src/share/vm/runtime/sharedRuntime.cpp

Thu, 04 Dec 2008 17:29:56 -0800

author
poonam
date
Thu, 04 Dec 2008 17:29:56 -0800
changeset 900
dc16daa0329d
parent 791
1ee8caae33af
child 943
6d8fc951eb25
child 1045
70998f2e05ef
permissions
-rw-r--r--

6739363: Xcheck jni doesn't check native function arguments
Summary: Fix adds support for verifying arguments with -Xcheck:jni.
Reviewed-by: coleenp

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   114 #ifndef SERIALGC
   116 // G1 write-barrier pre: executed before a pointer store.
   117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   118   if (orig == NULL) {
   119     assert(false, "should be optimized out");
   120     return;
   121   }
   122   // store the original value that was in the field reference
   123   thread->satb_mark_queue().enqueue(orig);
   124 JRT_END
   126 // G1 write-barrier post: executed after a pointer store.
   127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   128   thread->dirty_card_queue().enqueue(card_addr);
   129 JRT_END
   131 #endif // !SERIALGC
   134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   135   return x * y;
   136 JRT_END
   139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   140   if (x == min_jlong && y == CONST64(-1)) {
   141     return x;
   142   } else {
   143     return x / y;
   144   }
   145 JRT_END
   148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   149   if (x == min_jlong && y == CONST64(-1)) {
   150     return 0;
   151   } else {
   152     return x % y;
   153   }
   154 JRT_END
   157 const juint  float_sign_mask  = 0x7FFFFFFF;
   158 const juint  float_infinity   = 0x7F800000;
   159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   160 const julong double_infinity  = CONST64(0x7FF0000000000000);
   162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   163 #ifdef _WIN64
   164   // 64-bit Windows on amd64 returns the wrong values for
   165   // infinity operands.
   166   union { jfloat f; juint i; } xbits, ybits;
   167   xbits.f = x;
   168   ybits.f = y;
   169   // x Mod Infinity == x unless x is infinity
   170   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   171        ((ybits.i & float_sign_mask) == float_infinity) ) {
   172     return x;
   173   }
   174 #endif
   175   return ((jfloat)fmod((double)x,(double)y));
   176 JRT_END
   179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   180 #ifdef _WIN64
   181   union { jdouble d; julong l; } xbits, ybits;
   182   xbits.d = x;
   183   ybits.d = y;
   184   // x Mod Infinity == x unless x is infinity
   185   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   186        ((ybits.l & double_sign_mask) == double_infinity) ) {
   187     return x;
   188   }
   189 #endif
   190   return ((jdouble)fmod((double)x,(double)y));
   191 JRT_END
   194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   195   if (g_isnan(x)) {return 0;}
   196   jlong lltmp = (jlong)x;
   197   jint ltmp   = (jint)lltmp;
   198   if (ltmp == lltmp) {
   199     return ltmp;
   200   } else {
   201     if (x < 0) {
   202       return min_jint;
   203     } else {
   204       return max_jint;
   205     }
   206   }
   207 JRT_END
   210 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   211   if (g_isnan(x)) {return 0;}
   212   jlong lltmp = (jlong)x;
   213   if (lltmp != min_jlong) {
   214     return lltmp;
   215   } else {
   216     if (x < 0) {
   217       return min_jlong;
   218     } else {
   219       return max_jlong;
   220     }
   221   }
   222 JRT_END
   225 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   226   if (g_isnan(x)) {return 0;}
   227   jlong lltmp = (jlong)x;
   228   jint ltmp   = (jint)lltmp;
   229   if (ltmp == lltmp) {
   230     return ltmp;
   231   } else {
   232     if (x < 0) {
   233       return min_jint;
   234     } else {
   235       return max_jint;
   236     }
   237   }
   238 JRT_END
   241 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   242   if (g_isnan(x)) {return 0;}
   243   jlong lltmp = (jlong)x;
   244   if (lltmp != min_jlong) {
   245     return lltmp;
   246   } else {
   247     if (x < 0) {
   248       return min_jlong;
   249     } else {
   250       return max_jlong;
   251     }
   252   }
   253 JRT_END
   256 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   257   return (jfloat)x;
   258 JRT_END
   261 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   262   return (jfloat)x;
   263 JRT_END
   266 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   267   return (jdouble)x;
   268 JRT_END
   270 // Exception handling accross interpreter/compiler boundaries
   271 //
   272 // exception_handler_for_return_address(...) returns the continuation address.
   273 // The continuation address is the entry point of the exception handler of the
   274 // previous frame depending on the return address.
   276 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
   277   assert(frame::verify_return_pc(return_address), "must be a return pc");
   279   // the fastest case first
   280   CodeBlob* blob = CodeCache::find_blob(return_address);
   281   if (blob != NULL && blob->is_nmethod()) {
   282     nmethod* code = (nmethod*)blob;
   283     assert(code != NULL, "nmethod must be present");
   284     // native nmethods don't have exception handlers
   285     assert(!code->is_native_method(), "no exception handler");
   286     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   287     if (code->is_deopt_pc(return_address)) {
   288       return SharedRuntime::deopt_blob()->unpack_with_exception();
   289     } else {
   290       return code->exception_begin();
   291     }
   292   }
   294   // Entry code
   295   if (StubRoutines::returns_to_call_stub(return_address)) {
   296     return StubRoutines::catch_exception_entry();
   297   }
   298   // Interpreted code
   299   if (Interpreter::contains(return_address)) {
   300     return Interpreter::rethrow_exception_entry();
   301   }
   303   // Compiled code
   304   if (CodeCache::contains(return_address)) {
   305     CodeBlob* blob = CodeCache::find_blob(return_address);
   306     if (blob->is_nmethod()) {
   307       nmethod* code = (nmethod*)blob;
   308       assert(code != NULL, "nmethod must be present");
   309       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   310       return code->exception_begin();
   311     }
   312     if (blob->is_runtime_stub()) {
   313       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   314     }
   315   }
   316   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   317 #ifndef PRODUCT
   318   { ResourceMark rm;
   319     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   320     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   321     tty->print_cr("b) other problem");
   322   }
   323 #endif // PRODUCT
   324   ShouldNotReachHere();
   325   return NULL;
   326 }
   329 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
   330   return raw_exception_handler_for_return_address(return_address);
   331 JRT_END
   333 address SharedRuntime::get_poll_stub(address pc) {
   334   address stub;
   335   // Look up the code blob
   336   CodeBlob *cb = CodeCache::find_blob(pc);
   338   // Should be an nmethod
   339   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   341   // Look up the relocation information
   342   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   343     "safepoint polling: type must be poll" );
   345   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   346     "Only polling locations are used for safepoint");
   348   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   349   if (at_poll_return) {
   350     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   351            "polling page return stub not created yet");
   352     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   353   } else {
   354     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   355            "polling page safepoint stub not created yet");
   356     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   357   }
   358 #ifndef PRODUCT
   359   if( TraceSafepoint ) {
   360     char buf[256];
   361     jio_snprintf(buf, sizeof(buf),
   362                  "... found polling page %s exception at pc = "
   363                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   364                  at_poll_return ? "return" : "loop",
   365                  (intptr_t)pc, (intptr_t)stub);
   366     tty->print_raw_cr(buf);
   367   }
   368 #endif // PRODUCT
   369   return stub;
   370 }
   373 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   374   assert(caller.is_interpreted_frame(), "");
   375   int args_size = ArgumentSizeComputer(sig).size() + 1;
   376   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   377   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   378   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   379   return result;
   380 }
   383 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   384   if (JvmtiExport::can_post_exceptions()) {
   385     vframeStream vfst(thread, true);
   386     methodHandle method = methodHandle(thread, vfst.method());
   387     address bcp = method()->bcp_from(vfst.bci());
   388     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   389   }
   390   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   391 }
   393 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   394   Handle h_exception = Exceptions::new_exception(thread, name, message);
   395   throw_and_post_jvmti_exception(thread, h_exception);
   396 }
   398 // ret_pc points into caller; we are returning caller's exception handler
   399 // for given exception
   400 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   401                                                     bool force_unwind, bool top_frame_only) {
   402   assert(nm != NULL, "must exist");
   403   ResourceMark rm;
   405   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   406   // determine handler bci, if any
   407   EXCEPTION_MARK;
   409   int handler_bci = -1;
   410   int scope_depth = 0;
   411   if (!force_unwind) {
   412     int bci = sd->bci();
   413     do {
   414       bool skip_scope_increment = false;
   415       // exception handler lookup
   416       KlassHandle ek (THREAD, exception->klass());
   417       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   418       if (HAS_PENDING_EXCEPTION) {
   419         // We threw an exception while trying to find the exception handler.
