src/share/vm/gc_implementation/g1/concurrentMark.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4386
d275c3dc73e6
child 4547
4700e77d44c1
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1Log.hpp"
    33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    34 #include "gc_implementation/g1/g1RemSet.hpp"
    35 #include "gc_implementation/g1/heapRegion.inline.hpp"
    36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    38 #include "gc_implementation/shared/vmGCOperations.hpp"
    39 #include "memory/genOopClosures.inline.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "runtime/handles.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "services/memTracker.hpp"
    47 // Concurrent marking bit map wrapper
    49 CMBitMapRO::CMBitMapRO(int shifter) :
    50   _bm(),
    51   _shifter(shifter) {
    52   _bmStartWord = 0;
    53   _bmWordSize = 0;
    54 }
    56 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    57                                                HeapWord* limit) const {
    58   // First we must round addr *up* to a possible object boundary.
    59   addr = (HeapWord*)align_size_up((intptr_t)addr,
    60                                   HeapWordSize << _shifter);
    61   size_t addrOffset = heapWordToOffset(addr);
    62   if (limit == NULL) {
    63     limit = _bmStartWord + _bmWordSize;
    64   }
    65   size_t limitOffset = heapWordToOffset(limit);
    66   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    67   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    68   assert(nextAddr >= addr, "get_next_one postcondition");
    69   assert(nextAddr == limit || isMarked(nextAddr),
    70          "get_next_one postcondition");
    71   return nextAddr;
    72 }
    74 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    75                                                  HeapWord* limit) const {
    76   size_t addrOffset = heapWordToOffset(addr);
    77   if (limit == NULL) {
    78     limit = _bmStartWord + _bmWordSize;
    79   }
    80   size_t limitOffset = heapWordToOffset(limit);
    81   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    82   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    83   assert(nextAddr >= addr, "get_next_one postcondition");
    84   assert(nextAddr == limit || !isMarked(nextAddr),
    85          "get_next_one postcondition");
    86   return nextAddr;
    87 }
    89 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    90   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    91   return (int) (diff >> _shifter);
    92 }
    94 #ifndef PRODUCT
    95 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
    96   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
    97   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
    98          "size inconsistency");
    99   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   100          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   101 }
   102 #endif
   104 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   105   _bmStartWord = (HeapWord*)(heap_rs.base());
   106   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   107   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   108                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   109   if (!brs.is_reserved()) {
   110     warning("ConcurrentMark marking bit map allocation failure");
   111     return false;
   112   }
   113   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   114   // For now we'll just commit all of the bit map up front.
   115   // Later on we'll try to be more parsimonious with swap.
   116   if (!_virtual_space.initialize(brs, brs.size())) {
   117     warning("ConcurrentMark marking bit map backing store failure");
   118     return false;
   119   }
   120   assert(_virtual_space.committed_size() == brs.size(),
   121          "didn't reserve backing store for all of concurrent marking bit map?");
   122   _bm.set_map((uintptr_t*)_virtual_space.low());
   123   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   124          _bmWordSize, "inconsistency in bit map sizing");
   125   _bm.set_size(_bmWordSize >> _shifter);
   126   return true;
   127 }
   129 void CMBitMap::clearAll() {
   130   _bm.clear();
   131   return;
   132 }
   134 void CMBitMap::markRange(MemRegion mr) {
   135   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   136   assert(!mr.is_empty(), "unexpected empty region");
   137   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   138           ((HeapWord *) mr.end())),
   139          "markRange memory region end is not card aligned");
   140   // convert address range into offset range
   141   _bm.at_put_range(heapWordToOffset(mr.start()),
   142                    heapWordToOffset(mr.end()), true);
   143 }
   145 void CMBitMap::clearRange(MemRegion mr) {
   146   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   147   assert(!mr.is_empty(), "unexpected empty region");
   148   // convert address range into offset range
   149   _bm.at_put_range(heapWordToOffset(mr.start()),
   150                    heapWordToOffset(mr.end()), false);
   151 }
   153 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   154                                             HeapWord* end_addr) {
