src/share/vm/memory/collectorPolicy.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4387
ca0a78017dc7
child 4557
1135141fb97e
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 void CollectorPolicy::initialize_flags() {
    51   if (MetaspaceSize > MaxMetaspaceSize) {
    52     MaxMetaspaceSize = MetaspaceSize;
    53   }
    54   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
    55   // Don't increase Metaspace size limit above specified.
    56   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
    57   if (MetaspaceSize > MaxMetaspaceSize) {
    58     MetaspaceSize = MaxMetaspaceSize;
    59   }
    61   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
    62   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
    64   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    66   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    67   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    68   if (MetaspaceSize < 256*K) {
    69     vm_exit_during_initialization("Too small initial Metaspace size");
    70   }
    71 }
    73 void CollectorPolicy::initialize_size_info() {
    74   // User inputs from -mx and ms are aligned
    75   set_initial_heap_byte_size(InitialHeapSize);
    76   if (initial_heap_byte_size() == 0) {
    77     set_initial_heap_byte_size(NewSize + OldSize);
    78   }
    79   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    80                                            min_alignment()));
    82   set_min_heap_byte_size(Arguments::min_heap_size());
    83   if (min_heap_byte_size() == 0) {
    84     set_min_heap_byte_size(NewSize + OldSize);
    85   }
    86   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
    87                                        min_alignment()));
    89   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
    91   // Check heap parameter properties
    92   if (initial_heap_byte_size() < M) {
    93     vm_exit_during_initialization("Too small initial heap");
    94   }
    95   // Check heap parameter properties
    96   if (min_heap_byte_size() < M) {
    97     vm_exit_during_initialization("Too small minimum heap");
    98   }
    99   if (initial_heap_byte_size() <= NewSize) {
   100      // make sure there is at least some room in old space
   101     vm_exit_during_initialization("Too small initial heap for new size specified");
   102   }
   103   if (max_heap_byte_size() < min_heap_byte_size()) {
   104     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   105   }
   106   if (initial_heap_byte_size() < min_heap_byte_size()) {
   107     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   108   }
   109   if (max_heap_byte_size() < initial_heap_byte_size()) {
   110     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   111   }
   113   if (PrintGCDetails && Verbose) {
   114     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   115       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   116       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   117   }
   118 }
   120 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   121   bool result = _should_clear_all_soft_refs;
   122   set_should_clear_all_soft_refs(false);
   123   return result;
   124 }
   126 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   127                                            int max_covered_regions) {
   128   switch (rem_set_name()) {
   129   case GenRemSet::CardTable: {
   130     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   131     return res;
   132   }
   133   default:
   134     guarantee(false, "unrecognized GenRemSet::Name");
   135     return NULL;
   136   }
   137 }
   139 void CollectorPolicy::cleared_all_soft_refs() {
   140   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   141   // have been cleared in the last collection but if the gc overhear
   142   // limit continues to be near, SoftRefs should still be cleared.
   143   if (size_policy() != NULL) {
   144     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   145   }
   146   _all_soft_refs_clear = true;
   147 }
   150 // GenCollectorPolicy methods.
   152 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   153   size_t x = base_size / (NewRatio+1);
   154   size_t new_gen_size = x > min_alignment() ?
   155                      align_size_down(x, min_alignment()) :
   156                      min_alignment();
   157   return new_gen_size;
   158 }
   160 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   161                                                  size_t maximum_size) {
   162   size_t alignment = min_alignment();
   163   size_t max_minus = maximum_size - alignment;
   164   return desired_size < max_minus ? desired_size : max_minus;
   165 }
   168 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   169                                                 size_t init_promo_size,
   170                                                 size_t init_survivor_size) {
   171   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   172   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   173                                         init_promo_size,
   174                                         init_survivor_size,
   175                                         max_gc_minor_pause_sec,
   176                                         GCTimeRatio);
   177 }
   179 size_t GenCollectorPolicy::compute_max_alignment() {
   180   // The card marking array and the offset arrays for old generations are
   181   // committed in os pages as well. Make sure they are entirely full (to
   182   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   183   // byte entry and the os page size is 4096, the maximum heap size should
   184   // be 512*4096 = 2MB aligned.
