src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4391
0b54ffe4c2d3
child 4579
ad747ee9d0b1
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/g1MarkSweep.hpp"
    39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    41 #include "gc_implementation/g1/heapRegion.inline.hpp"
    42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    44 #include "gc_implementation/g1/vm_operations_g1.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "memory/gcLocker.inline.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/generationSpec.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "oops/oop.pcgc.inline.hpp"
    52 #include "runtime/aprofiler.hpp"
    53 #include "runtime/vmThread.hpp"
    55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    57 // turn it on so that the contents of the young list (scan-only /
    58 // to-be-collected) are printed at "strategic" points before / during
    59 // / after the collection --- this is useful for debugging
    60 #define YOUNG_LIST_VERBOSE 0
    61 // CURRENT STATUS
    62 // This file is under construction.  Search for "FIXME".
    64 // INVARIANTS/NOTES
    65 //
    66 // All allocation activity covered by the G1CollectedHeap interface is
    67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    68 // and allocate_new_tlab, which are the "entry" points to the
    69 // allocation code from the rest of the JVM.  (Note that this does not
    70 // apply to TLAB allocation, which is not part of this interface: it
    71 // is done by clients of this interface.)
    73 // Notes on implementation of parallelism in different tasks.
    74 //
    75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    77 // It does use run_task() which sets _n_workers in the task.
    78 // G1ParTask executes g1_process_strong_roots() ->
    79 // SharedHeap::process_strong_roots() which calls eventuall to
    80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    83 //
    85 // Local to this file.
    87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    88   SuspendibleThreadSet* _sts;
    89   G1RemSet* _g1rs;
    90   ConcurrentG1Refine* _cg1r;
    91   bool _concurrent;
    92 public:
    93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    94                               G1RemSet* g1rs,
    95                               ConcurrentG1Refine* cg1r) :
    96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    97   {}
    98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
   100     // This path is executed by the concurrent refine or mutator threads,
   101     // concurrently, and so we do not care if card_ptr contains references
   102     // that point into the collection set.
   103     assert(!oops_into_cset, "should be");
   105     if (_concurrent && _sts->should_yield()) {
   106       // Caller will actually yield.
   107       return false;
   108     }
   109     // Otherwise, we finished successfully; return true.
   110     return true;
   111   }
   112   void set_concurrent(bool b) { _concurrent = b; }
   113 };
   116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   117   int _calls;
   118   G1CollectedHeap* _g1h;
   119   CardTableModRefBS* _ctbs;
   120   int _histo[256];
   121 public:
   122   ClearLoggedCardTableEntryClosure() :
   123     _calls(0)
   124   {
   125     _g1h = G1CollectedHeap::heap();
   126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   127     for (int i = 0; i < 256; i++) _histo[i] = 0;
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       unsigned char* ujb = (unsigned char*)card_ptr;
   133       int ind = (int)(*ujb);
   134       _histo[ind]++;
   135       *card_ptr = -1;
   136     }
   137     return true;
   138   }
   139   int calls() { return _calls; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   151   int _calls;
   152   G1CollectedHeap* _g1h;
   153   CardTableModRefBS* _ctbs;
   154 public:
   155   RedirtyLoggedCardTableEntryClosure() :
   156     _calls(0)
   157   {
   158     _g1h = G1CollectedHeap::heap();
   159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   160   }
   161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   163       _calls++;
   164       *card_ptr = 0;
   165     }
   166     return true;
   167   }
   168   int calls() { return _calls; }
   169 };
   171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   172 public:
   173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   174     *card_ptr = CardTableModRefBS::dirty_card_val();
   175     return true;
   176   }
   177 };
   179 YoungList::YoungList(G1CollectedHeap* g1h) :
   180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   182   guarantee(check_list_empty(false), "just making sure...");
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   uint length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   344   _head   = _survivor_head;
   345   _length = _survivor_length;
   346   if (_survivor_head != NULL) {
   347     assert(_survivor_tail != NULL, "cause it shouldn't be");
   348     assert(_survivor_length > 0, "invariant");
   349     _survivor_tail->set_next_young_region(NULL);
   350   }
   352   // Don't clear the survivor list handles until the start of
   353   // the next evacuation pause - we need it in order to re-tag
   354   // the survivor regions from this evacuation pause as 'young'
   355   // at the start of the next.
   357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   359   assert(check_list_well_formed(), "young list should be well formed");
   360 }
   362 void YoungList::print() {
   363   HeapRegion* lists[] = {_head,   _survivor_head};
   364   const char* names[] = {"YOUNG", "SURVIVOR"};
   366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   368     HeapRegion *curr = lists[list];
   369     if (curr == NULL)
   370       gclog_or_tty->print_cr("  empty");
   371     while (curr != NULL) {
   372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   373                              HR_FORMAT_PARAMS(curr),
   374                              curr->prev_top_at_mark_start(),
   375                              curr->next_top_at_mark_start(),
   376                              curr->age_in_surv_rate_group_cond());
   377       curr = curr->get_next_young_region();
   378     }
   379   }
   381   gclog_or_tty->print_cr("");
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 void G1CollectedHeap::stop_conc_gc_threads() {
   438   _cg1r->stop();
   439   _cmThread->stop();
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   HeapRegion* hr = heap_region_containing(p);
   455   return hr != NULL && hr->in_collection_set();
   456 }
   457 #endif
   459 // Returns true if the reference points to an object that
   460 // can move in an incremental collecction.
   461 bool G1CollectedHeap::is_scavengable(const void* p) {
   462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   463   G1CollectorPolicy* g1p = g1h->g1_policy();
   464   HeapRegion* hr = heap_region_containing(p);
   465   if (hr == NULL) {
   466      // null
   467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   468      return false;
   469   } else {
   470     return !hr->isHumongous();
   471   }
   472 }
   474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   478   // Count the dirty cards at the start.
   479   CountNonCleanMemRegionClosure count1(this);
   480   ct_bs->mod_card_iterate(&count1);
   481   int orig_count = count1.n();
   483   // First clear the logged cards.
   484   ClearLoggedCardTableEntryClosure clear;
   485   dcqs.set_closure(&clear);
   486   dcqs.apply_closure_to_all_completed_buffers();
   487   dcqs.iterate_closure_all_threads(false);
   488   clear.print_histo();
   490   // Now ensure that there's no dirty cards.
   491   CountNonCleanMemRegionClosure count2(this);
   492   ct_bs->mod_card_iterate(&count2);
   493   if (count2.n() != 0) {
   494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   495                            count2.n(), orig_count);
   496   }
   497   guarantee(count2.n() == 0, "Card table should be clean.");
   499   RedirtyLoggedCardTableEntryClosure redirty;
   500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   501   dcqs.apply_closure_to_all_completed_buffers();
   502   dcqs.iterate_closure_all_threads(false);
   503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   504                          clear.calls(), orig_count);
   505   guarantee(redirty.calls() == clear.calls(),
   506             "Or else mechanism is broken.");
   508   CountNonCleanMemRegionClosure count3(this);
   509   ct_bs->mod_card_iterate(&count3);
   510   if (count3.n() != orig_count) {
   511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   512                            orig_count, count3.n());
   513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   514   }
   516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   517 }
   519 // Private class members.
   521 G1CollectedHeap* G1CollectedHeap::_g1h;
   523 // Private methods.
   525 HeapRegion*
   526 G1CollectedHeap::new_region_try_secondary_free_list() {
   527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   529     if (!_secondary_free_list.is_empty()) {
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "secondary_free_list has %u entries",
   533                                _secondary_free_list.length());
   534       }
   535       // It looks as if there are free regions available on the
   536       // secondary_free_list. Let's move them to the free_list and try
   537       // again to allocate from it.
   538       append_secondary_free_list();
   540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   541              "empty we should have moved at least one entry to the free_list");
   542       HeapRegion* res = _free_list.remove_head();
   543       if (G1ConcRegionFreeingVerbose) {
   544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   545                                "allocated "HR_FORMAT" from secondary_free_list",
   546                                HR_FORMAT_PARAMS(res));
   547       }
   548       return res;
   549     }
   551     // Wait here until we get notifed either when (a) there are no
   552     // more free regions coming or (b) some regions have been moved on
   553     // the secondary_free_list.
   554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   555   }
   557   if (G1ConcRegionFreeingVerbose) {
   558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   559                            "could not allocate from secondary_free_list");
   560   }
   561   return NULL;
   562 }
   564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   566          "the only time we use this to allocate a humongous region is "
   567          "when we are allocating a single humongous region");
   569   HeapRegion* res;
   570   if (G1StressConcRegionFreeing) {
   571     if (!_secondary_free_list.is_empty()) {
   572       if (G1ConcRegionFreeingVerbose) {
   573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   574                                "forced to look at the secondary_free_list");
   575       }
   576       res = new_region_try_secondary_free_list();
   577       if (res != NULL) {
   578         return res;
   579       }
   580     }
   581   }
   582   res = _free_list.remove_head_or_null();
   583   if (res == NULL) {
   584     if (G1ConcRegionFreeingVerbose) {
   585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   586                              "res == NULL, trying the secondary_free_list");
   587     }
   588     res = new_region_try_secondary_free_list();
   589   }
   590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   591     // Currently, only attempts to allocate GC alloc regions set
   592     // do_expand to true. So, we should only reach here during a
   593     // safepoint. If this assumption changes we might have to
   594     // reconsider the use of _expand_heap_after_alloc_failure.
   595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   597     ergo_verbose1(ErgoHeapSizing,
   598                   "attempt heap expansion",
   599                   ergo_format_reason("region allocation request failed")
   600                   ergo_format_byte("allocation request"),
   601                   word_size * HeapWordSize);
   602     if (expand(word_size * HeapWordSize)) {
   603       // Given that expand() succeeded in expanding the heap, and we
   604       // always expand the heap by an amount aligned to the heap
   605       // region size, the free list should in theory not be empty. So
   606       // it would probably be OK to use remove_head(). But the extra
   607       // check for NULL is unlikely to be a performance issue here (we
   608       // just expanded the heap!) so let's just be conservative and
   609       // use remove_head_or_null().
   610       res = _free_list.remove_head_or_null();
   611     } else {
   612       _expand_heap_after_alloc_failure = false;
   613     }
   614   }
   615   return res;
   616 }
   618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   619                                                         size_t word_size) {
   620   assert(isHumongous(word_size), "word_size should be humongous");
   621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   623   uint first = G1_NULL_HRS_INDEX;
   624   if (num_regions == 1) {
   625     // Only one region to allocate, no need to go through the slower
   626     // path. The caller will attempt the expasion if this fails, so
   627     // let's not try to expand here too.
   628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   629     if (hr != NULL) {
   630       first = hr->hrs_index();
   631     } else {
   632       first = G1_NULL_HRS_INDEX;
   633     }
   634   } else {
   635     // We can't allocate humongous regions while cleanupComplete() is
   636     // running, since some of the regions we find to be empty might not
   637     // yet be added to the free list and it is not straightforward to
   638     // know which list they are on so that we can remove them. Note
   639     // that we only need to do this if we need to allocate more than
   640     // one region to satisfy the current humongous allocation
   641     // request. If we are only allocating one region we use the common
   642     // region allocation code (see above).
   643     wait_while_free_regions_coming();
   644     append_secondary_free_list_if_not_empty_with_lock();
   646     if (free_regions() >= num_regions) {
   647       first = _hrs.find_contiguous(num_regions);
   648       if (first != G1_NULL_HRS_INDEX) {
   649         for (uint i = first; i < first + num_regions; ++i) {
   650           HeapRegion* hr = region_at(i);
   651           assert(hr->is_empty(), "sanity");
   652           assert(is_on_master_free_list(hr), "sanity");
   653           hr->set_pending_removal(true);
   654         }
   655         _free_list.remove_all_pending(num_regions);
   656       }
   657     }
   658   }
   659   return first;
   660 }
   662 HeapWord*
   663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   664                                                            uint num_regions,
   665                                                            size_t word_size) {
   666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   667   assert(isHumongous(word_size), "word_size should be humongous");
   668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   670   // Index of last region in the series + 1.
   671   uint last = first + num_regions;
   673   // We need to initialize the region(s) we just discovered. This is
   674   // a bit tricky given that it can happen concurrently with
   675   // refinement threads refining cards on these regions and
   676   // potentially wanting to refine the BOT as they are scanning
   677   // those cards (this can happen shortly after a cleanup; see CR
   678   // 6991377). So we have to set up the region(s) carefully and in
   679   // a specific order.
   681   // The word size sum of all the regions we will allocate.
   682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   683   assert(word_size <= word_size_sum, "sanity");
   685   // This will be the "starts humongous" region.
   686   HeapRegion* first_hr = region_at(first);
   687   // The header of the new object will be placed at the bottom of
   688   // the first region.
   689   HeapWord* new_obj = first_hr->bottom();
   690   // This will be the new end of the first region in the series that
   691   // should also match the end of the last region in the seriers.
   692   HeapWord* new_end = new_obj + word_size_sum;
   693   // This will be the new top of the first region that will reflect
   694   // this allocation.
   695   HeapWord* new_top = new_obj + word_size;
   697   // First, we need to zero the header of the space that we will be
   698   // allocating. When we update top further down, some refinement
   699   // threads might try to scan the region. By zeroing the header we
   700   // ensure that any thread that will try to scan the region will
   701   // come across the zero klass word and bail out.
   702   //
   703   // NOTE: It would not have been correct to have used
   704   // CollectedHeap::fill_with_object() and make the space look like
   705   // an int array. The thread that is doing the allocation will
   706   // later update the object header to a potentially different array
   707   // type and, for a very short period of time, the klass and length
   708   // fields will be inconsistent. This could cause a refinement
   709   // thread to calculate the object size incorrectly.
   710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   712   // We will set up the first region as "starts humongous". This
   713   // will also update the BOT covering all the regions to reflect
   714   // that there is a single object that starts at the bottom of the
   715   // first region.
   716   first_hr->set_startsHumongous(new_top, new_end);
   718   // Then, if there are any, we will set up the "continues
   719   // humongous" regions.
   720   HeapRegion* hr = NULL;
   721   for (uint i = first + 1; i < last; ++i) {
   722     hr = region_at(i);
   723     hr->set_continuesHumongous(first_hr);
   724   }
   725   // If we have "continues humongous" regions (hr != NULL), then the
   726   // end of the last one should match new_end.
   727   assert(hr == NULL || hr->end() == new_end, "sanity");
   729   // Up to this point no concurrent thread would have been able to
   730   // do any scanning on any region in this series. All the top
   731   // fields still point to bottom, so the intersection between
   732   // [bottom,top] and [card_start,card_end] will be empty. Before we
   733   // update the top fields, we'll do a storestore to make sure that
   734   // no thread sees the update to top before the zeroing of the
   735   // object header and the BOT initialization.
   736   OrderAccess::storestore();
   738   // Now that the BOT and the object header have been initialized,
   739   // we can update top of the "starts humongous" region.
   740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   741          "new_top should be in this region");
   742   first_hr->set_top(new_top);
   743   if (_hr_printer.is_active()) {
   744     HeapWord* bottom = first_hr->bottom();
   745     HeapWord* end = first_hr->orig_end();
   746     if ((first + 1) == last) {
   747       // the series has a single humongous region
   748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   749     } else {
   750       // the series has more than one humongous regions
   751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   752     }
   753   }
   755   // Now, we will update the top fields of the "continues humongous"
   756   // regions. The reason we need to do this is that, otherwise,
   757   // these regions would look empty and this will confuse parts of
   758   // G1. For example, the code that looks for a consecutive number
   759   // of empty regions will consider them empty and try to
   760   // re-allocate them. We can extend is_empty() to also include
   761   // !continuesHumongous(), but it is easier to just update the top
   762   // fields here. The way we set top for all regions (i.e., top ==
   763   // end for all regions but the last one, top == new_top for the
   764   // last one) is actually used when we will free up the humongous
   765   // region in free_humongous_region().
   766   hr = NULL;
   767   for (uint i = first + 1; i < last; ++i) {
   768     hr = region_at(i);
   769     if ((i + 1) == last) {
   770       // last continues humongous region
   771       assert(hr->bottom() < new_top && new_top <= hr->end(),
   772              "new_top should fall on this region");
   773       hr->set_top(new_top);
   774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   775     } else {
   776       // not last one
   777       assert(new_top > hr->end(), "new_top should be above this region");
   778       hr->set_top(hr->end());
   779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   780     }
   781   }
   782   // If we have continues humongous regions (hr != NULL), then the
   783   // end of the last one should match new_end and its top should
   784   // match new_top.
   785   assert(hr == NULL ||
   786          (hr->end() == new_end && hr->top() == new_top), "sanity");
   788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   789   _summary_bytes_used += first_hr->used();
   790   _humongous_set.add(first_hr);
   792   return new_obj;
   793 }
   795 // If could fit into free regions w/o expansion, try.
   796 // Otherwise, if can expand, do so.
   797 // Otherwise, if using ex regions might help, try with ex given back.
   798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   801   verify_region_sets_optional();
   803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   805   uint x_num = expansion_regions();
   806   uint fs = _hrs.free_suffix();
   807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   808   if (first == G1_NULL_HRS_INDEX) {
   809     // The only thing we can do now is attempt expansion.
   810     if (fs + x_num >= num_regions) {
   811       // If the number of regions we're trying to allocate for this
   812       // object is at most the number of regions in the free suffix,
   813       // then the call to humongous_obj_allocate_find_first() above
   814       // should have succeeded and we wouldn't be here.
   815       //
   816       // We should only be trying to expand when the free suffix is
   817       // not sufficient for the object _and_ we have some expansion
   818       // room available.
   819       assert(num_regions > fs, "earlier allocation should have succeeded");
   821       ergo_verbose1(ErgoHeapSizing,
   822                     "attempt heap expansion",
   823                     ergo_format_reason("humongous allocation request failed")
   824                     ergo_format_byte("allocation request"),
   825                     word_size * HeapWordSize);
   826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   827         // Even though the heap was expanded, it might not have
   828         // reached the desired size. So, we cannot assume that the
   829         // allocation will succeed.
   830         first = humongous_obj_allocate_find_first(num_regions, word_size);
   831       }
   832     }
   833   }
   835   HeapWord* result = NULL;
   836   if (first != G1_NULL_HRS_INDEX) {
   837     result =
   838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   839     assert(result != NULL, "it should always return a valid result");
   841     // A successful humongous object allocation changes the used space
   842     // information of the old generation so we need to recalculate the
   843     // sizes and update the jstat counters here.
   844     g1mm()->update_sizes();
   845   }
   847   verify_region_sets_optional();
   849   return result;
   850 }
   852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   853   assert_heap_not_locked_and_not_at_safepoint();
   854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   856   unsigned int dummy_gc_count_before;
   857   return attempt_allocation(word_size, &dummy_gc_count_before);
   858 }
   860 HeapWord*
   861 G1CollectedHeap::mem_allocate(size_t word_size,
   862                               bool*  gc_overhead_limit_was_exceeded) {
   863   assert_heap_not_locked_and_not_at_safepoint();
   865   // Loop until the allocation is satisified, or unsatisfied after GC.
   866   for (int try_count = 1; /* we'll return */; try_count += 1) {
   867     unsigned int gc_count_before;
   869     HeapWord* result = NULL;
   870     if (!isHumongous(word_size)) {
   871       result = attempt_allocation(word_size, &gc_count_before);
   872     } else {
   873       result = attempt_allocation_humongous(word_size, &gc_count_before);
   874     }
   875     if (result != NULL) {
   876       return result;
   877     }
   879     // Create the garbage collection operation...
   880     VM_G1CollectForAllocation op(gc_count_before, word_size);
   881     // ...and get the VM thread to execute it.
   882     VMThread::execute(&op);
   884     if (op.prologue_succeeded() && op.pause_succeeded()) {
   885       // If the operation was successful we'll return the result even
   886       // if it is NULL. If the allocation attempt failed immediately
   887       // after a Full GC, it's unlikely we'll be able to allocate now.
   888       HeapWord* result = op.result();
   889       if (result != NULL && !isHumongous(word_size)) {
   890         // Allocations that take place on VM operations do not do any
   891         // card dirtying and we have to do it here. We only have to do
   892         // this for non-humongous allocations, though.
   893         dirty_young_block(result, word_size);
   894       }
   895       return result;
   896     } else {
   897       assert(op.result() == NULL,
   898              "the result should be NULL if the VM op did not succeed");
   899     }
   901     // Give a warning if we seem to be looping forever.
   902     if ((QueuedAllocationWarningCount > 0) &&
   903         (try_count % QueuedAllocationWarningCount == 0)) {
   904       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   905     }
   906   }
   908   ShouldNotReachHere();
   909   return NULL;
   910 }
   912 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   913                                            unsigned int *gc_count_before_ret) {
   914   // Make sure you read the note in attempt_allocation_humongous().
   916   assert_heap_not_locked_and_not_at_safepoint();
   917   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   918          "be called for humongous allocation requests");
   920   // We should only get here after the first-level allocation attempt
   921   // (attempt_allocation()) failed to allocate.
   923   // We will loop until a) we manage to successfully perform the
   924   // allocation or b) we successfully schedule a collection which
   925   // fails to perform the allocation. b) is the only case when we'll
   926   // return NULL.
   927   HeapWord* result = NULL;
   928   for (int try_count = 1; /* we'll return */; try_count += 1) {
   929     bool should_try_gc;
   930     unsigned int gc_count_before;
   932     {
   933       MutexLockerEx x(Heap_lock);
   935       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   936                                                       false /* bot_updates */);
   937       if (result != NULL) {
   938         return result;
   939       }
   941       // If we reach here, attempt_allocation_locked() above failed to
   942       // allocate a new region. So the mutator alloc region should be NULL.
   943       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   945       if (GC_locker::is_active_and_needs_gc()) {
   946         if (g1_policy()->can_expand_young_list()) {
   947           // No need for an ergo verbose message here,
   948           // can_expand_young_list() does this when it returns true.
   949           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   950                                                       false /* bot_updates */);
   951           if (result != NULL) {
   952             return result;
   953           }
   954         }
   955         should_try_gc = false;
   956       } else {
   957         // The GCLocker may not be active but the GCLocker initiated
   958         // GC may not yet have been performed (GCLocker::needs_gc()
   959         // returns true). In this case we do not try this GC and
   960         // wait until the GCLocker initiated GC is performed, and
   961         // then retry the allocation.
   962         if (GC_locker::needs_gc()) {
   963           should_try_gc = false;
   964         } else {
   965           // Read the GC count while still holding the Heap_lock.
   966           gc_count_before = total_collections();
   967           should_try_gc = true;
   968         }
   969       }
   970     }
   972     if (should_try_gc) {
   973       bool succeeded;
   974       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   975       if (result != NULL) {
   976         assert(succeeded, "only way to get back a non-NULL result");
   977         return result;
   978       }
   980       if (succeeded) {
   981         // If we get here we successfully scheduled a collection which
   982         // failed to allocate. No point in trying to allocate
   983         // further. We'll just return NULL.
   984         MutexLockerEx x(Heap_lock);
   985         *gc_count_before_ret = total_collections();
   986         return NULL;
   987       }
   988     } else {
   989       // The GCLocker is either active or the GCLocker initiated
   990       // GC has not yet been performed. Stall until it is and
   991       // then retry the allocation.
   992       GC_locker::stall_until_clear();
   993     }
   995     // We can reach here if we were unsuccessul in scheduling a
   996     // collection (because another thread beat us to it) or if we were
   997     // stalled due to the GC locker. In either can we should retry the
   998     // allocation attempt in case another thread successfully
   999     // performed a collection and reclaimed enough space. We do the
  1000     // first attempt (without holding the Heap_lock) here and the
  1001     // follow-on attempt will be at the start of the next loop
  1002     // iteration (after taking the Heap_lock).