   155   HeapWord* start = getNextMarkedWordAddress(addr);
   156   start = MIN2(start, end_addr);
   157   HeapWord* end   = getNextUnmarkedWordAddress(start);
   158   end = MIN2(end, end_addr);
   159   assert(start <= end, "Consistency check");
   160   MemRegion mr(start, end);
   161   if (!mr.is_empty()) {
   162     clearRange(mr);
   163   }
   164   return mr;
   165 }
   167 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   168   _base(NULL), _cm(cm)
   169 #ifdef ASSERT
   170   , _drain_in_progress(false)
   171   , _drain_in_progress_yields(false)
   172 #endif
   173 {}
   175 bool CMMarkStack::allocate(size_t capacity) {
   176   // allocate a stack of the requisite depth
   177   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   178   if (!rs.is_reserved()) {
   179     warning("ConcurrentMark MarkStack allocation failure");
   180     return false;
   181   }
   182   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   183   if (!_virtual_space.initialize(rs, rs.size())) {
   184     warning("ConcurrentMark MarkStack backing store failure");
   185     // Release the virtual memory reserved for the marking stack
   186     rs.release();
   187     return false;
   188   }
   189   assert(_virtual_space.committed_size() == rs.size(),
   190          "Didn't reserve backing store for all of ConcurrentMark stack?");
   191   _base = (oop*) _virtual_space.low();
   192   setEmpty();
   193   _capacity = (jint) capacity;
   194   _saved_index = -1;
   195   _should_expand = false;
   196   NOT_PRODUCT(_max_depth = 0);
   197   return true;
   198 }
   200 void CMMarkStack::expand() {
   201   // Called, during remark, if we've overflown the marking stack during marking.
   202   assert(isEmpty(), "stack should been emptied while handling overflow");
   203   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   204   // Clear expansion flag
   205   _should_expand = false;
   206   if (_capacity == (jint) MarkStackSizeMax) {
   207     if (PrintGCDetails && Verbose) {
   208       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   209     }
   210     return;
   211   }
   212   // Double capacity if possible
   213   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   214   // Do not give up existing stack until we have managed to
   215   // get the double capacity that we desired.
   216   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   217                                                            sizeof(oop)));
   218   if (rs.is_reserved()) {
   219     // Release the backing store associated with old stack
   220     _virtual_space.release();
   221     // Reinitialize virtual space for new stack
   222     if (!_virtual_space.initialize(rs, rs.size())) {
   223       fatal("Not enough swap for expanded marking stack capacity");
   224     }
   225     _base = (oop*)(_virtual_space.low());
   226     _index = 0;
   227     _capacity = new_capacity;
   228   } else {
   229     if (PrintGCDetails && Verbose) {
   230       // Failed to double capacity, continue;
   231       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   232                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   233                           _capacity / K, new_capacity / K);
   234     }
   235   }
   236 }
   238 void CMMarkStack::set_should_expand() {
   239   // If we're resetting the marking state because of an
   240   // marking stack overflow, record that we should, if
   241   // possible, expand the stack.
   242   _should_expand = _cm->has_overflown();
   243 }
   245 CMMarkStack::~CMMarkStack() {
   246   if (_base != NULL) {
   247     _base = NULL;
   248     _virtual_space.release();
   249   }
   250 }
   252 void CMMarkStack::par_push(oop ptr) {
   253   while (true) {
   254     if (isFull()) {
   255       _overflow = true;
   256       return;
   257     }
   258     // Otherwise...
   259     jint index = _index;
   260     jint next_index = index+1;
   261     jint res = Atomic::cmpxchg(next_index, &_index, index);
   262     if (res == index) {
   263       _base[index] = ptr;
   264       // Note that we don't maintain this atomically.  We could, but it
   265       // doesn't seem necessary.
   266       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   267       return;
   268     }
   269     // Otherwise, we need to try again.
   270   }
   271 }
   273 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   274   while (true) {
   275     if (isFull()) {
   276       _overflow = true;
   277       return;
   278     }
   279     // Otherwise...
   280     jint index = _index;
   281     jint next_index = index + n;
   282     if (next_index > _capacity) {
   283       _overflow = true;
   284       return;
   285     }
   286     jint res = Atomic::cmpxchg(next_index, &_index, index);
   287     if (res == index) {
   288       for (int i = 0; i < n; i++) {
   289         int  ind = index + i;
   290         assert(ind < _capacity, "By overflow test above.");
   291         _base[ind] = ptr_arr[i];
   292       }
   293       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   294       return;
   295     }
   296     // Otherwise, we need to try again.