   185   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   187   // Parallel GC does its own alignment of the generations to avoid requiring a
   188   // large page (256M on some platforms) for the permanent generation.  The
   189   // other collectors should also be updated to do their own alignment and then
   190   // this use of lcm() should be removed.
   191   if (UseLargePages && !UseParallelGC) {
   192       // in presence of large pages we have to make sure that our
   193       // alignment is large page aware
   194       alignment = lcm(os::large_page_size(), alignment);
   195   }
   197   return alignment;
   198 }
   200 void GenCollectorPolicy::initialize_flags() {
   201   // All sizes must be multiples of the generation granularity.
   202   set_min_alignment((uintx) Generation::GenGrain);
   203   set_max_alignment(compute_max_alignment());
   204   assert(max_alignment() >= min_alignment() &&
   205          max_alignment() % min_alignment() == 0,
   206          "invalid alignment constraints");
   208   CollectorPolicy::initialize_flags();
   210   // All generational heaps have a youngest gen; handle those flags here.
   212   // Adjust max size parameters
   213   if (NewSize > MaxNewSize) {
   214     MaxNewSize = NewSize;
   215   }
   216   NewSize = align_size_down(NewSize, min_alignment());
   217   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   219   // Check validity of heap flags
   220   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   221   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   223   if (NewSize < 3*min_alignment()) {
   224      // make sure there room for eden and two survivor spaces
   225     vm_exit_during_initialization("Too small new size specified");
   226   }
   227   if (SurvivorRatio < 1 || NewRatio < 1) {
   228     vm_exit_during_initialization("Invalid heap ratio specified");
   229   }
   230 }
   232 void TwoGenerationCollectorPolicy::initialize_flags() {
   233   GenCollectorPolicy::initialize_flags();
   235   OldSize = align_size_down(OldSize, min_alignment());
   236   if (NewSize + OldSize > MaxHeapSize) {
   237     MaxHeapSize = NewSize + OldSize;
   238   }
   239   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   241   always_do_update_barrier = UseConcMarkSweepGC;
   243   // Check validity of heap flags
   244   assert(OldSize     % min_alignment() == 0, "old space alignment");
   245   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   246 }
   248 // Values set on the command line win over any ergonomically
   249 // set command line parameters.
   250 // Ergonomic choice of parameters are done before this
   251 // method is called.  Values for command line parameters such as NewSize
   252 // and MaxNewSize feed those ergonomic choices into this method.
   253 // This method makes the final generation sizings consistent with
   254 // themselves and with overall heap sizings.
   255 // In the absence of explicitly set command line flags, policies
   256 // such as the use of NewRatio are used to size the generation.
   257 void GenCollectorPolicy::initialize_size_info() {
   258   CollectorPolicy::initialize_size_info();
   260   // min_alignment() is used for alignment within a generation.
   261   // There is additional alignment done down stream for some
   262   // collectors that sometimes causes unwanted rounding up of
   263   // generations sizes.
   265   // Determine maximum size of gen0
   267   size_t max_new_size = 0;
   268   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   269     if (MaxNewSize < min_alignment()) {
   270       max_new_size = min_alignment();
   271     }
   272     if (MaxNewSize >= max_heap_byte_size()) {
   273       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   274                                      min_alignment());
   275       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   276         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   277         "new generation size of " SIZE_FORMAT "k will be used.",
   278         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   279     } else {
   280       max_new_size = align_size_down(MaxNewSize, min_alignment());
   281     }
   283   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   284   // specially at this point to just use an ergonomically set
   285   // MaxNewSize to set max_new_size.  For cases with small
   286   // heaps such a policy often did not work because the MaxNewSize
   287   // was larger than the entire heap.  The interpretation given
   288   // to ergonomically set flags is that the flags are set
   289   // by different collectors for their own special needs but
   290   // are not allowed to badly shape the heap.  This allows the
   291   // different collectors to decide what's best for themselves
   292   // without having to factor in the overall heap shape.  It
   293   // can be the case in the future that the collectors would
   294   // only make "wise" ergonomics choices and this policy could
   295   // just accept those choices.  The choices currently made are
   296   // not always "wise".