   420         // Transfer the new exception to the exception handle which will
   421         // be set into thread local storage, and do another lookup for an
   422         // exception handler for this exception, this time starting at the
   423         // BCI of the exception handler which caused the exception to be
   424         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   425         // argument to ensure that the correct exception is thrown (4870175).
   426         exception = Handle(THREAD, PENDING_EXCEPTION);
   427         CLEAR_PENDING_EXCEPTION;
   428         if (handler_bci >= 0) {
   429           bci = handler_bci;
   430           handler_bci = -1;
   431           skip_scope_increment = true;
   432         }
   433       }
   434       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   435         sd = sd->sender();
   436         if (sd != NULL) {
   437           bci = sd->bci();
   438         }
   439         ++scope_depth;
   440       }
   441     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   442   }
   444   // found handling method => lookup exception handler
   445   int catch_pco = ret_pc - nm->instructions_begin();
   447   ExceptionHandlerTable table(nm);
   448   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   449   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   450     // Allow abbreviated catch tables.  The idea is to allow a method
   451     // to materialize its exceptions without committing to the exact
   452     // routing of exceptions.  In particular this is needed for adding
   453     // a synthethic handler to unlock monitors when inlining
   454     // synchonized methods since the unlock path isn't represented in
   455     // the bytecodes.
   456     t = table.entry_for(catch_pco, -1, 0);
   457   }
   459 #ifdef COMPILER1
   460   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
   461     // Exception is not handled by this frame so unwind.  Note that
   462     // this is not the same as how C2 does this.  C2 emits a table
   463     // entry that dispatches to the unwind code in the nmethod.
   464     return NULL;
   465   }
   466 #endif /* COMPILER1 */
   469   if (t == NULL) {
   470     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   471     tty->print_cr("   Exception:");
   472     exception->print();
   473     tty->cr();
   474     tty->print_cr(" Compiled exception table :");
   475     table.print();
   476     nm->print_code();
   477     guarantee(false, "missing exception handler");
   478     return NULL;
   479   }
   481   return nm->instructions_begin() + t->pco();
   482 }
   484 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   485   // These errors occur only at call sites
   486   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   487 JRT_END
   489 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   490   // These errors occur only at call sites
   491   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   492 JRT_END
   494 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   496 JRT_END
   498 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   499   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   500 JRT_END
   502 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   503   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   504   // cache sites (when the callee activation is not yet set up) so we are at a call site
   505   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   506 JRT_END
   508 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   509   // We avoid using the normal exception construction in this case because
   510   // it performs an upcall to Java, and we're already out of stack space.
   511   klassOop k = SystemDictionary::StackOverflowError_klass();
   512   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   513   Handle exception (thread, exception_oop);
   514   if (StackTraceInThrowable) {
   515     java_lang_Throwable::fill_in_stack_trace(exception);
   516   }
   517   throw_and_post_jvmti_exception(thread, exception);
   518 JRT_END
   520 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   521                                                            address pc,
   522                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   523 {
   524   address target_pc = NULL;
   526   if (Interpreter::contains(pc)) {
   527 #ifdef CC_INTERP
   528     // C++ interpreter doesn't throw implicit exceptions
   529     ShouldNotReachHere();
   530 #else
   531     switch (exception_kind) {
   532       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   533       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   534       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   535       default:                      ShouldNotReachHere();
   536     }
   537 #endif // !CC_INTERP
   538   } else {
   539     switch (exception_kind) {
   540       case STACK_OVERFLOW: {
   541         // Stack overflow only occurs upon frame setup; the callee is
   542         // going to be unwound. Dispatch to a shared runtime stub
   543         // which will cause the StackOverflowError to be fabricated
   544         // and processed.
   545         // For stack overflow in deoptimization blob, cleanup thread.
   546         if (thread->deopt_mark() != NULL) {
   547           Deoptimization::cleanup_deopt_info(thread, NULL);
   548         }
   549         return StubRoutines::throw_StackOverflowError_entry();
   550       }
   552       case IMPLICIT_NULL: {
   553         if (VtableStubs::contains(pc)) {
   554           // We haven't yet entered the callee frame. Fabricate an
   555           // exception and begin dispatching it in the caller. Since
   556           // the caller was at a call site, it's safe to destroy all
   557           // caller-saved registers, as these entry points do.
   558           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   560           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   561           if (vt_stub == NULL) return NULL;
   563           if (vt_stub->is_abstract_method_error(pc)) {
   564             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   565             return StubRoutines::throw_AbstractMethodError_entry();
   566           } else {
   567             return StubRoutines::throw_NullPointerException_at_call_entry();
   568           }
   569         } else {
   570           CodeBlob* cb = CodeCache::find_blob(pc);
   572           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   573           if (cb == NULL) return NULL;
   575           // Exception happened in CodeCache. Must be either:
   576           // 1. Inline-cache check in C2I handler blob,
   577           // 2. Inline-cache check in nmethod, or
   578           // 3. Implict null exception in nmethod
   580           if (!cb->is_nmethod()) {
   581             guarantee(cb->is_adapter_blob(),
   582                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   583             // There is no handler here, so we will simply unwind.
   584             return StubRoutines::throw_NullPointerException_at_call_entry();
   585           }
   587           // Otherwise, it's an nmethod.  Consult its exception handlers.
   588           nmethod* nm = (nmethod*)cb;
   589           if (nm->inlinecache_check_contains(pc)) {
   590             // exception happened inside inline-cache check code
   591             // => the nmethod is not yet active (i.e., the frame
   592             // is not set up yet) => use return address pushed by
   593             // caller => don't push another return address
   594             return StubRoutines::throw_NullPointerException_at_call_entry();
   595           }
   597 #ifndef PRODUCT
   598           _implicit_null_throws++;
   599 #endif
   600           target_pc = nm->continuation_for_implicit_exception(pc);
   601           guarantee(target_pc != 0, "must have a continuation point");
   602         }
   604         break; // fall through
   605       }
   608       case IMPLICIT_DIVIDE_BY_ZERO: {
   609         nmethod* nm = CodeCache::find_nmethod(pc);
   610         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   611 #ifndef PRODUCT
   612         _implicit_div0_throws++;
   613 #endif
   614         target_pc = nm->continuation_for_implicit_exception(pc);
   615         guarantee(target_pc != 0, "must have a continuation point");
   616         break; // fall through
   617       }
   619       default: ShouldNotReachHere();
   620     }
   622     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
   623     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   625     // for AbortVMOnException flag
   626     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   627     if (exception_kind == IMPLICIT_NULL) {
   628       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   629     } else {
   630       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   631     }
   632     return target_pc;
   633   }
   635   ShouldNotReachHere();
   636   return NULL;
   637 }
   640 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   641 {
   642   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   643 }
   644 JNI_END
   647 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   648   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   649 }
   652 #ifndef PRODUCT
   653 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   654   const frame f = thread->last_frame();
   655   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   656 #ifndef PRODUCT
   657   methodHandle mh(THREAD, f.interpreter_frame_method());
   658   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   659 #endif // !PRODUCT
   660   return preserve_this_value;
   661 JRT_END
   662 #endif // !PRODUCT
   665 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   666   os::yield_all(attempts);
   667 JRT_END
   670 // ---------------------------------------------------------------------------------------------------------
   671 // Non-product code
   672 #ifndef PRODUCT
   674 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
   675   ResourceMark rm;
   676   assert (caller_frame.is_interpreted_frame(), "sanity check");
   677   assert (callee_method->has_compiled_code(), "callee must be compiled");
   678   methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
   679   jint bci = caller_frame.interpreter_frame_bci();
   680   methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
   681   assert (callee_method == method, "incorrect method");
   682 }
   684 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
   685   EXCEPTION_MARK;
   686   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
   687   methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
   689   bytecode = Bytecode_invoke_at(caller_method, bci);
   690   int bytecode_index = bytecode->index();
   691   Bytecodes::Code bc = bytecode->adjusted_invoke_code();
   693   Handle receiver;
   694   if (bc == Bytecodes::_invokeinterface ||
   695       bc == Bytecodes::_invokevirtual ||
   696       bc == Bytecodes::_invokespecial) {
   697     symbolHandle signature (THREAD, staticCallee->signature());
   698     receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
   699   } else {
   700     receiver = Handle();
   701   }
   702   CallInfo result;
   703   constantPoolHandle constants (THREAD, caller_method->constants());
   704   LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
   705   methodHandle calleeMethod = result.selected_method();
   706   return calleeMethod;
   707 }
   709 #endif  // PRODUCT
   712 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   713   assert(obj->is_oop(), "must be a valid oop");
   714   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   715   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   716 JRT_END
   719 jlong SharedRuntime::get_java_tid(Thread* thread) {
   720   if (thread != NULL) {
   721     if (thread->is_Java_thread()) {
   722       oop obj = ((JavaThread*)thread)->threadObj();
   723       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   724     }
   725   }
   726   return 0;
   727 }
   729 /**
   730  * This function ought to be a void function, but cannot be because
   731  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   732  * 6254741.  Once that is fixed we can remove the dummy return value.