   297   }
   298 }
   300 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   301   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   302   jint start = _index;
   303   jint next_index = start + n;
   304   if (next_index > _capacity) {
   305     _overflow = true;
   306     return;
   307   }
   308   // Otherwise.
   309   _index = next_index;
   310   for (int i = 0; i < n; i++) {
   311     int ind = start + i;
   312     assert(ind < _capacity, "By overflow test above.");
   313     _base[ind] = ptr_arr[i];
   314   }
   315   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   316 }
   318 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   319   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   320   jint index = _index;
   321   if (index == 0) {
   322     *n = 0;
   323     return false;
   324   } else {
   325     int k = MIN2(max, index);
   326     jint  new_ind = index - k;
   327     for (int j = 0; j < k; j++) {
   328       ptr_arr[j] = _base[new_ind + j];
   329     }
   330     _index = new_ind;
   331     *n = k;
   332     return true;
   333   }
   334 }
   336 template<class OopClosureClass>
   337 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   338   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   339          || SafepointSynchronize::is_at_safepoint(),
   340          "Drain recursion must be yield-safe.");
   341   bool res = true;
   342   debug_only(_drain_in_progress = true);
   343   debug_only(_drain_in_progress_yields = yield_after);
   344   while (!isEmpty()) {
   345     oop newOop = pop();
   346     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   347     assert(newOop->is_oop(), "Expected an oop");
   348     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   349            "only grey objects on this stack");
   350     newOop->oop_iterate(cl);
   351     if (yield_after && _cm->do_yield_check()) {
   352       res = false;
   353       break;
   354     }
   355   }
   356   debug_only(_drain_in_progress = false);
   357   return res;
   358 }
   360 void CMMarkStack::note_start_of_gc() {
   361   assert(_saved_index == -1,
   362          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   363   _saved_index = _index;
   364 }
   366 void CMMarkStack::note_end_of_gc() {
   367   // This is intentionally a guarantee, instead of an assert. If we
   368   // accidentally add something to the mark stack during GC, it
   369   // will be a correctness issue so it's better if we crash. we'll
   370   // only check this once per GC anyway, so it won't be a performance
   371   // issue in any way.
   372   guarantee(_saved_index == _index,
   373             err_msg("saved index: %d index: %d", _saved_index, _index));
   374   _saved_index = -1;
   375 }
   377 void CMMarkStack::oops_do(OopClosure* f) {
   378   assert(_saved_index == _index,
   379          err_msg("saved index: %d index: %d", _saved_index, _index));
   380   for (int i = 0; i < _index; i += 1) {
   381     f->do_oop(&_base[i]);
   382   }
   383 }
   385 bool ConcurrentMark::not_yet_marked(oop obj) const {
   386   return _g1h->is_obj_ill(obj);
   387 }
   389 CMRootRegions::CMRootRegions() :
   390   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   391   _should_abort(false),  _next_survivor(NULL) { }
   393 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   394   _young_list = g1h->young_list();
   395   _cm = cm;
   396 }
   398 void CMRootRegions::prepare_for_scan() {
   399   assert(!scan_in_progress(), "pre-condition");
   401   // Currently, only survivors can be root regions.
   402   assert(_next_survivor == NULL, "pre-condition");
   403   _next_survivor = _young_list->first_survivor_region();
   404   _scan_in_progress = (_next_survivor != NULL);
   405   _should_abort = false;
   406 }
   408 HeapRegion* CMRootRegions::claim_next() {
   409   if (_should_abort) {
   410     // If someone has set the should_abort flag, we return NULL to
   411     // force the caller to bail out of their loop.
   412     return NULL;
   413   }
   415   // Currently, only survivors can be root regions.
   416   HeapRegion* res = _next_survivor;
   417   if (res != NULL) {
   418     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   419     // Read it again in case it changed while we were waiting for the lock.
   420     res = _next_survivor;
   421     if (res != NULL) {
   422       if (res == _young_list->last_survivor_region()) {
   423         // We just claimed the last survivor so store NULL to indicate
   424         // that we're done.
