src/share/vm/gc_implementation/shared/gcUtil.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4153
b9a9ed0f8eeb
child 6876
710a3c8b516e
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/gcUtil.hpp"
    28 // Catch-all file for utility classes
    30 float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
    31                                                         float average) {
    32   // We smooth the samples by not using weight() directly until we've
    33   // had enough data to make it meaningful. We'd like the first weight
    34   // used to be 1, the second to be 1/2, etc until we have
    35   // OLD_THRESHOLD/weight samples.
    36   unsigned count_weight = 0;
    38   // Avoid division by zero if the counter wraps (7158457)
    39   if (!is_old()) {
    40     count_weight = OLD_THRESHOLD/count();
    41   }
    43   unsigned adaptive_weight = (MAX2(weight(), count_weight));
    45   float new_avg = exp_avg(average, new_sample, adaptive_weight);
    47   return new_avg;
    48 }
    50 void AdaptiveWeightedAverage::sample(float new_sample) {
    51   increment_count();
    53   // Compute the new weighted average
    54   float new_avg = compute_adaptive_average(new_sample, average());
    55   set_average(new_avg);
    56   _last_sample = new_sample;
    57 }
    59 void AdaptiveWeightedAverage::print() const {
    60   print_on(tty);
    61 }
    63 void AdaptiveWeightedAverage::print_on(outputStream* st) const {
    64   guarantee(false, "NYI");
    65 }
    67 void AdaptivePaddedAverage::print() const {
    68   print_on(tty);
    69 }
    71 void AdaptivePaddedAverage::print_on(outputStream* st) const {
    72   guarantee(false, "NYI");
    73 }
    75 void AdaptivePaddedNoZeroDevAverage::print() const {
    76   print_on(tty);
    77 }
    79 void AdaptivePaddedNoZeroDevAverage::print_on(outputStream* st) const {
    80   guarantee(false, "NYI");
    81 }
    83 void AdaptivePaddedAverage::sample(float new_sample) {
    84   // Compute new adaptive weighted average based on new sample.
    85   AdaptiveWeightedAverage::sample(new_sample);
    87   // Now update the deviation and the padded average.
    88   float new_avg = average();
    89   float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
    90                                            deviation());
    91   set_deviation(new_dev);
    92   set_padded_average(new_avg + padding() * new_dev);
    93   _last_sample = new_sample;
    94 }
    96 void AdaptivePaddedNoZeroDevAverage::sample(float new_sample) {
    97   // Compute our parent classes sample information
    98   AdaptiveWeightedAverage::sample(new_sample);
   100   float new_avg = average();
   101   if (new_sample != 0) {
   102     // We only create a new deviation if the sample is non-zero
   103     float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
   104                                              deviation());
   106     set_deviation(new_dev);
   107   }
   108   set_padded_average(new_avg + padding() * deviation());
   109   _last_sample = new_sample;
   110 }
   112 LinearLeastSquareFit::LinearLeastSquareFit(unsigned weight) :
   113   _sum_x(0), _sum_x_squared(0), _sum_y(0), _sum_xy(0),
   114   _intercept(0), _slope(0), _mean_x(weight), _mean_y(weight) {}
   116 void LinearLeastSquareFit::update(double x, double y) {
   117   _sum_x = _sum_x + x;
   118   _sum_x_squared = _sum_x_squared + x * x;
   119   _sum_y = _sum_y + y;
   120   _sum_xy = _sum_xy + x * y;
   121   _mean_x.sample(x);
   122   _mean_y.sample(y);
   123   assert(_mean_x.count() == _mean_y.count(), "Incorrect count");
   124   if ( _mean_x.count() > 1 ) {
   125     double slope_denominator;
   126     slope_denominator = (_mean_x.count() * _sum_x_squared - _sum_x * _sum_x);
   127     // Some tolerance should be injected here.  A denominator that is
   128     // nearly 0 should be avoided.
   130     if (slope_denominator != 0.0) {
   131       double slope_numerator;
   132       slope_numerator = (_mean_x.count() * _sum_xy - _sum_x * _sum_y);
   133       _slope = slope_numerator / slope_denominator;
   135       // The _mean_y and _mean_x are decaying averages and can
   136       // be used to discount earlier data.  If they are used,
   137       // first consider whether all the quantities should be
   138       // kept as decaying averages.
   139       // _intercept = _mean_y.average() - _slope * _mean_x.average();
   140       _intercept = (_sum_y - _slope * _sum_x) / ((double) _mean_x.count());
   141     }
   142   }
   143 }
   145 double LinearLeastSquareFit::y(double x) {
   146   double new_y;
   148   if ( _mean_x.count() > 1 ) {
   149     new_y = (_intercept + _slope * x);
   150     return new_y;
   151   } else {
   152     return _mean_y.average();
   153   }
   154 }
   156 // Both decrement_will_decrease() and increment_will_decrease() return
   157 // true for a slope of 0.  That is because a change is necessary before
   158 // a slope can be calculated and a 0 slope will, in general, indicate
   159 // that no calculation of the slope has yet been done.  Returning true
   160 // for a slope equal to 0 reflects the intuitive expectation of the
   161 // dependence on the slope.  Don't use the complement of these functions
   162 // since that untuitive expectation is not built into the complement.
   163 bool LinearLeastSquareFit::decrement_will_decrease() {
   164   return (_slope >= 0.00);
   165 }
   167 bool LinearLeastSquareFit::increment_will_decrease() {
   168   return (_slope <= 0.00);
   169 }

mercurial