   297   } else {
   298     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   299     // Bound the maximum size by NewSize below (since it historically
   300     // would have been NewSize and because the NewRatio calculation could
   301     // yield a size that is too small) and bound it by MaxNewSize above.
   302     // Ergonomics plays here by previously calculating the desired
   303     // NewSize and MaxNewSize.
   304     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   305   }
   306   assert(max_new_size > 0, "All paths should set max_new_size");
   308   // Given the maximum gen0 size, determine the initial and
   309   // minimum gen0 sizes.
   311   if (max_heap_byte_size() == min_heap_byte_size()) {
   312     // The maximum and minimum heap sizes are the same so
   313     // the generations minimum and initial must be the
   314     // same as its maximum.
   315     set_min_gen0_size(max_new_size);
   316     set_initial_gen0_size(max_new_size);
   317     set_max_gen0_size(max_new_size);
   318   } else {
   319     size_t desired_new_size = 0;
   320     if (!FLAG_IS_DEFAULT(NewSize)) {
   321       // If NewSize is set ergonomically (for example by cms), it
   322       // would make sense to use it.  If it is used, also use it
   323       // to set the initial size.  Although there is no reason
   324       // the minimum size and the initial size have to be the same,
   325       // the current implementation gets into trouble during the calculation
   326       // of the tenured generation sizes if they are different.
   327       // Note that this makes the initial size and the minimum size
   328       // generally small compared to the NewRatio calculation.
   329       _min_gen0_size = NewSize;
   330       desired_new_size = NewSize;
   331       max_new_size = MAX2(max_new_size, NewSize);
   332     } else {
   333       // For the case where NewSize is the default, use NewRatio
   334       // to size the minimum and initial generation sizes.
   335       // Use the default NewSize as the floor for these values.  If
   336       // NewRatio is overly large, the resulting sizes can be too
   337       // small.
   338       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   339                           NewSize);
   340       desired_new_size =
   341         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   342              NewSize);
   343     }
   345     assert(_min_gen0_size > 0, "Sanity check");
   346     set_initial_gen0_size(desired_new_size);
   347     set_max_gen0_size(max_new_size);
   349     // At this point the desirable initial and minimum sizes have been
   350     // determined without regard to the maximum sizes.
   352     // Bound the sizes by the corresponding overall heap sizes.
   353     set_min_gen0_size(
   354       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   355     set_initial_gen0_size(
   356       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   357     set_max_gen0_size(
   358       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   360     // At this point all three sizes have been checked against the
   361     // maximum sizes but have not been checked for consistency
   362     // among the three.
   364     // Final check min <= initial <= max
   365     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   366     set_initial_gen0_size(
   367       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   368     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   369   }
   371   if (PrintGCDetails && Verbose) {
   372     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   373       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   374       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   375   }
   376 }
   378 // Call this method during the sizing of the gen1 to make
   379 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   380 // the most freedom in sizing because it is done before the
   381 // policy for gen1 is applied.  Once gen1 policies have been applied,
   382 // there may be conflicts in the shape of the heap and this method
   383 // is used to make the needed adjustments.  The application of the
   384 // policies could be more sophisticated (iterative for example) but
   385 // keeping it simple also seems a worthwhile goal.
