
  1735 void LIRGenerator::do_LoadField(LoadField* x) {
  1736   bool needs_patching = x->needs_patching();
  1737   bool is_volatile = x->field()->is_volatile();
  1738   BasicType field_type = x->field_type();
  1740   CodeEmitInfo* info = NULL;
  1741   if (needs_patching) {
  1742     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1743     info = state_for(x, x->state_before());
  1744   } else if (x->needs_null_check()) {
  1745     NullCheck* nc = x->explicit_null_check();
  1746     if (nc == NULL) {
  1747       info = state_for(x);
  1748     } else {
  1749       info = state_for(nc);
  1753   LIRItem object(x->obj(), this);
  1755   object.load_item();
  1757 #ifndef PRODUCT
  1758   if (PrintNotLoaded && needs_patching) {
  1759     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1760                   x->is_static() ?  "static" : "field", x->printable_bci());
  1762 #endif
  1764   if (x->needs_null_check() &&
  1765       (needs_patching ||
  1766        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1767     // emit an explicit null check because the offset is too large
  1768     __ null_check(object.result(), new CodeEmitInfo(info));
  1771   LIR_Opr reg = rlock_result(x, field_type);
  1772   LIR_Address* address;
  1773   if (needs_patching) {
  1774     // we need to patch the offset in the instruction so don't allow
  1775     // generate_address to try to be smart about emitting the -1.
  1776     // Otherwise the patching code won't know how to find the
  1777     // instruction to patch.
  1778     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1779   } else {
  1780     address = generate_address(object.result(), x->offset(), field_type);
  1783   if (is_volatile && !needs_patching) {
  1784     volatile_field_load(address, reg, info);
  1785   } else {
  1786     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1787     __ load(address, reg, info, patch_code);
  1790   if (is_volatile && os::is_MP()) {
  1791     __ membar_acquire();
  1796 //------------------------java.nio.Buffer.checkIndex------------------------
  1798 // int java.nio.Buffer.checkIndex(int)
  1799 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1800   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1801   // the buffer is non-null (because checkIndex is package-private and
  1802   // only called from within other methods in the buffer).
  1803   assert(x->number_of_arguments() == 2, "wrong type");
  1804   LIRItem buf  (x->argument_at(0), this);
  1805   LIRItem index(x->argument_at(1), this);
  1806   buf.load_item();
  1807   index.load_item();
  1809   LIR_Opr result = rlock_result(x);
  1810   if (GenerateRangeChecks) {
  1811     CodeEmitInfo* info = state_for(x);
  1812     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1813     if (index.result()->is_constant()) {
  1814       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1815       __ branch(lir_cond_belowEqual, T_INT, stub);
  1816     } else {
  1817       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1818                   java_nio_Buffer::limit_offset(), T_INT, info);
  1819       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1821     __ move(index.result(), result);
  1822   } else {
  1823     // Just load the index into the result register
  1824     __ move(index.result(), result);
  1829 //------------------------array access--------------------------------------
  1832 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1833   LIRItem array(x->array(), this);
  1834   array.load_item();
  1835   LIR_Opr reg = rlock_result(x);
  1837   CodeEmitInfo* info = NULL;
  1838   if (x->needs_null_check()) {
  1839     NullCheck* nc = x->explicit_null_check();
  1840     if (nc == NULL) {
  1841       info = state_for(x);
  1842     } else {
  1843       info = state_for(nc);
  1846   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1850 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1851   bool use_length = x->length() != NULL;
  1852   LIRItem array(x->array(), this);
  1853   LIRItem index(x->index(), this);
  1854   LIRItem length(this);
  1855   bool needs_range_check = true;
  1857   if (use_length) {
  1858     needs_range_check = x->compute_needs_range_check();
  1859     if (needs_range_check) {
  1860       length.set_instruction(x->length());
  1861       length.load_item();
  1865   array.load_item();
  1866   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1867     // let it be a constant
  1868     index.dont_load_item();
  1869   } else {
  1870     index.load_item();
  1873   CodeEmitInfo* range_check_info = state_for(x);
  1874   CodeEmitInfo* null_check_info = NULL;
  1875   if (x->needs_null_check()) {
  1876     NullCheck* nc = x->explicit_null_check();
  1877     if (nc != NULL) {
  1878       null_check_info = state_for(nc);
  1879     } else {
  1880       null_check_info = range_check_info;
  1884   // emit array address setup early so it schedules better
  1885   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1887   if (GenerateRangeChecks && needs_range_check) {
  1888     if (use_length) {
  1889       // TODO: use a (modified) version of array_range_check that does not require a
  1890       //       constant length to be loaded to a register
  1891       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1892       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1893     } else {
  1894       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1895       // The range check performs the null check, so clear it out for the load
  1896       null_check_info = NULL;
  1900   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1904 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1905   if (x->can_trap()) {
  1906     LIRItem value(x->obj(), this);
  1907     value.load_item();
  1908     CodeEmitInfo* info = state_for(x);
  1909     __ null_check(value.result(), info);
  1914 void LIRGenerator::do_Throw(Throw* x) {
  1915   LIRItem exception(x->exception(), this);
  1916   exception.load_item();
  1917   set_no_result(x);
  1918   LIR_Opr exception_opr = exception.result();
  1919   CodeEmitInfo* info = state_for(x, x->state());
  1921 #ifndef PRODUCT
  1922   if (PrintC1Statistics) {
  1923     increment_counter(Runtime1::throw_count_address(), T_INT);
  1925 #endif
  1927   // check if the instruction has an xhandler in any of the nested scopes
  1928   bool unwind = false;
  1929   if (info->exception_handlers()->length() == 0) {
  1930     // this throw is not inside an xhandler
  1931     unwind = true;
  1932   } else {
  1933     // get some idea of the throw type
  1934     bool type_is_exact = true;
  1935     ciType* throw_type = x->exception()->exact_type();
  1936     if (throw_type == NULL) {
  1937       type_is_exact = false;
  1938       throw_type = x->exception()->declared_type();
  1940     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1941       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1942       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1946   // do null check before moving exception oop into fixed register
  1947   // to avoid a fixed interval with an oop during the null check.