  1003     result = _mutator_alloc_region.attempt_allocation(word_size,
  1004                                                       false /* bot_updates */);
  1005     if (result != NULL) {
  1006       return result;
  1009     // Give a warning if we seem to be looping forever.
  1010     if ((QueuedAllocationWarningCount > 0) &&
  1011         (try_count % QueuedAllocationWarningCount == 0)) {
  1012       warning("G1CollectedHeap::attempt_allocation_slow() "
  1013               "retries %d times", try_count);
  1017   ShouldNotReachHere();
  1018   return NULL;
  1021 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1022                                           unsigned int * gc_count_before_ret) {
  1023   // The structure of this method has a lot of similarities to
  1024   // attempt_allocation_slow(). The reason these two were not merged
  1025   // into a single one is that such a method would require several "if
  1026   // allocation is not humongous do this, otherwise do that"
  1027   // conditional paths which would obscure its flow. In fact, an early
  1028   // version of this code did use a unified method which was harder to
  1029   // follow and, as a result, it had subtle bugs that were hard to
  1030   // track down. So keeping these two methods separate allows each to
  1031   // be more readable. It will be good to keep these two in sync as
  1032   // much as possible.
  1034   assert_heap_not_locked_and_not_at_safepoint();
  1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1036          "should only be called for humongous allocations");
  1038   // Humongous objects can exhaust the heap quickly, so we should check if we
  1039   // need to start a marking cycle at each humongous object allocation. We do
  1040   // the check before we do the actual allocation. The reason for doing it
  1041   // before the allocation is that we avoid having to keep track of the newly
  1042   // allocated memory while we do a GC.
  1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1044                                            word_size)) {
  1045     collect(GCCause::_g1_humongous_allocation);
  1048   // We will loop until a) we manage to successfully perform the
  1049   // allocation or b) we successfully schedule a collection which
  1050   // fails to perform the allocation. b) is the only case when we'll
  1051   // return NULL.
  1052   HeapWord* result = NULL;
  1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1054     bool should_try_gc;
  1055     unsigned int gc_count_before;
  1058       MutexLockerEx x(Heap_lock);
  1060       // Given that humongous objects are not allocated in young
  1061       // regions, we'll first try to do the allocation without doing a
  1062       // collection hoping that there's enough space in the heap.
  1063       result = humongous_obj_allocate(word_size);
  1064       if (result != NULL) {
  1065         return result;
  1068       if (GC_locker::is_active_and_needs_gc()) {
  1069         should_try_gc = false;
  1070       } else {
  1071          // The GCLocker may not be active but the GCLocker initiated
  1072         // GC may not yet have been performed (GCLocker::needs_gc()
  1073         // returns true). In this case we do not try this GC and
  1074         // wait until the GCLocker initiated GC is performed, and
  1075         // then retry the allocation.
  1076         if (GC_locker::needs_gc()) {
  1077           should_try_gc = false;
  1078         } else {
  1079           // Read the GC count while still holding the Heap_lock.
  1080           gc_count_before = total_collections();
  1081           should_try_gc = true;
  1086     if (should_try_gc) {
  1087       // If we failed to allocate the humongous object, we should try to
  1088       // do a collection pause (if we're allowed) in case it reclaims
  1089       // enough space for the allocation to succeed after the pause.
  1091       bool succeeded;
  1092       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1093       if (result != NULL) {
  1094         assert(succeeded, "only way to get back a non-NULL result");
  1095         return result;
  1098       if (succeeded) {
  1099         // If we get here we successfully scheduled a collection which
  1100         // failed to allocate. No point in trying to allocate
  1101         // further. We'll just return NULL.
  1102         MutexLockerEx x(Heap_lock);
  1103         *gc_count_before_ret = total_collections();
  1104         return NULL;
  1106     } else {
  1107       // The GCLocker is either active or the GCLocker initiated
  1108       // GC has not yet been performed. Stall until it is and
  1109       // then retry the allocation.
  1110       GC_locker::stall_until_clear();
  1113     // We can reach here if we were unsuccessul in scheduling a
  1114     // collection (because another thread beat us to it) or if we were
  1115     // stalled due to the GC locker. In either can we should retry the
  1116     // allocation attempt in case another thread successfully
  1117     // performed a collection and reclaimed enough space.  Give a
  1118     // warning if we seem to be looping forever.
  1120     if ((QueuedAllocationWarningCount > 0) &&
  1121         (try_count % QueuedAllocationWarningCount == 0)) {
  1122       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1123               "retries %d times", try_count);
  1127   ShouldNotReachHere();
  1128   return NULL;
  1131 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1132                                        bool expect_null_mutator_alloc_region) {
  1133   assert_at_safepoint(true /* should_be_vm_thread */);
  1134   assert(_mutator_alloc_region.get() == NULL ||
  1135                                              !expect_null_mutator_alloc_region,
  1136          "the current alloc region was unexpectedly found to be non-NULL");
  1138   if (!isHumongous(word_size)) {
  1139     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1140                                                       false /* bot_updates */);
  1141   } else {
  1142     HeapWord* result = humongous_obj_allocate(word_size);
  1143     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1144       g1_policy()->set_initiate_conc_mark_if_possible();
  1146     return result;
  1149   ShouldNotReachHere();
  1152 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1153   G1CollectedHeap* _g1h;
  1154   ModRefBarrierSet* _mr_bs;
  1155 public:
  1156   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1157     _g1h(g1h), _mr_bs(mr_bs) { }
  1158   bool doHeapRegion(HeapRegion* r) {
  1159     if (r->continuesHumongous()) {
  1160       return false;
  1162     _g1h->reset_gc_time_stamps(r);
  1163     HeapRegionRemSet* hrrs = r->rem_set();
  1164     if (hrrs != NULL) hrrs->clear();
  1165     // You might think here that we could clear just the cards
  1166     // corresponding to the used region.  But no: if we leave a dirty card
  1167     // in a region we might allocate into, then it would prevent that card
  1168     // from being enqueued, and cause it to be missed.
  1169     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1170     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1171     return false;
  1173 };
  1175 void G1CollectedHeap::clear_rsets_post_compaction() {
  1176   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1177   heap_region_iterate(&rs_clear);
  1180 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1181   G1CollectedHeap*   _g1h;
  1182   UpdateRSOopClosure _cl;
  1183   int                _worker_i;
  1184 public:
  1185   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1186     _cl(g1->g1_rem_set(), worker_i),
  1187     _worker_i(worker_i),
  1188     _g1h(g1)
  1189   { }
  1191   bool doHeapRegion(HeapRegion* r) {
  1192     if (!r->continuesHumongous()) {
  1193       _cl.set_from(r);
  1194       r->oop_iterate(&_cl);
  1196     return false;
  1198 };
  1200 class ParRebuildRSTask: public AbstractGangTask {
  1201   G1CollectedHeap* _g1;
  1202 public:
  1203   ParRebuildRSTask(G1CollectedHeap* g1)
  1204     : AbstractGangTask("ParRebuildRSTask"),
  1205       _g1(g1)
  1206   { }
  1208   void work(uint worker_id) {
  1209     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1210     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1211                                           _g1->workers()->active_workers(),
  1212                                          HeapRegion::RebuildRSClaimValue);
  1214 };
  1216 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1217 private:
  1218   G1HRPrinter* _hr_printer;
  1219 public:
  1220   bool doHeapRegion(HeapRegion* hr) {
  1221     assert(!hr->is_young(), "not expecting to find young regions");
  1222     // We only generate output for non-empty regions.
  1223     if (!hr->is_empty()) {
  1224       if (!hr->isHumongous()) {
  1225         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1226       } else if (hr->startsHumongous()) {
  1227         if (hr->region_num() == 1) {
  1228           // single humongous region
  1229           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1230         } else {
  1231           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1233       } else {
  1234         assert(hr->continuesHumongous(), "only way to get here");
  1235         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1238     return false;
  1241   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1242     : _hr_printer(hr_printer) { }
  1243 };
  1245 void G1CollectedHeap::print_hrs_post_compaction() {
  1246   PostCompactionPrinterClosure cl(hr_printer());
  1247   heap_region_iterate(&cl);
  1250 double G1CollectedHeap::verify(bool guard, const char* msg) {
  1251   double verify_time_ms = 0.0;
  1253   if (guard && total_collections() >= VerifyGCStartAt) {
  1254     double verify_start = os::elapsedTime();
  1255     HandleMark hm;  // Discard invalid handles created during verification
  1256     gclog_or_tty->print(msg);
  1257     prepare_for_verify();
  1258     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
  1259     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  1262   return verify_time_ms;
  1265 void G1CollectedHeap::verify_before_gc() {
  1266   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  1267   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  1270 void G1CollectedHeap::verify_after_gc() {
  1271   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  1272   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  1275 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1276                                     bool clear_all_soft_refs,
  1277                                     size_t word_size) {
  1278   assert_at_safepoint(true /* should_be_vm_thread */);
  1280   if (GC_locker::check_active_before_gc()) {
  1281     return false;
  1284   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1285   ResourceMark rm;
  1287   print_heap_before_gc();
  1289   size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
  1291   HRSPhaseSetter x(HRSPhaseFullGC);
  1292   verify_region_sets_optional();
  1294   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1295                            collector_policy()->should_clear_all_soft_refs();
  1297   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1300     IsGCActiveMark x;
  1302     // Timing
  1303     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1304     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1305     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1307     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1308     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1309     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1311     double start = os::elapsedTime();
  1312     g1_policy()->record_full_collection_start();
  1314     // Note: When we have a more flexible GC logging framework that
  1315     // allows us to add optional attributes to a GC log record we
  1316     // could consider timing and reporting how long we wait in the
  1317     // following two methods.
  1318     wait_while_free_regions_coming();
  1319     // If we start the compaction before the CM threads finish
  1320     // scanning the root regions we might trip them over as we'll
  1321     // be moving objects / updating references. So let's wait until
  1322     // they are done. By telling them to abort, they should complete
  1323     // early.
  1324     _cm->root_regions()->abort();
  1325     _cm->root_regions()->wait_until_scan_finished();
  1326     append_secondary_free_list_if_not_empty_with_lock();
  1328     gc_prologue(true);
  1329     increment_total_collections(true /* full gc */);
  1330     increment_old_marking_cycles_started();
  1332     size_t g1h_prev_used = used();
  1333     assert(used() == recalculate_used(), "Should be equal");
  1335     verify_before_gc();
  1337     pre_full_gc_dump();
  1339     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1341     // Disable discovery and empty the discovered lists
  1342     // for the CM ref processor.
  1343     ref_processor_cm()->disable_discovery();
  1344     ref_processor_cm()->abandon_partial_discovery();
  1345     ref_processor_cm()->verify_no_references_recorded();
  1347     // Abandon current iterations of concurrent marking and concurrent
  1348     // refinement, if any are in progress. We have to do this before
  1349     // wait_until_scan_finished() below.
  1350     concurrent_mark()->abort();
  1352     // Make sure we'll choose a new allocation region afterwards.
  1353     release_mutator_alloc_region();
  1354     abandon_gc_alloc_regions();
  1355     g1_rem_set()->cleanupHRRS();
  1357     // We should call this after we retire any currently active alloc
  1358     // regions so that all the ALLOC / RETIRE events are generated
  1359     // before the start GC event.
  1360     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1362     // We may have added regions to the current incremental collection
  1363     // set between the last GC or pause and now. We need to clear the
  1364     // incremental collection set and then start rebuilding it afresh
  1365     // after this full GC.
  1366     abandon_collection_set(g1_policy()->inc_cset_head());
  1367     g1_policy()->clear_incremental_cset();
  1368     g1_policy()->stop_incremental_cset_building();
  1370     tear_down_region_sets(false /* free_list_only */);
  1371     g1_policy()->set_gcs_are_young(true);
  1373     // See the comments in g1CollectedHeap.hpp and
  1374     // G1CollectedHeap::ref_processing_init() about
  1375     // how reference processing currently works in G1.
  1377     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1378     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1380     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1381     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1383     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1384     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1386     // Do collection work
  1388       HandleMark hm;  // Discard invalid handles created during gc
  1389       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1392     assert(free_regions() == 0, "we should not have added any free regions");
  1393     rebuild_region_sets(false /* free_list_only */);
  1395     // Enqueue any discovered reference objects that have
  1396     // not been removed from the discovered lists.
  1397     ref_processor_stw()->enqueue_discovered_references();
  1399     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1401     MemoryService::track_memory_usage();
  1403     verify_after_gc();
  1405     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1406     ref_processor_stw()->verify_no_references_recorded();
  1408     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1409     ClassLoaderDataGraph::purge();
  1411     // Note: since we've just done a full GC, concurrent
  1412     // marking is no longer active. Therefore we need not
  1413     // re-enable reference discovery for the CM ref processor.
  1414     // That will be done at the start of the next marking cycle.
  1415     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1416     ref_processor_cm()->verify_no_references_recorded();
  1418     reset_gc_time_stamp();
  1419     // Since everything potentially moved, we will clear all remembered
  1420     // sets, and clear all cards.  Later we will rebuild remebered
  1421     // sets. We will also reset the GC time stamps of the regions.
  1422     clear_rsets_post_compaction();
  1423     check_gc_time_stamps();
  1425     // Resize the heap if necessary.
  1426     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1428     if (_hr_printer.is_active()) {
  1429       // We should do this after we potentially resize the heap so
  1430       // that all the COMMIT / UNCOMMIT events are generated before
  1431       // the end GC event.
  1433       print_hrs_post_compaction();
  1434       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1437     if (_cg1r->use_cache()) {
  1438       _cg1r->clear_and_record_card_counts();
  1439       _cg1r->clear_hot_cache();
  1442     // Rebuild remembered sets of all regions.
  1443     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1444       uint n_workers =
  1445         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1446                                        workers()->active_workers(),
  1447                                        Threads::number_of_non_daemon_threads());
  1448       assert(UseDynamicNumberOfGCThreads ||
  1449              n_workers == workers()->total_workers(),
  1450              "If not dynamic should be using all the  workers");
  1451       workers()->set_active_workers(n_workers);
  1452       // Set parallel threads in the heap (_n_par_threads) only
  1453       // before a parallel phase and always reset it to 0 after
  1454       // the phase so that the number of parallel threads does
  1455       // no get carried forward to a serial phase where there
  1456       // may be code that is "possibly_parallel".
  1457       set_par_threads(n_workers);
  1459       ParRebuildRSTask rebuild_rs_task(this);
  1460       assert(check_heap_region_claim_values(
  1461              HeapRegion::InitialClaimValue), "sanity check");
  1462       assert(UseDynamicNumberOfGCThreads ||
  1463              workers()->active_workers() == workers()->total_workers(),
  1464         "Unless dynamic should use total workers");
  1465       // Use the most recent number of  active workers
  1466       assert(workers()->active_workers() > 0,
  1467         "Active workers not properly set");
  1468       set_par_threads(workers()->active_workers());
  1469       workers()->run_task(&rebuild_rs_task);
  1470       set_par_threads(0);
  1471       assert(check_heap_region_claim_values(
  1472              HeapRegion::RebuildRSClaimValue), "sanity check");
  1473       reset_heap_region_claim_values();
  1474     } else {
  1475       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1476       heap_region_iterate(&rebuild_rs);
  1479     if (G1Log::fine()) {
  1480       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1483     if (true) { // FIXME
  1484       MetaspaceGC::compute_new_size();
  1487     // Start a new incremental collection set for the next pause
  1488     assert(g1_policy()->collection_set() == NULL, "must be");
  1489     g1_policy()->start_incremental_cset_building();
  1491     // Clear the _cset_fast_test bitmap in anticipation of adding
  1492     // regions to the incremental collection set for the next
  1493     // evacuation pause.
  1494     clear_cset_fast_test();
  1496     init_mutator_alloc_region();
  1498     double end = os::elapsedTime();
  1499     g1_policy()->record_full_collection_end();
  1501 #ifdef TRACESPINNING
  1502     ParallelTaskTerminator::print_termination_counts();
  1503 #endif
  1505     gc_epilogue(true);
  1507     // Discard all rset updates
  1508     JavaThread::dirty_card_queue_set().abandon_logs();
  1509     assert(!G1DeferredRSUpdate
  1510            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1512     _young_list->reset_sampled_info();
  1513     // At this point there should be no regions in the
  1514     // entire heap tagged as young.
  1515     assert( check_young_list_empty(true /* check_heap */),
  1516       "young list should be empty at this point");
  1518     // Update the number of full collections that have been completed.
  1519     increment_old_marking_cycles_completed(false /* concurrent */);
  1521     _hrs.verify_optional();
  1522     verify_region_sets_optional();
  1524     print_heap_after_gc();
  1526     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1527     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1528     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1529     // before any GC notifications are raised.
  1530     g1mm()->update_sizes();
  1533   post_full_gc_dump();
  1535   return true;
  1538 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1539   // do_collection() will return whether it succeeded in performing
  1540   // the GC. Currently, there is no facility on the
  1541   // do_full_collection() API to notify the caller than the collection
  1542   // did not succeed (e.g., because it was locked out by the GC
  1543   // locker). So, right now, we'll ignore the return value.
  1544   bool dummy = do_collection(true,                /* explicit_gc */
  1545                              clear_all_soft_refs,
  1546                              0                    /* word_size */);
  1549 // This code is mostly copied from TenuredGeneration.
  1550 void
  1551 G1CollectedHeap::
  1552 resize_if_necessary_after_full_collection(size_t word_size) {
  1553   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1555   // Include the current allocation, if any, and bytes that will be
  1556   // pre-allocated to support collections, as "used".
  1557   const size_t used_after_gc = used();
  1558   const size_t capacity_after_gc = capacity();
  1559   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1561   // This is enforced in arguments.cpp.
  1562   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1563          "otherwise the code below doesn't make sense");
  1565   // We don't have floating point command-line arguments
  1566   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1567   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1568   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1569   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1571   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1572   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1574   // We have to be careful here as these two calculations can overflow
  1575   // 32-bit size_t's.
  1576   double used_after_gc_d = (double) used_after_gc;
  1577   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1578   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1580   // Let's make sure that they are both under the max heap size, which
  1581   // by default will make them fit into a size_t.
  1582   double desired_capacity_upper_bound = (double) max_heap_size;
  1583   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1584                                     desired_capacity_upper_bound);
  1585   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1586                                     desired_capacity_upper_bound);
  1588   // We can now safely turn them into size_t's.
  1589   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1590   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1592   // This assert only makes sense here, before we adjust them
  1593   // with respect to the min and max heap size.
  1594   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1595          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1596                  "maximum_desired_capacity = "SIZE_FORMAT,
  1597                  minimum_desired_capacity, maximum_desired_capacity));
  1599   // Should not be greater than the heap max size. No need to adjust
  1600   // it with respect to the heap min size as it's a lower bound (i.e.,
  1601   // we'll try to make the capacity larger than it, not smaller).
  1602   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1603   // Should not be less than the heap min size. No need to adjust it
  1604   // with respect to the heap max size as it's an upper bound (i.e.,
  1605   // we'll try to make the capacity smaller than it, not greater).
  1606   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1608   if (capacity_after_gc < minimum_desired_capacity) {
  1609     // Don't expand unless it's significant
  1610     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1611     ergo_verbose4(ErgoHeapSizing,
  1612                   "attempt heap expansion",
  1613                   ergo_format_reason("capacity lower than "
  1614                                      "min desired capacity after Full GC")
  1615                   ergo_format_byte("capacity")
  1616                   ergo_format_byte("occupancy")
  1617                   ergo_format_byte_perc("min desired capacity"),
  1618                   capacity_after_gc, used_after_gc,
  1619                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1620     expand(expand_bytes);
  1622     // No expansion, now see if we want to shrink
  1623   } else if (capacity_after_gc > maximum_desired_capacity) {
  1624     // Capacity too large, compute shrinking size
  1625     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1626     ergo_verbose4(ErgoHeapSizing,
  1627                   "attempt heap shrinking",
  1628                   ergo_format_reason("capacity higher than "
  1629                                      "max desired capacity after Full GC")
  1630                   ergo_format_byte("capacity")
  1631                   ergo_format_byte("occupancy")
  1632                   ergo_format_byte_perc("max desired capacity"),
  1633                   capacity_after_gc, used_after_gc,
  1634                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1635     shrink(shrink_bytes);
  1640 HeapWord*
  1641 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1642                                            bool* succeeded) {
  1643   assert_at_safepoint(true /* should_be_vm_thread */);
  1645   *succeeded = true;
  1646   // Let's attempt the allocation first.
  1647   HeapWord* result =
  1648     attempt_allocation_at_safepoint(word_size,
  1649                                  false /* expect_null_mutator_alloc_region */);
  1650   if (result != NULL) {
  1651     assert(*succeeded, "sanity");
  1652     return result;
  1655   // In a G1 heap, we're supposed to keep allocation from failing by
  1656   // incremental pauses.  Therefore, at least for now, we'll favor
  1657   // expansion over collection.  (This might change in the future if we can
  1658   // do something smarter than full collection to satisfy a failed alloc.)
  1659   result = expand_and_allocate(word_size);
  1660   if (result != NULL) {
  1661     assert(*succeeded, "sanity");
  1662     return result;
  1665   // Expansion didn't work, we'll try to do a Full GC.
  1666   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1667                                     false, /* clear_all_soft_refs */
  1668                                     word_size);
  1669   if (!gc_succeeded) {
  1670     *succeeded = false;
  1671     return NULL;
  1674   // Retry the allocation
  1675   result = attempt_allocation_at_safepoint(word_size,
  1676                                   true /* expect_null_mutator_alloc_region */);
  1677   if (result != NULL) {
  1678     assert(*succeeded, "sanity");
  1679     return result;
  1682   // Then, try a Full GC that will collect all soft references.
  1683   gc_succeeded = do_collection(false, /* explicit_gc */
  1684                                true,  /* clear_all_soft_refs */
  1685                                word_size);
  1686   if (!gc_succeeded) {
  1687     *succeeded = false;
  1688     return NULL;
  1691   // Retry the allocation once more
  1692   result = attempt_allocation_at_safepoint(word_size,
  1693                                   true /* expect_null_mutator_alloc_region */);
  1694   if (result != NULL) {
  1695     assert(*succeeded, "sanity");
  1696     return result;
  1699   assert(!collector_policy()->should_clear_all_soft_refs(),
  1700          "Flag should have been handled and cleared prior to this point");
  1702   // What else?  We might try synchronous finalization later.  If the total
  1703   // space available is large enough for the allocation, then a more
  1704   // complete compaction phase than we've tried so far might be
  1705   // appropriate.
  1706   assert(*succeeded, "sanity");
  1707   return NULL;
  1710 // Attempting to expand the heap sufficiently
  1711 // to support an allocation of the given "word_size".  If
  1712 // successful, perform the allocation and return the address of the
  1713 // allocated block, or else "NULL".
  1715 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1716   assert_at_safepoint(true /* should_be_vm_thread */);
  1718   verify_region_sets_optional();
  1720   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1721   ergo_verbose1(ErgoHeapSizing,
  1722                 "attempt heap expansion",
  1723                 ergo_format_reason("allocation request failed")
  1724                 ergo_format_byte("allocation request"),
  1725                 word_size * HeapWordSize);
  1726   if (expand(expand_bytes)) {
  1727     _hrs.verify_optional();
  1728     verify_region_sets_optional();
  1729     return attempt_allocation_at_safepoint(word_size,
  1730                                  false /* expect_null_mutator_alloc_region */);
  1732   return NULL;
  1735 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1736                                              HeapWord* new_end) {
  1737   assert(old_end != new_end, "don't call this otherwise");
  1738   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1740   // Update the committed mem region.
  1741   _g1_committed.set_end(new_end);
  1742   // Tell the card table about the update.