   733  */
   734 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   735   return dtrace_object_alloc_base(Thread::current(), o);
   736 }
   738 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   739   assert(DTraceAllocProbes, "wrong call");
   740   Klass* klass = o->blueprint();
   741   int size = o->size();
   742   symbolOop name = klass->name();
   743   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   744                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   745   return 0;
   746 }
   748 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   749     JavaThread* thread, methodOopDesc* method))
   750   assert(DTraceMethodProbes, "wrong call");
   751   symbolOop kname = method->klass_name();
   752   symbolOop name = method->name();
   753   symbolOop sig = method->signature();
   754   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   755       kname->bytes(), kname->utf8_length(),
   756       name->bytes(), name->utf8_length(),
   757       sig->bytes(), sig->utf8_length());
   758   return 0;
   759 JRT_END
   761 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   762     JavaThread* thread, methodOopDesc* method))
   763   assert(DTraceMethodProbes, "wrong call");
   764   symbolOop kname = method->klass_name();
   765   symbolOop name = method->name();
   766   symbolOop sig = method->signature();
   767   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   768       kname->bytes(), kname->utf8_length(),
   769       name->bytes(), name->utf8_length(),
   770       sig->bytes(), sig->utf8_length());
   771   return 0;
   772 JRT_END
   775 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   776 // for a call current in progress, i.e., arguments has been pushed on stack
   777 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   778 // vtable updates, etc.  Caller frame must be compiled.
   779 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   780   ResourceMark rm(THREAD);
   782   // last java frame on stack (which includes native call frames)
   783   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   785   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   786 }
   789 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   790 // for a call current in progress, i.e., arguments has been pushed on stack
   791 // but callee has not been invoked yet.  Caller frame must be compiled.
   792 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   793                                               vframeStream& vfst,
   794                                               Bytecodes::Code& bc,
   795                                               CallInfo& callinfo, TRAPS) {
   796   Handle receiver;
   797   Handle nullHandle;  //create a handy null handle for exception returns
   799   assert(!vfst.at_end(), "Java frame must exist");
   801   // Find caller and bci from vframe
   802   methodHandle caller (THREAD, vfst.method());
   803   int          bci    = vfst.bci();
   805   // Find bytecode
   806   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   807   bc = bytecode->adjusted_invoke_code();
   808   int bytecode_index = bytecode->index();
   810   // Find receiver for non-static call
   811   if (bc != Bytecodes::_invokestatic) {
   812     // This register map must be update since we need to find the receiver for
   813     // compiled frames. The receiver might be in a register.
   814     RegisterMap reg_map2(thread);
   815     frame stubFrame   = thread->last_frame();
   816     // Caller-frame is a compiled frame
   817     frame callerFrame = stubFrame.sender(&reg_map2);
   819     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   820     if (callee.is_null()) {
   821       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   822     }
   823     // Retrieve from a compiled argument list
   824     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   826     if (receiver.is_null()) {
   827       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   828     }
   829   }
   831   // Resolve method. This is parameterized by bytecode.
   832   constantPoolHandle constants (THREAD, caller->constants());
   833   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   834   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   836 #ifdef ASSERT
   837   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   838   if (bc != Bytecodes::_invokestatic) {
   839     assert(receiver.not_null(), "should have thrown exception");
   840     KlassHandle receiver_klass (THREAD, receiver->klass());
   841     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   842                             // klass is already loaded
   843     KlassHandle static_receiver_klass (THREAD, rk);
   844     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   845     if (receiver_klass->oop_is_instance()) {
   846       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   847         tty->print_cr("ERROR: Klass not yet initialized!!");
   848         receiver_klass.print();
   849       }
   850       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   851     }
   852   }
   853 #endif
   855   return receiver;
   856 }
   858 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   859   ResourceMark rm(THREAD);
   860   // We need first to check if any Java activations (compiled, interpreted)
   861   // exist on the stack since last JavaCall.  If not, we need
   862   // to get the target method from the JavaCall wrapper.
   863   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   864   methodHandle callee_method;
   865   if (vfst.at_end()) {
   866     // No Java frames were found on stack since we did the JavaCall.
   867     // Hence the stack can only contain an entry_frame.  We need to
   868     // find the target method from the stub frame.
   869     RegisterMap reg_map(thread, false);
   870     frame fr = thread->last_frame();
   871     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   872     fr = fr.sender(&reg_map);
   873     assert(fr.is_entry_frame(), "must be");
   874     // fr is now pointing to the entry frame.
   875     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   876     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   877   } else {
   878     Bytecodes::Code bc;
   879     CallInfo callinfo;
   880     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   881     callee_method = callinfo.selected_method();
   882   }
   883   assert(callee_method()->is_method(), "must be");
   884   return callee_method;
   885 }
   887 // Resolves a call.
   888 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   889                                            bool is_virtual,
   890                                            bool is_optimized, TRAPS) {
   891   methodHandle callee_method;
   892   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   893   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   894     int retry_count = 0;
   895     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   896            callee_method->method_holder() != SystemDictionary::object_klass()) {
   897       // If has a pending exception then there is no need to re-try to
   898       // resolve this method.
   899       // If the method has been redefined, we need to try again.
   900       // Hack: we have no way to update the vtables of arrays, so don't
   901       // require that java.lang.Object has been updated.
   903       // It is very unlikely that method is redefined more than 100 times
   904       // in the middle of resolve. If it is looping here more than 100 times
   905       // means then there could be a bug here.
   906       guarantee((retry_count++ < 100),
   907                 "Could not resolve to latest version of redefined method");
   908       // method is redefined in the middle of resolve so re-try.
   909       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   910     }
   911   }
   912   return callee_method;
   913 }
   915 // Resolves a call.  The compilers generate code for calls that go here
   916 // and are patched with the real destination of the call.
   917 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   918                                            bool is_virtual,
   919                                            bool is_optimized, TRAPS) {
   921   ResourceMark rm(thread);
   922   RegisterMap cbl_map(thread, false);
   923   frame caller_frame = thread->last_frame().sender(&cbl_map);
   925   CodeBlob* cb = caller_frame.cb();
   926   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
   927   // make sure caller is not getting deoptimized
   928   // and removed before we are done with it.
   929   // CLEANUP - with lazy deopt shouldn't need this lock
   930   nmethodLocker caller_lock((nmethod*)cb);
   933   // determine call info & receiver
   934   // note: a) receiver is NULL for static calls
   935   //       b) an exception is thrown if receiver is NULL for non-static calls
   936   CallInfo call_info;
   937   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   938   Handle receiver = find_callee_info(thread, invoke_code,
   939                                      call_info, CHECK_(methodHandle()));
   940   methodHandle callee_method = call_info.selected_method();
   942   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   943          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   945 #ifndef PRODUCT
   946   // tracing/debugging/statistics
   947   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   948                 (is_virtual) ? (&_resolve_virtual_ctr) :
   949                                (&_resolve_static_ctr);
   950   Atomic::inc(addr);
   952   if (TraceCallFixup) {
   953     ResourceMark rm(thread);
   954     tty->print("resolving %s%s (%s) call to",
   955       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   956       Bytecodes::name(invoke_code));
   957     callee_method->print_short_name(tty);
   958     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   959   }
   960 #endif
   962   // Compute entry points. This might require generation of C2I converter
   963   // frames, so we cannot be holding any locks here. Furthermore, the
   964   // computation of the entry points is independent of patching the call.  We
   965   // always return the entry-point, but we only patch the stub if the call has
   966   // not been deoptimized.  Return values: For a virtual call this is an
   967   // (cached_oop, destination address) pair. For a static call/optimized
   968   // virtual this is just a destination address.