   386 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   387                                                      size_t* gen1_size_ptr,
   388                                                      size_t heap_size,
   389                                                      size_t min_gen0_size) {
   390   bool result = false;
   391   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   392     if (((*gen0_size_ptr + OldSize) > heap_size) &&
   393        (heap_size - min_gen0_size) >= min_alignment()) {
   394       // Adjust gen0 down to accomodate OldSize
   395       *gen0_size_ptr = heap_size - min_gen0_size;
   396       *gen0_size_ptr =
   397         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   398              min_alignment());
   399       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   400       result = true;
   401     } else {
   402       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   403       *gen1_size_ptr =
   404         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   405                        min_alignment());
   406     }
   407   }
   408   return result;
   409 }
   411 // Minimum sizes of the generations may be different than
   412 // the initial sizes.  An inconsistently is permitted here
   413 // in the total size that can be specified explicitly by
   414 // command line specification of OldSize and NewSize and
   415 // also a command line specification of -Xms.  Issue a warning
   416 // but allow the values to pass.
   418 void TwoGenerationCollectorPolicy::initialize_size_info() {
   419   GenCollectorPolicy::initialize_size_info();
   421   // At this point the minimum, initial and maximum sizes
   422   // of the overall heap and of gen0 have been determined.
   423   // The maximum gen1 size can be determined from the maximum gen0
   424   // and maximum heap size since no explicit flags exits
   425   // for setting the gen1 maximum.
   426   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   427   _max_gen1_size =
   428     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   429          min_alignment());
   430   // If no explicit command line flag has been set for the
   431   // gen1 size, use what is left for gen1.
   432   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   433     // The user has not specified any value or ergonomics
   434     // has chosen a value (which may or may not be consistent
   435     // with the overall heap size).  In either case make
   436     // the minimum, maximum and initial sizes consistent
   437     // with the gen0 sizes and the overall heap sizes.
   438     assert(min_heap_byte_size() > _min_gen0_size,
   439       "gen0 has an unexpected minimum size");
   440     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   441     set_min_gen1_size(
   442       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   443            min_alignment()));
   444     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   445     set_initial_gen1_size(
   446       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   447            min_alignment()));
   449   } else {
   450     // It's been explicitly set on the command line.  Use the
   451     // OldSize and then determine the consequences.
   452     set_min_gen1_size(OldSize);
   453     set_initial_gen1_size(OldSize);
   455     // If the user has explicitly set an OldSize that is inconsistent
   456     // with other command line flags, issue a warning.
   457     // The generation minimums and the overall heap mimimum should
   458     // be within one heap alignment.
   459     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   460            min_heap_byte_size()) {
   461       warning("Inconsistency between minimum heap size and minimum "
   462           "generation sizes: using minimum heap = " SIZE_FORMAT,
   463           min_heap_byte_size());
   464     }
   465     if ((OldSize > _max_gen1_size)) {
   466       warning("Inconsistency between maximum heap size and maximum "
   467           "generation sizes: using maximum heap = " SIZE_FORMAT
   468           " -XX:OldSize flag is being ignored",
   469           max_heap_byte_size());
   470     }
   471     // If there is an inconsistency between the OldSize and the minimum and/or
   472     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   473     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   474                           min_heap_byte_size(), OldSize)) {
   475       if (PrintGCDetails && Verbose) {
   476         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   477               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   478               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   479       }
   480     }
   481     // Initial size
   482     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   483                          initial_heap_byte_size(), OldSize)) {
   484       if (PrintGCDetails && Verbose) {
   485         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   486           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   487           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   488       }
   489     }
   490   }
   491   // Enforce the maximum gen1 size.
   492   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   494   // Check that min gen1 <= initial gen1 <= max gen1
   495   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   496   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   498   if (PrintGCDetails && Verbose) {
   499     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   500       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   501       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   502   }
   503 }
   505 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   506                                         bool is_tlab,
   507                                         bool* gc_overhead_limit_was_exceeded) {
   508   GenCollectedHeap *gch = GenCollectedHeap::heap();
   510   debug_only(gch->check_for_valid_allocation_state());
   511   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   513   // In general gc_overhead_limit_was_exceeded should be false so
   514   // set it so here and reset it to true only if the gc time
   515   // limit is being exceeded as checked below.