  1948   // Use a copy of the CodeEmitInfo because debug information is
  1949   // different for null_check and throw.
  1950   if (GenerateCompilerNullChecks &&
  1951       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1952     // if the exception object wasn't created using new then it might be null.
  1953     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1956   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1957     // we need to go through the exception lookup path to get JVMTI
  1958     // notification done
  1959     unwind = false;
  1962   // move exception oop into fixed register
  1963   __ move(exception_opr, exceptionOopOpr());
  1965   if (unwind) {
  1966     __ unwind_exception(exceptionOopOpr());
  1967   } else {
  1968     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1973 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1974   LIRItem input(x->input(), this);
  1975   input.load_item();
  1976   LIR_Opr input_opr = input.result();
  1977   assert(input_opr->is_register(), "why round if value is not in a register?");
  1978   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1979   if (input_opr->is_single_fpu()) {
  1980     set_result(x, round_item(input_opr)); // This code path not currently taken
  1981   } else {
  1982     LIR_Opr result = new_register(T_DOUBLE);
  1983     set_vreg_flag(result, must_start_in_memory);
  1984     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1985     set_result(x, result);
  1989 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1990   LIRItem base(x->base(), this);
  1991   LIRItem idx(this);
  1993   base.load_item();
  1994   if (x->has_index()) {
  1995     idx.set_instruction(x->index());
  1996     idx.load_nonconstant();
  1999   LIR_Opr reg = rlock_result(x, x->basic_type());
  2001   int   log2_scale = 0;
  2002   if (x->has_index()) {
  2003     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2004     log2_scale = x->log2_scale();
  2007   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2009   LIR_Opr base_op = base.result();
  2010 #ifndef _LP64
  2011   if (x->base()->type()->tag() == longTag) {
  2012     base_op = new_register(T_INT);
  2013     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2014   } else {
  2015     assert(x->base()->type()->tag() == intTag, "must be");
  2017 #endif
  2019   BasicType dst_type = x->basic_type();
  2020   LIR_Opr index_op = idx.result();
  2022   LIR_Address* addr;
  2023   if (index_op->is_constant()) {
  2024     assert(log2_scale == 0, "must not have a scale");
  2025     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2026   } else {
  2027 #ifdef X86
  2028 #ifdef _LP64
  2029     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2030       LIR_Opr tmp = new_pointer_register();
  2031       __ convert(Bytecodes::_i2l, index_op, tmp);
  2032       index_op = tmp;
  2034 #endif
  2035     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2036 #elif defined(ARM)
  2037     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2038 #else
  2039     if (index_op->is_illegal() || log2_scale == 0) {
  2040 #ifdef _LP64
  2041       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2042         LIR_Opr tmp = new_pointer_register();
  2043         __ convert(Bytecodes::_i2l, index_op, tmp);
  2044         index_op = tmp;
  2046 #endif
  2047       addr = new LIR_Address(base_op, index_op, dst_type);
  2048     } else {
  2049       LIR_Opr tmp = new_pointer_register();
  2050       __ shift_left(index_op, log2_scale, tmp);
  2051       addr = new LIR_Address(base_op, tmp, dst_type);
  2053 #endif
  2056   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2057     __ unaligned_move(addr, reg);
  2058   } else {
  2059     if (dst_type == T_OBJECT && x->is_wide()) {
  2060       __ move_wide(addr, reg);
  2061     } else {
  2062       __ move(addr, reg);
  2068 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2069   int  log2_scale = 0;
  2070   BasicType type = x->basic_type();
  2072   if (x->has_index()) {
  2073     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2074     log2_scale = x->log2_scale();
  2077   LIRItem base(x->base(), this);
  2078   LIRItem value(x->value(), this);
  2079   LIRItem idx(this);
  2081   base.load_item();
  2082   if (x->has_index()) {
  2083     idx.set_instruction(x->index());
  2084     idx.load_item();
  2087   if (type == T_BYTE || type == T_BOOLEAN) {
  2088     value.load_byte_item();
  2089   } else {
  2090     value.load_item();
  2093   set_no_result(x);
  2095   LIR_Opr base_op = base.result();
  2096 #ifndef _LP64
  2097   if (x->base()->type()->tag() == longTag) {
  2098     base_op = new_register(T_INT);
  2099     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2100   } else {
  2101     assert(x->base()->type()->tag() == intTag, "must be");
  2103 #endif
  2105   LIR_Opr index_op = idx.result();
  2106   if (log2_scale != 0) {
  2107     // temporary fix (platform dependent code without shift on Intel would be better)
  2108     index_op = new_pointer_register();
  2109 #ifdef _LP64
  2110     if(idx.result()->type() == T_INT) {
  2111       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2112     } else {
  2113 #endif
  2114       // TODO: ARM also allows embedded shift in the address
  2115       __ move(idx.result(), index_op);
  2116 #ifdef _LP64
  2118 #endif
  2119     __ shift_left(index_op, log2_scale, index_op);
  2121 #ifdef _LP64
  2122   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2123     LIR_Opr tmp = new_pointer_register();
  2124     __ convert(Bytecodes::_i2l, index_op, tmp);
  2125     index_op = tmp;
  2127 #endif
  2129   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2130   __ move(value.result(), addr);
  2134 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2135   BasicType type = x->basic_type();
  2136   LIRItem src(x->object(), this);
  2137   LIRItem off(x->offset(), this);
  2139   off.load_item();
  2140   src.load_item();
  2142   LIR_Opr reg = rlock_result(x, x->basic_type());
  2144   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  2146 #ifndef SERIALGC
  2147   // We might be reading the value of the referent field of a
  2148   // Reference object in order to attach it back to the live
  2149   // object graph. If G1 is enabled then we need to record
  2150   // the value that is being returned in an SATB log buffer.