   970   StaticCallInfo static_call_info;
   971   CompiledICInfo virtual_call_info;
   974   // Make sure the callee nmethod does not get deoptimized and removed before
   975   // we are done patching the code.
   976   nmethod* nm = callee_method->code();
   977   nmethodLocker nl_callee(nm);
   978 #ifdef ASSERT
   979   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
   980 #endif
   982   if (is_virtual) {
   983     assert(receiver.not_null(), "sanity check");
   984     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   985     KlassHandle h_klass(THREAD, receiver->klass());
   986     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   987                      is_optimized, static_bound, virtual_call_info,
   988                      CHECK_(methodHandle()));
   989   } else {
   990     // static call
   991     CompiledStaticCall::compute_entry(callee_method, static_call_info);
   992   }
   994   // grab lock, check for deoptimization and potentially patch caller
   995   {
   996     MutexLocker ml_patch(CompiledIC_lock);
   998     // Now that we are ready to patch if the methodOop was redefined then
   999     // don't update call site and let the caller retry.
  1001     if (!callee_method->is_old()) {
  1002 #ifdef ASSERT
  1003       // We must not try to patch to jump to an already unloaded method.
  1004       if (dest_entry_point != 0) {
  1005         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1006                "should not unload nmethod while locked");
  1008 #endif
  1009       if (is_virtual) {
  1010         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1011         if (inline_cache->is_clean()) {
  1012           inline_cache->set_to_monomorphic(virtual_call_info);
  1014       } else {
  1015         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1016         if (ssc->is_clean()) ssc->set(static_call_info);
  1020   } // unlock CompiledIC_lock
  1022   return callee_method;
  1026 // Inline caches exist only in compiled code
  1027 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1028 #ifdef ASSERT
  1029   RegisterMap reg_map(thread, false);
  1030   frame stub_frame = thread->last_frame();
  1031   assert(stub_frame.is_runtime_frame(), "sanity check");
  1032   frame caller_frame = stub_frame.sender(&reg_map);
  1033   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1034 #endif /* ASSERT */
  1036   methodHandle callee_method;
  1037   JRT_BLOCK
  1038     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1039     // Return methodOop through TLS
  1040     thread->set_vm_result(callee_method());
  1041   JRT_BLOCK_END
  1042   // return compiled code entry point after potential safepoints
  1043   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1044   return callee_method->verified_code_entry();
  1045 JRT_END
  1048 // Handle call site that has been made non-entrant
  1049 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1050   // 6243940 We might end up in here if the callee is deoptimized
  1051   // as we race to call it.  We don't want to take a safepoint if
  1052   // the caller was interpreted because the caller frame will look
  1053   // interpreted to the stack walkers and arguments are now
  1054   // "compiled" so it is much better to make this transition
  1055   // invisible to the stack walking code. The i2c path will
  1056   // place the callee method in the callee_target. It is stashed
  1057   // there because if we try and find the callee by normal means a
  1058   // safepoint is possible and have trouble gc'ing the compiled args.
  1059   RegisterMap reg_map(thread, false);
  1060   frame stub_frame = thread->last_frame();
  1061   assert(stub_frame.is_runtime_frame(), "sanity check");
  1062   frame caller_frame = stub_frame.sender(&reg_map);
  1063   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
  1064     methodOop callee = thread->callee_target();
  1065     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1066     thread->set_vm_result(callee);
  1067     thread->set_callee_target(NULL);
  1068     return callee->get_c2i_entry();
  1071   // Must be compiled to compiled path which is safe to stackwalk
  1072   methodHandle callee_method;
  1073   JRT_BLOCK
  1074     // Force resolving of caller (if we called from compiled frame)
  1075     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1076     thread->set_vm_result(callee_method());
  1077   JRT_BLOCK_END
  1078   // return compiled code entry point after potential safepoints
  1079   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1080   return callee_method->verified_code_entry();
  1081 JRT_END
  1084 // resolve a static call and patch code
  1085 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1086   methodHandle callee_method;
  1087   JRT_BLOCK
  1088     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1089     thread->set_vm_result(callee_method());
  1090   JRT_BLOCK_END
  1091   // return compiled code entry point after potential safepoints
  1092   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1093   return callee_method->verified_code_entry();
  1094 JRT_END
  1097 // resolve virtual call and update inline cache to monomorphic
  1098 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1099   methodHandle callee_method;
  1100   JRT_BLOCK
  1101     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1102     thread->set_vm_result(callee_method());
  1103   JRT_BLOCK_END
  1104   // return compiled code entry point after potential safepoints
  1105   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1106   return callee_method->verified_code_entry();
  1107 JRT_END
  1110 // Resolve a virtual call that can be statically bound (e.g., always
  1111 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1112 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1113   methodHandle callee_method;
  1114   JRT_BLOCK
  1115     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1116     thread->set_vm_result(callee_method());
  1117   JRT_BLOCK_END
  1118   // return compiled code entry point after potential safepoints
  1119   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1120   return callee_method->verified_code_entry();
  1121 JRT_END
  1127 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1128   ResourceMark rm(thread);
  1129   CallInfo call_info;
  1130   Bytecodes::Code bc;
  1132   // receiver is NULL for static calls. An exception is thrown for NULL
  1133   // receivers for non-static calls
  1134   Handle receiver = find_callee_info(thread, bc, call_info,
  1135                                      CHECK_(methodHandle()));
  1136   // Compiler1 can produce virtual call sites that can actually be statically bound
  1137   // If we fell thru to below we would think that the site was going megamorphic
  1138   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1139   // we'd try and do a vtable dispatch however methods that can be statically bound
  1140   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1141   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1142   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1143   // never to miss again. I don't believe C2 will produce code like this but if it
  1144   // did this would still be the correct thing to do for it too, hence no ifdef.
  1145   //
  1146   if (call_info.resolved_method()->can_be_statically_bound()) {
  1147     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1148     if (TraceCallFixup) {
  1149       RegisterMap reg_map(thread, false);
  1150       frame caller_frame = thread->last_frame().sender(&reg_map);
  1151       ResourceMark rm(thread);
  1152       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1153       callee_method->print_short_name(tty);
  1154       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1155       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1157     return callee_method;
  1160   methodHandle callee_method = call_info.selected_method();
  1162   bool should_be_mono = false;
  1164 #ifndef PRODUCT
  1165   Atomic::inc(&_ic_miss_ctr);
  1167   // Statistics & Tracing
  1168   if (TraceCallFixup) {
  1169     ResourceMark rm(thread);
  1170     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1171     callee_method->print_short_name(tty);
  1172     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1175   if (ICMissHistogram) {
  1176     MutexLocker m(VMStatistic_lock);
  1177     RegisterMap reg_map(thread, false);
  1178     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1179     // produce statistics under the lock
  1180     trace_ic_miss(f.pc());
  1182 #endif
  1184   // install an event collector so that when a vtable stub is created the
  1185   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1186   // event can't be posted when the stub is created as locks are held
  1187   // - instead the event will be deferred until the event collector goes
  1188   // out of scope.
  1189   JvmtiDynamicCodeEventCollector event_collector;
  1191   // Update inline cache to megamorphic. Skip update if caller has been
  1192   // made non-entrant or we are called from interpreted.
  1193   { MutexLocker ml_patch (CompiledIC_lock);
  1194     RegisterMap reg_map(thread, false);
  1195     frame caller_frame = thread->last_frame().sender(&reg_map);
  1196     CodeBlob* cb = caller_frame.cb();
  1197     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1198       // Not a non-entrant nmethod, so find inline_cache
  1199       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1200       bool should_be_mono = false;
  1201       if (inline_cache->is_optimized()) {
  1202         if (TraceCallFixup) {
  1203           ResourceMark rm(thread);
  1204           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1205           callee_method->print_short_name(tty);
  1206           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1208         should_be_mono = true;
  1209       } else {
  1210         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1211         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1213           if (receiver()->klass() == ic_oop->holder_klass()) {
  1214             // This isn't a real miss. We must have seen that compiled code
  1215             // is now available and we want the call site converted to a
  1216             // monomorphic compiled call site.