   516   *gc_overhead_limit_was_exceeded = false;
   518   HeapWord* result = NULL;
   520   // Loop until the allocation is satisified,
   521   // or unsatisfied after GC.
   522   for (int try_count = 1; /* return or throw */; try_count += 1) {
   523     HandleMark hm; // discard any handles allocated in each iteration
   525     // First allocation attempt is lock-free.
   526     Generation *gen0 = gch->get_gen(0);
   527     assert(gen0->supports_inline_contig_alloc(),
   528       "Otherwise, must do alloc within heap lock");
   529     if (gen0->should_allocate(size, is_tlab)) {
   530       result = gen0->par_allocate(size, is_tlab);
   531       if (result != NULL) {
   532         assert(gch->is_in_reserved(result), "result not in heap");
   533         return result;
   534       }
   535     }
   536     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   537     {
   538       MutexLocker ml(Heap_lock);
   539       if (PrintGC && Verbose) {
   540         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   541                       " attempting locked slow path allocation");
   542       }
   543       // Note that only large objects get a shot at being
   544       // allocated in later generations.
   545       bool first_only = ! should_try_older_generation_allocation(size);
   547       result = gch->attempt_allocation(size, is_tlab, first_only);
   548       if (result != NULL) {
   549         assert(gch->is_in_reserved(result), "result not in heap");
   550         return result;
   551       }
   553       if (GC_locker::is_active_and_needs_gc()) {
   554         if (is_tlab) {
   555           return NULL;  // Caller will retry allocating individual object
   556         }
   557         if (!gch->is_maximal_no_gc()) {
   558           // Try and expand heap to satisfy request
   559           result = expand_heap_and_allocate(size, is_tlab);
   560           // result could be null if we are out of space
   561           if (result != NULL) {
   562             return result;
   563           }
   564         }
   566         // If this thread is not in a jni critical section, we stall
   567         // the requestor until the critical section has cleared and
   568         // GC allowed. When the critical section clears, a GC is
   569         // initiated by the last thread exiting the critical section; so
   570         // we retry the allocation sequence from the beginning of the loop,
   571         // rather than causing more, now probably unnecessary, GC attempts.
   572         JavaThread* jthr = JavaThread::current();
   573         if (!jthr->in_critical()) {
   574           MutexUnlocker mul(Heap_lock);
   575           // Wait for JNI critical section to be exited
   576           GC_locker::stall_until_clear();
   577           continue;
   578         } else {
   579           if (CheckJNICalls) {
   580             fatal("Possible deadlock due to allocating while"
   581                   " in jni critical section");
   582           }
   583           return NULL;
   584         }
   585       }
   587       // Read the gc count while the heap lock is held.
   588       gc_count_before = Universe::heap()->total_collections();
   589     }
   591     VM_GenCollectForAllocation op(size,
   592                                   is_tlab,
   593                                   gc_count_before);
   594     VMThread::execute(&op);
   595     if (op.prologue_succeeded()) {
   596       result = op.result();
   597       if (op.gc_locked()) {
   598          assert(result == NULL, "must be NULL if gc_locked() is true");
   599          continue;  // retry and/or stall as necessary
   600       }
   602       // Allocation has failed and a collection
   603       // has been done.  If the gc time limit was exceeded the
   604       // this time, return NULL so that an out-of-memory
   605       // will be thrown.  Clear gc_overhead_limit_exceeded
   606       // so that the overhead exceeded does not persist.