  2151   //
  2152   // We need to generate code similar to the following...
  2153   //
  2154   // if (offset == java_lang_ref_Reference::referent_offset) {
  2155   //   if (src != NULL) {
  2156   //     if (klass(src)->reference_type() != REF_NONE) {
  2157   //       pre_barrier(..., reg, ...);
  2158   //     }
  2159   //   }
  2160   // }
  2161   //
  2162   // The first non-constant check of either the offset or
  2163   // the src operand will be done here; the remainder
  2164   // will take place in the generated code stub.
  2166   if (UseG1GC && type == T_OBJECT) {
  2167     bool gen_code_stub = true;       // Assume we need to generate the slow code stub.
  2168     bool gen_offset_check = true;       // Assume the code stub has to generate the offset guard.
  2169     bool gen_source_check = true;       // Assume the code stub has to check the src object for null.
  2171     if (off.is_constant()) {
  2172       jlong off_con = (off.type()->is_int() ?
  2173                         (jlong) off.get_jint_constant() :
  2174                         off.get_jlong_constant());
  2177       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2178         // The constant offset is something other than referent_offset.
  2179         // We can skip generating/checking the remaining guards and
  2180         // skip generation of the code stub.
  2181         gen_code_stub = false;
  2182       } else {
  2183         // The constant offset is the same as referent_offset -
  2184         // we do not need to generate a runtime offset check.
  2185         gen_offset_check = false;
  2189     // We don't need to generate stub if the source object is an array
  2190     if (gen_code_stub && src.type()->is_array()) {
  2191       gen_code_stub = false;
  2194     if (gen_code_stub) {
  2195       // We still need to continue with the checks.
  2196       if (src.is_constant()) {
  2197         ciObject* src_con = src.get_jobject_constant();
  2199         if (src_con->is_null_object()) {
  2200           // The constant src object is null - We can skip
  2201           // generating the code stub.
  2202           gen_code_stub = false;
  2203         } else {
  2204           // Non-null constant source object. We still have to generate
  2205           // the slow stub - but we don't need to generate the runtime
  2206           // null object check.
  2207           gen_source_check = false;
  2212     if (gen_code_stub) {
  2213       // Temoraries.
  2214       LIR_Opr src_klass = new_register(T_OBJECT);
  2216       // Get the thread pointer for the pre-barrier
  2217       LIR_Opr thread = getThreadPointer();
  2219       CodeStub* stub;
  2221       // We can have generate one runtime check here. Let's start with
  2222       // the offset check.
  2223       if (gen_offset_check) {
  2224         // if (offset == referent_offset) -> slow code stub
  2225         // If offset is an int then we can do the comparison with the
  2226         // referent_offset constant; otherwise we need to move
  2227         // referent_offset into a temporary register and generate
  2228         // a reg-reg compare.
  2230         LIR_Opr referent_off;
  2232         if (off.type()->is_int()) {
  2233           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2234         } else {
  2235           assert(off.type()->is_long(), "what else?");
  2236           referent_off = new_register(T_LONG);
  2237           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2240         __ cmp(lir_cond_equal, off.result(), referent_off);
  2242         // Optionally generate "src == null" check.
  2243         stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2244                                                     src_klass, thread,
  2245                                                     gen_source_check);
  2247         __ branch(lir_cond_equal, as_BasicType(off.type()), stub);
  2248       } else {
  2249         if (gen_source_check) {
  2250           // offset is a const and equals referent offset
  2251           // if (source != null) -> slow code stub
  2252           __ cmp(lir_cond_notEqual, src.result(), LIR_OprFact::oopConst(NULL));
  2254           // Since we are generating the "if src == null" guard here,
  2255           // there is no need to generate the "src == null" check again.
  2256           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2257                                                     src_klass, thread,
  2258                                                     false);
  2260           __ branch(lir_cond_notEqual, T_OBJECT, stub);
  2261         } else {
  2262           // We have statically determined that offset == referent_offset
  2263           // && src != null so we unconditionally branch to code stub
  2264           // to perform the guards and record reg in the SATB log buffer.