  1217             // We can't assert for callee_method->code() != NULL because it
  1218             // could have been deoptimized in the meantime
  1219             if (TraceCallFixup) {
  1220               ResourceMark rm(thread);
  1221               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1222               callee_method->print_short_name(tty);
  1223               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1225             should_be_mono = true;
  1230       if (should_be_mono) {
  1232         // We have a path that was monomorphic but was going interpreted
  1233         // and now we have (or had) a compiled entry. We correct the IC
  1234         // by using a new icBuffer.
  1235         CompiledICInfo info;
  1236         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1237         inline_cache->compute_monomorphic_entry(callee_method,
  1238                                                 receiver_klass,
  1239                                                 inline_cache->is_optimized(),
  1240                                                 false,
  1241                                                 info, CHECK_(methodHandle()));
  1242         inline_cache->set_to_monomorphic(info);
  1243       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1244         // Change to megamorphic
  1245         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1246       } else {
  1247         // Either clean or megamorphic
  1250   } // Release CompiledIC_lock
  1252   return callee_method;
  1255 //
  1256 // Resets a call-site in compiled code so it will get resolved again.
  1257 // This routines handles both virtual call sites, optimized virtual call
  1258 // sites, and static call sites. Typically used to change a call sites
  1259 // destination from compiled to interpreted.
  1260 //
  1261 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1262   ResourceMark rm(thread);
  1263   RegisterMap reg_map(thread, false);
  1264   frame stub_frame = thread->last_frame();
  1265   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1266   frame caller = stub_frame.sender(&reg_map);
  1268   // Do nothing if the frame isn't a live compiled frame.
  1269   // nmethod could be deoptimized by the time we get here
  1270   // so no update to the caller is needed.
  1272   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1274     address pc = caller.pc();
  1275     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1277     // Default call_addr is the location of the "basic" call.
  1278     // Determine the address of the call we a reresolving. With
  1279     // Inline Caches we will always find a recognizable call.
  1280     // With Inline Caches disabled we may or may not find a
  1281     // recognizable call. We will always find a call for static
  1282     // calls and for optimized virtual calls. For vanilla virtual
  1283     // calls it depends on the state of the UseInlineCaches switch.
  1284     //
  1285     // With Inline Caches disabled we can get here for a virtual call
  1286     // for two reasons:
  1287     //   1 - calling an abstract method. The vtable for abstract methods
  1288     //       will run us thru handle_wrong_method and we will eventually
  1289     //       end up in the interpreter to throw the ame.
  1290     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1291     //       call and between the time we fetch the entry address and
  1292     //       we jump to it the target gets deoptimized. Similar to 1
  1293     //       we will wind up in the interprter (thru a c2i with c2).
  1294     //
  1295     address call_addr = NULL;
  1297       // Get call instruction under lock because another thread may be
  1298       // busy patching it.
  1299       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1300       // Location of call instruction
  1301       if (NativeCall::is_call_before(pc)) {
  1302         NativeCall *ncall = nativeCall_before(pc);
  1303         call_addr = ncall->instruction_address();
  1307     // Check for static or virtual call
  1308     bool is_static_call = false;
  1309     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1310     // Make sure nmethod doesn't get deoptimized and removed until
  1311     // this is done with it.
  1312     // CLEANUP - with lazy deopt shouldn't need this lock
  1313     nmethodLocker nmlock(caller_nm);
  1315     if (call_addr != NULL) {
  1316       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1317       int ret = iter.next(); // Get item
  1318       if (ret) {
  1319         assert(iter.addr() == call_addr, "must find call");
  1320         if (iter.type() == relocInfo::static_call_type) {
  1321           is_static_call = true;
  1322         } else {
  1323           assert(iter.type() == relocInfo::virtual_call_type ||
  1324                  iter.type() == relocInfo::opt_virtual_call_type
  1325                 , "unexpected relocInfo. type");
  1327       } else {
  1328         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1331       // Cleaning the inline cache will force a new resolve. This is more robust
  1332       // than directly setting it to the new destination, since resolving of calls
  1333       // is always done through the same code path. (experience shows that it
  1334       // leads to very hard to track down bugs, if an inline cache gets updated
  1335       // to a wrong method). It should not be performance critical, since the
  1336       // resolve is only done once.
  1338       MutexLocker ml(CompiledIC_lock);
  1339       //
  1340       // We do not patch the call site if the nmethod has been made non-entrant
  1341       // as it is a waste of time
  1342       //
  1343       if (caller_nm->is_in_use()) {
  1344         if (is_static_call) {
  1345           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1346           ssc->set_to_clean();
  1347         } else {
  1348           // compiled, dispatched call (which used to call an interpreted method)
  1349           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1350           inline_cache->set_to_clean();
  1357   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1360 #ifndef PRODUCT
  1361   Atomic::inc(&_wrong_method_ctr);
  1363   if (TraceCallFixup) {
  1364     ResourceMark rm(thread);
  1365     tty->print("handle_wrong_method reresolving call to");
  1366     callee_method->print_short_name(tty);
  1367     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1369 #endif
  1371   return callee_method;
  1374 // ---------------------------------------------------------------------------
  1375 // We are calling the interpreter via a c2i. Normally this would mean that
  1376 // we were called by a compiled method. However we could have lost a race
  1377 // where we went int -> i2c -> c2i and so the caller could in fact be
  1378 // interpreted. If the caller is compiled we attampt to patch the caller
  1379 // so he no longer calls into the interpreter.
  1380 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1381   methodOop moop(method);
  1383   address entry_point = moop->from_compiled_entry();
  1385   // It's possible that deoptimization can occur at a call site which hasn't
  1386   // been resolved yet, in which case this function will be called from
  1387   // an nmethod that has been patched for deopt and we can ignore the
  1388   // request for a fixup.
  1389   // Also it is possible that we lost a race in that from_compiled_entry
  1390   // is now back to the i2c in that case we don't need to patch and if
  1391   // we did we'd leap into space because the callsite needs to use
  1392   // "to interpreter" stub in order to load up the methodOop. Don't
  1393   // ask me how I know this...
  1394   //
  1396   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1397   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1398     return;
  1401   // There is a benign race here. We could be attempting to patch to a compiled
  1402   // entry point at the same time the callee is being deoptimized. If that is
  1403   // the case then entry_point may in fact point to a c2i and we'd patch the
  1404   // call site with the same old data. clear_code will set code() to NULL
  1405   // at the end of it. If we happen to see that NULL then we can skip trying
  1406   // to patch. If we hit the window where the callee has a c2i in the
  1407   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1408   // and patch the code with the same old data. Asi es la vida.
  1410   if (moop->code() == NULL) return;
  1412   if (((nmethod*)cb)->is_in_use()) {
  1414     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1415     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1416     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1417       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1418       //
  1419       // bug 6281185. We might get here after resolving a call site to a vanilla
  1420       // virtual call. Because the resolvee uses the verified entry it may then
  1421       // see compiled code and attempt to patch the site by calling us. This would
  1422       // then incorrectly convert the call site to optimized and its downhill from
  1423       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1424       // just made a call site that could be megamorphic into a monomorphic site
  1425       // for the rest of its life! Just another racing bug in the life of
  1426       // fixup_callers_callsite ...
  1427       //
  1428       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1429       iter.next();
  1430       assert(iter.has_current(), "must have a reloc at java call site");
  1431       relocInfo::relocType typ = iter.reloc()->type();
  1432       if ( typ != relocInfo::static_call_type &&
  1433            typ != relocInfo::opt_virtual_call_type &&
  1434            typ != relocInfo::static_stub_type) {
  1435         return;
  1437       address destination = call->destination();
  1438       if (destination != entry_point) {
  1439         CodeBlob* callee = CodeCache::find_blob(destination);
  1440         // callee == cb seems weird. It means calling interpreter thru stub.