   425         _next_survivor = NULL;
   426       } else {
   427         _next_survivor = res->get_next_young_region();
   428       }
   429     } else {
   430       // Someone else claimed the last survivor while we were trying
   431       // to take the lock so nothing else to do.
   432     }
   433   }
   434   assert(res == NULL || res->is_survivor(), "post-condition");
   436   return res;
   437 }
   439 void CMRootRegions::scan_finished() {
   440   assert(scan_in_progress(), "pre-condition");
   442   // Currently, only survivors can be root regions.
   443   if (!_should_abort) {
   444     assert(_next_survivor == NULL, "we should have claimed all survivors");
   445   }
   446   _next_survivor = NULL;
   448   {
   449     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   450     _scan_in_progress = false;
   451     RootRegionScan_lock->notify_all();
   452   }
   453 }
   455 bool CMRootRegions::wait_until_scan_finished() {
   456   if (!scan_in_progress()) return false;
   458   {
   459     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   460     while (scan_in_progress()) {
   461       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   462     }
   463   }
   464   return true;
   465 }
   467 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   468 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   469 #endif // _MSC_VER
   471 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   472   return MAX2((n_par_threads + 2) / 4, 1U);
   473 }
   475 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   476   _g1h(g1h),
   477   _markBitMap1(MinObjAlignment - 1),
   478   _markBitMap2(MinObjAlignment - 1),
   480   _parallel_marking_threads(0),
   481   _max_parallel_marking_threads(0),
   482   _sleep_factor(0.0),
   483   _marking_task_overhead(1.0),
   484   _cleanup_sleep_factor(0.0),
   485   _cleanup_task_overhead(1.0),
   486   _cleanup_list("Cleanup List"),
   487   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   488   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   489             CardTableModRefBS::card_shift,
   490             false /* in_resource_area*/),
   492   _prevMarkBitMap(&_markBitMap1),
   493   _nextMarkBitMap(&_markBitMap2),
   495   _markStack(this),
   496   // _finger set in set_non_marking_state
   498   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   499   // _active_tasks set in set_non_marking_state
   500   // _tasks set inside the constructor
   501   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   502   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   504   _has_overflown(false),
   505   _concurrent(false),
   506   _has_aborted(false),
   507   _restart_for_overflow(false),
   508   _concurrent_marking_in_progress(false),
   510   // _verbose_level set below
   512   _init_times(),
   513   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   514   _cleanup_times(),
   515   _total_counting_time(0.0),
   516   _total_rs_scrub_time(0.0),
   518   _parallel_workers(NULL),
   520   _count_card_bitmaps(NULL),
   521   _count_marked_bytes(NULL),
   522   _completed_initialization(false) {
   523   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   524   if (verbose_level < no_verbose) {
   525     verbose_level = no_verbose;
   526   }
   527   if (verbose_level > high_verbose) {
   528     verbose_level = high_verbose;
   529   }
   530   _verbose_level = verbose_level;
   532   if (verbose_low()) {
   533     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   534                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   535   }
   537   if (!_markBitMap1.allocate(heap_rs)) {
   538     warning("Failed to allocate first CM bit map");
   539     return;
   540   }
   541   if (!_markBitMap2.allocate(heap_rs)) {
   542     warning("Failed to allocate second CM bit map");
   543     return;
   544   }
   546   // Create & start a ConcurrentMark thread.