  2266           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2267                                                     src_klass, thread,
  2268                                                     false);
  2270           __ branch(lir_cond_always, T_ILLEGAL, stub);
  2274       // Continuation point
  2275       __ branch_destination(stub->continuation());
  2278 #endif // SERIALGC
  2280   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2284 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2285   BasicType type = x->basic_type();
  2286   LIRItem src(x->object(), this);
  2287   LIRItem off(x->offset(), this);
  2288   LIRItem data(x->value(), this);
  2290   src.load_item();
  2291   if (type == T_BOOLEAN || type == T_BYTE) {
  2292     data.load_byte_item();
  2293   } else {
  2294     data.load_item();
  2296   off.load_item();
  2298   set_no_result(x);
  2300   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2301   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2302   if (x->is_volatile() && os::is_MP()) __ membar();
  2306 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2307   LIRItem src(x->object(), this);
  2308   LIRItem off(x->offset(), this);
  2310   src.load_item();
  2311   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2312     // let it be a constant
  2313     off.dont_load_item();
  2314   } else {
  2315     off.load_item();
  2318   set_no_result(x);
  2320   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2321   __ prefetch(addr, is_store);
  2325 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2326   do_UnsafePrefetch(x, false);
  2330 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2331   do_UnsafePrefetch(x, true);
  2335 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2336   int lng = x->length();
  2338   for (int i = 0; i < lng; i++) {
  2339     SwitchRange* one_range = x->at(i);
  2340     int low_key = one_range->low_key();
  2341     int high_key = one_range->high_key();
  2342     BlockBegin* dest = one_range->sux();
  2343     if (low_key == high_key) {
  2344       __ cmp(lir_cond_equal, value, low_key);
  2345       __ branch(lir_cond_equal, T_INT, dest);
  2346     } else if (high_key - low_key == 1) {
  2347       __ cmp(lir_cond_equal, value, low_key);
  2348       __ branch(lir_cond_equal, T_INT, dest);
  2349       __ cmp(lir_cond_equal, value, high_key);
  2350       __ branch(lir_cond_equal, T_INT, dest);
  2351     } else {
  2352       LabelObj* L = new LabelObj();
  2353       __ cmp(lir_cond_less, value, low_key);
  2354       __ branch(lir_cond_less, L->label());
  2355       __ cmp(lir_cond_lessEqual, value, high_key);
  2356       __ branch(lir_cond_lessEqual, T_INT, dest);
  2357       __ branch_destination(L->label());
  2360   __ jump(default_sux);
  2364 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2365   SwitchRangeList* res = new SwitchRangeList();
  2366   int len = x->length();
  2367   if (len > 0) {
  2368     BlockBegin* sux = x->sux_at(0);
  2369     int key = x->lo_key();
  2370     BlockBegin* default_sux = x->default_sux();
  2371     SwitchRange* range = new SwitchRange(key, sux);
  2372     for (int i = 0; i < len; i++, key++) {
  2373       BlockBegin* new_sux = x->sux_at(i);
  2374       if (sux == new_sux) {
  2375         // still in same range
  2376         range->set_high_key(key);
  2377       } else {
  2378         // skip tests which explicitly dispatch to the default
  2379         if (sux != default_sux) {
  2380           res->append(range);
  2382         range = new SwitchRange(key, new_sux);
  2384       sux = new_sux;
  2386     if (res->length() == 0 || res->last() != range)  res->append(range);
  2388   return res;
  2392 // we expect the keys to be sorted by increasing value
  2393 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2394   SwitchRangeList* res = new SwitchRangeList();
  2395   int len = x->length();
  2396   if (len > 0) {
  2397     BlockBegin* default_sux = x->default_sux();
  2398     int key = x->key_at(0);
  2399     BlockBegin* sux = x->sux_at(0);
  2400     SwitchRange* range = new SwitchRange(key, sux);
  2401     for (int i = 1; i < len; i++) {
  2402       int new_key = x->key_at(i);
  2403       BlockBegin* new_sux = x->sux_at(i);
  2404       if (key+1 == new_key && sux == new_sux) {
  2405         // still in same range
  2406         range->set_high_key(new_key);
  2407       } else {
  2408         // skip tests which explicitly dispatch to the default
  2409         if (range->sux() != default_sux) {
  2410           res->append(range);
  2412         range = new SwitchRange(new_key, new_sux);
  2414       key = new_key;
  2415       sux = new_sux;
  2417     if (res->length() == 0 || res->last() != range)  res->append(range);
  2419   return res;
  2423 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2424   LIRItem tag(x->tag(), this);
  2425   tag.load_item();
  2426   set_no_result(x);
  2428   if (x->is_safepoint()) {
  2429     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2432   // move values into phi locations
  2433   move_to_phi(x->state());
  2435   int lo_key = x->lo_key();
  2436   int hi_key = x->hi_key();
  2437   int len = x->length();
  2438   LIR_Opr value = tag.result();
  2439   if (UseTableRanges) {
  2440     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2441   } else {
  2442     for (int i = 0; i < len; i++) {
  2443       __ cmp(lir_cond_equal, value, i + lo_key);
  2444       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2446     __ jump(x->default_sux());
  2451 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2452   LIRItem tag(x->tag(), this);
  2453   tag.load_item();
  2454   set_no_result(x);
  2456   if (x->is_safepoint()) {
  2457     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2460   // move values into phi locations
  2461   move_to_phi(x->state());
  2463   LIR_Opr value = tag.result();
  2464   if (UseTableRanges) {
  2465     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2466   } else {
  2467     int len = x->length();
  2468     for (int i = 0; i < len; i++) {
  2469       __ cmp(lir_cond_equal, value, x->key_at(i));
  2470       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2472     __ jump(x->default_sux());
  2477 void LIRGenerator::do_Goto(Goto* x) {
  2478   set_no_result(x);
  2480   if (block()->next()->as_OsrEntry()) {
  2481     // need to free up storage used for OSR entry point
  2482     LIR_Opr osrBuffer = block()->next()->operand();
  2483     BasicTypeList signature;
  2484     signature.append(T_INT);
  2485     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2486     __ move(osrBuffer, cc->args()->at(0));
  2487     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2488                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2491   if (x->is_safepoint()) {
  2492     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2494     // increment backedge counter if needed
  2495     CodeEmitInfo* info = state_for(x, state);
  2496     increment_backedge_counter(info, info->stack()->bci());
  2497     CodeEmitInfo* safepoint_info = state_for(x, state);
  2498     __ safepoint(safepoint_poll_register(), safepoint_info);
  2501   // Gotos can be folded Ifs, handle this case.