  1441         if (callee == cb || callee->is_adapter_blob()) {
  1442           // static call or optimized virtual
  1443           if (TraceCallFixup) {
  1444             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1445             moop->print_short_name(tty);
  1446             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1448           call->set_destination_mt_safe(entry_point);
  1449         } else {
  1450           if (TraceCallFixup) {
  1451             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1452             moop->print_short_name(tty);
  1453             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1455           // assert is too strong could also be resolve destinations.
  1456           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1458       } else {
  1459           if (TraceCallFixup) {
  1460             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1461             moop->print_short_name(tty);
  1462             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1468 IRT_END
  1471 // same as JVM_Arraycopy, but called directly from compiled code
  1472 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1473                                                 oopDesc* dest, jint dest_pos,
  1474                                                 jint length,
  1475                                                 JavaThread* thread)) {
  1476 #ifndef PRODUCT
  1477   _slow_array_copy_ctr++;
  1478 #endif
  1479   // Check if we have null pointers
  1480   if (src == NULL || dest == NULL) {
  1481     THROW(vmSymbols::java_lang_NullPointerException());
  1483   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1484   // even though the copy_array API also performs dynamic checks to ensure
  1485   // that src and dest are truly arrays (and are conformable).
  1486   // The copy_array mechanism is awkward and could be removed, but
  1487   // the compilers don't call this function except as a last resort,
  1488   // so it probably doesn't matter.
  1489   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1490                                         (arrayOopDesc*)dest, dest_pos,
  1491                                         length, thread);
  1493 JRT_END
  1495 char* SharedRuntime::generate_class_cast_message(
  1496     JavaThread* thread, const char* objName) {
  1498   // Get target class name from the checkcast instruction
  1499   vframeStream vfst(thread, true);
  1500   assert(!vfst.at_end(), "Java frame must exist");
  1501   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1502     vfst.method()->bcp_from(vfst.bci()));
  1503   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1504     cc->index(), thread));
  1505   return generate_class_cast_message(objName, targetKlass->external_name());
  1508 char* SharedRuntime::generate_class_cast_message(
  1509     const char* objName, const char* targetKlassName) {
  1510   const char* desc = " cannot be cast to ";
  1511   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1513   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1514   if (NULL == message) {
  1515     // Shouldn't happen, but don't cause even more problems if it does
  1516     message = const_cast<char*>(objName);
  1517   } else {
  1518     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1520   return message;
  1523 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1524   (void) JavaThread::current()->reguard_stack();
  1525 JRT_END
  1528 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1529 #ifndef PRODUCT
  1530 int SharedRuntime::_monitor_enter_ctr=0;
  1531 #endif
  1532 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1533   oop obj(_obj);
  1534 #ifndef PRODUCT
  1535   _monitor_enter_ctr++;             // monitor enter slow
  1536 #endif
  1537   if (PrintBiasedLockingStatistics) {
  1538     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1540   Handle h_obj(THREAD, obj);
  1541   if (UseBiasedLocking) {
  1542     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1543     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1544   } else {
  1545     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1547   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1548 JRT_END
  1550 #ifndef PRODUCT
  1551 int SharedRuntime::_monitor_exit_ctr=0;
  1552 #endif
  1553 // Handles the uncommon cases of monitor unlocking in compiled code
  1554 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1555    oop obj(_obj);
  1556 #ifndef PRODUCT
  1557   _monitor_exit_ctr++;              // monitor exit slow
  1558 #endif
  1559   Thread* THREAD = JavaThread::current();
  1560   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1561   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1562   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1563 #undef MIGHT_HAVE_PENDING
  1564 #ifdef MIGHT_HAVE_PENDING
  1565   // Save and restore any pending_exception around the exception mark.
  1566   // While the slow_exit must not throw an exception, we could come into
  1567   // this routine with one set.
  1568   oop pending_excep = NULL;
  1569   const char* pending_file;
  1570   int pending_line;
  1571   if (HAS_PENDING_EXCEPTION) {
  1572     pending_excep = PENDING_EXCEPTION;
  1573     pending_file  = THREAD->exception_file();
  1574     pending_line  = THREAD->exception_line();
  1575     CLEAR_PENDING_EXCEPTION;
  1577 #endif /* MIGHT_HAVE_PENDING */
  1580     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1581     EXCEPTION_MARK;
  1582     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1585 #ifdef MIGHT_HAVE_PENDING
  1586   if (pending_excep != NULL) {
  1587     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1589 #endif /* MIGHT_HAVE_PENDING */
  1590 JRT_END
  1592 #ifndef PRODUCT
  1594 void SharedRuntime::print_statistics() {
  1595   ttyLocker ttyl;
  1596   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1598   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1599   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1600   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1602   SharedRuntime::print_ic_miss_histogram();
  1604   if (CountRemovableExceptions) {
  1605     if (_nof_removable_exceptions > 0) {
  1606       Unimplemented(); // this counter is not yet incremented
  1607       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1611   // Dump the JRT_ENTRY counters
  1612   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1613   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1614   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1615   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1616   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1617   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1618   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1620   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1621   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1622   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1623   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1624   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1626   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1627   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1628   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1629   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1630   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1631   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1632   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1633   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1634   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1635   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1636   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1637   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1638   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1639   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1640   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1641   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1643   if (xtty != NULL)  xtty->tail("statistics");
  1646 inline double percent(int x, int y) {
  1647   return 100.0 * x / MAX2(y, 1);
  1650 class MethodArityHistogram {
  1651  public:
  1652   enum { MAX_ARITY = 256 };
  1653  private:
  1654   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1655   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1656   static int _max_arity;                      // max. arity seen
  1657   static int _max_size;                       // max. arg size seen
  1659   static void add_method_to_histogram(nmethod* nm) {
  1660     methodOop m = nm->method();
  1661     ArgumentCount args(m->signature());
  1662     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1663     int argsize = m->size_of_parameters();
  1664     arity   = MIN2(arity, MAX_ARITY-1);
  1665     argsize = MIN2(argsize, MAX_ARITY-1);
  1666     int count = nm->method()->compiled_invocation_count();
  1667     _arity_histogram[arity]  += count;
  1668     _size_histogram[argsize] += count;
  1669     _max_arity = MAX2(_max_arity, arity);
  1670     _max_size  = MAX2(_max_size, argsize);
  1673   void print_histogram_helper(int n, int* histo, const char* name) {
  1674     const int N = MIN2(5, n);
  1675     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1676     double sum = 0;
  1677     double weighted_sum = 0;
  1678     int i;
  1679     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1680     double rest = sum;
  1681     double percent = sum / 100;
  1682     for (i = 0; i <= N; i++) {
  1683       rest -= histo[i];
  1684       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1686     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1687     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1690   void print_histogram() {
  1691     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1692     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1693     tty->print_cr("\nSame for parameter size (in words):");
  1694     print_histogram_helper(_max_size, _size_histogram, "size");
  1695     tty->cr();
  1698  public:
  1699   MethodArityHistogram() {
  1700     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1701     _max_arity = _max_size = 0;
  1702     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1703     CodeCache::nmethods_do(add_method_to_histogram);
  1704     print_histogram();
  1706 };
  1708 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1709 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1710 int MethodArityHistogram::_max_arity;
  1711 int MethodArityHistogram::_max_size;
  1713 void SharedRuntime::print_call_statistics(int comp_total) {
  1714   tty->print_cr("Calls from compiled code:");
  1715   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1716   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1717   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1718   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1719   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1720   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1721   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1722   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1723   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1724   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1725   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1726   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1727   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1728   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1729   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1730   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1731   tty->cr();
  1732   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1733   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1734   tty->print_cr("        %% in nested categories are relative to their category");
  1735   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1736   tty->cr();
  1738   MethodArityHistogram h;
  1740 #endif
  1743 // ---------------------------------------------------------------------------
  1744 // Implementation of AdapterHandlerLibrary
  1745 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
  1746 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
  1747 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
  1748 const int AdapterHandlerLibrary_size = 16*K;
  1749 u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
  1751 void AdapterHandlerLibrary::initialize() {
  1752   if (_fingerprints != NULL) return;
  1753   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
  1754   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
  1755   // Index 0 reserved for the slow path handler
  1756   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1757   _handlers->append(NULL);
  1759   // Create a special handler for abstract methods.  Abstract methods
  1760   // are never compiled so an i2c entry is somewhat meaningless, but
  1761   // fill it in with something appropriate just in case.  Pass handle
  1762   // wrong method for the c2i transitions.