   547   _cmThread = new ConcurrentMarkThread(this);
   548   assert(cmThread() != NULL, "CM Thread should have been created");
   549   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   551   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   552   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   553   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   555   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   556   satb_qs.set_buffer_size(G1SATBBufferSize);
   558   _root_regions.init(_g1h, this);
   560   if (ConcGCThreads > ParallelGCThreads) {
   561     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
   562             "than ParallelGCThreads (" UINT32_FORMAT ").",
   563             ConcGCThreads, ParallelGCThreads);
   564     return;
   565   }
   566   if (ParallelGCThreads == 0) {
   567     // if we are not running with any parallel GC threads we will not
   568     // spawn any marking threads either
   569     _parallel_marking_threads =       0;
   570     _max_parallel_marking_threads =   0;
   571     _sleep_factor             =     0.0;
   572     _marking_task_overhead    =     1.0;
   573   } else {
   574     if (ConcGCThreads > 0) {
   575       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
   576       // if both are set
   578       _parallel_marking_threads = (uint) ConcGCThreads;
   579       _max_parallel_marking_threads = _parallel_marking_threads;
   580       _sleep_factor             = 0.0;
   581       _marking_task_overhead    = 1.0;
   582     } else if (G1MarkingOverheadPercent > 0) {
   583       // we will calculate the number of parallel marking threads
   584       // based on a target overhead with respect to the soft real-time
   585       // goal
   587       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   588       double overall_cm_overhead =
   589         (double) MaxGCPauseMillis * marking_overhead /
   590         (double) GCPauseIntervalMillis;
   591       double cpu_ratio = 1.0 / (double) os::processor_count();
   592       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   593       double marking_task_overhead =
   594         overall_cm_overhead / marking_thread_num *
   595                                                 (double) os::processor_count();
   596       double sleep_factor =
   597                          (1.0 - marking_task_overhead) / marking_task_overhead;
   599       _parallel_marking_threads = (uint) marking_thread_num;
   600       _max_parallel_marking_threads = _parallel_marking_threads;
   601       _sleep_factor             = sleep_factor;
   602       _marking_task_overhead    = marking_task_overhead;
   603     } else {
   604       _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
   605       _max_parallel_marking_threads = _parallel_marking_threads;
   606       _sleep_factor             = 0.0;
   607       _marking_task_overhead    = 1.0;
   608     }
   610     if (parallel_marking_threads() > 1) {
   611       _cleanup_task_overhead = 1.0;
   612     } else {
   613       _cleanup_task_overhead = marking_task_overhead();
   614     }
   615     _cleanup_sleep_factor =
   616                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   618 #if 0
   619     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   620     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   621     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   622     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   623     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   624 #endif
   626     guarantee(parallel_marking_threads() > 0, "peace of mind");
   627     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   628          _max_parallel_marking_threads, false, true);
   629     if (_parallel_workers == NULL) {
   630       vm_exit_during_initialization("Failed necessary allocation.");
   631     } else {
   632       _parallel_workers->initialize_workers();
   633     }
   634   }
   636   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   637     uintx mark_stack_size =
   638       MIN2(MarkStackSizeMax,
   639           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   640     // Verify that the calculated value for MarkStackSize is in range.
   641     // It would be nice to use the private utility routine from Arguments.
   642     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   643       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   644               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   645               mark_stack_size, 1, MarkStackSizeMax);
   646       return;
   647     }
   648     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   649   } else {
   650     // Verify MarkStackSize is in range.
   651     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   652       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   653         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   654           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   655                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   656                   MarkStackSize, 1, MarkStackSizeMax);
   657           return;
   658         }
   659       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   660         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   661           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   662                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   663                   MarkStackSize, MarkStackSizeMax);
   664           return;
   665         }
   666       }
   667     }
   668   }
   670   if (!_markStack.allocate(MarkStackSize)) {
   671     warning("Failed to allocate CM marking stack");
   672     return;
   673   }
   675   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   676   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   678   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   679   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   681   BitMap::idx_t card_bm_size = _card_bm.size();
   683   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   684   _active_tasks = _max_worker_id;
   686   size_t max_regions = (size_t) _g1h->max_regions();
   687   for (uint i = 0; i < _max_worker_id; ++i) {
   688     CMTaskQueue* task_queue = new CMTaskQueue();
   689     task_queue->initialize();
   690     _task_queues->register_queue(i, task_queue);
   692     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   693     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   695     _tasks[i] = new CMTask(i, this,
   696                            _count_marked_bytes[i],
   697                            &_count_card_bitmaps[i],
   698                            task_queue, _task_queues);
   700     _accum_task_vtime[i] = 0.0;
   701   }
   703   // Calculate the card number for the bottom of the heap. Used
   704   // in biasing indexes into the accounting card bitmaps.
   705   _heap_bottom_card_num =
   706     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   707                                 CardTableModRefBS::card_shift);
   709   // Clear all the liveness counting data
   710   clear_all_count_data();
   712   // so that the call below can read a sensible value
   713   _heap_start = (HeapWord*) heap_rs.base();
   714   set_non_marking_state();
   715   _completed_initialization = true;
   716 }
   718 void ConcurrentMark::update_g1_committed(bool force) {
   719   // If concurrent marking is not in progress, then we do not need to
   720   // update _heap_end.