  2502   if (x->should_profile()) {
  2503     ciMethod* method = x->profiled_method();
  2504     assert(method != NULL, "method should be set if branch is profiled");
  2505     ciMethodData* md = method->method_data_or_null();
  2506     assert(md != NULL, "Sanity");
  2507     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2508     assert(data != NULL, "must have profiling data");
  2509     int offset;
  2510     if (x->direction() == Goto::taken) {
  2511       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2512       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2513     } else if (x->direction() == Goto::not_taken) {
  2514       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2515       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2516     } else {
  2517       assert(data->is_JumpData(), "need JumpData for branches");
  2518       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2520     LIR_Opr md_reg = new_register(T_OBJECT);
  2521     __ oop2reg(md->constant_encoding(), md_reg);
  2523     increment_counter(new LIR_Address(md_reg, offset,
  2524                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2527   // emit phi-instruction move after safepoint since this simplifies
  2528   // describing the state as the safepoint.
  2529   move_to_phi(x->state());
  2531   __ jump(x->default_sux());
  2535 void LIRGenerator::do_Base(Base* x) {
  2536   __ std_entry(LIR_OprFact::illegalOpr);
  2537   // Emit moves from physical registers / stack slots to virtual registers
  2538   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2539   IRScope* irScope = compilation()->hir()->top_scope();
  2540   int java_index = 0;
  2541   for (int i = 0; i < args->length(); i++) {
  2542     LIR_Opr src = args->at(i);
  2543     assert(!src->is_illegal(), "check");
  2544     BasicType t = src->type();
  2546     // Types which are smaller than int are passed as int, so
  2547     // correct the type which passed.
  2548     switch (t) {
  2549     case T_BYTE:
  2550     case T_BOOLEAN:
  2551     case T_SHORT:
  2552     case T_CHAR:
  2553       t = T_INT;
  2554       break;
  2557     LIR_Opr dest = new_register(t);
  2558     __ move(src, dest);
  2560     // Assign new location to Local instruction for this local
  2561     Local* local = x->state()->local_at(java_index)->as_Local();
  2562     assert(local != NULL, "Locals for incoming arguments must have been created");
  2563 #ifndef __SOFTFP__
  2564     // The java calling convention passes double as long and float as int.
  2565     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2566 #endif // __SOFTFP__
  2567     local->set_operand(dest);
  2568     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2569     java_index += type2size[t];
  2572   if (compilation()->env()->dtrace_method_probes()) {
  2573     BasicTypeList signature;
  2574     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2575     signature.append(T_OBJECT); // methodOop
  2576     LIR_OprList* args = new LIR_OprList();
  2577     args->append(getThreadPointer());
  2578     LIR_Opr meth = new_register(T_OBJECT);
  2579     __ oop2reg(method()->constant_encoding(), meth);
  2580     args->append(meth);
  2581     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2584   if (method()->is_synchronized()) {
  2585     LIR_Opr obj;
  2586     if (method()->is_static()) {
  2587       obj = new_register(T_OBJECT);
  2588       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2589     } else {
  2590       Local* receiver = x->state()->local_at(0)->as_Local();
  2591       assert(receiver != NULL, "must already exist");
  2592       obj = receiver->operand();
  2594     assert(obj->is_valid(), "must be valid");
  2596     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2597       LIR_Opr lock = new_register(T_INT);
  2598       __ load_stack_address_monitor(0, lock);
  2600       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2601       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2603       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2604       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2608   // increment invocation counters if needed
  2609   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2610     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2611     increment_invocation_counter(info);
  2614   // all blocks with a successor must end with an unconditional jump
  2615   // to the successor even if they are consecutive
  2616   __ jump(x->default_sux());
  2620 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2621   // construct our frame and model the production of incoming pointer
  2622   // to the OSR buffer.