  1763   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  1764   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1765   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
  1766   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
  1767                                             wrong_method, wrong_method));
  1770 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
  1771   // Use customized signature handler.  Need to lock around updates to the
  1772   // _fingerprints array (it is not safe for concurrent readers and a single
  1773   // writer: this can be fixed if it becomes a problem).
  1775   // Get the address of the ic_miss handlers before we grab the
  1776   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  1777   // was caused by the initialization of the stubs happening
  1778   // while we held the lock and then notifying jvmti while
  1779   // holding it. This just forces the initialization to be a little
  1780   // earlier.
  1781   address ic_miss = SharedRuntime::get_ic_miss_stub();
  1782   assert(ic_miss != NULL, "must have handler");
  1784   int result;
  1785   BufferBlob *B = NULL;
  1786   uint64_t fingerprint;
  1788     MutexLocker mu(AdapterHandlerLibrary_lock);
  1789     // make sure data structure is initialized
  1790     initialize();
  1792     if (method->is_abstract()) {
  1793       return AbstractMethodHandler;
  1796     // Lookup method signature's fingerprint
  1797     fingerprint = Fingerprinter(method).fingerprint();
  1798     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
  1799     // Fingerprints are small fixed-size condensed representations of
  1800     // signatures.  If the signature is too large, it won't fit in a
  1801     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
  1802     // adapter gen'd each time, instead of searching the cache for one.  This -1
  1803     // game can be avoided if I compared signatures instead of using
  1804     // fingerprints.  However, -1 fingerprints are very rare.
  1805     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
  1806       // Turns out i2c adapters do not care what the return value is.  Mask it
  1807       // out so signatures that only differ in return type will share the same
  1808       // adapter.
  1809       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
  1810       // Search for a prior existing i2c/c2i adapter
  1811       int index = _fingerprints->find(fingerprint);
  1812       if( index >= 0 ) return index; // Found existing handlers?
  1813     } else {
  1814       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
  1815       // because I need a unique handler index.  It cannot be scanned for
  1816       // because all -1's look alike.  Instead, the matching index is passed out
  1817       // and immediately used to collect the 2 return values (the c2i and i2c
  1818       // adapters).
  1821     // Create I2C & C2I handlers
  1822     ResourceMark rm;
  1823     // Improve alignment slightly
  1824     u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1825     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1826     short buffer_locs[20];
  1827     buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  1828                                            sizeof(buffer_locs)/sizeof(relocInfo));
  1829     MacroAssembler _masm(&buffer);
  1831     // Fill in the signature array, for the calling-convention call.
  1832     int total_args_passed = method->size_of_parameters(); // All args on stack
  1834     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1835     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1836     int i=0;
  1837     if( !method->is_static() )  // Pass in receiver first
  1838       sig_bt[i++] = T_OBJECT;
  1839     for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  1840       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1841       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1842         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1844     assert( i==total_args_passed, "" );
  1846     // Now get the re-packed compiled-Java layout.
  1847     int comp_args_on_stack;
  1849     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  1850     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1852     AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  1853                                                                         total_args_passed,
  1854                                                                         comp_args_on_stack,
  1855                                                                         sig_bt,
  1856                                                                         regs);
  1858     B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
  1859     if (B == NULL) {
  1860       // CodeCache is full, disable compilation
  1861       // Ought to log this but compile log is only per compile thread
  1862       // and we're some non descript Java thread.
  1863       UseInterpreter = true;
  1864       if (UseCompiler || AlwaysCompileLoopMethods ) {
  1865 #ifndef PRODUCT
  1866         warning("CodeCache is full. Compiler has been disabled");
  1867         if (CompileTheWorld || ExitOnFullCodeCache) {
  1868           before_exit(JavaThread::current());
  1869           exit_globals(); // will delete tty
  1870           vm_direct_exit(CompileTheWorld ? 0 : 1);
  1872 #endif
  1873         UseCompiler               = false;
  1874         AlwaysCompileLoopMethods  = false;
  1876       return 0; // Out of CodeCache space (_handlers[0] == NULL)
  1878     entry->relocate(B->instructions_begin());
  1879 #ifndef PRODUCT
  1880     // debugging suppport
  1881     if (PrintAdapterHandlers) {
  1882       tty->cr();
  1883       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
  1884                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
  1885                     method->signature()->as_C_string(), fingerprint, buffer.code_size() );
  1886       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  1887       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
  1889 #endif
  1891     // add handlers to library
  1892     _fingerprints->append(fingerprint);
  1893     _handlers->append(entry);
  1894     // set handler index
  1895     assert(_fingerprints->length() == _handlers->length(), "sanity check");
  1896     result = _fingerprints->length() - 1;
  1898   // Outside of the lock
  1899   if (B != NULL) {
  1900     char blob_id[256];
  1901     jio_snprintf(blob_id,
  1902                  sizeof(blob_id),
  1903                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
  1904                  AdapterHandlerEntry::name,
  1905                  fingerprint,
  1906                  B->instructions_begin());
  1907     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1908     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1910     if (JvmtiExport::should_post_dynamic_code_generated()) {
  1911       JvmtiExport::post_dynamic_code_generated(blob_id,
  1912                                                B->instructions_begin(),
  1913                                                B->instructions_end());
  1916   return result;
  1919 void AdapterHandlerEntry::relocate(address new_base) {
  1920     ptrdiff_t delta = new_base - _i2c_entry;
  1921     _i2c_entry += delta;
  1922     _c2i_entry += delta;
  1923     _c2i_unverified_entry += delta;
  1926 // Create a native wrapper for this native method.  The wrapper converts the
  1927 // java compiled calling convention to the native convention, handlizes
  1928 // arguments, and transitions to native.  On return from the native we transition
  1929 // back to java blocking if a safepoint is in progress.
  1930 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  1931   ResourceMark rm;
  1932   nmethod* nm = NULL;
  1934   if (PrintCompilation) {
  1935     ttyLocker ttyl;
  1936     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  1937     method->print_short_name(tty);
  1938     if (method->is_static()) {
  1939       tty->print(" (static)");
  1941     tty->cr();
  1944   assert(method->has_native_function(), "must have something valid to call!");
  1947     // perform the work while holding the lock, but perform any printing outside the lock
  1948     MutexLocker mu(AdapterHandlerLibrary_lock);
  1949     // See if somebody beat us to it
  1950     nm = method->code();
  1951     if (nm) {
  1952       return nm;
  1955     // Improve alignment slightly
  1956     u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1957     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1958     // Need a few relocation entries
  1959     double locs_buf[20];
  1960     buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  1961     MacroAssembler _masm(&buffer);
  1963     // Fill in the signature array, for the calling-convention call.
  1964     int total_args_passed = method->size_of_parameters();
  1966     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1967     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1968     int i=0;
  1969     if( !method->is_static() )  // Pass in receiver first
  1970       sig_bt[i++] = T_OBJECT;
  1971     SignatureStream ss(method->signature());
  1972     for( ; !ss.at_return_type(); ss.next()) {
  1973       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1974       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1975         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1977     assert( i==total_args_passed, "" );
  1978     BasicType ret_type = ss.type();
  1980     // Now get the compiled-Java layout as input arguments
  1981     int comp_args_on_stack;
  1982     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1984     // Generate the compiled-to-native wrapper code
  1985     nm = SharedRuntime::generate_native_wrapper(&_masm,
  1986                                                 method,
  1987                                                 total_args_passed,
  1988                                                 comp_args_on_stack,
  1989                                                 sig_bt,regs,
  1990                                                 ret_type);
  1993   // Must unlock before calling set_code
  1994   // Install the generated code.
  1995   if (nm != NULL) {
  1996     method->set_code(method, nm);
  1997     nm->post_compiled_method_load_event();
  1998   } else {
  1999     // CodeCache is full, disable compilation
  2000     // Ought to log this but compile log is only per compile thread
  2001     // and we're some non descript Java thread.