  1743   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1744   // Tell the BOT about the update.
  1745   _bot_shared->resize(_g1_committed.word_size());
  1748 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1749   size_t old_mem_size = _g1_storage.committed_size();
  1750   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1751   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1752                                        HeapRegion::GrainBytes);
  1753   ergo_verbose2(ErgoHeapSizing,
  1754                 "expand the heap",
  1755                 ergo_format_byte("requested expansion amount")
  1756                 ergo_format_byte("attempted expansion amount"),
  1757                 expand_bytes, aligned_expand_bytes);
  1759   // First commit the memory.
  1760   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1761   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1762   if (successful) {
  1763     // Then propagate this update to the necessary data structures.
  1764     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1765     update_committed_space(old_end, new_end);
  1767     FreeRegionList expansion_list("Local Expansion List");
  1768     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1769     assert(mr.start() == old_end, "post-condition");
  1770     // mr might be a smaller region than what was requested if
  1771     // expand_by() was unable to allocate the HeapRegion instances
  1772     assert(mr.end() <= new_end, "post-condition");
  1774     size_t actual_expand_bytes = mr.byte_size();
  1775     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1776     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1777            "post-condition");
  1778     if (actual_expand_bytes < aligned_expand_bytes) {
  1779       // We could not expand _hrs to the desired size. In this case we
  1780       // need to shrink the committed space accordingly.
  1781       assert(mr.end() < new_end, "invariant");
  1783       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1784       // First uncommit the memory.
  1785       _g1_storage.shrink_by(diff_bytes);
  1786       // Then propagate this update to the necessary data structures.
  1787       update_committed_space(new_end, mr.end());
  1789     _free_list.add_as_tail(&expansion_list);
  1791     if (_hr_printer.is_active()) {
  1792       HeapWord* curr = mr.start();
  1793       while (curr < mr.end()) {
  1794         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1795         _hr_printer.commit(curr, curr_end);
  1796         curr = curr_end;
  1798       assert(curr == mr.end(), "post-condition");
  1800     g1_policy()->record_new_heap_size(n_regions());
  1801   } else {
  1802     ergo_verbose0(ErgoHeapSizing,
  1803                   "did not expand the heap",
  1804                   ergo_format_reason("heap expansion operation failed"));
  1805     // The expansion of the virtual storage space was unsuccessful.
  1806     // Let's see if it was because we ran out of swap.
  1807     if (G1ExitOnExpansionFailure &&
  1808         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1809       // We had head room...
  1810       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1813   return successful;
  1816 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1817   size_t old_mem_size = _g1_storage.committed_size();
  1818   size_t aligned_shrink_bytes =
  1819     ReservedSpace::page_align_size_down(shrink_bytes);
  1820   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1821                                          HeapRegion::GrainBytes);
  1822   uint num_regions_deleted = 0;
  1823   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1824   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1825   assert(mr.end() == old_end, "post-condition");
  1827   ergo_verbose3(ErgoHeapSizing,
  1828                 "shrink the heap",
  1829                 ergo_format_byte("requested shrinking amount")
  1830                 ergo_format_byte("aligned shrinking amount")
  1831                 ergo_format_byte("attempted shrinking amount"),
  1832                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1833   if (mr.byte_size() > 0) {
  1834     if (_hr_printer.is_active()) {
  1835       HeapWord* curr = mr.end();
  1836       while (curr > mr.start()) {
  1837         HeapWord* curr_end = curr;
  1838         curr -= HeapRegion::GrainWords;
  1839         _hr_printer.uncommit(curr, curr_end);
  1841       assert(curr == mr.start(), "post-condition");
  1844     _g1_storage.shrink_by(mr.byte_size());
  1845     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1846     assert(mr.start() == new_end, "post-condition");
  1848     _expansion_regions += num_regions_deleted;
  1849     update_committed_space(old_end, new_end);
  1850     HeapRegionRemSet::shrink_heap(n_regions());
  1851     g1_policy()->record_new_heap_size(n_regions());
  1852   } else {
  1853     ergo_verbose0(ErgoHeapSizing,
  1854                   "did not shrink the heap",
  1855                   ergo_format_reason("heap shrinking operation failed"));
  1859 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1860   verify_region_sets_optional();
  1862   // We should only reach here at the end of a Full GC which means we
  1863   // should not not be holding to any GC alloc regions. The method
  1864   // below will make sure of that and do any remaining clean up.
  1865   abandon_gc_alloc_regions();
  1867   // Instead of tearing down / rebuilding the free lists here, we
  1868   // could instead use the remove_all_pending() method on free_list to
  1869   // remove only the ones that we need to remove.
  1870   tear_down_region_sets(true /* free_list_only */);
  1871   shrink_helper(shrink_bytes);
  1872   rebuild_region_sets(true /* free_list_only */);
  1874   _hrs.verify_optional();
  1875   verify_region_sets_optional();
  1878 // Public methods.
  1880 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1881 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1882 #endif // _MSC_VER
  1885 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1886   SharedHeap(policy_),
  1887   _g1_policy(policy_),
  1888   _dirty_card_queue_set(false),
  1889   _into_cset_dirty_card_queue_set(false),
  1890   _is_alive_closure_cm(this),
  1891   _is_alive_closure_stw(this),
  1892   _ref_processor_cm(NULL),
  1893   _ref_processor_stw(NULL),
  1894   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1895   _bot_shared(NULL),
  1896   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1897   _evac_failure_scan_stack(NULL) ,
  1898   _mark_in_progress(false),
  1899   _cg1r(NULL), _summary_bytes_used(0),
  1900   _g1mm(NULL),
  1901   _refine_cte_cl(NULL),
  1902   _full_collection(false),
  1903   _free_list("Master Free List"),
  1904   _secondary_free_list("Secondary Free List"),
  1905   _old_set("Old Set"),
  1906   _humongous_set("Master Humongous Set"),
  1907   _free_regions_coming(false),
  1908   _young_list(new YoungList(this)),
  1909   _gc_time_stamp(0),
  1910   _retained_old_gc_alloc_region(NULL),
  1911   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1912   _old_plab_stats(OldPLABSize, PLABWeight),
  1913   _expand_heap_after_alloc_failure(true),
  1914   _surviving_young_words(NULL),
  1915   _old_marking_cycles_started(0),
  1916   _old_marking_cycles_completed(0),
  1917   _in_cset_fast_test(NULL),
  1918   _in_cset_fast_test_base(NULL),
  1919   _dirty_cards_region_list(NULL),
  1920   _worker_cset_start_region(NULL),
  1921   _worker_cset_start_region_time_stamp(NULL) {
  1922   _g1h = this; // To catch bugs.
  1923   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1924     vm_exit_during_initialization("Failed necessary allocation.");
  1927   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1929   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1930   _task_queues = new RefToScanQueueSet(n_queues);
  1932   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1933   assert(n_rem_sets > 0, "Invariant.");
  1935   HeapRegionRemSetIterator** iter_arr =
  1936     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
  1937   for (int i = 0; i < n_queues; i++) {
  1938     iter_arr[i] = new HeapRegionRemSetIterator();
  1940   _rem_set_iterator = iter_arr;
  1942   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1943   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1945   for (int i = 0; i < n_queues; i++) {
  1946     RefToScanQueue* q = new RefToScanQueue();
  1947     q->initialize();
  1948     _task_queues->register_queue(i, q);
  1951   clear_cset_start_regions();
  1953   // Initialize the G1EvacuationFailureALot counters and flags.
  1954   NOT_PRODUCT(reset_evacuation_should_fail();)
  1956   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1959 jint G1CollectedHeap::initialize() {
  1960   CollectedHeap::pre_initialize();
  1961   os::enable_vtime();
  1963   G1Log::init();
  1965   // Necessary to satisfy locking discipline assertions.
  1967   MutexLocker x(Heap_lock);
  1969   // We have to initialize the printer before committing the heap, as
  1970   // it will be used then.
  1971   _hr_printer.set_active(G1PrintHeapRegions);
  1973   // While there are no constraints in the GC code that HeapWordSize
  1974   // be any particular value, there are multiple other areas in the
  1975   // system which believe this to be true (e.g. oop->object_size in some
  1976   // cases incorrectly returns the size in wordSize units rather than
  1977   // HeapWordSize).
  1978   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1980   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1981   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1983   // Ensure that the sizes are properly aligned.
  1984   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1985   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1987   _cg1r = new ConcurrentG1Refine();
  1989   // Reserve the maximum.
  1991   // When compressed oops are enabled, the preferred heap base
  1992   // is calculated by subtracting the requested size from the
  1993   // 32Gb boundary and using the result as the base address for
  1994   // heap reservation. If the requested size is not aligned to
  1995   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1996   // into the ReservedHeapSpace constructor) then the actual
  1997   // base of the reserved heap may end up differing from the
  1998   // address that was requested (i.e. the preferred heap base).
  1999   // If this happens then we could end up using a non-optimal
  2000   // compressed oops mode.
  2002   // Since max_byte_size is aligned to the size of a heap region (checked
  2003   // above).
  2004   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2006   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2007                                                  HeapRegion::GrainBytes);
  2009   // It is important to do this in a way such that concurrent readers can't
  2010   // temporarily think somethings in the heap.  (I've actually seen this
  2011   // happen in asserts: DLD.)
  2012   _reserved.set_word_size(0);
  2013   _reserved.set_start((HeapWord*)heap_rs.base());
  2014   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2016   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2018   // Create the gen rem set (and barrier set) for the entire reserved region.
  2019   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2020   set_barrier_set(rem_set()->bs());
  2021   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2022     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2023   } else {
  2024     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2025     return JNI_ENOMEM;
  2028   // Also create a G1 rem set.
  2029   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2030     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2031   } else {
  2032     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2033     return JNI_ENOMEM;
  2036   // Carve out the G1 part of the heap.
  2038   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2039   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2040                            g1_rs.size()/HeapWordSize);
  2042   _g1_storage.initialize(g1_rs, 0);
  2043   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2044   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2045                   (HeapWord*) _g1_reserved.end(),
  2046                   _expansion_regions);
  2048   // 6843694 - ensure that the maximum region index can fit
  2049   // in the remembered set structures.
  2050   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2051   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2053   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2054   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2055   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2056             "too many cards per region");
  2058   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2060   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2061                                              heap_word_size(init_byte_size));
  2063   _g1h = this;
  2065    _in_cset_fast_test_length = max_regions();
  2066    _in_cset_fast_test_base =
  2067                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2069    // We're biasing _in_cset_fast_test to avoid subtracting the
  2070    // beginning of the heap every time we want to index; basically
  2071    // it's the same with what we do with the card table.
  2072    _in_cset_fast_test = _in_cset_fast_test_base -
  2073                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2075    // Clear the _cset_fast_test bitmap in anticipation of adding
  2076    // regions to the incremental collection set for the first
  2077    // evacuation pause.
  2078    clear_cset_fast_test();
  2080   // Create the ConcurrentMark data structure and thread.
  2081   // (Must do this late, so that "max_regions" is defined.)
  2082   _cm = new ConcurrentMark(this, heap_rs);
  2083   if (_cm == NULL || !_cm->completed_initialization()) {
  2084     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2085     return JNI_ENOMEM;
  2087   _cmThread = _cm->cmThread();
  2089   // Initialize the from_card cache structure of HeapRegionRemSet.
  2090   HeapRegionRemSet::init_heap(max_regions());
  2092   // Now expand into the initial heap size.
  2093   if (!expand(init_byte_size)) {
  2094     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2095     return JNI_ENOMEM;
  2098   // Perform any initialization actions delegated to the policy.
  2099   g1_policy()->init();
  2101   _refine_cte_cl =
  2102     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2103                                     g1_rem_set(),
  2104                                     concurrent_g1_refine());
  2105   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2107   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2108                                                SATB_Q_FL_lock,
  2109                                                G1SATBProcessCompletedThreshold,
  2110                                                Shared_SATB_Q_lock);
  2112   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2113                                                 DirtyCardQ_FL_lock,
  2114                                                 concurrent_g1_refine()->yellow_zone(),
  2115                                                 concurrent_g1_refine()->red_zone(),
  2116                                                 Shared_DirtyCardQ_lock);
  2118   if (G1DeferredRSUpdate) {
  2119     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2120                                       DirtyCardQ_FL_lock,
  2121                                       -1, // never trigger processing
  2122                                       -1, // no limit on length
  2123                                       Shared_DirtyCardQ_lock,
  2124                                       &JavaThread::dirty_card_queue_set());
  2127   // Initialize the card queue set used to hold cards containing
  2128   // references into the collection set.
  2129   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2130                                              DirtyCardQ_FL_lock,
  2131                                              -1, // never trigger processing
  2132                                              -1, // no limit on length
  2133                                              Shared_DirtyCardQ_lock,
  2134                                              &JavaThread::dirty_card_queue_set());
  2136   // In case we're keeping closure specialization stats, initialize those
  2137   // counts and that mechanism.
  2138   SpecializationStats::clear();
  2140   // Do later initialization work for concurrent refinement.
  2141   _cg1r->init();
  2143   // Here we allocate the dummy full region that is required by the
  2144   // G1AllocRegion class. If we don't pass an address in the reserved
  2145   // space here, lots of asserts fire.
  2147   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2148                                              _g1_reserved.start());
  2149   // We'll re-use the same region whether the alloc region will
  2150   // require BOT updates or not and, if it doesn't, then a non-young
  2151   // region will complain that it cannot support allocations without
  2152   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2153   dummy_region->set_young();
  2154   // Make sure it's full.
  2155   dummy_region->set_top(dummy_region->end());
  2156   G1AllocRegion::setup(this, dummy_region);
  2158   init_mutator_alloc_region();
  2160   // Do create of the monitoring and management support so that
  2161   // values in the heap have been properly initialized.
  2162   _g1mm = new G1MonitoringSupport(this);
  2164   return JNI_OK;
  2167 void G1CollectedHeap::ref_processing_init() {
  2168   // Reference processing in G1 currently works as follows:
  2169   //
  2170   // * There are two reference processor instances. One is
  2171   //   used to record and process discovered references
  2172   //   during concurrent marking; the other is used to
  2173   //   record and process references during STW pauses
  2174   //   (both full and incremental).
  2175   // * Both ref processors need to 'span' the entire heap as
  2176   //   the regions in the collection set may be dotted around.
  2177   //
  2178   // * For the concurrent marking ref processor:
  2179   //   * Reference discovery is enabled at initial marking.
  2180   //   * Reference discovery is disabled and the discovered
  2181   //     references processed etc during remarking.
  2182   //   * Reference discovery is MT (see below).
  2183   //   * Reference discovery requires a barrier (see below).
  2184   //   * Reference processing may or may not be MT
  2185   //     (depending on the value of ParallelRefProcEnabled
  2186   //     and ParallelGCThreads).
  2187   //   * A full GC disables reference discovery by the CM
  2188   //     ref processor and abandons any entries on it's
  2189   //     discovered lists.
  2190   //
  2191   // * For the STW processor:
  2192   //   * Non MT discovery is enabled at the start of a full GC.
  2193   //   * Processing and enqueueing during a full GC is non-MT.
  2194   //   * During a full GC, references are processed after marking.
  2195   //
  2196   //   * Discovery (may or may not be MT) is enabled at the start
  2197   //     of an incremental evacuation pause.
  2198   //   * References are processed near the end of a STW evacuation pause.
  2199   //   * For both types of GC:
  2200   //     * Discovery is atomic - i.e. not concurrent.
  2201   //     * Reference discovery will not need a barrier.
  2203   SharedHeap::ref_processing_init();
  2204   MemRegion mr = reserved_region();
  2206   // Concurrent Mark ref processor
  2207   _ref_processor_cm =
  2208     new ReferenceProcessor(mr,    // span
  2209                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2210                                 // mt processing
  2211                            (int) ParallelGCThreads,
  2212                                 // degree of mt processing
  2213                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2214                                 // mt discovery
  2215                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2216                                 // degree of mt discovery
  2217                            false,
  2218                                 // Reference discovery is not atomic
  2219                            &_is_alive_closure_cm,
  2220                                 // is alive closure
  2221                                 // (for efficiency/performance)
  2222                            true);
  2223                                 // Setting next fields of discovered
  2224                                 // lists requires a barrier.
  2226   // STW ref processor
  2227   _ref_processor_stw =
  2228     new ReferenceProcessor(mr,    // span
  2229                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2230                                 // mt processing
  2231                            MAX2((int)ParallelGCThreads, 1),
  2232                                 // degree of mt processing
  2233                            (ParallelGCThreads > 1),
  2234                                 // mt discovery
  2235                            MAX2((int)ParallelGCThreads, 1),
  2236                                 // degree of mt discovery
  2237                            true,
  2238                                 // Reference discovery is atomic
  2239                            &_is_alive_closure_stw,
  2240                                 // is alive closure
  2241                                 // (for efficiency/performance)
  2242                            false);
  2243                                 // Setting next fields of discovered
  2244                                 // lists requires a barrier.
  2247 size_t G1CollectedHeap::capacity() const {
  2248   return _g1_committed.byte_size();
  2251 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2252   assert(!hr->continuesHumongous(), "pre-condition");
  2253   hr->reset_gc_time_stamp();
  2254   if (hr->startsHumongous()) {
  2255     uint first_index = hr->hrs_index() + 1;
  2256     uint last_index = hr->last_hc_index();
  2257     for (uint i = first_index; i < last_index; i += 1) {
  2258       HeapRegion* chr = region_at(i);
  2259       assert(chr->continuesHumongous(), "sanity");
  2260       chr->reset_gc_time_stamp();
  2265 #ifndef PRODUCT
  2266 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2267 private:
  2268   unsigned _gc_time_stamp;
  2269   bool _failures;
  2271 public:
  2272   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2273     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2275   virtual bool doHeapRegion(HeapRegion* hr) {
  2276     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2277     if (_gc_time_stamp != region_gc_time_stamp) {
  2278       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2279                              "expected %d", HR_FORMAT_PARAMS(hr),
  2280                              region_gc_time_stamp, _gc_time_stamp);
  2281       _failures = true;
  2283     return false;
  2286   bool failures() { return _failures; }
  2287 };
  2289 void G1CollectedHeap::check_gc_time_stamps() {
  2290   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2291   heap_region_iterate(&cl);
  2292   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2294 #endif // PRODUCT
  2296 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2297                                                  DirtyCardQueue* into_cset_dcq,
  2298                                                  bool concurrent,
  2299                                                  int worker_i) {
  2300   // Clean cards in the hot card cache
  2301   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2303   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2304   int n_completed_buffers = 0;
  2305   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2306     n_completed_buffers++;
  2308   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2309   dcqs.clear_n_completed_buffers();
  2310   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2314 // Computes the sum of the storage used by the various regions.
  2316 size_t G1CollectedHeap::used() const {
  2317   assert(Heap_lock->owner() != NULL,
  2318          "Should be owned on this thread's behalf.");
  2319   size_t result = _summary_bytes_used;
  2320   // Read only once in case it is set to NULL concurrently
  2321   HeapRegion* hr = _mutator_alloc_region.get();
  2322   if (hr != NULL)
  2323     result += hr->used();
  2324   return result;
  2327 size_t G1CollectedHeap::used_unlocked() const {
  2328   size_t result = _summary_bytes_used;
  2329   return result;
  2332 class SumUsedClosure: public HeapRegionClosure {
  2333   size_t _used;
  2334 public:
  2335   SumUsedClosure() : _used(0) {}
  2336   bool doHeapRegion(HeapRegion* r) {
  2337     if (!r->continuesHumongous()) {
  2338       _used += r->used();
  2340     return false;
  2342   size_t result() { return _used; }
  2343 };
  2345 size_t G1CollectedHeap::recalculate_used() const {
  2346   SumUsedClosure blk;
  2347   heap_region_iterate(&blk);
  2348   return blk.result();
  2351 size_t G1CollectedHeap::unsafe_max_alloc() {
  2352   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2353   // otherwise, is there space in the current allocation region?
  2355   // We need to store the current allocation region in a local variable
  2356   // here. The problem is that this method doesn't take any locks and
  2357   // there may be other threads which overwrite the current allocation
  2358   // region field. attempt_allocation(), for example, sets it to NULL
  2359   // and this can happen *after* the NULL check here but before the call
  2360   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2361   // to be a problem in the optimized build, since the two loads of the
  2362   // current allocation region field are optimized away.
  2363   HeapRegion* hr = _mutator_alloc_region.get();
  2364   if (hr == NULL) {
  2365     return 0;
  2367   return hr->free();
  2370 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2371   switch (cause) {
  2372     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2373     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2374     case GCCause::_g1_humongous_allocation: return true;
  2375     default:                                return false;
  2379 #ifndef PRODUCT
  2380 void G1CollectedHeap::allocate_dummy_regions() {
  2381   // Let's fill up most of the region
  2382   size_t word_size = HeapRegion::GrainWords - 1024;
  2383   // And as a result the region we'll allocate will be humongous.
  2384   guarantee(isHumongous(word_size), "sanity");
  2386   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2387     // Let's use the existing mechanism for the allocation
  2388     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2389     if (dummy_obj != NULL) {
  2390       MemRegion mr(dummy_obj, word_size);
  2391       CollectedHeap::fill_with_object(mr);
  2392     } else {
  2393       // If we can't allocate once, we probably cannot allocate
  2394       // again. Let's get out of the loop.
  2395       break;
  2399 #endif // !PRODUCT
  2401 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2402   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2403     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2404     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2405     _old_marking_cycles_started, _old_marking_cycles_completed));
  2407   _old_marking_cycles_started++;
  2410 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2411   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2413   // We assume that if concurrent == true, then the caller is a
  2414   // concurrent thread that was joined the Suspendible Thread
  2415   // Set. If there's ever a cheap way to check this, we should add an
  2416   // assert here.
  2418   // Given that this method is called at the end of a Full GC or of a
  2419   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2420   // interrupt a concurrent cycle), the number of full collections
  2421   // completed should be either one (in the case where there was no
  2422   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2423   // behind the number of full collections started.
  2425   // This is the case for the inner caller, i.e. a Full GC.
  2426   assert(concurrent ||
  2427          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2428          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2429          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2430                  "is inconsistent with _old_marking_cycles_completed = %u",
  2431                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2433   // This is the case for the outer caller, i.e. the concurrent cycle.
  2434   assert(!concurrent ||
  2435          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2436          err_msg("for outer caller (concurrent cycle): "
  2437                  "_old_marking_cycles_started = %u "
  2438                  "is inconsistent with _old_marking_cycles_completed = %u",
  2439                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2441   _old_marking_cycles_completed += 1;
  2443   // We need to clear the "in_progress" flag in the CM thread before
  2444   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2445   // is set) so that if a waiter requests another System.gc() it doesn't
  2446   // incorrectly see that a marking cyle is still in progress.
  2447   if (concurrent) {
  2448     _cmThread->clear_in_progress();
  2451   // This notify_all() will ensure that a thread that called
  2452   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2453   // and it's waiting for a full GC to finish will be woken up. It is
  2454   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2455   FullGCCount_lock->notify_all();
  2458 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2459   assert_heap_not_locked();
  2461   unsigned int gc_count_before;
  2462   unsigned int old_marking_count_before;
  2463   bool retry_gc;
  2465   do {
  2466     retry_gc = false;
  2469       MutexLocker ml(Heap_lock);
  2471       // Read the GC count while holding the Heap_lock
  2472       gc_count_before = total_collections();
  2473       old_marking_count_before = _old_marking_cycles_started;
  2476     if (should_do_concurrent_full_gc(cause)) {
  2477       // Schedule an initial-mark evacuation pause that will start a
  2478       // concurrent cycle. We're setting word_size to 0 which means that
  2479       // we are not requesting a post-GC allocation.