  2623   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2624   LIR_Opr result = rlock_result(x);
  2625   __ move(LIR_Assembler::osrBufferPointer(), result);
  2629 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2630   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2631   for (; i < args->length(); i++) {
  2632     LIRItem* param = args->at(i);
  2633     LIR_Opr loc = arg_list->at(i);
  2634     if (loc->is_register()) {
  2635       param->load_item_force(loc);
  2636     } else {
  2637       LIR_Address* addr = loc->as_address_ptr();
  2638       param->load_for_store(addr->type());
  2639       if (addr->type() == T_OBJECT) {
  2640         __ move_wide(param->result(), addr);
  2641       } else
  2642         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2643           __ unaligned_move(param->result(), addr);
  2644         } else {
  2645           __ move(param->result(), addr);
  2650   if (x->has_receiver()) {
  2651     LIRItem* receiver = args->at(0);
  2652     LIR_Opr loc = arg_list->at(0);
  2653     if (loc->is_register()) {
  2654       receiver->load_item_force(loc);
  2655     } else {
  2656       assert(loc->is_address(), "just checking");
  2657       receiver->load_for_store(T_OBJECT);
  2658       __ move_wide(receiver->result(), loc->as_address_ptr());
  2664 // Visits all arguments, returns appropriate items without loading them
  2665 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2666   LIRItemList* argument_items = new LIRItemList();
  2667   if (x->has_receiver()) {
  2668     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2669     argument_items->append(receiver);
  2671   if (x->is_invokedynamic()) {
  2672     // Insert a dummy for the synthetic MethodHandle argument.
  2673     argument_items->append(NULL);
  2675   int idx = x->has_receiver() ? 1 : 0;
  2676   for (int i = 0; i < x->number_of_arguments(); i++) {
  2677     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2678     argument_items->append(param);
  2679     idx += (param->type()->is_double_word() ? 2 : 1);
  2681   return argument_items;
  2685 // The invoke with receiver has following phases:
  2686 //   a) traverse and load/lock receiver;
  2687 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2688 //   c) push receiver on stack
  2689 //   d) load each of the items and push on stack
  2690 //   e) unlock receiver
  2691 //   f) move receiver into receiver-register %o0
  2692 //   g) lock result registers and emit call operation
  2693 //
  2694 // Before issuing a call, we must spill-save all values on stack
  2695 // that are in caller-save register. "spill-save" moves thos registers
  2696 // either in a free callee-save register or spills them if no free
  2697 // callee save register is available.
  2698 //
  2699 // The problem is where to invoke spill-save.
  2700 // - if invoked between e) and f), we may lock callee save
  2701 //   register in "spill-save" that destroys the receiver register
  2702 //   before f) is executed
  2703 // - if we rearange the f) to be earlier, by loading %o0, it
  2704 //   may destroy a value on the stack that is currently in %o0
  2705 //   and is waiting to be spilled
  2706 // - if we keep the receiver locked while doing spill-save,
  2707 //   we cannot spill it as it is spill-locked
  2708 //
  2709 void LIRGenerator::do_Invoke(Invoke* x) {
  2710   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2712   LIR_OprList* arg_list = cc->args();
  2713   LIRItemList* args = invoke_visit_arguments(x);
  2714   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2716   // setup result register
  2717   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2718   if (x->type() != voidType) {
  2719     result_register = result_register_for(x->type());
  2722   CodeEmitInfo* info = state_for(x, x->state());
  2724   // invokedynamics can deoptimize.
  2725   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2727   invoke_load_arguments(x, args, arg_list);
  2729   if (x->has_receiver()) {
  2730     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2731     receiver = args->at(0)->result();
  2734   // emit invoke code
  2735   bool optimized = x->target_is_loaded() && x->target_is_final();
  2736   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2738   // JSR 292
  2739   // Preserve the SP over MethodHandle call sites.
  2740   ciMethod* target = x->target();
  2741   if (target->is_method_handle_invoke()) {
  2742     info->set_is_method_handle_invoke(true);
  2743     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2746   switch (x->code()) {
  2747     case Bytecodes::_invokestatic:
  2748       __ call_static(target, result_register,
  2749                      SharedRuntime::get_resolve_static_call_stub(),
  2750                      arg_list, info);
  2751       break;
  2752     case Bytecodes::_invokespecial:
  2753     case Bytecodes::_invokevirtual:
  2754     case Bytecodes::_invokeinterface:
  2755       // for final target we still produce an inline cache, in order
  2756       // to be able to call mixed mode
  2757       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2758         __ call_opt_virtual(target, receiver, result_register,
  2759                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2760                             arg_list, info);
  2761       } else if (x->vtable_index() < 0) {
  2762         __ call_icvirtual(target, receiver, result_register,
  2763                           SharedRuntime::get_resolve_virtual_call_stub(),
  2764                           arg_list, info);
  2765       } else {
  2766         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2767         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2768         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2770       break;
  2771     case Bytecodes::_invokedynamic: {
  2772       ciBytecodeStream bcs(x->scope()->method());
  2773       bcs.force_bci(x->state()->bci());
  2774       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2775       ciCPCache* cpcache = bcs.get_cpcache();
  2777       // Get CallSite offset from constant pool cache pointer.
  2778       int index = bcs.get_method_index();
  2779       size_t call_site_offset = cpcache->get_f1_offset(index);
  2781       // If this invokedynamic call site hasn't been executed yet in
  2782       // the interpreter, the CallSite object in the constant pool
  2783       // cache is still null and we need to deoptimize.
  2784       if (cpcache->is_f1_null_at(index)) {
  2785         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  2786         // clone all handlers.  This is handled transparently in other
  2787         // places by the CodeEmitInfo cloning logic but is handled
  2788         // specially here because a stub isn't being used.
  2789         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  2791         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2792         __ jump(deopt_stub);
  2795       // Use the receiver register for the synthetic MethodHandle
  2796       // argument.
  2797       receiver = LIR_Assembler::receiverOpr();
  2798       LIR_Opr tmp = new_register(objectType);
  2800       // Load CallSite object from constant pool cache.