  2002     UseInterpreter = true;
  2003     if (UseCompiler || AlwaysCompileLoopMethods ) {
  2004 #ifndef PRODUCT
  2005       warning("CodeCache is full. Compiler has been disabled");
  2006       if (CompileTheWorld || ExitOnFullCodeCache) {
  2007         before_exit(JavaThread::current());
  2008         exit_globals(); // will delete tty
  2009         vm_direct_exit(CompileTheWorld ? 0 : 1);
  2011 #endif
  2012       UseCompiler               = false;
  2013       AlwaysCompileLoopMethods  = false;
  2016   return nm;
  2019 #ifdef HAVE_DTRACE_H
  2020 // Create a dtrace nmethod for this method.  The wrapper converts the
  2021 // java compiled calling convention to the native convention, makes a dummy call
  2022 // (actually nops for the size of the call instruction, which become a trap if
  2023 // probe is enabled). The returns to the caller. Since this all looks like a
  2024 // leaf no thread transition is needed.
  2026 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2027   ResourceMark rm;
  2028   nmethod* nm = NULL;
  2030   if (PrintCompilation) {
  2031     ttyLocker ttyl;
  2032     tty->print("---   n%s  ");
  2033     method->print_short_name(tty);
  2034     if (method->is_static()) {
  2035       tty->print(" (static)");
  2037     tty->cr();
  2041     // perform the work while holding the lock, but perform any printing
  2042     // outside the lock
  2043     MutexLocker mu(AdapterHandlerLibrary_lock);
  2044     // See if somebody beat us to it
  2045     nm = method->code();
  2046     if (nm) {
  2047       return nm;
  2050     // Improve alignment slightly
  2051     u_char* buf = (u_char*)
  2052         (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  2053     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  2054     // Need a few relocation entries
  2055     double locs_buf[20];
  2056     buffer.insts()->initialize_shared_locs(
  2057         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2058     MacroAssembler _masm(&buffer);
  2060     // Generate the compiled-to-native wrapper code
  2061     nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2063   return nm;
  2066 // the dtrace method needs to convert java lang string to utf8 string.
  2067 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2068   typeArrayOop jlsValue  = java_lang_String::value(src);
  2069   int          jlsOffset = java_lang_String::offset(src);
  2070   int          jlsLen    = java_lang_String::length(src);
  2071   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2072                                            jlsValue->char_at_addr(jlsOffset);
  2073   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2075 #endif // ndef HAVE_DTRACE_H
  2077 // -------------------------------------------------------------------------
  2078 // Java-Java calling convention
  2079 // (what you use when Java calls Java)
  2081 //------------------------------name_for_receiver----------------------------------
  2082 // For a given signature, return the VMReg for parameter 0.
  2083 VMReg SharedRuntime::name_for_receiver() {
  2084   VMRegPair regs;
  2085   BasicType sig_bt = T_OBJECT;
  2086   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2087   // Return argument 0 register.  In the LP64 build pointers
  2088   // take 2 registers, but the VM wants only the 'main' name.
  2089   return regs.first();
  2092 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
  2093   // This method is returning a data structure allocating as a
  2094   // ResourceObject, so do not put any ResourceMarks in here.
  2095   char *s = sig->as_C_string();
  2096   int len = (int)strlen(s);
  2097   *s++; len--;                  // Skip opening paren
  2098   char *t = s+len;
  2099   while( *(--t) != ')' ) ;      // Find close paren
  2101   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2102   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2103   int cnt = 0;
  2104   if (!is_static) {
  2105     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2108   while( s < t ) {
  2109     switch( *s++ ) {            // Switch on signature character
  2110     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2111     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2112     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2113     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2114     case 'I': sig_bt[cnt++] = T_INT;     break;
  2115     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2116     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2117     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2118     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2119     case 'L':                   // Oop
  2120       while( *s++ != ';'  ) ;   // Skip signature
  2121       sig_bt[cnt++] = T_OBJECT;
  2122       break;
  2123     case '[': {                 // Array
  2124       do {                      // Skip optional size
  2125         while( *s >= '0' && *s <= '9' ) s++;
  2126       } while( *s++ == '[' );   // Nested arrays?
  2127       // Skip element type
  2128       if( s[-1] == 'L' )
  2129         while( *s++ != ';'  ) ; // Skip signature
  2130       sig_bt[cnt++] = T_ARRAY;
  2131       break;
  2133     default : ShouldNotReachHere();
  2136   assert( cnt < 256, "grow table size" );
  2138   int comp_args_on_stack;
  2139   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2141   // the calling convention doesn't count out_preserve_stack_slots so
  2142   // we must add that in to get "true" stack offsets.
  2144   if (comp_args_on_stack) {
  2145     for (int i = 0; i < cnt; i++) {
  2146       VMReg reg1 = regs[i].first();
  2147       if( reg1->is_stack()) {
  2148         // Yuck
  2149         reg1 = reg1->bias(out_preserve_stack_slots());
  2151       VMReg reg2 = regs[i].second();
  2152       if( reg2->is_stack()) {
  2153         // Yuck
  2154         reg2 = reg2->bias(out_preserve_stack_slots());
  2156       regs[i].set_pair(reg2, reg1);
  2160   // results
  2161   *arg_size = cnt;
  2162   return regs;
  2165 // OSR Migration Code
  2166 //
  2167 // This code is used convert interpreter frames into compiled frames.  It is
  2168 // called from very start of a compiled OSR nmethod.  A temp array is
  2169 // allocated to hold the interesting bits of the interpreter frame.  All
  2170 // active locks are inflated to allow them to move.  The displaced headers and
  2171 // active interpeter locals are copied into the temp buffer.  Then we return
  2172 // back to the compiled code.  The compiled code then pops the current
  2173 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2174 // copies the interpreter locals and displaced headers where it wants.
  2175 // Finally it calls back to free the temp buffer.
  2176 //
  2177 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2179 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2181 #ifdef IA64
  2182   ShouldNotReachHere(); // NYI
  2183 #endif /* IA64 */
  2185   //
  2186   // This code is dependent on the memory layout of the interpreter local
  2187   // array and the monitors. On all of our platforms the layout is identical
  2188   // so this code is shared. If some platform lays the their arrays out
  2189   // differently then this code could move to platform specific code or
  2190   // the code here could be modified to copy items one at a time using
  2191   // frame accessor methods and be platform independent.
  2193   frame fr = thread->last_frame();
  2194   assert( fr.is_interpreted_frame(), "" );
  2195   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2197   // Figure out how many monitors are active.
  2198   int active_monitor_count = 0;
  2199   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2200        kptr < fr.interpreter_frame_monitor_begin();
  2201        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2202     if( kptr->obj() != NULL ) active_monitor_count++;
  2205   // QQQ we could place number of active monitors in the array so that compiled code
  2206   // could double check it.
  2208   methodOop moop = fr.interpreter_frame_method();
  2209   int max_locals = moop->max_locals();
  2210   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2211   int buf_size_words = max_locals + active_monitor_count*2;
  2212   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2214   // Copy the locals.  Order is preserved so that loading of longs works.
  2215   // Since there's no GC I can copy the oops blindly.
  2216   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2217   if (TaggedStackInterpreter) {
  2218     for (int i = 0; i < max_locals; i++) {
  2219       // copy only each local separately to the buffer avoiding the tag
  2220       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
  2222   } else {
  2223     Copy::disjoint_words(
  2224                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2225                        (HeapWord*)&buf[0],
  2226                        max_locals);
  2229   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2230   int i = max_locals;
  2231   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2232        kptr2 < fr.interpreter_frame_monitor_begin();
  2233        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2234     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2235       BasicLock *lock = kptr2->lock();
  2236       // Inflate so the displaced header becomes position-independent
  2237       if (lock->displaced_header()->is_unlocked())
  2238         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2239       // Now the displaced header is free to move
  2240       buf[i++] = (intptr_t)lock->displaced_header();
  2241       buf[i++] = (intptr_t)kptr2->obj();
  2244   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2246   return buf;
  2247 JRT_END
  2249 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2250   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2251 JRT_END
  2253 #ifndef PRODUCT
  2254 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2256   if (_handlers == NULL) return false;
  2258   for (int i = 0 ; i < _handlers->length() ; i++) {
  2259     AdapterHandlerEntry* a = get_entry(i);
  2260     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2262   return false;
  2265 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2267   for (int i = 0 ; i < _handlers->length() ; i++) {
  2268     AdapterHandlerEntry* a = get_entry(i);
  2269     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2270       tty->print("Adapter for signature: ");
  2271       // Fingerprinter::print(_fingerprints->at(i));
  2272       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
  2273       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2274                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2276       return;
  2279   assert(false, "Should have found handler");
  2281 #endif /* PRODUCT */

mercurial