  2480       VM_G1IncCollectionPause op(gc_count_before,
  2481                                  0,     /* word_size */
  2482                                  true,  /* should_initiate_conc_mark */
  2483                                  g1_policy()->max_pause_time_ms(),
  2484                                  cause);
  2486       VMThread::execute(&op);
  2487       if (!op.pause_succeeded()) {
  2488         if (old_marking_count_before == _old_marking_cycles_started) {
  2489           retry_gc = op.should_retry_gc();
  2490         } else {
  2491           // A Full GC happened while we were trying to schedule the
  2492           // initial-mark GC. No point in starting a new cycle given
  2493           // that the whole heap was collected anyway.
  2496         if (retry_gc) {
  2497           if (GC_locker::is_active_and_needs_gc()) {
  2498             GC_locker::stall_until_clear();
  2502     } else {
  2503       if (cause == GCCause::_gc_locker
  2504           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2506         // Schedule a standard evacuation pause. We're setting word_size
  2507         // to 0 which means that we are not requesting a post-GC allocation.
  2508         VM_G1IncCollectionPause op(gc_count_before,
  2509                                    0,     /* word_size */
  2510                                    false, /* should_initiate_conc_mark */
  2511                                    g1_policy()->max_pause_time_ms(),
  2512                                    cause);
  2513         VMThread::execute(&op);
  2514       } else {
  2515         // Schedule a Full GC.
  2516         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2517         VMThread::execute(&op);
  2520   } while (retry_gc);
  2523 bool G1CollectedHeap::is_in(const void* p) const {
  2524   if (_g1_committed.contains(p)) {
  2525     // Given that we know that p is in the committed space,
  2526     // heap_region_containing_raw() should successfully
  2527     // return the containing region.
  2528     HeapRegion* hr = heap_region_containing_raw(p);
  2529     return hr->is_in(p);
  2530   } else {
  2531     return false;
  2535 // Iteration functions.
  2537 // Iterates an OopClosure over all ref-containing fields of objects
  2538 // within a HeapRegion.
  2540 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2541   MemRegion _mr;
  2542   ExtendedOopClosure* _cl;
  2543 public:
  2544   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2545     : _mr(mr), _cl(cl) {}
  2546   bool doHeapRegion(HeapRegion* r) {
  2547     if (!r->continuesHumongous()) {
  2548       r->oop_iterate(_cl);
  2550     return false;
  2552 };
  2554 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2555   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2556   heap_region_iterate(&blk);
  2559 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2560   IterateOopClosureRegionClosure blk(mr, cl);
  2561   heap_region_iterate(&blk);
  2564 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2566 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2567   ObjectClosure* _cl;
  2568 public:
  2569   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2570   bool doHeapRegion(HeapRegion* r) {
  2571     if (! r->continuesHumongous()) {
  2572       r->object_iterate(_cl);
  2574     return false;
  2576 };
  2578 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2579   IterateObjectClosureRegionClosure blk(cl);
  2580   heap_region_iterate(&blk);
  2583 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2584   // FIXME: is this right?
  2585   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2588 // Calls a SpaceClosure on a HeapRegion.
  2590 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2591   SpaceClosure* _cl;
  2592 public:
  2593   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2594   bool doHeapRegion(HeapRegion* r) {
  2595     _cl->do_space(r);
  2596     return false;
  2598 };
  2600 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2601   SpaceClosureRegionClosure blk(cl);
  2602   heap_region_iterate(&blk);
  2605 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2606   _hrs.iterate(cl);
  2609 void
  2610 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2611                                                  uint worker_id,
  2612                                                  uint no_of_par_workers,
  2613                                                  jint claim_value) {
  2614   const uint regions = n_regions();
  2615   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2616                              no_of_par_workers :
  2617                              1);
  2618   assert(UseDynamicNumberOfGCThreads ||
  2619          no_of_par_workers == workers()->total_workers(),
  2620          "Non dynamic should use fixed number of workers");
  2621   // try to spread out the starting points of the workers
  2622   const HeapRegion* start_hr =
  2623                         start_region_for_worker(worker_id, no_of_par_workers);
  2624   const uint start_index = start_hr->hrs_index();
  2626   // each worker will actually look at all regions
  2627   for (uint count = 0; count < regions; ++count) {
  2628     const uint index = (start_index + count) % regions;
  2629     assert(0 <= index && index < regions, "sanity");
  2630     HeapRegion* r = region_at(index);
  2631     // we'll ignore "continues humongous" regions (we'll process them
  2632     // when we come across their corresponding "start humongous"
  2633     // region) and regions already claimed
  2634     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2635       continue;
  2637     // OK, try to claim it
  2638     if (r->claimHeapRegion(claim_value)) {
  2639       // success!
  2640       assert(!r->continuesHumongous(), "sanity");
  2641       if (r->startsHumongous()) {
  2642         // If the region is "starts humongous" we'll iterate over its
  2643         // "continues humongous" first; in fact we'll do them
  2644         // first. The order is important. In on case, calling the
  2645         // closure on the "starts humongous" region might de-allocate
  2646         // and clear all its "continues humongous" regions and, as a
  2647         // result, we might end up processing them twice. So, we'll do
  2648         // them first (notice: most closures will ignore them anyway) and
  2649         // then we'll do the "starts humongous" region.
  2650         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2651           HeapRegion* chr = region_at(ch_index);
  2653           // if the region has already been claimed or it's not
  2654           // "continues humongous" we're done
  2655           if (chr->claim_value() == claim_value ||
  2656               !chr->continuesHumongous()) {
  2657             break;
  2660           // Noone should have claimed it directly. We can given
  2661           // that we claimed its "starts humongous" region.
  2662           assert(chr->claim_value() != claim_value, "sanity");
  2663           assert(chr->humongous_start_region() == r, "sanity");
  2665           if (chr->claimHeapRegion(claim_value)) {
  2666             // we should always be able to claim it; noone else should
  2667             // be trying to claim this region
  2669             bool res2 = cl->doHeapRegion(chr);
  2670             assert(!res2, "Should not abort");
  2672             // Right now, this holds (i.e., no closure that actually
  2673             // does something with "continues humongous" regions
  2674             // clears them). We might have to weaken it in the future,
  2675             // but let's leave these two asserts here for extra safety.
  2676             assert(chr->continuesHumongous(), "should still be the case");
  2677             assert(chr->humongous_start_region() == r, "sanity");
  2678           } else {
  2679             guarantee(false, "we should not reach here");
  2684       assert(!r->continuesHumongous(), "sanity");
  2685       bool res = cl->doHeapRegion(r);
  2686       assert(!res, "Should not abort");
  2691 class ResetClaimValuesClosure: public HeapRegionClosure {
  2692 public:
  2693   bool doHeapRegion(HeapRegion* r) {
  2694     r->set_claim_value(HeapRegion::InitialClaimValue);
  2695     return false;
  2697 };
  2699 void G1CollectedHeap::reset_heap_region_claim_values() {
  2700   ResetClaimValuesClosure blk;
  2701   heap_region_iterate(&blk);
  2704 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2705   ResetClaimValuesClosure blk;
  2706   collection_set_iterate(&blk);
  2709 #ifdef ASSERT
  2710 // This checks whether all regions in the heap have the correct claim
  2711 // value. I also piggy-backed on this a check to ensure that the
  2712 // humongous_start_region() information on "continues humongous"
  2713 // regions is correct.
  2715 class CheckClaimValuesClosure : public HeapRegionClosure {
  2716 private:
  2717   jint _claim_value;
  2718   uint _failures;
  2719   HeapRegion* _sh_region;
  2721 public:
  2722   CheckClaimValuesClosure(jint claim_value) :
  2723     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2724   bool doHeapRegion(HeapRegion* r) {
  2725     if (r->claim_value() != _claim_value) {
  2726       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2727                              "claim value = %d, should be %d",
  2728                              HR_FORMAT_PARAMS(r),
  2729                              r->claim_value(), _claim_value);
  2730       ++_failures;
  2732     if (!r->isHumongous()) {
  2733       _sh_region = NULL;
  2734     } else if (r->startsHumongous()) {
  2735       _sh_region = r;
  2736     } else if (r->continuesHumongous()) {
  2737       if (r->humongous_start_region() != _sh_region) {
  2738         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2739                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2740                                HR_FORMAT_PARAMS(r),
  2741                                r->humongous_start_region(),
  2742                                _sh_region);
  2743         ++_failures;
  2746     return false;
  2748   uint failures() { return _failures; }
  2749 };
  2751 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2752   CheckClaimValuesClosure cl(claim_value);
  2753   heap_region_iterate(&cl);
  2754   return cl.failures() == 0;
  2757 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2758 private:
  2759   jint _claim_value;
  2760   uint _failures;
  2762 public:
  2763   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2764     _claim_value(claim_value), _failures(0) { }
  2766   uint failures() { return _failures; }
  2768   bool doHeapRegion(HeapRegion* hr) {
  2769     assert(hr->in_collection_set(), "how?");
  2770     assert(!hr->isHumongous(), "H-region in CSet");
  2771     if (hr->claim_value() != _claim_value) {
  2772       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2773                              "claim value = %d, should be %d",
  2774                              HR_FORMAT_PARAMS(hr),
  2775                              hr->claim_value(), _claim_value);
  2776       _failures += 1;
  2778     return false;
  2780 };
  2782 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2783   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2784   collection_set_iterate(&cl);
  2785   return cl.failures() == 0;
  2787 #endif // ASSERT
  2789 // Clear the cached CSet starting regions and (more importantly)
  2790 // the time stamps. Called when we reset the GC time stamp.
  2791 void G1CollectedHeap::clear_cset_start_regions() {
  2792   assert(_worker_cset_start_region != NULL, "sanity");
  2793   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2795   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2796   for (int i = 0; i < n_queues; i++) {
  2797     _worker_cset_start_region[i] = NULL;
  2798     _worker_cset_start_region_time_stamp[i] = 0;
  2802 // Given the id of a worker, obtain or calculate a suitable
  2803 // starting region for iterating over the current collection set.
  2804 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2805   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2807   HeapRegion* result = NULL;
  2808   unsigned gc_time_stamp = get_gc_time_stamp();
  2810   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2811     // Cached starting region for current worker was set
  2812     // during the current pause - so it's valid.
  2813     // Note: the cached starting heap region may be NULL
  2814     // (when the collection set is empty).
  2815     result = _worker_cset_start_region[worker_i];
  2816     assert(result == NULL || result->in_collection_set(), "sanity");
  2817     return result;
  2820   // The cached entry was not valid so let's calculate
  2821   // a suitable starting heap region for this worker.
  2823   // We want the parallel threads to start their collection
  2824   // set iteration at different collection set regions to
  2825   // avoid contention.
  2826   // If we have:
  2827   //          n collection set regions
  2828   //          p threads
  2829   // Then thread t will start at region floor ((t * n) / p)
  2831   result = g1_policy()->collection_set();
  2832   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2833     uint cs_size = g1_policy()->cset_region_length();
  2834     uint active_workers = workers()->active_workers();
  2835     assert(UseDynamicNumberOfGCThreads ||
  2836              active_workers == workers()->total_workers(),
  2837              "Unless dynamic should use total workers");
  2839     uint end_ind   = (cs_size * worker_i) / active_workers;
  2840     uint start_ind = 0;
  2842     if (worker_i > 0 &&
  2843         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2844       // Previous workers starting region is valid
  2845       // so let's iterate from there
  2846       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2847       result = _worker_cset_start_region[worker_i - 1];
  2850     for (uint i = start_ind; i < end_ind; i++) {
  2851       result = result->next_in_collection_set();
  2855   // Note: the calculated starting heap region may be NULL
  2856   // (when the collection set is empty).
  2857   assert(result == NULL || result->in_collection_set(), "sanity");
  2858   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2859          "should be updated only once per pause");
  2860   _worker_cset_start_region[worker_i] = result;
  2861   OrderAccess::storestore();
  2862   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2863   return result;
  2866 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2867                                                      uint no_of_par_workers) {
  2868   uint worker_num =
  2869            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2870   assert(UseDynamicNumberOfGCThreads ||
  2871          no_of_par_workers == workers()->total_workers(),
  2872          "Non dynamic should use fixed number of workers");
  2873   const uint start_index = n_regions() * worker_i / worker_num;
  2874   return region_at(start_index);
  2877 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2878   HeapRegion* r = g1_policy()->collection_set();
  2879   while (r != NULL) {
  2880     HeapRegion* next = r->next_in_collection_set();
  2881     if (cl->doHeapRegion(r)) {
  2882       cl->incomplete();
  2883       return;
  2885     r = next;
  2889 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2890                                                   HeapRegionClosure *cl) {
  2891   if (r == NULL) {
  2892     // The CSet is empty so there's nothing to do.
  2893     return;
  2896   assert(r->in_collection_set(),
  2897          "Start region must be a member of the collection set.");
  2898   HeapRegion* cur = r;
  2899   while (cur != NULL) {
  2900     HeapRegion* next = cur->next_in_collection_set();
  2901     if (cl->doHeapRegion(cur) && false) {
  2902       cl->incomplete();
  2903       return;
  2905     cur = next;
  2907   cur = g1_policy()->collection_set();
  2908   while (cur != r) {
  2909     HeapRegion* next = cur->next_in_collection_set();
  2910     if (cl->doHeapRegion(cur) && false) {
  2911       cl->incomplete();
  2912       return;
  2914     cur = next;
  2918 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2919   return n_regions() > 0 ? region_at(0) : NULL;
  2923 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2924   Space* res = heap_region_containing(addr);
  2925   return res;
  2928 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2929   Space* sp = space_containing(addr);
  2930   if (sp != NULL) {
  2931     return sp->block_start(addr);
  2933   return NULL;
  2936 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2937   Space* sp = space_containing(addr);
  2938   assert(sp != NULL, "block_size of address outside of heap");
  2939   return sp->block_size(addr);
  2942 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2943   Space* sp = space_containing(addr);
  2944   return sp->block_is_obj(addr);
  2947 bool G1CollectedHeap::supports_tlab_allocation() const {
  2948   return true;
  2951 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2952   return HeapRegion::GrainBytes;
  2955 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2956   // Return the remaining space in the cur alloc region, but not less than
  2957   // the min TLAB size.
  2959   // Also, this value can be at most the humongous object threshold,
  2960   // since we can't allow tlabs to grow big enough to accomodate
  2961   // humongous objects.
  2963   HeapRegion* hr = _mutator_alloc_region.get();
  2964   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2965   if (hr == NULL) {
  2966     return max_tlab_size;
  2967   } else {
  2968     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2972 size_t G1CollectedHeap::max_capacity() const {
  2973   return _g1_reserved.byte_size();
  2976 jlong G1CollectedHeap::millis_since_last_gc() {
  2977   // assert(false, "NYI");
  2978   return 0;
  2981 void G1CollectedHeap::prepare_for_verify() {
  2982   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2983     ensure_parsability(false);
  2985   g1_rem_set()->prepare_for_verify();
  2988 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2989                                               VerifyOption vo) {
  2990   switch (vo) {
  2991   case VerifyOption_G1UsePrevMarking:
  2992     return hr->obj_allocated_since_prev_marking(obj);
  2993   case VerifyOption_G1UseNextMarking:
  2994     return hr->obj_allocated_since_next_marking(obj);
  2995   case VerifyOption_G1UseMarkWord:
  2996     return false;
  2997   default:
  2998     ShouldNotReachHere();
  3000   return false; // keep some compilers happy
  3003 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3004   switch (vo) {
  3005   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3006   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3007   case VerifyOption_G1UseMarkWord:    return NULL;
  3008   default:                            ShouldNotReachHere();
  3010   return NULL; // keep some compilers happy
  3013 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3014   switch (vo) {
  3015   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3016   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3017   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3018   default:                            ShouldNotReachHere();
  3020   return false; // keep some compilers happy
  3023 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3024   switch (vo) {
  3025   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3026   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3027   case VerifyOption_G1UseMarkWord:    return "NONE";
  3028   default:                            ShouldNotReachHere();
  3030   return NULL; // keep some compilers happy
  3033 class VerifyLivenessOopClosure: public OopClosure {
  3034   G1CollectedHeap* _g1h;
  3035   VerifyOption _vo;
  3036 public:
  3037   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3038     _g1h(g1h), _vo(vo)
  3039   { }
  3040   void do_oop(narrowOop *p) { do_oop_work(p); }
  3041   void do_oop(      oop *p) { do_oop_work(p); }
  3043   template <class T> void do_oop_work(T *p) {
  3044     oop obj = oopDesc::load_decode_heap_oop(p);
  3045     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3046               "Dead object referenced by a not dead object");
  3048 };
  3050 class VerifyObjsInRegionClosure: public ObjectClosure {
  3051 private:
  3052   G1CollectedHeap* _g1h;
  3053   size_t _live_bytes;
  3054   HeapRegion *_hr;
  3055   VerifyOption _vo;
  3056 public:
  3057   // _vo == UsePrevMarking -> use "prev" marking information,
  3058   // _vo == UseNextMarking -> use "next" marking information,
  3059   // _vo == UseMarkWord    -> use mark word from object header.
  3060   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3061     : _live_bytes(0), _hr(hr), _vo(vo) {
  3062     _g1h = G1CollectedHeap::heap();
  3064   void do_object(oop o) {
  3065     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3066     assert(o != NULL, "Huh?");
  3067     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3068       // If the object is alive according to the mark word,
  3069       // then verify that the marking information agrees.
  3070       // Note we can't verify the contra-positive of the
  3071       // above: if the object is dead (according to the mark
  3072       // word), it may not be marked, or may have been marked
  3073       // but has since became dead, or may have been allocated
  3074       // since the last marking.
  3075       if (_vo == VerifyOption_G1UseMarkWord) {
  3076         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3079       o->oop_iterate_no_header(&isLive);
  3080       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3081         size_t obj_size = o->size();    // Make sure we don't overflow
  3082         _live_bytes += (obj_size * HeapWordSize);
  3086   size_t live_bytes() { return _live_bytes; }
  3087 };
  3089 class PrintObjsInRegionClosure : public ObjectClosure {
  3090   HeapRegion *_hr;
  3091   G1CollectedHeap *_g1;
  3092 public:
  3093   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3094     _g1 = G1CollectedHeap::heap();
  3095   };
  3097   void do_object(oop o) {
  3098     if (o != NULL) {
  3099       HeapWord *start = (HeapWord *) o;
  3100       size_t word_sz = o->size();
  3101       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3102                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3103                           (void*) o, word_sz,
  3104                           _g1->isMarkedPrev(o),
  3105                           _g1->isMarkedNext(o),
  3106                           _hr->obj_allocated_since_prev_marking(o));
  3107       HeapWord *end = start + word_sz;
  3108       HeapWord *cur;
  3109       int *val;
  3110       for (cur = start; cur < end; cur++) {
  3111         val = (int *) cur;
  3112         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3116 };
  3118 class VerifyRegionClosure: public HeapRegionClosure {
  3119 private:
  3120   bool             _par;
  3121   VerifyOption     _vo;
  3122   bool             _failures;
  3123 public:
  3124   // _vo == UsePrevMarking -> use "prev" marking information,
  3125   // _vo == UseNextMarking -> use "next" marking information,
  3126   // _vo == UseMarkWord    -> use mark word from object header.
  3127   VerifyRegionClosure(bool par, VerifyOption vo)
  3128     : _par(par),
  3129       _vo(vo),
  3130       _failures(false) {}
  3132   bool failures() {
  3133     return _failures;
  3136   bool doHeapRegion(HeapRegion* r) {
  3137     if (!r->continuesHumongous()) {
  3138       bool failures = false;
  3139       r->verify(_vo, &failures);
  3140       if (failures) {
  3141         _failures = true;
  3142       } else {
  3143         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3144         r->object_iterate(&not_dead_yet_cl);
  3145         if (_vo != VerifyOption_G1UseNextMarking) {
  3146           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3147             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3148                                    "max_live_bytes "SIZE_FORMAT" "
  3149                                    "< calculated "SIZE_FORMAT,
  3150                                    r->bottom(), r->end(),
  3151                                    r->max_live_bytes(),
  3152                                  not_dead_yet_cl.live_bytes());
  3153             _failures = true;
  3155         } else {
  3156           // When vo == UseNextMarking we cannot currently do a sanity
  3157           // check on the live bytes as the calculation has not been
  3158           // finalized yet.
  3162     return false; // stop the region iteration if we hit a failure
  3164 };
  3166 class YoungRefCounterClosure : public OopClosure {
  3167   G1CollectedHeap* _g1h;
  3168   int              _count;
  3169  public:
  3170   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3171   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3172   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3174   int count() { return _count; }
  3175   void reset_count() { _count = 0; };
  3176 };
  3178 class VerifyKlassClosure: public KlassClosure {
  3179   YoungRefCounterClosure _young_ref_counter_closure;
  3180   OopClosure *_oop_closure;
  3181  public:
  3182   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3183   void do_klass(Klass* k) {
  3184     k->oops_do(_oop_closure);
  3186     _young_ref_counter_closure.reset_count();
  3187     k->oops_do(&_young_ref_counter_closure);
  3188     if (_young_ref_counter_closure.count() > 0) {
  3189       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3192 };
  3194 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
  3195 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
  3196 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
  3197 //       we can change this closure to extend the simpler OopClosure.
  3198 class VerifyRootsClosure: public OopsInGenClosure {
  3199 private:
  3200   G1CollectedHeap* _g1h;
  3201   VerifyOption     _vo;
  3202   bool             _failures;
  3203 public:
  3204   // _vo == UsePrevMarking -> use "prev" marking information,
  3205   // _vo == UseNextMarking -> use "next" marking information,
  3206   // _vo == UseMarkWord    -> use mark word from object header.
  3207   VerifyRootsClosure(VerifyOption vo) :
  3208     _g1h(G1CollectedHeap::heap()),
  3209     _vo(vo),
  3210     _failures(false) { }
  3212   bool failures() { return _failures; }
  3214   template <class T> void do_oop_nv(T* p) {
  3215     T heap_oop = oopDesc::load_heap_oop(p);
  3216     if (!oopDesc::is_null(heap_oop)) {
  3217       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3218       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3219         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3220                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3221         if (_vo == VerifyOption_G1UseMarkWord) {
  3222           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3224         obj->print_on(gclog_or_tty);
  3225         _failures = true;
  3230   void do_oop(oop* p)       { do_oop_nv(p); }
  3231   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3232 };
  3234 // This is the task used for parallel heap verification.
  3236 class G1ParVerifyTask: public AbstractGangTask {
  3237 private:
  3238   G1CollectedHeap* _g1h;
  3239   VerifyOption     _vo;
  3240   bool             _failures;
  3242 public:
  3243   // _vo == UsePrevMarking -> use "prev" marking information,
  3244   // _vo == UseNextMarking -> use "next" marking information,
  3245   // _vo == UseMarkWord    -> use mark word from object header.
  3246   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3247     AbstractGangTask("Parallel verify task"),
  3248     _g1h(g1h),
  3249     _vo(vo),
  3250     _failures(false) { }
  3252   bool failures() {
  3253     return _failures;
  3256   void work(uint worker_id) {
  3257     HandleMark hm;
  3258     VerifyRegionClosure blk(true, _vo);
  3259     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3260                                           _g1h->workers()->active_workers(),
  3261                                           HeapRegion::ParVerifyClaimValue);
  3262     if (blk.failures()) {
  3263       _failures = true;
  3266 };
  3268 void G1CollectedHeap::verify(bool silent) {
  3269   verify(silent, VerifyOption_G1UsePrevMarking);
  3272 void G1CollectedHeap::verify(bool silent,
  3273                              VerifyOption vo) {
  3274   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3275     if (!silent) { gclog_or_tty->print("Roots "); }
  3276     VerifyRootsClosure rootsCl(vo);
  3278     assert(Thread::current()->is_VM_thread(),
  3279       "Expected to be executed serially by the VM thread at this point");
  3281     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3282     VerifyKlassClosure klassCl(this, &rootsCl);
  3284     // We apply the relevant closures to all the oops in the
  3285     // system dictionary, the string table and the code cache.