   608       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   609       const bool softrefs_clear = all_soft_refs_clear();
   610       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   611       if (limit_exceeded && softrefs_clear) {
   612         *gc_overhead_limit_was_exceeded = true;
   613         size_policy()->set_gc_overhead_limit_exceeded(false);
   614         if (op.result() != NULL) {
   615           CollectedHeap::fill_with_object(op.result(), size);
   616         }
   617         return NULL;
   618       }
   619       assert(result == NULL || gch->is_in_reserved(result),
   620              "result not in heap");
   621       return result;
   622     }
   624     // Give a warning if we seem to be looping forever.
   625     if ((QueuedAllocationWarningCount > 0) &&
   626         (try_count % QueuedAllocationWarningCount == 0)) {
   627           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   628                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   629     }
   630   }
   631 }
   633 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   634                                                        bool   is_tlab) {
   635   GenCollectedHeap *gch = GenCollectedHeap::heap();
   636   HeapWord* result = NULL;
   637   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   638     Generation *gen = gch->get_gen(i);
   639     if (gen->should_allocate(size, is_tlab)) {
   640       result = gen->expand_and_allocate(size, is_tlab);
   641     }
   642   }
   643   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   644   return result;
   645 }
   647 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   648                                                         bool   is_tlab) {
   649   GenCollectedHeap *gch = GenCollectedHeap::heap();
   650   GCCauseSetter x(gch, GCCause::_allocation_failure);
   651   HeapWord* result = NULL;
   653   assert(size != 0, "Precondition violated");
   654   if (GC_locker::is_active_and_needs_gc()) {
   655     // GC locker is active; instead of a collection we will attempt
   656     // to expand the heap, if there's room for expansion.
   657     if (!gch->is_maximal_no_gc()) {
   658       result = expand_heap_and_allocate(size, is_tlab);
   659     }
   660     return result;   // could be null if we are out of space
   661   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   662     // Do an incremental collection.
   663     gch->do_collection(false            /* full */,
   664                        false            /* clear_all_soft_refs */,
   665                        size             /* size */,
   666                        is_tlab          /* is_tlab */,
   667                        number_of_generations() - 1 /* max_level */);
   668   } else {
   669     if (Verbose && PrintGCDetails) {
   670       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   671     }
   672     // Try a full collection; see delta for bug id 6266275
   673     // for the original code and why this has been simplified
   674     // with from-space allocation criteria modified and
   675     // such allocation moved out of the safepoint path.
   676     gch->do_collection(true             /* full */,
   677                        false            /* clear_all_soft_refs */,
   678                        size             /* size */,
   679                        is_tlab          /* is_tlab */,
   680                        number_of_generations() - 1 /* max_level */);
   681   }
   683   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   685   if (result != NULL) {
   686     assert(gch->is_in_reserved(result), "result not in heap");
   687     return result;
   688   }
   690   // OK, collection failed, try expansion.
   691   result = expand_heap_and_allocate(size, is_tlab);
   692   if (result != NULL) {
   693     return result;
   694   }
   696   // If we reach this point, we're really out of memory. Try every trick
   697   // we can to reclaim memory. Force collection of soft references. Force
   698   // a complete compaction of the heap. Any additional methods for finding
   699   // free memory should be here, especially if they are expensive. If this
   700   // attempt fails, an OOM exception will be thrown.
   701   {
   702     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   704     gch->do_collection(true             /* full */,
   705                        true             /* clear_all_soft_refs */,
   706                        size             /* size */,
   707                        is_tlab          /* is_tlab */,
   708                        number_of_generations() - 1 /* max_level */);
   709   }
   711   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   712   if (result != NULL) {
   713     assert(gch->is_in_reserved(result), "result not in heap");
   714     return result;
   715   }
   717   assert(!should_clear_all_soft_refs(),
   718     "Flag should have been handled and cleared prior to this point");
   720   // What else?  We might try synchronous finalization later.  If the total
   721   // space available is large enough for the allocation, then a more
   722   // complete compaction phase than we've tried so far might be
   723   // appropriate.