  2801       __ oop2reg(cpcache->constant_encoding(), tmp);
  2802       __ move_wide(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
  2804       // Load target MethodHandle from CallSite object.
  2805       __ load(new LIR_Address(tmp, java_lang_invoke_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2807       __ call_dynamic(target, receiver, result_register,
  2808                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2809                       arg_list, info);
  2810       break;
  2812     default:
  2813       ShouldNotReachHere();
  2814       break;
  2817   // JSR 292
  2818   // Restore the SP after MethodHandle call sites.
  2819   if (target->is_method_handle_invoke()) {
  2820     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2823   if (x->type()->is_float() || x->type()->is_double()) {
  2824     // Force rounding of results from non-strictfp when in strictfp
  2825     // scope (or when we don't know the strictness of the callee, to
  2826     // be safe.)
  2827     if (method()->is_strict()) {
  2828       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2829         result_register = round_item(result_register);
  2834   if (result_register->is_valid()) {
  2835     LIR_Opr result = rlock_result(x);
  2836     __ move(result_register, result);
  2841 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2842   assert(x->number_of_arguments() == 1, "wrong type");
  2843   LIRItem value       (x->argument_at(0), this);
  2844   LIR_Opr reg = rlock_result(x);
  2845   value.load_item();
  2846   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2847   __ move(tmp, reg);
  2852 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2853 void LIRGenerator::do_IfOp(IfOp* x) {
  2854 #ifdef ASSERT
  2856     ValueTag xtag = x->x()->type()->tag();
  2857     ValueTag ttag = x->tval()->type()->tag();
  2858     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2859     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2860     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2862 #endif
  2864   LIRItem left(x->x(), this);
  2865   LIRItem right(x->y(), this);
  2866   left.load_item();
  2867   if (can_inline_as_constant(right.value())) {
  2868     right.dont_load_item();
  2869   } else {
  2870     right.load_item();
  2873   LIRItem t_val(x->tval(), this);
  2874   LIRItem f_val(x->fval(), this);
  2875   t_val.dont_load_item();
  2876   f_val.dont_load_item();
  2877   LIR_Opr reg = rlock_result(x);
  2879   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2880   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2884 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2885   switch (x->id()) {
  2886   case vmIntrinsics::_intBitsToFloat      :
  2887   case vmIntrinsics::_doubleToRawLongBits :
  2888   case vmIntrinsics::_longBitsToDouble    :
  2889   case vmIntrinsics::_floatToRawIntBits   : {
  2890     do_FPIntrinsics(x);
  2891     break;
  2894   case vmIntrinsics::_currentTimeMillis: {
  2895     assert(x->number_of_arguments() == 0, "wrong type");
  2896     LIR_Opr reg = result_register_for(x->type());
  2897     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2898                          reg, new LIR_OprList());
  2899     LIR_Opr result = rlock_result(x);
  2900     __ move(reg, result);
  2901     break;
  2904   case vmIntrinsics::_nanoTime: {
  2905     assert(x->number_of_arguments() == 0, "wrong type");
  2906     LIR_Opr reg = result_register_for(x->type());
  2907     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2908                          reg, new LIR_OprList());
  2909     LIR_Opr result = rlock_result(x);
  2910     __ move(reg, result);
  2911     break;
  2914   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2915   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2916   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2918   case vmIntrinsics::_dlog:           // fall through
  2919   case vmIntrinsics::_dlog10:         // fall through
  2920   case vmIntrinsics::_dabs:           // fall through
  2921   case vmIntrinsics::_dsqrt:          // fall through
  2922   case vmIntrinsics::_dtan:           // fall through
  2923   case vmIntrinsics::_dsin :          // fall through
  2924   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2925   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2927   // java.nio.Buffer.checkIndex
  2928   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2930   case vmIntrinsics::_compareAndSwapObject:
  2931     do_CompareAndSwap(x, objectType);
  2932     break;
  2933   case vmIntrinsics::_compareAndSwapInt:
  2934     do_CompareAndSwap(x, intType);
  2935     break;
  2936   case vmIntrinsics::_compareAndSwapLong:
  2937     do_CompareAndSwap(x, longType);
  2938     break;
  2940     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2941   case vmIntrinsics::_attemptUpdate:
  2942     do_AttemptUpdate(x);
  2943     break;
  2945   case vmIntrinsics::_Reference_get:
  2946     do_Reference_get(x);
  2947     break;
  2949   default: ShouldNotReachHere(); break;
  2953 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2954   // Need recv in a temporary register so it interferes with the other temporaries
  2955   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2956   LIR_Opr mdo = new_register(T_OBJECT);
  2957   // tmp is used to hold the counters on SPARC
  2958   LIR_Opr tmp = new_pointer_register();
  2959   if (x->recv() != NULL) {
  2960     LIRItem value(x->recv(), this);
  2961     value.load_item();
  2962     recv = new_register(T_OBJECT);
  2963     __ move(value.result(), recv);
  2965   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2968 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  2969   // We can safely ignore accessors here, since c2 will inline them anyway,
  2970   // accessors are also always mature.
  2971   if (!x->inlinee()->is_accessor()) {
  2972     CodeEmitInfo* info = state_for(x, x->state(), true);
  2973     // Notify the runtime very infrequently only to take care of counter overflows
  2974     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  2978 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  2979   int freq_log;
  2980   int level = compilation()->env()->comp_level();
  2981   if (level == CompLevel_limited_profile) {
  2982     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  2983   } else if (level == CompLevel_full_profile) {
  2984     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  2985   } else {
  2986     ShouldNotReachHere();
  2988   // Increment the appropriate invocation/backedge counter and notify the runtime.