  3286     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3288     // Need cleared claim bits for the strong roots processing
  3289     ClassLoaderDataGraph::clear_claimed_marks();
  3291     process_strong_roots(true,      // activate StrongRootsScope
  3292                          false,     // we set "is scavenging" to false,
  3293                                     // so we don't reset the dirty cards.
  3294                          ScanningOption(so),  // roots scanning options
  3295                          &rootsCl,
  3296                          &blobsCl,
  3297                          &klassCl
  3298                          );
  3300     bool failures = rootsCl.failures();
  3302     if (vo != VerifyOption_G1UseMarkWord) {
  3303       // If we're verifying during a full GC then the region sets
  3304       // will have been torn down at the start of the GC. Therefore
  3305       // verifying the region sets will fail. So we only verify
  3306       // the region sets when not in a full GC.
  3307       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3308       verify_region_sets();
  3311     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3312     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3313       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3314              "sanity check");
  3316       G1ParVerifyTask task(this, vo);
  3317       assert(UseDynamicNumberOfGCThreads ||
  3318         workers()->active_workers() == workers()->total_workers(),
  3319         "If not dynamic should be using all the workers");
  3320       int n_workers = workers()->active_workers();
  3321       set_par_threads(n_workers);
  3322       workers()->run_task(&task);
  3323       set_par_threads(0);
  3324       if (task.failures()) {
  3325         failures = true;
  3328       // Checks that the expected amount of parallel work was done.
  3329       // The implication is that n_workers is > 0.
  3330       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3331              "sanity check");
  3333       reset_heap_region_claim_values();
  3335       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3336              "sanity check");
  3337     } else {
  3338       VerifyRegionClosure blk(false, vo);
  3339       heap_region_iterate(&blk);
  3340       if (blk.failures()) {
  3341         failures = true;
  3344     if (!silent) gclog_or_tty->print("RemSet ");
  3345     rem_set()->verify();
  3347     if (failures) {
  3348       gclog_or_tty->print_cr("Heap:");
  3349       // It helps to have the per-region information in the output to
  3350       // help us track down what went wrong. This is why we call
  3351       // print_extended_on() instead of print_on().
  3352       print_extended_on(gclog_or_tty);
  3353       gclog_or_tty->print_cr("");
  3354 #ifndef PRODUCT
  3355       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3356         concurrent_mark()->print_reachable("at-verification-failure",
  3357                                            vo, false /* all */);
  3359 #endif
  3360       gclog_or_tty->flush();
  3362     guarantee(!failures, "there should not have been any failures");
  3363   } else {
  3364     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3368 class PrintRegionClosure: public HeapRegionClosure {
  3369   outputStream* _st;
  3370 public:
  3371   PrintRegionClosure(outputStream* st) : _st(st) {}
  3372   bool doHeapRegion(HeapRegion* r) {
  3373     r->print_on(_st);
  3374     return false;
  3376 };
  3378 void G1CollectedHeap::print_on(outputStream* st) const {
  3379   st->print(" %-20s", "garbage-first heap");
  3380   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3381             capacity()/K, used_unlocked()/K);
  3382   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3383             _g1_storage.low_boundary(),
  3384             _g1_storage.high(),
  3385             _g1_storage.high_boundary());
  3386   st->cr();
  3387   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3388   uint young_regions = _young_list->length();
  3389   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3390             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3391   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3392   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3393             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3394   st->cr();
  3395   MetaspaceAux::print_on(st);
  3398 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3399   print_on(st);
  3401   // Print the per-region information.
  3402   st->cr();
  3403   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3404                "HS=humongous(starts), HC=humongous(continues), "
  3405                "CS=collection set, F=free, TS=gc time stamp, "
  3406                "PTAMS=previous top-at-mark-start, "
  3407                "NTAMS=next top-at-mark-start)");
  3408   PrintRegionClosure blk(st);
  3409   heap_region_iterate(&blk);
  3412 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3413   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3414     workers()->print_worker_threads_on(st);
  3416   _cmThread->print_on(st);
  3417   st->cr();
  3418   _cm->print_worker_threads_on(st);
  3419   _cg1r->print_worker_threads_on(st);
  3422 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3423   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3424     workers()->threads_do(tc);
  3426   tc->do_thread(_cmThread);
  3427   _cg1r->threads_do(tc);
  3430 void G1CollectedHeap::print_tracing_info() const {
  3431   // We'll overload this to mean "trace GC pause statistics."
  3432   if (TraceGen0Time || TraceGen1Time) {
  3433     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3434     // to that.
  3435     g1_policy()->print_tracing_info();
  3437   if (G1SummarizeRSetStats) {
  3438     g1_rem_set()->print_summary_info();
  3440   if (G1SummarizeConcMark) {
  3441     concurrent_mark()->print_summary_info();
  3443   g1_policy()->print_yg_surv_rate_info();
  3444   SpecializationStats::print();
  3447 #ifndef PRODUCT
  3448 // Helpful for debugging RSet issues.
  3450 class PrintRSetsClosure : public HeapRegionClosure {
  3451 private:
  3452   const char* _msg;
  3453   size_t _occupied_sum;
  3455 public:
  3456   bool doHeapRegion(HeapRegion* r) {
  3457     HeapRegionRemSet* hrrs = r->rem_set();
  3458     size_t occupied = hrrs->occupied();
  3459     _occupied_sum += occupied;
  3461     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3462                            HR_FORMAT_PARAMS(r));
  3463     if (occupied == 0) {
  3464       gclog_or_tty->print_cr("  RSet is empty");
  3465     } else {
  3466       hrrs->print();
  3468     gclog_or_tty->print_cr("----------");
  3469     return false;
  3472   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3473     gclog_or_tty->cr();
  3474     gclog_or_tty->print_cr("========================================");
  3475     gclog_or_tty->print_cr(msg);
  3476     gclog_or_tty->cr();
  3479   ~PrintRSetsClosure() {
  3480     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3481     gclog_or_tty->print_cr("========================================");
  3482     gclog_or_tty->cr();
  3484 };
  3486 void G1CollectedHeap::print_cset_rsets() {
  3487   PrintRSetsClosure cl("Printing CSet RSets");
  3488   collection_set_iterate(&cl);
  3491 void G1CollectedHeap::print_all_rsets() {
  3492   PrintRSetsClosure cl("Printing All RSets");;
  3493   heap_region_iterate(&cl);
  3495 #endif // PRODUCT
  3497 G1CollectedHeap* G1CollectedHeap::heap() {
  3498   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3499          "not a garbage-first heap");
  3500   return _g1h;
  3503 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3504   // always_do_update_barrier = false;
  3505   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3506   // Call allocation profiler
  3507   AllocationProfiler::iterate_since_last_gc();
  3508   // Fill TLAB's and such
  3509   ensure_parsability(true);
  3512 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3513   // FIXME: what is this about?
  3514   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3515   // is set.
  3516   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3517                         "derived pointer present"));
  3518   // always_do_update_barrier = true;
  3520   // We have just completed a GC. Update the soft reference
  3521   // policy with the new heap occupancy
  3522   Universe::update_heap_info_at_gc();
  3525 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3526                                                unsigned int gc_count_before,
  3527                                                bool* succeeded) {
  3528   assert_heap_not_locked_and_not_at_safepoint();
  3529   g1_policy()->record_stop_world_start();
  3530   VM_G1IncCollectionPause op(gc_count_before,
  3531                              word_size,
  3532                              false, /* should_initiate_conc_mark */
  3533                              g1_policy()->max_pause_time_ms(),
  3534                              GCCause::_g1_inc_collection_pause);
  3535   VMThread::execute(&op);
  3537   HeapWord* result = op.result();
  3538   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3539   assert(result == NULL || ret_succeeded,
  3540          "the result should be NULL if the VM did not succeed");
  3541   *succeeded = ret_succeeded;
  3543   assert_heap_not_locked();
  3544   return result;
  3547 void
  3548 G1CollectedHeap::doConcurrentMark() {
  3549   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3550   if (!_cmThread->in_progress()) {
  3551     _cmThread->set_started();
  3552     CGC_lock->notify();
  3556 size_t G1CollectedHeap::pending_card_num() {
  3557   size_t extra_cards = 0;
  3558   JavaThread *curr = Threads::first();
  3559   while (curr != NULL) {
  3560     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3561     extra_cards += dcq.size();
  3562     curr = curr->next();
  3564   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3565   size_t buffer_size = dcqs.buffer_size();
  3566   size_t buffer_num = dcqs.completed_buffers_num();
  3568   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3569   // in bytes - not the number of 'entries'. We need to convert
  3570   // into a number of cards.
  3571   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3574 size_t G1CollectedHeap::cards_scanned() {
  3575   return g1_rem_set()->cardsScanned();
  3578 void
  3579 G1CollectedHeap::setup_surviving_young_words() {
  3580   assert(_surviving_young_words == NULL, "pre-condition");
  3581   uint array_length = g1_policy()->young_cset_region_length();
  3582   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3583   if (_surviving_young_words == NULL) {
  3584     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3585                           "Not enough space for young surv words summary.");
  3587   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3588 #ifdef ASSERT
  3589   for (uint i = 0;  i < array_length; ++i) {
  3590     assert( _surviving_young_words[i] == 0, "memset above" );
  3592 #endif // !ASSERT
  3595 void
  3596 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3597   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3598   uint array_length = g1_policy()->young_cset_region_length();
  3599   for (uint i = 0; i < array_length; ++i) {
  3600     _surviving_young_words[i] += surv_young_words[i];
  3604 void
  3605 G1CollectedHeap::cleanup_surviving_young_words() {
  3606   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3607   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3608   _surviving_young_words = NULL;
  3611 #ifdef ASSERT
  3612 class VerifyCSetClosure: public HeapRegionClosure {
  3613 public:
  3614   bool doHeapRegion(HeapRegion* hr) {
  3615     // Here we check that the CSet region's RSet is ready for parallel
  3616     // iteration. The fields that we'll verify are only manipulated
  3617     // when the region is part of a CSet and is collected. Afterwards,
  3618     // we reset these fields when we clear the region's RSet (when the
  3619     // region is freed) so they are ready when the region is
  3620     // re-allocated. The only exception to this is if there's an
  3621     // evacuation failure and instead of freeing the region we leave
  3622     // it in the heap. In that case, we reset these fields during
  3623     // evacuation failure handling.
  3624     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3626     // Here's a good place to add any other checks we'd like to
  3627     // perform on CSet regions.
  3628     return false;
  3630 };
  3631 #endif // ASSERT
  3633 #if TASKQUEUE_STATS
  3634 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3635   st->print_raw_cr("GC Task Stats");
  3636   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3637   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3640 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3641   print_taskqueue_stats_hdr(st);
  3643   TaskQueueStats totals;
  3644   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3645   for (int i = 0; i < n; ++i) {
  3646     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3647     totals += task_queue(i)->stats;
  3649   st->print_raw("tot "); totals.print(st); st->cr();
  3651   DEBUG_ONLY(totals.verify());
  3654 void G1CollectedHeap::reset_taskqueue_stats() {
  3655   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3656   for (int i = 0; i < n; ++i) {
  3657     task_queue(i)->stats.reset();
  3660 #endif // TASKQUEUE_STATS
  3662 void G1CollectedHeap::log_gc_header() {
  3663   if (!G1Log::fine()) {
  3664     return;
  3667   gclog_or_tty->date_stamp(PrintGCDateStamps);
  3668   gclog_or_tty->stamp(PrintGCTimeStamps);
  3670   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3671     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3672     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3674   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3677 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3678   if (!G1Log::fine()) {
  3679     return;
  3682   if (G1Log::finer()) {
  3683     if (evacuation_failed()) {
  3684       gclog_or_tty->print(" (to-space exhausted)");
  3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3687     g1_policy()->phase_times()->note_gc_end();
  3688     g1_policy()->phase_times()->print(pause_time_sec);
  3689     g1_policy()->print_detailed_heap_transition();
  3690   } else {
  3691     if (evacuation_failed()) {
  3692       gclog_or_tty->print("--");
  3694     g1_policy()->print_heap_transition();
  3695     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3697   gclog_or_tty->flush();
  3700 bool
  3701 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3702   assert_at_safepoint(true /* should_be_vm_thread */);
  3703   guarantee(!is_gc_active(), "collection is not reentrant");
  3705   if (GC_locker::check_active_before_gc()) {
  3706     return false;
  3709   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3710   ResourceMark rm;
  3712   print_heap_before_gc();
  3714   HRSPhaseSetter x(HRSPhaseEvacuation);
  3715   verify_region_sets_optional();
  3716   verify_dirty_young_regions();
  3718   // This call will decide whether this pause is an initial-mark
  3719   // pause. If it is, during_initial_mark_pause() will return true
  3720   // for the duration of this pause.
  3721   g1_policy()->decide_on_conc_mark_initiation();
  3723   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3724   assert(!g1_policy()->during_initial_mark_pause() ||
  3725           g1_policy()->gcs_are_young(), "sanity");
  3727   // We also do not allow mixed GCs during marking.
  3728   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3730   // Record whether this pause is an initial mark. When the current
  3731   // thread has completed its logging output and it's safe to signal
  3732   // the CM thread, the flag's value in the policy has been reset.
  3733   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3735   // Inner scope for scope based logging, timers, and stats collection
  3737     if (g1_policy()->during_initial_mark_pause()) {
  3738       // We are about to start a marking cycle, so we increment the
  3739       // full collection counter.
  3740       increment_old_marking_cycles_started();
  3742     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3744     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3745                                 workers()->active_workers() : 1);
  3746     double pause_start_sec = os::elapsedTime();
  3747     g1_policy()->phase_times()->note_gc_start(active_workers);
  3748     log_gc_header();
  3750     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3751     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3753     // If the secondary_free_list is not empty, append it to the
  3754     // free_list. No need to wait for the cleanup operation to finish;
  3755     // the region allocation code will check the secondary_free_list
  3756     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3757     // set, skip this step so that the region allocation code has to
  3758     // get entries from the secondary_free_list.
  3759     if (!G1StressConcRegionFreeing) {
  3760       append_secondary_free_list_if_not_empty_with_lock();
  3763     assert(check_young_list_well_formed(),
  3764       "young list should be well formed");
  3766     // Don't dynamically change the number of GC threads this early.  A value of
  3767     // 0 is used to indicate serial work.  When parallel work is done,
  3768     // it will be set.
  3770     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3771       IsGCActiveMark x;
  3773       gc_prologue(false);
  3774       increment_total_collections(false /* full gc */);
  3775       increment_gc_time_stamp();
  3777       verify_before_gc();
  3779       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3781       // Please see comment in g1CollectedHeap.hpp and
  3782       // G1CollectedHeap::ref_processing_init() to see how
  3783       // reference processing currently works in G1.
  3785       // Enable discovery in the STW reference processor
  3786       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3787                                             true /*verify_no_refs*/);
  3790         // We want to temporarily turn off discovery by the
  3791         // CM ref processor, if necessary, and turn it back on
  3792         // on again later if we do. Using a scoped
  3793         // NoRefDiscovery object will do this.
  3794         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3796         // Forget the current alloc region (we might even choose it to be part
  3797         // of the collection set!).
  3798         release_mutator_alloc_region();
  3800         // We should call this after we retire the mutator alloc
  3801         // region(s) so that all the ALLOC / RETIRE events are generated
  3802         // before the start GC event.
  3803         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3805         // This timing is only used by the ergonomics to handle our pause target.
  3806         // It is unclear why this should not include the full pause. We will
  3807         // investigate this in CR 7178365.
  3808         //
  3809         // Preserving the old comment here if that helps the investigation:
  3810         //
  3811         // The elapsed time induced by the start time below deliberately elides
  3812         // the possible verification above.
  3813         double sample_start_time_sec = os::elapsedTime();
  3814         size_t start_used_bytes = used();
  3816 #if YOUNG_LIST_VERBOSE
  3817         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3818         _young_list->print();
  3819         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3820 #endif // YOUNG_LIST_VERBOSE
  3822         g1_policy()->record_collection_pause_start(sample_start_time_sec,
  3823                                                    start_used_bytes);
  3825         double scan_wait_start = os::elapsedTime();
  3826         // We have to wait until the CM threads finish scanning the
  3827         // root regions as it's the only way to ensure that all the
  3828         // objects on them have been correctly scanned before we start
  3829         // moving them during the GC.
  3830         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3831         double wait_time_ms = 0.0;
  3832         if (waited) {
  3833           double scan_wait_end = os::elapsedTime();
  3834           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3836         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3838 #if YOUNG_LIST_VERBOSE
  3839         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3840         _young_list->print();
  3841 #endif // YOUNG_LIST_VERBOSE
  3843         if (g1_policy()->during_initial_mark_pause()) {
  3844           concurrent_mark()->checkpointRootsInitialPre();
  3847 #if YOUNG_LIST_VERBOSE
  3848         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3849         _young_list->print();
  3850         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3851 #endif // YOUNG_LIST_VERBOSE
  3853         g1_policy()->finalize_cset(target_pause_time_ms);
  3855         _cm->note_start_of_gc();
  3856         // We should not verify the per-thread SATB buffers given that
  3857         // we have not filtered them yet (we'll do so during the
  3858         // GC). We also call this after finalize_cset() to
  3859         // ensure that the CSet has been finalized.
  3860         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3861                                  true  /* verify_enqueued_buffers */,
  3862                                  false /* verify_thread_buffers */,
  3863                                  true  /* verify_fingers */);
  3865         if (_hr_printer.is_active()) {
  3866           HeapRegion* hr = g1_policy()->collection_set();
  3867           while (hr != NULL) {
  3868             G1HRPrinter::RegionType type;
  3869             if (!hr->is_young()) {
  3870               type = G1HRPrinter::Old;
  3871             } else if (hr->is_survivor()) {
  3872               type = G1HRPrinter::Survivor;
  3873             } else {
  3874               type = G1HRPrinter::Eden;
  3876             _hr_printer.cset(hr);
  3877             hr = hr->next_in_collection_set();
  3881 #ifdef ASSERT
  3882         VerifyCSetClosure cl;
  3883         collection_set_iterate(&cl);
  3884 #endif // ASSERT
  3886         setup_surviving_young_words();
  3888         // Initialize the GC alloc regions.
  3889         init_gc_alloc_regions();
  3891         // Actually do the work...
  3892         evacuate_collection_set();
  3894         // We do this to mainly verify the per-thread SATB buffers
  3895         // (which have been filtered by now) since we didn't verify
  3896         // them earlier. No point in re-checking the stacks / enqueued
  3897         // buffers given that the CSet has not changed since last time
  3898         // we checked.
  3899         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3900                                  false /* verify_enqueued_buffers */,
  3901                                  true  /* verify_thread_buffers */,
  3902                                  true  /* verify_fingers */);
  3904         free_collection_set(g1_policy()->collection_set());
  3905         g1_policy()->clear_collection_set();
  3907         cleanup_surviving_young_words();
  3909         // Start a new incremental collection set for the next pause.
  3910         g1_policy()->start_incremental_cset_building();
  3912         // Clear the _cset_fast_test bitmap in anticipation of adding
  3913         // regions to the incremental collection set for the next
  3914         // evacuation pause.
  3915         clear_cset_fast_test();
  3917         _young_list->reset_sampled_info();
  3919         // Don't check the whole heap at this point as the
  3920         // GC alloc regions from this pause have been tagged
  3921         // as survivors and moved on to the survivor list.
  3922         // Survivor regions will fail the !is_young() check.
  3923         assert(check_young_list_empty(false /* check_heap */),
  3924           "young list should be empty");
  3926 #if YOUNG_LIST_VERBOSE
  3927         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3928         _young_list->print();
  3929 #endif // YOUNG_LIST_VERBOSE
  3931         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3932                                             _young_list->first_survivor_region(),
  3933                                             _young_list->last_survivor_region());
  3935         _young_list->reset_auxilary_lists();
  3937         if (evacuation_failed()) {
  3938           _summary_bytes_used = recalculate_used();
  3939         } else {
  3940           // The "used" of the the collection set have already been subtracted
  3941           // when they were freed.  Add in the bytes evacuated.
  3942           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3945         if (g1_policy()->during_initial_mark_pause()) {
  3946           // We have to do this before we notify the CM threads that
  3947           // they can start working to make sure that all the
  3948           // appropriate initialization is done on the CM object.
  3949           concurrent_mark()->checkpointRootsInitialPost();
  3950           set_marking_started();
  3951           // Note that we don't actually trigger the CM thread at
  3952           // this point. We do that later when we're sure that
  3953           // the current thread has completed its logging output.
  3956         allocate_dummy_regions();
  3958 #if YOUNG_LIST_VERBOSE
  3959         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3960         _young_list->print();
  3961         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3962 #endif // YOUNG_LIST_VERBOSE
  3964         init_mutator_alloc_region();
  3967           size_t expand_bytes = g1_policy()->expansion_amount();
  3968           if (expand_bytes > 0) {
  3969             size_t bytes_before = capacity();
  3970             // No need for an ergo verbose message here,
  3971             // expansion_amount() does this when it returns a value > 0.
  3972             if (!expand(expand_bytes)) {
  3973               // We failed to expand the heap so let's verify that
  3974               // committed/uncommitted amount match the backing store
  3975               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3976               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3981         // We redo the verificaiton but now wrt to the new CSet which
  3982         // has just got initialized after the previous CSet was freed.
  3983         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3984                                  true  /* verify_enqueued_buffers */,
  3985                                  true  /* verify_thread_buffers */,
  3986                                  true  /* verify_fingers */);
  3987         _cm->note_end_of_gc();
  3989         // This timing is only used by the ergonomics to handle our pause target.
  3990         // It is unclear why this should not include the full pause. We will
  3991         // investigate this in CR 7178365.
  3992         double sample_end_time_sec = os::elapsedTime();
  3993         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  3994         g1_policy()->record_collection_pause_end(pause_time_ms);
  3996         MemoryService::track_memory_usage();
  3998         // In prepare_for_verify() below we'll need to scan the deferred
  3999         // update buffers to bring the RSets up-to-date if
  4000         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4001         // the update buffers we'll probably need to scan cards on the
  4002         // regions we just allocated to (i.e., the GC alloc
  4003         // regions). However, during the last GC we called
  4004         // set_saved_mark() on all the GC alloc regions, so card
  4005         // scanning might skip the [saved_mark_word()...top()] area of
  4006         // those regions (i.e., the area we allocated objects into
  4007         // during the last GC). But it shouldn't. Given that
  4008         // saved_mark_word() is conditional on whether the GC time stamp
  4009         // on the region is current or not, by incrementing the GC time
  4010         // stamp here we invalidate all the GC time stamps on all the
  4011         // regions and saved_mark_word() will simply return top() for
  4012         // all the regions. This is a nicer way of ensuring this rather
  4013         // than iterating over the regions and fixing them. In fact, the
  4014         // GC time stamp increment here also ensures that
  4015         // saved_mark_word() will return top() between pauses, i.e.,
  4016         // during concurrent refinement. So we don't need the
  4017         // is_gc_active() check to decided which top to use when
  4018         // scanning cards (see CR 7039627).
  4019         increment_gc_time_stamp();
  4021         verify_after_gc();
  4023         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4024         ref_processor_stw()->verify_no_references_recorded();
  4026         // CM reference discovery will be re-enabled if necessary.
  4029       // We should do this after we potentially expand the heap so
  4030       // that all the COMMIT events are generated before the end GC
  4031       // event, and after we retire the GC alloc regions so that all
  4032       // RETIRE events are generated before the end GC event.