   724   return NULL;
   725 }
   727 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   728                                                  ClassLoaderData* loader_data,
   729                                                  size_t word_size,
   730                                                  Metaspace::MetadataType mdtype) {
   731   uint loop_count = 0;
   732   uint gc_count = 0;
   733   uint full_gc_count = 0;
   735   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   737   do {
   738     MetaWord* result = NULL;
   739     if (GC_locker::is_active_and_needs_gc()) {
   740       // If the GC_locker is active, just expand and allocate.
   741       // If that does not succeed, wait if this thread is not
   742       // in a critical section itself.
   743       result =
   744         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   745                                                                mdtype);
   746       if (result != NULL) {
   747         return result;
   748       }
   749       JavaThread* jthr = JavaThread::current();
   750       if (!jthr->in_critical()) {
   751         // Wait for JNI critical section to be exited
   752         GC_locker::stall_until_clear();
   753         // The GC invoked by the last thread leaving the critical
   754         // section will be a young collection and a full collection
   755         // is (currently) needed for unloading classes so continue
   756         // to the next iteration to get a full GC.
   757         continue;
   758       } else {
   759         if (CheckJNICalls) {
   760           fatal("Possible deadlock due to allocating while"
   761                 " in jni critical section");
   762         }
   763         return NULL;
   764       }
   765     }
   767     {  // Need lock to get self consistent gc_count's
   768       MutexLocker ml(Heap_lock);
   769       gc_count      = Universe::heap()->total_collections();
   770       full_gc_count = Universe::heap()->total_full_collections();
   771     }
   773     // Generate a VM operation
   774     VM_CollectForMetadataAllocation op(loader_data,
   775                                        word_size,
   776                                        mdtype,
   777                                        gc_count,
   778                                        full_gc_count,
   779                                        GCCause::_metadata_GC_threshold);
   780     VMThread::execute(&op);
   782     // If GC was locked out, try again.  Check
   783     // before checking success because the prologue
   784     // could have succeeded and the GC still have
   785     // been locked out.
   786     if (op.gc_locked()) {
   787       continue;
   788     }
   790     if (op.prologue_succeeded()) {
   791       return op.result();
   792     }
   793     loop_count++;
   794     if ((QueuedAllocationWarningCount > 0) &&
   795         (loop_count % QueuedAllocationWarningCount == 0)) {
   796       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   797               " size=%d", loop_count, word_size);
   798     }
   799   } while (true);  // Until a GC is done
   800 }
   802 // Return true if any of the following is true:
   803 // . the allocation won't fit into the current young gen heap
   804 // . gc locker is occupied (jni critical section)
   805 // . heap memory is tight -- the most recent previous collection
   806 //   was a full collection because a partial collection (would
   807 //   have) failed and is likely to fail again
   808 bool GenCollectorPolicy::should_try_older_generation_allocation(
   809         size_t word_size) const {
   810   GenCollectedHeap* gch = GenCollectedHeap::heap();
   811   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   812   return    (word_size > heap_word_size(gen0_capacity))
   813          || GC_locker::is_active_and_needs_gc()
   814          || gch->incremental_collection_failed();
   815 }
   818 //
   819 // MarkSweepPolicy methods
   820 //
   822 MarkSweepPolicy::MarkSweepPolicy() {
   823   initialize_all();
   824 }
   826 void MarkSweepPolicy::initialize_generations() {
   827   _generations = new GenerationSpecPtr[number_of_generations()];
   828   if (_generations == NULL)
   829     vm_exit_during_initialization("Unable to allocate gen spec");
   831   if (UseParNewGC) {
   832     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   833   } else {
   834     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   835   }
   836   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   838   if (_generations[0] == NULL || _generations[1] == NULL)
   839     vm_exit_during_initialization("Unable to allocate gen spec");
   840 }
   842 void MarkSweepPolicy::initialize_gc_policy_counters() {
   843   // initialize the policy counters - 2 collectors, 3 generations
   844   if (UseParNewGC) {
   845     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   846   } else {
   847     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   848   }
   849 }

mercurial