  2989   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  2992 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  2993                                                 ciMethod *method, int frequency,
  2994                                                 int bci, bool backedge, bool notify) {
  2995   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  2996   int level = _compilation->env()->comp_level();
  2997   assert(level > CompLevel_simple, "Shouldn't be here");
  2999   int offset = -1;
  3000   LIR_Opr counter_holder = new_register(T_OBJECT);
  3001   LIR_Opr meth;
  3002   if (level == CompLevel_limited_profile) {
  3003     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
  3004                                  methodOopDesc::invocation_counter_offset());
  3005     __ oop2reg(method->constant_encoding(), counter_holder);
  3006     meth = counter_holder;
  3007   } else if (level == CompLevel_full_profile) {
  3008     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
  3009                                  methodDataOopDesc::invocation_counter_offset());
  3010     ciMethodData* md = method->method_data_or_null();
  3011     assert(md != NULL, "Sanity");
  3012     __ oop2reg(md->constant_encoding(), counter_holder);
  3013     meth = new_register(T_OBJECT);
  3014     __ oop2reg(method->constant_encoding(), meth);
  3015   } else {
  3016     ShouldNotReachHere();
  3018   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3019   LIR_Opr result = new_register(T_INT);
  3020   __ load(counter, result);
  3021   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3022   __ store(result, counter);
  3023   if (notify) {
  3024     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3025     __ logical_and(result, mask, result);
  3026     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3027     // The bci for info can point to cmp for if's we want the if bci
  3028     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3029     __ branch(lir_cond_equal, T_INT, overflow);
  3030     __ branch_destination(overflow->continuation());
  3034 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3035   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3036   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3038   if (x->pass_thread()) {
  3039     signature->append(T_ADDRESS);
  3040     args->append(getThreadPointer());
  3043   for (int i = 0; i < x->number_of_arguments(); i++) {
  3044     Value a = x->argument_at(i);
  3045     LIRItem* item = new LIRItem(a, this);
  3046     item->load_item();
  3047     args->append(item->result());
  3048     signature->append(as_BasicType(a->type()));
  3051   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3052   if (x->type() == voidType) {
  3053     set_no_result(x);
  3054   } else {
  3055     __ move(result, rlock_result(x));
  3059 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3060   LIRItemList args(1);
  3061   LIRItem value(arg1, this);
  3062   args.append(&value);
  3063   BasicTypeList signature;
  3064   signature.append(as_BasicType(arg1->type()));
  3066   return call_runtime(&signature, &args, entry, result_type, info);
  3070 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3071   LIRItemList args(2);
  3072   LIRItem value1(arg1, this);
  3073   LIRItem value2(arg2, this);
  3074   args.append(&value1);
  3075   args.append(&value2);
  3076   BasicTypeList signature;
  3077   signature.append(as_BasicType(arg1->type()));
  3078   signature.append(as_BasicType(arg2->type()));
  3080   return call_runtime(&signature, &args, entry, result_type, info);
  3084 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3085                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3086   // get a result register
  3087   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3088   LIR_Opr result = LIR_OprFact::illegalOpr;
  3089   if (result_type->tag() != voidTag) {
  3090     result = new_register(result_type);
  3091     phys_reg = result_register_for(result_type);
  3094   // move the arguments into the correct location
  3095   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3096   assert(cc->length() == args->length(), "argument mismatch");
  3097   for (int i = 0; i < args->length(); i++) {
  3098     LIR_Opr arg = args->at(i);
  3099     LIR_Opr loc = cc->at(i);
  3100     if (loc->is_register()) {
  3101       __ move(arg, loc);
  3102     } else {
  3103       LIR_Address* addr = loc->as_address_ptr();
  3104 //           if (!can_store_as_constant(arg)) {
  3105 //             LIR_Opr tmp = new_register(arg->type());
  3106 //             __ move(arg, tmp);
  3107 //             arg = tmp;
  3108 //           }
  3109       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3110         __ unaligned_move(arg, addr);
  3111       } else {
  3112         __ move(arg, addr);
  3117   if (info) {
  3118     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3119   } else {
  3120     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3122   if (result->is_valid()) {
  3123     __ move(phys_reg, result);
  3125   return result;
  3129 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3130                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3131   // get a result register
  3132   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3133   LIR_Opr result = LIR_OprFact::illegalOpr;
  3134   if (result_type->tag() != voidTag) {
  3135     result = new_register(result_type);
  3136     phys_reg = result_register_for(result_type);
  3139   // move the arguments into the correct location
  3140   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3142   assert(cc->length() == args->length(), "argument mismatch");
  3143   for (int i = 0; i < args->length(); i++) {
  3144     LIRItem* arg = args->at(i);
  3145     LIR_Opr loc = cc->at(i);
  3146     if (loc->is_register()) {
  3147       arg->load_item_force(loc);
  3148     } else {
  3149       LIR_Address* addr = loc->as_address_ptr();
  3150       arg->load_for_store(addr->type());
  3151       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3152         __ unaligned_move(arg->result(), addr);
  3153       } else {
  3154         __ move(arg->result(), addr);
  3159   if (info) {
  3160     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3161   } else {
  3162     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3164   if (result->is_valid()) {
  3165     __ move(phys_reg, result);
  3167   return result;

mercurial