  4033       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4035       if (mark_in_progress()) {
  4036         concurrent_mark()->update_g1_committed();
  4039 #ifdef TRACESPINNING
  4040       ParallelTaskTerminator::print_termination_counts();
  4041 #endif
  4043       gc_epilogue(false);
  4046     // Print the remainder of the GC log output.
  4047     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4049     // It is not yet to safe to tell the concurrent mark to
  4050     // start as we have some optional output below. We don't want the
  4051     // output from the concurrent mark thread interfering with this
  4052     // logging output either.
  4054     _hrs.verify_optional();
  4055     verify_region_sets_optional();
  4057     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4058     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4060     print_heap_after_gc();
  4062     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4063     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4064     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4065     // before any GC notifications are raised.
  4066     g1mm()->update_sizes();
  4069   if (G1SummarizeRSetStats &&
  4070       (G1SummarizeRSetStatsPeriod > 0) &&
  4071       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  4072     g1_rem_set()->print_summary_info();
  4075   // It should now be safe to tell the concurrent mark thread to start
  4076   // without its logging output interfering with the logging output
  4077   // that came from the pause.
  4079   if (should_start_conc_mark) {
  4080     // CAUTION: after the doConcurrentMark() call below,
  4081     // the concurrent marking thread(s) could be running
  4082     // concurrently with us. Make sure that anything after
  4083     // this point does not assume that we are the only GC thread
  4084     // running. Note: of course, the actual marking work will
  4085     // not start until the safepoint itself is released in
  4086     // ConcurrentGCThread::safepoint_desynchronize().
  4087     doConcurrentMark();
  4090   return true;
  4093 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4095   size_t gclab_word_size;
  4096   switch (purpose) {
  4097     case GCAllocForSurvived:
  4098       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4099       break;
  4100     case GCAllocForTenured:
  4101       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4102       break;
  4103     default:
  4104       assert(false, "unknown GCAllocPurpose");
  4105       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4106       break;
  4109   // Prevent humongous PLAB sizes for two reasons:
  4110   // * PLABs are allocated using a similar paths as oops, but should
  4111   //   never be in a humongous region
  4112   // * Allowing humongous PLABs needlessly churns the region free lists
  4113   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4116 void G1CollectedHeap::init_mutator_alloc_region() {
  4117   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4118   _mutator_alloc_region.init();
  4121 void G1CollectedHeap::release_mutator_alloc_region() {
  4122   _mutator_alloc_region.release();
  4123   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4126 void G1CollectedHeap::init_gc_alloc_regions() {
  4127   assert_at_safepoint(true /* should_be_vm_thread */);
  4129   _survivor_gc_alloc_region.init();
  4130   _old_gc_alloc_region.init();
  4131   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4132   _retained_old_gc_alloc_region = NULL;
  4134   // We will discard the current GC alloc region if:
  4135   // a) it's in the collection set (it can happen!),
  4136   // b) it's already full (no point in using it),
  4137   // c) it's empty (this means that it was emptied during
  4138   // a cleanup and it should be on the free list now), or
  4139   // d) it's humongous (this means that it was emptied
  4140   // during a cleanup and was added to the free list, but
  4141   // has been subseqently used to allocate a humongous
  4142   // object that may be less than the region size).
  4143   if (retained_region != NULL &&
  4144       !retained_region->in_collection_set() &&
  4145       !(retained_region->top() == retained_region->end()) &&
  4146       !retained_region->is_empty() &&
  4147       !retained_region->isHumongous()) {
  4148     retained_region->set_saved_mark();
  4149     // The retained region was added to the old region set when it was
  4150     // retired. We have to remove it now, since we don't allow regions
  4151     // we allocate to in the region sets. We'll re-add it later, when
  4152     // it's retired again.
  4153     _old_set.remove(retained_region);
  4154     bool during_im = g1_policy()->during_initial_mark_pause();
  4155     retained_region->note_start_of_copying(during_im);
  4156     _old_gc_alloc_region.set(retained_region);
  4157     _hr_printer.reuse(retained_region);
  4161 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
  4162   _survivor_gc_alloc_region.release();
  4163   // If we have an old GC alloc region to release, we'll save it in
  4164   // _retained_old_gc_alloc_region. If we don't
  4165   // _retained_old_gc_alloc_region will become NULL. This is what we
  4166   // want either way so no reason to check explicitly for either
  4167   // condition.
  4168   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4170   if (ResizePLAB) {
  4171     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4172     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4176 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4177   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4178   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4179   _retained_old_gc_alloc_region = NULL;
  4182 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4183   _drain_in_progress = false;
  4184   set_evac_failure_closure(cl);
  4185   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4188 void G1CollectedHeap::finalize_for_evac_failure() {
  4189   assert(_evac_failure_scan_stack != NULL &&
  4190          _evac_failure_scan_stack->length() == 0,
  4191          "Postcondition");
  4192   assert(!_drain_in_progress, "Postcondition");
  4193   delete _evac_failure_scan_stack;
  4194   _evac_failure_scan_stack = NULL;
  4197 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4198   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4200   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4202   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4203     set_par_threads();
  4204     workers()->run_task(&rsfp_task);
  4205     set_par_threads(0);
  4206   } else {
  4207     rsfp_task.work(0);
  4210   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4212   // Reset the claim values in the regions in the collection set.
  4213   reset_cset_heap_region_claim_values();
  4215   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4217   // Now restore saved marks, if any.
  4218   if (_objs_with_preserved_marks != NULL) {
  4219     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4220     guarantee(_objs_with_preserved_marks->length() ==
  4221               _preserved_marks_of_objs->length(), "Both or none.");
  4222     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4223       oop obj   = _objs_with_preserved_marks->at(i);
  4224       markOop m = _preserved_marks_of_objs->at(i);
  4225       obj->set_mark(m);
  4228     // Delete the preserved marks growable arrays (allocated on the C heap).
  4229     delete _objs_with_preserved_marks;
  4230     delete _preserved_marks_of_objs;
  4231     _objs_with_preserved_marks = NULL;
  4232     _preserved_marks_of_objs = NULL;
  4236 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4237   _evac_failure_scan_stack->push(obj);
  4240 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4241   assert(_evac_failure_scan_stack != NULL, "precondition");
  4243   while (_evac_failure_scan_stack->length() > 0) {
  4244      oop obj = _evac_failure_scan_stack->pop();
  4245      _evac_failure_closure->set_region(heap_region_containing(obj));
  4246      obj->oop_iterate_backwards(_evac_failure_closure);
  4250 oop
  4251 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4252                                                oop old) {
  4253   assert(obj_in_cs(old),
  4254          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4255                  (HeapWord*) old));
  4256   markOop m = old->mark();
  4257   oop forward_ptr = old->forward_to_atomic(old);
  4258   if (forward_ptr == NULL) {
  4259     // Forward-to-self succeeded.
  4261     if (_evac_failure_closure != cl) {
  4262       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4263       assert(!_drain_in_progress,
  4264              "Should only be true while someone holds the lock.");
  4265       // Set the global evac-failure closure to the current thread's.
  4266       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4267       set_evac_failure_closure(cl);
  4268       // Now do the common part.
  4269       handle_evacuation_failure_common(old, m);
  4270       // Reset to NULL.
  4271       set_evac_failure_closure(NULL);
  4272     } else {
  4273       // The lock is already held, and this is recursive.
  4274       assert(_drain_in_progress, "This should only be the recursive case.");
  4275       handle_evacuation_failure_common(old, m);
  4277     return old;
  4278   } else {
  4279     // Forward-to-self failed. Either someone else managed to allocate
  4280     // space for this object (old != forward_ptr) or they beat us in
  4281     // self-forwarding it (old == forward_ptr).
  4282     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4283            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4284                    "should not be in the CSet",
  4285                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4286     return forward_ptr;
  4290 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4291   set_evacuation_failed(true);
  4293   preserve_mark_if_necessary(old, m);
  4295   HeapRegion* r = heap_region_containing(old);
  4296   if (!r->evacuation_failed()) {
  4297     r->set_evacuation_failed(true);
  4298     _hr_printer.evac_failure(r);
  4301   push_on_evac_failure_scan_stack(old);
  4303   if (!_drain_in_progress) {
  4304     // prevent recursion in copy_to_survivor_space()
  4305     _drain_in_progress = true;
  4306     drain_evac_failure_scan_stack();
  4307     _drain_in_progress = false;
  4311 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4312   assert(evacuation_failed(), "Oversaving!");
  4313   // We want to call the "for_promotion_failure" version only in the
  4314   // case of a promotion failure.
  4315   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4316     if (_objs_with_preserved_marks == NULL) {
  4317       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4318       _objs_with_preserved_marks =
  4319         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4320       _preserved_marks_of_objs =
  4321         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
  4323     _objs_with_preserved_marks->push(obj);
  4324     _preserved_marks_of_objs->push(m);
  4328 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4329                                                   size_t word_size) {
  4330   if (purpose == GCAllocForSurvived) {
  4331     HeapWord* result = survivor_attempt_allocation(word_size);
  4332     if (result != NULL) {
  4333       return result;
  4334     } else {
  4335       // Let's try to allocate in the old gen in case we can fit the
  4336       // object there.
  4337       return old_attempt_allocation(word_size);
  4339   } else {
  4340     assert(purpose ==  GCAllocForTenured, "sanity");
  4341     HeapWord* result = old_attempt_allocation(word_size);
  4342     if (result != NULL) {
  4343       return result;
  4344     } else {
  4345       // Let's try to allocate in the survivors in case we can fit the
  4346       // object there.
  4347       return survivor_attempt_allocation(word_size);
  4351   ShouldNotReachHere();
  4352   // Trying to keep some compilers happy.
  4353   return NULL;
  4356 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4357   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4359 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4360   : _g1h(g1h),
  4361     _refs(g1h->task_queue(queue_num)),
  4362     _dcq(&g1h->dirty_card_queue_set()),
  4363     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4364     _g1_rem(g1h->g1_rem_set()),
  4365     _hash_seed(17), _queue_num(queue_num),
  4366     _term_attempts(0),
  4367     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4368     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4369     _age_table(false),
  4370     _strong_roots_time(0), _term_time(0),
  4371     _alloc_buffer_waste(0), _undo_waste(0) {
  4372   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4373   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4374   // non-young regions (where the age is -1)
  4375   // We also add a few elements at the beginning and at the end in
  4376   // an attempt to eliminate cache contention
  4377   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4378   uint array_length = PADDING_ELEM_NUM +
  4379                       real_length +
  4380                       PADDING_ELEM_NUM;
  4381   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4382   if (_surviving_young_words_base == NULL)
  4383     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4384                           "Not enough space for young surv histo.");
  4385   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4386   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4388   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4389   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4391   _start = os::elapsedTime();
  4394 void
  4395 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4397   st->print_raw_cr("GC Termination Stats");
  4398   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4399                    " ------waste (KiB)------");
  4400   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4401                    "  total   alloc    undo");
  4402   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4403                    " ------- ------- -------");
  4406 void
  4407 G1ParScanThreadState::print_termination_stats(int i,
  4408                                               outputStream* const st) const
  4410   const double elapsed_ms = elapsed_time() * 1000.0;
  4411   const double s_roots_ms = strong_roots_time() * 1000.0;
  4412   const double term_ms    = term_time() * 1000.0;
  4413   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4414                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4415                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4416                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4417                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4418                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4419                alloc_buffer_waste() * HeapWordSize / K,
  4420                undo_waste() * HeapWordSize / K);
  4423 #ifdef ASSERT
  4424 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4425   assert(ref != NULL, "invariant");
  4426   assert(UseCompressedOops, "sanity");
  4427   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4428   oop p = oopDesc::load_decode_heap_oop(ref);
  4429   assert(_g1h->is_in_g1_reserved(p),
  4430          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4431   return true;
  4434 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4435   assert(ref != NULL, "invariant");
  4436   if (has_partial_array_mask(ref)) {
  4437     // Must be in the collection set--it's already been copied.
  4438     oop p = clear_partial_array_mask(ref);
  4439     assert(_g1h->obj_in_cs(p),
  4440            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4441   } else {
  4442     oop p = oopDesc::load_decode_heap_oop(ref);
  4443     assert(_g1h->is_in_g1_reserved(p),
  4444            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4446   return true;
  4449 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4450   if (ref.is_narrow()) {
  4451     return verify_ref((narrowOop*) ref);
  4452   } else {
  4453     return verify_ref((oop*) ref);
  4456 #endif // ASSERT
  4458 void G1ParScanThreadState::trim_queue() {
  4459   assert(_evac_cl != NULL, "not set");
  4460   assert(_evac_failure_cl != NULL, "not set");
  4461   assert(_partial_scan_cl != NULL, "not set");
  4463   StarTask ref;
  4464   do {
  4465     // Drain the overflow stack first, so other threads can steal.
  4466     while (refs()->pop_overflow(ref)) {
  4467       deal_with_reference(ref);
  4470     while (refs()->pop_local(ref)) {
  4471       deal_with_reference(ref);
  4473   } while (!refs()->is_empty());
  4476 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4477                                      G1ParScanThreadState* par_scan_state) :
  4478   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4479   _par_scan_state(par_scan_state),
  4480   _worker_id(par_scan_state->queue_num()),
  4481   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4482   _mark_in_progress(_g1->mark_in_progress()) { }
  4484 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4485 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4486 #ifdef ASSERT
  4487   HeapRegion* hr = _g1->heap_region_containing(obj);
  4488   assert(hr != NULL, "sanity");
  4489   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4490 #endif // ASSERT
  4492   // We know that the object is not moving so it's safe to read its size.
  4493   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4496 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4497 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4498   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4499 #ifdef ASSERT
  4500   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4501   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4502   assert(from_obj != to_obj, "should not be self-forwarded");
  4504   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4505   assert(from_hr != NULL, "sanity");
  4506   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4508   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4509   assert(to_hr != NULL, "sanity");
  4510   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4511 #endif // ASSERT
  4513   // The object might be in the process of being copied by another
  4514   // worker so we cannot trust that its to-space image is
  4515   // well-formed. So we have to read its size from its from-space
  4516   // image which we know should not be changing.
  4517   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4520 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4521 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4522   ::copy_to_survivor_space(oop old) {
  4523   size_t word_sz = old->size();
  4524   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4525   // +1 to make the -1 indexes valid...
  4526   int       young_index = from_region->young_index_in_cset()+1;
  4527   assert( (from_region->is_young() && young_index >  0) ||
  4528          (!from_region->is_young() && young_index == 0), "invariant" );
  4529   G1CollectorPolicy* g1p = _g1->g1_policy();
  4530   markOop m = old->mark();
  4531   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4532                                            : m->age();
  4533   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4534                                                              word_sz);
  4535   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4536 #ifndef PRODUCT
  4537   // Should this evacuation fail?
  4538   if (_g1->evacuation_should_fail()) {
  4539     if (obj_ptr != NULL) {
  4540       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4541       obj_ptr = NULL;
  4544 #endif // !PRODUCT
  4546   if (obj_ptr == NULL) {
  4547     // This will either forward-to-self, or detect that someone else has
  4548     // installed a forwarding pointer.
  4549     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4550     return _g1->handle_evacuation_failure_par(cl, old);
  4553   oop obj = oop(obj_ptr);
  4555   // We're going to allocate linearly, so might as well prefetch ahead.
  4556   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4558   oop forward_ptr = old->forward_to_atomic(obj);
  4559   if (forward_ptr == NULL) {
  4560     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4561     if (g1p->track_object_age(alloc_purpose)) {
  4562       // We could simply do obj->incr_age(). However, this causes a
  4563       // performance issue. obj->incr_age() will first check whether
  4564       // the object has a displaced mark by checking its mark word;
  4565       // getting the mark word from the new location of the object
  4566       // stalls. So, given that we already have the mark word and we
  4567       // are about to install it anyway, it's better to increase the
  4568       // age on the mark word, when the object does not have a
  4569       // displaced mark word. We're not expecting many objects to have
  4570       // a displaced marked word, so that case is not optimized
  4571       // further (it could be...) and we simply call obj->incr_age().
  4573       if (m->has_displaced_mark_helper()) {
  4574         // in this case, we have to install the mark word first,
  4575         // otherwise obj looks to be forwarded (the old mark word,
  4576         // which contains the forward pointer, was copied)
  4577         obj->set_mark(m);
  4578         obj->incr_age();
  4579       } else {
  4580         m = m->incr_age();
  4581         obj->set_mark(m);
  4583       _par_scan_state->age_table()->add(obj, word_sz);
  4584     } else {
  4585       obj->set_mark(m);
  4588     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4589     surv_young_words[young_index] += word_sz;
  4591     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4592       // We keep track of the next start index in the length field of
  4593       // the to-space object. The actual length can be found in the
  4594       // length field of the from-space object.
  4595       arrayOop(obj)->set_length(0);
  4596       oop* old_p = set_partial_array_mask(old);
  4597       _par_scan_state->push_on_queue(old_p);
  4598     } else {
  4599       // No point in using the slower heap_region_containing() method,
  4600       // given that we know obj is in the heap.
  4601       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4602       obj->oop_iterate_backwards(&_scanner);
  4604   } else {
  4605     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4606     obj = forward_ptr;
  4608   return obj;
  4611 template <class T>
  4612 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4613   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4614     _scanned_klass->record_modified_oops();
  4618 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4619 template <class T>
  4620 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4621 ::do_oop_work(T* p) {
  4622   oop obj = oopDesc::load_decode_heap_oop(p);
  4623   assert(barrier != G1BarrierRS || obj != NULL,
  4624          "Precondition: G1BarrierRS implies obj is non-NULL");
  4626   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4628   // here the null check is implicit in the cset_fast_test() test
  4629   if (_g1->in_cset_fast_test(obj)) {
  4630     oop forwardee;
  4631     if (obj->is_forwarded()) {
  4632       forwardee = obj->forwardee();
  4633     } else {
  4634       forwardee = copy_to_survivor_space(obj);
  4636     assert(forwardee != NULL, "forwardee should not be NULL");
  4637     oopDesc::encode_store_heap_oop(p, forwardee);
  4638     if (do_mark_object && forwardee != obj) {
  4639       // If the object is self-forwarded we don't need to explicitly
  4640       // mark it, the evacuation failure protocol will do so.
  4641       mark_forwarded_object(obj, forwardee);
  4644     // When scanning the RS, we only care about objs in CS.
  4645     if (barrier == G1BarrierRS) {
  4646       _par_scan_state->update_rs(_from, p, _worker_id);
  4647     } else if (barrier == G1BarrierKlass) {
  4648       do_klass_barrier(p, forwardee);
  4650   } else {
  4651     // The object is not in collection set. If we're a root scanning
  4652     // closure during an initial mark pause (i.e. do_mark_object will
  4653     // be true) then attempt to mark the object.
  4654     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4655       mark_object(obj);
  4659   if (barrier == G1BarrierEvac && obj != NULL) {
  4660     _par_scan_state->update_rs(_from, p, _worker_id);
  4663   if (do_gen_barrier && obj != NULL) {
  4664     par_do_barrier(p);
  4668 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4669 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4671 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4672   assert(has_partial_array_mask(p), "invariant");
  4673   oop from_obj = clear_partial_array_mask(p);
  4675   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4676   assert(from_obj->is_objArray(), "must be obj array");
  4677   objArrayOop from_obj_array = objArrayOop(from_obj);
  4678   // The from-space object contains the real length.
  4679   int length                 = from_obj_array->length();
  4681   assert(from_obj->is_forwarded(), "must be forwarded");
  4682   oop to_obj                 = from_obj->forwardee();
  4683   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4684   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4685   // We keep track of the next start index in the length field of the
  4686   // to-space object.
  4687   int next_index             = to_obj_array->length();
  4688   assert(0 <= next_index && next_index < length,
  4689          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4691   int start                  = next_index;
  4692   int end                    = length;
  4693   int remainder              = end - start;
  4694   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4695   if (remainder > 2 * ParGCArrayScanChunk) {
  4696     end = start + ParGCArrayScanChunk;
  4697     to_obj_array->set_length(end);
  4698     // Push the remainder before we process the range in case another
  4699     // worker has run out of things to do and can steal it.
  4700     oop* from_obj_p = set_partial_array_mask(from_obj);
  4701     _par_scan_state->push_on_queue(from_obj_p);
  4702   } else {
  4703     assert(length == end, "sanity");
  4704     // We'll process the final range for this object. Restore the length
  4705     // so that the heap remains parsable in case of evacuation failure.
  4706     to_obj_array->set_length(end);
  4708   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4709   // Process indexes [start,end). It will also process the header
  4710   // along with the first chunk (i.e., the chunk with start == 0).
  4711   // Note that at this point the length field of to_obj_array is not
  4712   // correct given that we are using it to keep track of the next
  4713   // start index. oop_iterate_range() (thankfully!) ignores the length
  4714   // field and only relies on the start / end parameters.  It does
  4715   // however return the size of the object which will be incorrect. So
  4716   // we have to ignore it even if we wanted to use it.
  4717   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4720 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4721 protected:
  4722   G1CollectedHeap*              _g1h;
  4723   G1ParScanThreadState*         _par_scan_state;
  4724   RefToScanQueueSet*            _queues;
  4725   ParallelTaskTerminator*       _terminator;
  4727   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4728   RefToScanQueueSet*      queues()         { return _queues; }
  4729   ParallelTaskTerminator* terminator()     { return _terminator; }
  4731 public:
  4732   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4733                                 G1ParScanThreadState* par_scan_state,
  4734                                 RefToScanQueueSet* queues,
  4735                                 ParallelTaskTerminator* terminator)
  4736     : _g1h(g1h), _par_scan_state(par_scan_state),
  4737       _queues(queues), _terminator(terminator) {}
  4739   void do_void();
  4741 private:
  4742   inline bool offer_termination();
  4743 };
  4745 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4746   G1ParScanThreadState* const pss = par_scan_state();
  4747   pss->start_term_time();
  4748   const bool res = terminator()->offer_termination();
  4749   pss->end_term_time();
  4750   return res;
  4753 void G1ParEvacuateFollowersClosure::do_void() {
  4754   StarTask stolen_task;
  4755   G1ParScanThreadState* const pss = par_scan_state();
  4756   pss->trim_queue();
  4758   do {
  4759     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4760       assert(pss->verify_task(stolen_task), "sanity");
  4761       if (stolen_task.is_narrow()) {
  4762         pss->deal_with_reference((narrowOop*) stolen_task);
  4763       } else {
  4764         pss->deal_with_reference((oop*) stolen_task);
  4767       // We've just processed a reference and we might have made
  4768       // available new entries on the queues. So we have to make sure
  4769       // we drain the queues as necessary.
  4770       pss->trim_queue();
  4772   } while (!offer_termination());
  4774   pss->retire_alloc_buffers();
  4777 class G1KlassScanClosure : public KlassClosure {
  4778  G1ParCopyHelper* _closure;
  4779  bool             _process_only_dirty;
  4780  int              _count;
  4781  public:
  4782   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4783       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4784   void do_klass(Klass* klass) {
  4785     // If the klass has not been dirtied we know that there's
  4786     // no references into  the young gen and we can skip it.
  4787    if (!_process_only_dirty || klass->has_modified_oops()) {
  4788       // Clean the klass since we're going to scavenge all the metadata.
  4789       klass->clear_modified_oops();
  4791       // Tell the closure that this klass is the Klass to scavenge
  4792       // and is the one to dirty if oops are left pointing into the young gen.
  4793       _closure->set_scanned_klass(klass);
  4795       klass->oops_do(_closure);
  4797       _closure->set_scanned_klass(NULL);
  4799     _count++;
  4801 };
  4803 class G1ParTask : public AbstractGangTask {
  4804 protected:
  4805   G1CollectedHeap*       _g1h;
  4806   RefToScanQueueSet      *_queues;
  4807   ParallelTaskTerminator _terminator;
  4808   uint _n_workers;
  4810   Mutex _stats_lock;
  4811   Mutex* stats_lock() { return &_stats_lock; }
  4813   size_t getNCards() {
  4814     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4815       / G1BlockOffsetSharedArray::N_bytes;
  4818 public:
  4819   G1ParTask(G1CollectedHeap* g1h,
  4820             RefToScanQueueSet *task_queues)
  4821     : AbstractGangTask("G1 collection"),
  4822       _g1h(g1h),
  4823       _queues(task_queues),
  4824       _terminator(0, _queues),
  4825       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4826   {}
  4828   RefToScanQueueSet* queues() { return _queues; }
  4830   RefToScanQueue *work_queue(int i) {
  4831     return queues()->queue(i);
  4834   ParallelTaskTerminator* terminator() { return &_terminator; }
  4836   virtual void set_for_termination(int active_workers) {
  4837     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4838     // in the young space (_par_seq_tasks) in the G1 heap
  4839     // for SequentialSubTasksDone.
  4840     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4841     // both of which need setting by set_n_termination().
  4842     _g1h->SharedHeap::set_n_termination(active_workers);
  4843     _g1h->set_n_termination(active_workers);
  4844     terminator()->reset_for_reuse(active_workers);
  4845     _n_workers = active_workers;
  4848   void work(uint worker_id) {
  4849     if (worker_id >= _n_workers) return;  // no work needed this round
  4851     double start_time_ms = os::elapsedTime() * 1000.0;
  4852     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4855       ResourceMark rm;
  4856       HandleMark   hm;
  4858       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4860       G1ParScanThreadState            pss(_g1h, worker_id);
  4861       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4862       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4863       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4865       pss.set_evac_closure(&scan_evac_cl);
  4866       pss.set_evac_failure_closure(&evac_failure_cl);
  4867       pss.set_partial_scan_closure(&partial_scan_cl);
  4869       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4870       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  4872       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4873       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  4875       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  4876       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  4877       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  4879       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4880       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  4882       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4883         // We also need to mark copied objects.
  4884         scan_root_cl = &scan_mark_root_cl;
  4885         scan_klasses_cl = &scan_mark_klasses_cl_s;
  4888       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4890       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  4892       pss.start_strong_roots();
  4893       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  4894                                     SharedHeap::ScanningOption(so),
  4895                                     scan_root_cl,
  4896                                     &push_heap_rs_cl,
  4897                                     scan_klasses_cl,
  4898                                     worker_id);
  4899       pss.end_strong_roots();
  4902         double start = os::elapsedTime();
  4903         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4904         evac.do_void();
  4905         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4906         double term_ms = pss.term_time()*1000.0;
  4907         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4908         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4910       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4911       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4913       if (ParallelGCVerbose) {
  4914         MutexLocker x(stats_lock());
  4915         pss.print_termination_stats(worker_id);
  4918       assert(pss.refs()->is_empty(), "should be empty");
  4920       // Close the inner scope so that the ResourceMark and HandleMark
  4921       // destructors are executed here and are included as part of the
  4922       // "GC Worker Time".
  4925     double end_time_ms = os::elapsedTime() * 1000.0;
  4926     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4928 };
  4930 // *** Common G1 Evacuation Stuff
  4932 // Closures that support the filtering of CodeBlobs scanned during
  4933 // external root scanning.
  4935 // Closure applied to reference fields in code blobs (specifically nmethods)
  4936 // to determine whether an nmethod contains references that point into
  4937 // the collection set. Used as a predicate when walking code roots so
  4938 // that only nmethods that point into the collection set are added to the
  4939 // 'marked' list.
  4941 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4943   class G1PointsIntoCSOopClosure : public OopClosure {
  4944     G1CollectedHeap* _g1;
  4945     bool _points_into_cs;
  4946   public:
  4947     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4948       _g1(g1), _points_into_cs(false) { }
  4950     bool points_into_cs() const { return _points_into_cs; }
  4952     template <class T>
  4953     void do_oop_nv(T* p) {
  4954       if (!_points_into_cs) {
  4955         T heap_oop = oopDesc::load_heap_oop(p);
  4956         if (!oopDesc::is_null(heap_oop) &&
  4957             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4958           _points_into_cs = true;
  4963     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4964     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4965   };
  4967   G1CollectedHeap* _g1;
  4969 public:
  4970   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4971     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4973   virtual void do_code_blob(CodeBlob* cb) {
  4974     nmethod* nm = cb->as_nmethod_or_null();
  4975     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4976       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4977       nm->oops_do(&predicate_cl);
  4979       if (predicate_cl.points_into_cs()) {
  4980         // At least one of the reference fields or the oop relocations
  4981         // in the nmethod points into the collection set. We have to
  4982         // 'mark' this nmethod.
  4983         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4984         // or MarkingCodeBlobClosure::do_code_blob() change.
  4985         if (!nm->test_set_oops_do_mark()) {
  4986           do_newly_marked_nmethod(nm);
  4991 };
  4993 // This method is run in a GC worker.
  4995 void
  4996 G1CollectedHeap::
  4997 g1_process_strong_roots(bool is_scavenging,
  4998                         ScanningOption so,
  4999                         OopClosure* scan_non_heap_roots,
  5000                         OopsInHeapRegionClosure* scan_rs,
  5001                         G1KlassScanClosure* scan_klasses,
  5002                         int worker_i) {
  5004   // First scan the strong roots
  5005   double ext_roots_start = os::elapsedTime();
  5006   double closure_app_time_sec = 0.0;
  5008   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  5010   // Walk the code cache w/o buffering, because StarTask cannot handle
  5011   // unaligned oop locations.
  5012   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  5014   process_strong_roots(false, // no scoping; this is parallel code
  5015                        is_scavenging, so,
  5016                        &buf_scan_non_heap_roots,
  5017                        &eager_scan_code_roots,
  5018                        scan_klasses
  5019                        );
  5021   // Now the CM ref_processor roots.
  5022   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5023     // We need to treat the discovered reference lists of the
  5024     // concurrent mark ref processor as roots and keep entries
  5025     // (which are added by the marking threads) on them live
  5026     // until they can be processed at the end of marking.
  5027     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5030   // Finish up any enqueued closure apps (attributed as object copy time).
  5031   buf_scan_non_heap_roots.done();
  5033   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  5035   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5037   double ext_root_time_ms =
  5038     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5040   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5042   // During conc marking we have to filter the per-thread SATB buffers
  5043   // to make sure we remove any oops into the CSet (which will show up
  5044   // as implicitly live).
  5045   double satb_filtering_ms = 0.0;
  5046   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5047     if (mark_in_progress()) {
  5048       double satb_filter_start = os::elapsedTime();
  5050       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5052       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5055   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5057   // Now scan the complement of the collection set.
  5058   if (scan_rs != NULL) {
  5059     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  5061   _process_strong_tasks->all_tasks_completed();
  5064 void
  5065 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  5066                                        OopClosure* non_root_closure) {
  5067   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5068   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  5071 // Weak Reference Processing support
  5073 // An always "is_alive" closure that is used to preserve referents.
  5074 // If the object is non-null then it's alive.  Used in the preservation
  5075 // of referent objects that are pointed to by reference objects
  5076 // discovered by the CM ref processor.
  5077 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5078   G1CollectedHeap* _g1;
  5079 public:
  5080   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5081   void do_object(oop p) { assert(false, "Do not call."); }
  5082   bool do_object_b(oop p) {
  5083     if (p != NULL) {
  5084       return true;
  5086     return false;
  5088 };
  5090 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5091   // An object is reachable if it is outside the collection set,
  5092   // or is inside and copied.
  5093   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5096 // Non Copying Keep Alive closure
  5097 class G1KeepAliveClosure: public OopClosure {
  5098   G1CollectedHeap* _g1;
  5099 public:
  5100   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5101   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5102   void do_oop(      oop* p) {
  5103     oop obj = *p;
  5105     if (_g1->obj_in_cs(obj)) {
  5106       assert( obj->is_forwarded(), "invariant" );
  5107       *p = obj->forwardee();
  5110 };
  5112 // Copying Keep Alive closure - can be called from both
  5113 // serial and parallel code as long as different worker
  5114 // threads utilize different G1ParScanThreadState instances
  5115 // and different queues.
  5117 class G1CopyingKeepAliveClosure: public OopClosure {
  5118   G1CollectedHeap*         _g1h;
  5119   OopClosure*              _copy_non_heap_obj_cl;
  5120   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5121   G1ParScanThreadState*    _par_scan_state;
  5123 public:
  5124   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5125                             OopClosure* non_heap_obj_cl,
  5126                             OopsInHeapRegionClosure* metadata_obj_cl,
  5127                             G1ParScanThreadState* pss):
  5128     _g1h(g1h),
  5129     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5130     _copy_metadata_obj_cl(metadata_obj_cl),
  5131     _par_scan_state(pss)
  5132   {}
  5134   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5135   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5137   template <class T> void do_oop_work(T* p) {
  5138     oop obj = oopDesc::load_decode_heap_oop(p);
  5140     if (_g1h->obj_in_cs(obj)) {
  5141       // If the referent object has been forwarded (either copied
  5142       // to a new location or to itself in the event of an
  5143       // evacuation failure) then we need to update the reference
  5144       // field and, if both reference and referent are in the G1
  5145       // heap, update the RSet for the referent.
  5146       //
  5147       // If the referent has not been forwarded then we have to keep
  5148       // it alive by policy. Therefore we have copy the referent.
  5149       //
  5150       // If the reference field is in the G1 heap then we can push
  5151       // on the PSS queue. When the queue is drained (after each
  5152       // phase of reference processing) the object and it's followers
  5153       // will be copied, the reference field set to point to the
  5154       // new location, and the RSet updated. Otherwise we need to
  5155       // use the the non-heap or metadata closures directly to copy
  5156       // the refernt object and update the pointer, while avoiding
  5157       // updating the RSet.
  5159       if (_g1h->is_in_g1_reserved(p)) {
  5160         _par_scan_state->push_on_queue(p);
  5161       } else {
  5162         assert(!ClassLoaderDataGraph::contains((address)p),
  5163                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5164                               PTR_FORMAT, p));
  5165           _copy_non_heap_obj_cl->do_oop(p);
  5169 };
  5171 // Serial drain queue closure. Called as the 'complete_gc'
  5172 // closure for each discovered list in some of the
  5173 // reference processing phases.
  5175 class G1STWDrainQueueClosure: public VoidClosure {
  5176 protected:
  5177   G1CollectedHeap* _g1h;
  5178   G1ParScanThreadState* _par_scan_state;
  5180   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5182 public:
  5183   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5184     _g1h(g1h),
  5185     _par_scan_state(pss)
  5186   { }
  5188   void do_void() {
  5189     G1ParScanThreadState* const pss = par_scan_state();
  5190     pss->trim_queue();
  5192 };
  5194 // Parallel Reference Processing closures
  5196 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5197 // processing during G1 evacuation pauses.
  5199 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5200 private:
  5201   G1CollectedHeap*   _g1h;
  5202   RefToScanQueueSet* _queues;
  5203   FlexibleWorkGang*  _workers;
  5204   int                _active_workers;
  5206 public:
  5207   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5208                         FlexibleWorkGang* workers,
  5209                         RefToScanQueueSet *task_queues,
  5210                         int n_workers) :
  5211     _g1h(g1h),
  5212     _queues(task_queues),
  5213     _workers(workers),
  5214     _active_workers(n_workers)
  5216     assert(n_workers > 0, "shouldn't call this otherwise");
  5219   // Executes the given task using concurrent marking worker threads.
  5220   virtual void execute(ProcessTask& task);
  5221   virtual void execute(EnqueueTask& task);
  5222 };
  5224 // Gang task for possibly parallel reference processing
  5226 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5227   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5228   ProcessTask&     _proc_task;
  5229   G1CollectedHeap* _g1h;
  5230   RefToScanQueueSet *_task_queues;
  5231   ParallelTaskTerminator* _terminator;
  5233 public:
  5234   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5235                      G1CollectedHeap* g1h,
  5236                      RefToScanQueueSet *task_queues,
  5237                      ParallelTaskTerminator* terminator) :
  5238     AbstractGangTask("Process reference objects in parallel"),
  5239     _proc_task(proc_task),
  5240     _g1h(g1h),
  5241     _task_queues(task_queues),
  5242     _terminator(terminator)
  5243   {}
  5245   virtual void work(uint worker_id) {
  5246     // The reference processing task executed by a single worker.
  5247     ResourceMark rm;
  5248     HandleMark   hm;
  5250     G1STWIsAliveClosure is_alive(_g1h);
  5252     G1ParScanThreadState pss(_g1h, worker_id);
  5254     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5255     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5256     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5258     pss.set_evac_closure(&scan_evac_cl);
  5259     pss.set_evac_failure_closure(&evac_failure_cl);
  5260     pss.set_partial_scan_closure(&partial_scan_cl);
  5262     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5263     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5265     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5266     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5268     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5269     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5271     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5272       // We also need to mark copied objects.
  5273       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5274       copy_metadata_cl = &copy_mark_metadata_cl;
  5277     // Keep alive closure.
  5278     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5280     // Complete GC closure
  5281     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5283     // Call the reference processing task's work routine.
  5284     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5286     // Note we cannot assert that the refs array is empty here as not all
  5287     // of the processing tasks (specifically phase2 - pp2_work) execute
  5288     // the complete_gc closure (which ordinarily would drain the queue) so
  5289     // the queue may not be empty.
  5291 };
  5293 // Driver routine for parallel reference processing.
  5294 // Creates an instance of the ref processing gang
  5295 // task and has the worker threads execute it.
  5296 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5297   assert(_workers != NULL, "Need parallel worker threads.");
  5299   ParallelTaskTerminator terminator(_active_workers, _queues);
  5300   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5302   _g1h->set_par_threads(_active_workers);
  5303   _workers->run_task(&proc_task_proxy);
  5304   _g1h->set_par_threads(0);
  5307 // Gang task for parallel reference enqueueing.
  5309 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5310   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5311   EnqueueTask& _enq_task;
  5313 public:
  5314   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5315     AbstractGangTask("Enqueue reference objects in parallel"),
  5316     _enq_task(enq_task)
  5317   { }
  5319   virtual void work(uint worker_id) {
  5320     _enq_task.work(worker_id);
  5322 };
  5324 // Driver routine for parallel reference enqueing.
  5325 // Creates an instance of the ref enqueueing gang
  5326 // task and has the worker threads execute it.
  5328 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5329   assert(_workers != NULL, "Need parallel worker threads.");
  5331   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5333   _g1h->set_par_threads(_active_workers);
  5334   _workers->run_task(&enq_task_proxy);
  5335   _g1h->set_par_threads(0);
  5338 // End of weak reference support closures
  5340 // Abstract task used to preserve (i.e. copy) any referent objects
  5341 // that are in the collection set and are pointed to by reference
  5342 // objects discovered by the CM ref processor.
  5344 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5345 protected:
  5346   G1CollectedHeap* _g1h;
  5347   RefToScanQueueSet      *_queues;
  5348   ParallelTaskTerminator _terminator;
  5349   uint _n_workers;
  5351 public:
  5352   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5353     AbstractGangTask("ParPreserveCMReferents"),
  5354     _g1h(g1h),
  5355     _queues(task_queues),
  5356     _terminator(workers, _queues),
  5357     _n_workers(workers)
  5358   { }
  5360   void work(uint worker_id) {
  5361     ResourceMark rm;
  5362     HandleMark   hm;
  5364     G1ParScanThreadState            pss(_g1h, worker_id);
  5365     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5366     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5367     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5369     pss.set_evac_closure(&scan_evac_cl);
  5370     pss.set_evac_failure_closure(&evac_failure_cl);
  5371     pss.set_partial_scan_closure(&partial_scan_cl);
  5373     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5376     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5377     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5379     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5380     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5382     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5383     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5385     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5386       // We also need to mark copied objects.
  5387       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5388       copy_metadata_cl = &copy_mark_metadata_cl;
  5391     // Is alive closure
  5392     G1AlwaysAliveClosure always_alive(_g1h);
  5394     // Copying keep alive closure. Applied to referent objects that need
  5395     // to be copied.
  5396     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5398     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5400     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5401     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5403     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5404     // So this must be true - but assert just in case someone decides to
  5405     // change the worker ids.
  5406     assert(0 <= worker_id && worker_id < limit, "sanity");
  5407     assert(!rp->discovery_is_atomic(), "check this code");
  5409     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5410     for (uint idx = worker_id; idx < limit; idx += stride) {
  5411       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5413       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5414       while (iter.has_next()) {
  5415         // Since discovery is not atomic for the CM ref processor, we
  5416         // can see some null referent objects.
  5417         iter.load_ptrs(DEBUG_ONLY(true));
  5418         oop ref = iter.obj();
  5420         // This will filter nulls.
  5421         if (iter.is_referent_alive()) {
  5422           iter.make_referent_alive();
  5424         iter.move_to_next();
  5428     // Drain the queue - which may cause stealing
  5429     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5430     drain_queue.do_void();
  5431     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5432     assert(pss.refs()->is_empty(), "should be");
  5434 };
  5436 // Weak Reference processing during an evacuation pause (part 1).
  5437 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5438   double ref_proc_start = os::elapsedTime();
  5440   ReferenceProcessor* rp = _ref_processor_stw;
  5441   assert(rp->discovery_enabled(), "should have been enabled");
  5443   // Any reference objects, in the collection set, that were 'discovered'
  5444   // by the CM ref processor should have already been copied (either by
  5445   // applying the external root copy closure to the discovered lists, or
  5446   // by following an RSet entry).
  5447   //
  5448   // But some of the referents, that are in the collection set, that these
  5449   // reference objects point to may not have been copied: the STW ref
  5450   // processor would have seen that the reference object had already
  5451   // been 'discovered' and would have skipped discovering the reference,
  5452   // but would not have treated the reference object as a regular oop.
  5453   // As a reult the copy closure would not have been applied to the
  5454   // referent object.
  5455   //
  5456   // We need to explicitly copy these referent objects - the references
  5457   // will be processed at the end of remarking.
  5458   //
  5459   // We also need to do this copying before we process the reference
  5460   // objects discovered by the STW ref processor in case one of these
  5461   // referents points to another object which is also referenced by an
  5462   // object discovered by the STW ref processor.
  5464   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5465            no_of_gc_workers == workers()->active_workers(),
  5466            "Need to reset active GC workers");
  5468   set_par_threads(no_of_gc_workers);
  5469   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5470                                                  no_of_gc_workers,
  5471                                                  _task_queues);
  5473   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5474     workers()->run_task(&keep_cm_referents);
  5475   } else {
  5476     keep_cm_referents.work(0);
  5479   set_par_threads(0);
  5481   // Closure to test whether a referent is alive.
  5482   G1STWIsAliveClosure is_alive(this);
  5484   // Even when parallel reference processing is enabled, the processing
  5485   // of JNI refs is serial and performed serially by the current thread
  5486   // rather than by a worker. The following PSS will be used for processing
  5487   // JNI refs.
  5489   // Use only a single queue for this PSS.
  5490   G1ParScanThreadState pss(this, 0);
  5492   // We do not embed a reference processor in the copying/scanning
  5493   // closures while we're actually processing the discovered
  5494   // reference objects.
  5495   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5496   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5497   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5499   pss.set_evac_closure(&scan_evac_cl);
  5500   pss.set_evac_failure_closure(&evac_failure_cl);
  5501   pss.set_partial_scan_closure(&partial_scan_cl);
  5503   assert(pss.refs()->is_empty(), "pre-condition");
  5505   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5506   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5508   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5509   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5511   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5512   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5514   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5515     // We also need to mark copied objects.
  5516     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5517     copy_metadata_cl = &copy_mark_metadata_cl;
  5520   // Keep alive closure.
  5521   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5523   // Serial Complete GC closure
  5524   G1STWDrainQueueClosure drain_queue(this, &pss);
  5526   // Setup the soft refs policy...
  5527   rp->setup_policy(false);
  5529   if (!rp->processing_is_mt()) {
  5530     // Serial reference processing...
  5531     rp->process_discovered_references(&is_alive,
  5532                                       &keep_alive,
  5533                                       &drain_queue,
  5534                                       NULL);
  5535   } else {
  5536     // Parallel reference processing
  5537     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5538     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5540     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5541     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5544   // We have completed copying any necessary live referent objects
  5545   // (that were not copied during the actual pause) so we can
  5546   // retire any active alloc buffers
  5547   pss.retire_alloc_buffers();
  5548   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5550   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5551   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5554 // Weak Reference processing during an evacuation pause (part 2).
  5555 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5556   double ref_enq_start = os::elapsedTime();
  5558   ReferenceProcessor* rp = _ref_processor_stw;
  5559   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5561   // Now enqueue any remaining on the discovered lists on to
  5562   // the pending list.
  5563   if (!rp->processing_is_mt()) {
  5564     // Serial reference processing...
  5565     rp->enqueue_discovered_references();
  5566   } else {
  5567     // Parallel reference enqueuing
  5569     assert(no_of_gc_workers == workers()->active_workers(),
  5570            "Need to reset active workers");
  5571     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5572     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5574     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5575     rp->enqueue_discovered_references(&par_task_executor);
  5578   rp->verify_no_references_recorded();
  5579   assert(!rp->discovery_enabled(), "should have been disabled");
  5581   // FIXME
  5582   // CM's reference processing also cleans up the string and symbol tables.
  5583   // Should we do that here also? We could, but it is a serial operation
  5584   // and could signicantly increase the pause time.
  5586   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5587   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5590 void G1CollectedHeap::evacuate_collection_set() {
  5591   _expand_heap_after_alloc_failure = true;
  5592   set_evacuation_failed(false);
  5594   // Should G1EvacuationFailureALot be in effect for this GC?
  5595   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5597   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5598   concurrent_g1_refine()->set_use_cache(false);
  5599   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5601   uint n_workers;
  5602   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5603     n_workers =
  5604       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5605                                      workers()->active_workers(),
  5606                                      Threads::number_of_non_daemon_threads());
  5607     assert(UseDynamicNumberOfGCThreads ||
  5608            n_workers == workers()->total_workers(),
  5609            "If not dynamic should be using all the  workers");
  5610     workers()->set_active_workers(n_workers);
  5611     set_par_threads(n_workers);
  5612   } else {
  5613     assert(n_par_threads() == 0,
  5614            "Should be the original non-parallel value");
  5615     n_workers = 1;
  5618   G1ParTask g1_par_task(this, _task_queues);
  5620   init_for_evac_failure(NULL);
  5622   rem_set()->prepare_for_younger_refs_iterate(true);
  5624   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5625   double start_par_time_sec = os::elapsedTime();
  5626   double end_par_time_sec;
  5629     StrongRootsScope srs(this);
  5631     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5632       // The individual threads will set their evac-failure closures.
  5633       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5634       // These tasks use ShareHeap::_process_strong_tasks
  5635       assert(UseDynamicNumberOfGCThreads ||
  5636              workers()->active_workers() == workers()->total_workers(),
  5637              "If not dynamic should be using all the  workers");
  5638       workers()->run_task(&g1_par_task);
  5639     } else {
  5640       g1_par_task.set_for_termination(n_workers);
  5641       g1_par_task.work(0);
  5643     end_par_time_sec = os::elapsedTime();
  5645     // Closing the inner scope will execute the destructor
  5646     // for the StrongRootsScope object. We record the current
  5647     // elapsed time before closing the scope so that time
  5648     // taken for the SRS destructor is NOT included in the
  5649     // reported parallel time.
  5652   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5653   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5655   double code_root_fixup_time_ms =
  5656         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5657   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5659   set_par_threads(0);
  5661   // Process any discovered reference objects - we have
  5662   // to do this _before_ we retire the GC alloc regions
  5663   // as we may have to copy some 'reachable' referent
  5664   // objects (and their reachable sub-graphs) that were
  5665   // not copied during the pause.
  5666   process_discovered_references(n_workers);
  5668   // Weak root processing.
  5669   // Note: when JSR 292 is enabled and code blobs can contain
  5670   // non-perm oops then we will need to process the code blobs
  5671   // here too.
  5673     G1STWIsAliveClosure is_alive(this);
  5674     G1KeepAliveClosure keep_alive(this);
  5675     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5678   release_gc_alloc_regions(n_workers);
  5679   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5681   concurrent_g1_refine()->clear_hot_cache();
  5682   concurrent_g1_refine()->set_use_cache(true);
  5684   finalize_for_evac_failure();
  5686   if (evacuation_failed()) {
  5687     remove_self_forwarding_pointers();
  5689     // Reset the G1EvacuationFailureALot counters and flags
  5690     // Note: the values are reset only when an actual
  5691     // evacuation failure occurs.
  5692     NOT_PRODUCT(reset_evacuation_should_fail();)
  5695   // Enqueue any remaining references remaining on the STW
  5696   // reference processor's discovered lists. We need to do
  5697   // this after the card table is cleaned (and verified) as
  5698   // the act of enqueuing entries on to the pending list
  5699   // will log these updates (and dirty their associated
  5700   // cards). We need these updates logged to update any
  5701   // RSets.
  5702   enqueue_discovered_references(n_workers);
  5704   if (G1DeferredRSUpdate) {
  5705     RedirtyLoggedCardTableEntryFastClosure redirty;
  5706     dirty_card_queue_set().set_closure(&redirty);
  5707     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5709     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5710     dcq.merge_bufferlists(&dirty_card_queue_set());
  5711     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5713   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5716 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5717                                      size_t* pre_used,
  5718                                      FreeRegionList* free_list,
  5719                                      OldRegionSet* old_proxy_set,
  5720                                      HumongousRegionSet* humongous_proxy_set,
  5721                                      HRRSCleanupTask* hrrs_cleanup_task,
  5722                                      bool par) {
  5723   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5724     if (hr->isHumongous()) {
  5725       assert(hr->startsHumongous(), "we should only see starts humongous");
  5726       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5727     } else {
  5728       _old_set.remove_with_proxy(hr, old_proxy_set);
  5729       free_region(hr, pre_used, free_list, par);
  5731   } else {
  5732     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5736 void G1CollectedHeap::free_region(HeapRegion* hr,
  5737                                   size_t* pre_used,
  5738                                   FreeRegionList* free_list,
  5739                                   bool par) {
  5740   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5741   assert(!hr->is_empty(), "the region should not be empty");
  5742   assert(free_list != NULL, "pre-condition");
  5744   *pre_used += hr->used();
  5745   hr->hr_clear(par, true /* clear_space */);
  5746   free_list->add_as_head(hr);
  5749 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5750                                      size_t* pre_used,
  5751                                      FreeRegionList* free_list,
  5752                                      HumongousRegionSet* humongous_proxy_set,
  5753                                      bool par) {
  5754   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5755   assert(free_list != NULL, "pre-condition");
  5756   assert(humongous_proxy_set != NULL, "pre-condition");
  5758   size_t hr_used = hr->used();
  5759   size_t hr_capacity = hr->capacity();
  5760   size_t hr_pre_used = 0;
  5761   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5762   // We need to read this before we make the region non-humongous,
  5763   // otherwise the information will be gone.
  5764   uint last_index = hr->last_hc_index();
  5765   hr->set_notHumongous();
  5766   free_region(hr, &hr_pre_used, free_list, par);
  5768   uint i = hr->hrs_index() + 1;
  5769   while (i < last_index) {
  5770     HeapRegion* curr_hr = region_at(i);
  5771     assert(curr_hr->continuesHumongous(), "invariant");
  5772     curr_hr->set_notHumongous();
  5773     free_region(curr_hr, &hr_pre_used, free_list, par);
  5774     i += 1;
  5776   assert(hr_pre_used == hr_used,
  5777          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5778                  "should be the same", hr_pre_used, hr_used));
  5779   *pre_used += hr_pre_used;
  5782 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5783                                        FreeRegionList* free_list,
  5784                                        OldRegionSet* old_proxy_set,
  5785                                        HumongousRegionSet* humongous_proxy_set,
  5786                                        bool par) {
  5787   if (pre_used > 0) {
  5788     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5789     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5790     assert(_summary_bytes_used >= pre_used,
  5791            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5792                    "should be >= pre_used: "SIZE_FORMAT,
  5793                    _summary_bytes_used, pre_used));
  5794     _summary_bytes_used -= pre_used;
  5796   if (free_list != NULL && !free_list->is_empty()) {
  5797     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5798     _free_list.add_as_head(free_list);
  5800   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5801     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5802     _old_set.update_from_proxy(old_proxy_set);
  5804   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5805     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5806     _humongous_set.update_from_proxy(humongous_proxy_set);
  5810 class G1ParCleanupCTTask : public AbstractGangTask {
  5811   CardTableModRefBS* _ct_bs;
  5812   G1CollectedHeap* _g1h;
  5813   HeapRegion* volatile _su_head;
  5814 public:
  5815   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5816                      G1CollectedHeap* g1h) :
  5817     AbstractGangTask("G1 Par Cleanup CT Task"),
  5818     _ct_bs(ct_bs), _g1h(g1h) { }
  5820   void work(uint worker_id) {
  5821     HeapRegion* r;
  5822     while (r = _g1h->pop_dirty_cards_region()) {
  5823       clear_cards(r);
  5827   void clear_cards(HeapRegion* r) {
  5828     // Cards of the survivors should have already been dirtied.
  5829     if (!r->is_survivor()) {
  5830       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5833 };
  5835 #ifndef PRODUCT
  5836 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5837   G1CollectedHeap* _g1h;
  5838   CardTableModRefBS* _ct_bs;
  5839 public:
  5840   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5841     : _g1h(g1h), _ct_bs(ct_bs) { }
  5842   virtual bool doHeapRegion(HeapRegion* r) {
  5843     if (r->is_survivor()) {
  5844       _g1h->verify_dirty_region(r);
  5845     } else {
  5846       _g1h->verify_not_dirty_region(r);
  5848     return false;
  5850 };
  5852 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5853   // All of the region should be clean.
  5854   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5855   MemRegion mr(hr->bottom(), hr->end());
  5856   ct_bs->verify_not_dirty_region(mr);
  5859 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5860   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5861   // dirty allocated blocks as they allocate them. The thread that
  5862   // retires each region and replaces it with a new one will do a
  5863   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5864   // not dirty that area (one less thing to have to do while holding
  5865   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5866   // is dirty.
  5867   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5868   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5869   ct_bs->verify_dirty_region(mr);
  5872 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5873   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5874   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5875     verify_dirty_region(hr);
  5879 void G1CollectedHeap::verify_dirty_young_regions() {
  5880   verify_dirty_young_list(_young_list->first_region());
  5882 #endif
  5884 void G1CollectedHeap::cleanUpCardTable() {
  5885   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5886   double start = os::elapsedTime();
  5889     // Iterate over the dirty cards region list.
  5890     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5892     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5893       set_par_threads();
  5894       workers()->run_task(&cleanup_task);
  5895       set_par_threads(0);
  5896     } else {
  5897       while (_dirty_cards_region_list) {
  5898         HeapRegion* r = _dirty_cards_region_list;
  5899         cleanup_task.clear_cards(r);
  5900         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5901         if (_dirty_cards_region_list == r) {
  5902           // The last region.
  5903           _dirty_cards_region_list = NULL;
  5905         r->set_next_dirty_cards_region(NULL);
  5908 #ifndef PRODUCT
  5909     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5910       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5911       heap_region_iterate(&cleanup_verifier);
  5913 #endif
  5916   double elapsed = os::elapsedTime() - start;
  5917   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5920 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5921   size_t pre_used = 0;
  5922   FreeRegionList local_free_list("Local List for CSet Freeing");
  5924   double young_time_ms     = 0.0;
  5925   double non_young_time_ms = 0.0;
  5927   // Since the collection set is a superset of the the young list,
  5928   // all we need to do to clear the young list is clear its
  5929   // head and length, and unlink any young regions in the code below
  5930   _young_list->clear();
  5932   G1CollectorPolicy* policy = g1_policy();
  5934   double start_sec = os::elapsedTime();
  5935   bool non_young = true;
  5937   HeapRegion* cur = cs_head;
  5938   int age_bound = -1;
  5939   size_t rs_lengths = 0;
  5941   while (cur != NULL) {
  5942     assert(!is_on_master_free_list(cur), "sanity");
  5943     if (non_young) {
  5944       if (cur->is_young()) {
  5945         double end_sec = os::elapsedTime();
  5946         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5947         non_young_time_ms += elapsed_ms;
  5949         start_sec = os::elapsedTime();
  5950         non_young = false;
  5952     } else {
  5953       if (!cur->is_young()) {
  5954         double end_sec = os::elapsedTime();
  5955         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5956         young_time_ms += elapsed_ms;
  5958         start_sec = os::elapsedTime();
  5959         non_young = true;
  5963     rs_lengths += cur->rem_set()->occupied();
  5965     HeapRegion* next = cur->next_in_collection_set();
  5966     assert(cur->in_collection_set(), "bad CS");
  5967     cur->set_next_in_collection_set(NULL);
  5968     cur->set_in_collection_set(false);
  5970     if (cur->is_young()) {
  5971       int index = cur->young_index_in_cset();
  5972       assert(index != -1, "invariant");
  5973       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5974       size_t words_survived = _surviving_young_words[index];
  5975       cur->record_surv_words_in_group(words_survived);
  5977       // At this point the we have 'popped' cur from the collection set
  5978       // (linked via next_in_collection_set()) but it is still in the
  5979       // young list (linked via next_young_region()). Clear the
  5980       // _next_young_region field.
  5981       cur->set_next_young_region(NULL);
  5982     } else {
  5983       int index = cur->young_index_in_cset();
  5984       assert(index == -1, "invariant");
  5987     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5988             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5989             "invariant" );
  5991     if (!cur->evacuation_failed()) {
  5992       MemRegion used_mr = cur->used_region();
  5994       // And the region is empty.
  5995       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5996       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5997     } else {
  5998       cur->uninstall_surv_rate_group();
  5999       if (cur->is_young()) {
  6000         cur->set_young_index_in_cset(-1);
  6002       cur->set_not_young();
  6003       cur->set_evacuation_failed(false);
  6004       // The region is now considered to be old.
  6005       _old_set.add(cur);
  6007     cur = next;
  6010   policy->record_max_rs_lengths(rs_lengths);
  6011   policy->cset_regions_freed();
  6013   double end_sec = os::elapsedTime();
  6014   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6016   if (non_young) {
  6017     non_young_time_ms += elapsed_ms;
  6018   } else {
  6019     young_time_ms += elapsed_ms;
  6022   update_sets_after_freeing_regions(pre_used, &local_free_list,
  6023                                     NULL /* old_proxy_set */,
  6024                                     NULL /* humongous_proxy_set */,
  6025                                     false /* par */);
  6026   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6027   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6030 // This routine is similar to the above but does not record
  6031 // any policy statistics or update free lists; we are abandoning
  6032 // the current incremental collection set in preparation of a
  6033 // full collection. After the full GC we will start to build up
  6034 // the incremental collection set again.
  6035 // This is only called when we're doing a full collection
  6036 // and is immediately followed by the tearing down of the young list.
  6038 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6039   HeapRegion* cur = cs_head;
  6041   while (cur != NULL) {
  6042     HeapRegion* next = cur->next_in_collection_set();
  6043     assert(cur->in_collection_set(), "bad CS");
  6044     cur->set_next_in_collection_set(NULL);
  6045     cur->set_in_collection_set(false);
  6046     cur->set_young_index_in_cset(-1);
  6047     cur = next;
  6051 void G1CollectedHeap::set_free_regions_coming() {
  6052   if (G1ConcRegionFreeingVerbose) {
  6053     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6054                            "setting free regions coming");
  6057   assert(!free_regions_coming(), "pre-condition");
  6058   _free_regions_coming = true;
  6061 void G1CollectedHeap::reset_free_regions_coming() {
  6062   assert(free_regions_coming(), "pre-condition");
  6065     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6066     _free_regions_coming = false;
  6067     SecondaryFreeList_lock->notify_all();
  6070   if (G1ConcRegionFreeingVerbose) {
  6071     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6072                            "reset free regions coming");
  6076 void G1CollectedHeap::wait_while_free_regions_coming() {
  6077   // Most of the time we won't have to wait, so let's do a quick test
  6078   // first before we take the lock.
  6079   if (!free_regions_coming()) {
  6080     return;
  6083   if (G1ConcRegionFreeingVerbose) {
  6084     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6085                            "waiting for free regions");
  6089     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6090     while (free_regions_coming()) {
  6091       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6095   if (G1ConcRegionFreeingVerbose) {
  6096     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6097                            "done waiting for free regions");
  6101 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6102   assert(heap_lock_held_for_gc(),
  6103               "the heap lock should already be held by or for this thread");
  6104   _young_list->push_region(hr);
  6107 class NoYoungRegionsClosure: public HeapRegionClosure {
  6108 private:
  6109   bool _success;
  6110 public:
  6111   NoYoungRegionsClosure() : _success(true) { }
  6112   bool doHeapRegion(HeapRegion* r) {
  6113     if (r->is_young()) {
  6114       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6115                              r->bottom(), r->end());
  6116       _success = false;
  6118     return false;
  6120   bool success() { return _success; }
  6121 };
  6123 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6124   bool ret = _young_list->check_list_empty(check_sample);
  6126   if (check_heap) {
  6127     NoYoungRegionsClosure closure;
  6128     heap_region_iterate(&closure);
  6129     ret = ret && closure.success();
  6132   return ret;
  6135 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6136 private:
  6137   OldRegionSet *_old_set;
  6139 public:
  6140   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6142   bool doHeapRegion(HeapRegion* r) {
  6143     if (r->is_empty()) {
  6144       // We ignore empty regions, we'll empty the free list afterwards
  6145     } else if (r->is_young()) {
  6146       // We ignore young regions, we'll empty the young list afterwards
  6147     } else if (r->isHumongous()) {
  6148       // We ignore humongous regions, we're not tearing down the
  6149       // humongous region set
  6150     } else {
  6151       // The rest should be old
  6152       _old_set->remove(r);
  6154     return false;
  6157   ~TearDownRegionSetsClosure() {
  6158     assert(_old_set->is_empty(), "post-condition");
  6160 };
  6162 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6163   assert_at_safepoint(true /* should_be_vm_thread */);
  6165   if (!free_list_only) {
  6166     TearDownRegionSetsClosure cl(&_old_set);
  6167     heap_region_iterate(&cl);
  6169     // Need to do this after the heap iteration to be able to
  6170     // recognize the young regions and ignore them during the iteration.
  6171     _young_list->empty_list();
  6173   _free_list.remove_all();
  6176 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6177 private:
  6178   bool            _free_list_only;
  6179   OldRegionSet*   _old_set;
  6180   FreeRegionList* _free_list;
  6181   size_t          _total_used;
  6183 public:
  6184   RebuildRegionSetsClosure(bool free_list_only,
  6185                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6186     _free_list_only(free_list_only),
  6187     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6188     assert(_free_list->is_empty(), "pre-condition");
  6189     if (!free_list_only) {
  6190       assert(_old_set->is_empty(), "pre-condition");
  6194   bool doHeapRegion(HeapRegion* r) {
  6195     if (r->continuesHumongous()) {
  6196       return false;
  6199     if (r->is_empty()) {
  6200       // Add free regions to the free list
  6201       _free_list->add_as_tail(r);
  6202     } else if (!_free_list_only) {
  6203       assert(!r->is_young(), "we should not come across young regions");
  6205       if (r->isHumongous()) {
  6206         // We ignore humongous regions, we left the humongous set unchanged
  6207       } else {
  6208         // The rest should be old, add them to the old set
  6209         _old_set->add(r);
  6211       _total_used += r->used();
  6214     return false;
  6217   size_t total_used() {
  6218     return _total_used;
  6220 };
  6222 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6223   assert_at_safepoint(true /* should_be_vm_thread */);
  6225   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6226   heap_region_iterate(&cl);
  6228   if (!free_list_only) {
  6229     _summary_bytes_used = cl.total_used();
  6231   assert(_summary_bytes_used == recalculate_used(),
  6232          err_msg("inconsistent _summary_bytes_used, "
  6233                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6234                  _summary_bytes_used, recalculate_used()));
  6237 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6238   _refine_cte_cl->set_concurrent(concurrent);
  6241 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6242   HeapRegion* hr = heap_region_containing(p);
  6243   if (hr == NULL) {
  6244     return false;
  6245   } else {
  6246     return hr->is_in(p);
  6250 // Methods for the mutator alloc region
  6252 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6253                                                       bool force) {
  6254   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6255   assert(!force || g1_policy()->can_expand_young_list(),
  6256          "if force is true we should be able to expand the young list");
  6257   bool young_list_full = g1_policy()->is_young_list_full();
  6258   if (force || !young_list_full) {
  6259     HeapRegion* new_alloc_region = new_region(word_size,
  6260                                               false /* do_expand */);
  6261     if (new_alloc_region != NULL) {
  6262       set_region_short_lived_locked(new_alloc_region);
  6263       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6264       return new_alloc_region;
  6267   return NULL;
  6270 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6271                                                   size_t allocated_bytes) {
  6272   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6273   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6275   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6276   _summary_bytes_used += allocated_bytes;
  6277   _hr_printer.retire(alloc_region);
  6278   // We update the eden sizes here, when the region is retired,
  6279   // instead of when it's allocated, since this is the point that its
  6280   // used space has been recored in _summary_bytes_used.
  6281   g1mm()->update_eden_size();
  6284 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6285                                                     bool force) {
  6286   return _g1h->new_mutator_alloc_region(word_size, force);
  6289 void G1CollectedHeap::set_par_threads() {
  6290   // Don't change the number of workers.  Use the value previously set
  6291   // in the workgroup.
  6292   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6293   uint n_workers = workers()->active_workers();
  6294   assert(UseDynamicNumberOfGCThreads ||
  6295            n_workers == workers()->total_workers(),
  6296       "Otherwise should be using the total number of workers");
  6297   if (n_workers == 0) {
  6298     assert(false, "Should have been set in prior evacuation pause.");
  6299     n_workers = ParallelGCThreads;
  6300     workers()->set_active_workers(n_workers);
  6302   set_par_threads(n_workers);
  6305 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6306                                        size_t allocated_bytes) {
  6307   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6310 // Methods for the GC alloc regions
  6312 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6313                                                  uint count,
  6314                                                  GCAllocPurpose ap) {
  6315   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6317   if (count < g1_policy()->max_regions(ap)) {
  6318     HeapRegion* new_alloc_region = new_region(word_size,
  6319                                               true /* do_expand */);
  6320     if (new_alloc_region != NULL) {
  6321       // We really only need to do this for old regions given that we
  6322       // should never scan survivors. But it doesn't hurt to do it
  6323       // for survivors too.
  6324       new_alloc_region->set_saved_mark();
  6325       if (ap == GCAllocForSurvived) {
  6326         new_alloc_region->set_survivor();
  6327         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6328       } else {
  6329         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6331       bool during_im = g1_policy()->during_initial_mark_pause();
  6332       new_alloc_region->note_start_of_copying(during_im);
  6333       return new_alloc_region;
  6334     } else {
  6335       g1_policy()->note_alloc_region_limit_reached(ap);
  6338   return NULL;
  6341 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6342                                              size_t allocated_bytes,
  6343                                              GCAllocPurpose ap) {
  6344   bool during_im = g1_policy()->during_initial_mark_pause();
  6345   alloc_region->note_end_of_copying(during_im);
  6346   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6347   if (ap == GCAllocForSurvived) {
  6348     young_list()->add_survivor_region(alloc_region);
  6349   } else {
  6350     _old_set.add(alloc_region);
  6352   _hr_printer.retire(alloc_region);
  6355 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6356                                                        bool force) {
  6357   assert(!force, "not supported for GC alloc regions");
  6358   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6361 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6362                                           size_t allocated_bytes) {
  6363   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6364                                GCAllocForSurvived);
  6367 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6368                                                   bool force) {
  6369   assert(!force, "not supported for GC alloc regions");
  6370   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6373 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6374                                      size_t allocated_bytes) {
  6375   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6376                                GCAllocForTenured);
  6378 // Heap region set verification
  6380 class VerifyRegionListsClosure : public HeapRegionClosure {
  6381 private:
  6382   FreeRegionList*     _free_list;
  6383   OldRegionSet*       _old_set;
  6384   HumongousRegionSet* _humongous_set;
  6385   uint                _region_count;
  6387 public:
  6388   VerifyRegionListsClosure(OldRegionSet* old_set,
  6389                            HumongousRegionSet* humongous_set,
  6390                            FreeRegionList* free_list) :
  6391     _old_set(old_set), _humongous_set(humongous_set),
  6392     _free_list(free_list), _region_count(0) { }
  6394   uint region_count() { return _region_count; }
  6396   bool doHeapRegion(HeapRegion* hr) {
  6397     _region_count += 1;
  6399     if (hr->continuesHumongous()) {
  6400       return false;
  6403     if (hr->is_young()) {
  6404       // TODO
  6405     } else if (hr->startsHumongous()) {
  6406       _humongous_set->verify_next_region(hr);
  6407     } else if (hr->is_empty()) {
  6408       _free_list->verify_next_region(hr);
  6409     } else {
  6410       _old_set->verify_next_region(hr);
  6412     return false;
  6414 };
  6416 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6417                                              HeapWord* bottom) {
  6418   HeapWord* end = bottom + HeapRegion::GrainWords;
  6419   MemRegion mr(bottom, end);
  6420   assert(_g1_reserved.contains(mr), "invariant");
  6421   // This might return NULL if the allocation fails
  6422   return new HeapRegion(hrs_index, _bot_shared, mr);
  6425 void G1CollectedHeap::verify_region_sets() {
  6426   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6428   // First, check the explicit lists.
  6429   _free_list.verify();
  6431     // Given that a concurrent operation might be adding regions to
  6432     // the secondary free list we have to take the lock before
  6433     // verifying it.
  6434     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6435     _secondary_free_list.verify();
  6437   _old_set.verify();
  6438   _humongous_set.verify();
  6440   // If a concurrent region freeing operation is in progress it will
  6441   // be difficult to correctly attributed any free regions we come
  6442   // across to the correct free list given that they might belong to
  6443   // one of several (free_list, secondary_free_list, any local lists,
  6444   // etc.). So, if that's the case we will skip the rest of the
  6445   // verification operation. Alternatively, waiting for the concurrent
  6446   // operation to complete will have a non-trivial effect on the GC's
  6447   // operation (no concurrent operation will last longer than the
  6448   // interval between two calls to verification) and it might hide
  6449   // any issues that we would like to catch during testing.
  6450   if (free_regions_coming()) {
  6451     return;
  6454   // Make sure we append the secondary_free_list on the free_list so
  6455   // that all free regions we will come across can be safely
  6456   // attributed to the free_list.
  6457   append_secondary_free_list_if_not_empty_with_lock();
  6459   // Finally, make sure that the region accounting in the lists is
  6460   // consistent with what we see in the heap.
  6461   _old_set.verify_start();
  6462   _humongous_set.verify_start();
  6463   _free_list.verify_start();
  6465   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6466   heap_region_iterate(&cl);
  6468   _old_set.verify_end();
  6469   _humongous_set.verify_end();
  6470   _free_list.verify_end();

mercurial