   721   if (!concurrent_marking_in_progress() && !force) return;
   723   MemRegion committed = _g1h->g1_committed();
   724   assert(committed.start() == _heap_start, "start shouldn't change");
   725   HeapWord* new_end = committed.end();
   726   if (new_end > _heap_end) {
   727     // The heap has been expanded.
   729     _heap_end = new_end;
   730   }
   731   // Notice that the heap can also shrink. However, this only happens
   732   // during a Full GC (at least currently) and the entire marking
   733   // phase will bail out and the task will not be restarted. So, let's
   734   // do nothing.
   735 }
   737 void ConcurrentMark::reset() {
   738   // Starting values for these two. This should be called in a STW
   739   // phase. CM will be notified of any future g1_committed expansions
   740   // will be at the end of evacuation pauses, when tasks are
   741   // inactive.
   742   MemRegion committed = _g1h->g1_committed();
   743   _heap_start = committed.start();
   744   _heap_end   = committed.end();
   746   // Separated the asserts so that we know which one fires.
   747   assert(_heap_start != NULL, "heap bounds should look ok");
   748   assert(_heap_end != NULL, "heap bounds should look ok");
   749   assert(_heap_start < _heap_end, "heap bounds should look ok");
   751   // Reset all the marking data structures and any necessary flags
   752   reset_marking_state();
   754   if (verbose_low()) {
   755     gclog_or_tty->print_cr("[global] resetting");
   756   }
   758   // We do reset all of them, since different phases will use
   759   // different number of active threads. So, it's easiest to have all
   760   // of them ready.
   761   for (uint i = 0; i < _max_worker_id; ++i) {
   762     _tasks[i]->reset(_nextMarkBitMap);
   763   }
   765   // we need this to make sure that the flag is on during the evac
   766   // pause with initial mark piggy-backed
   767   set_concurrent_marking_in_progress();
   768 }
   771 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   772   _markStack.set_should_expand();
   773   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   774   if (clear_overflow) {
   775     clear_has_overflown();
   776   } else {
   777     assert(has_overflown(), "pre-condition");
   778   }
   779   _finger = _heap_start;
   781   for (uint i = 0; i < _max_worker_id; ++i) {
   782     CMTaskQueue* queue = _task_queues->queue(i);
   783     queue->set_empty();
   784   }
   785 }
   787 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
   788   assert(active_tasks <= _max_worker_id, "we should not have more");
   790   _active_tasks = active_tasks;
   791   // Need to update the three data structures below according to the
   792   // number of active threads for this phase.
   793   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   794   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   795   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   797   _concurrent = concurrent;
   798   // We propagate this to all tasks, not just the active ones.
   799   for (uint i = 0; i < _max_worker_id; ++i)
   800     _tasks[i]->set_concurrent(concurrent);
   802   if (concurrent) {
   803     set_concurrent_marking_in_progress();
   804   } else {
   805     // We currently assume that the concurrent flag has been set to
   806     // false before we start remark. At this point we should also be
   807     // in a STW phase.
   808     assert(!concurrent_marking_in_progress(), "invariant");
   809     assert(_finger == _heap_end, "only way to get here");
   810     update_g1_committed(true);
   811   }
   812 }
   814 void ConcurrentMark::set_non_marking_state() {
   815   // We set the global marking state to some default values when we're
   816   // not doing marking.
   817   reset_marking_state();
   818   _active_tasks = 0;
   819   clear_concurrent_marking_in_progress();
   820 }
   822 ConcurrentMark::~ConcurrentMark() {
   823   // The ConcurrentMark instance is never freed.
   824   ShouldNotReachHere();
   825 }
   827 void ConcurrentMark::clearNextBitmap() {
   828   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   829   G1CollectorPolicy* g1p = g1h->g1_policy();
   831   // Make sure that the concurrent mark thread looks to still be in
   832   // the current cycle.
   833   guarantee(cmThread()->during_cycle(), "invariant");
   835   // We are finishing up the current cycle by clearing the next
   836   // marking bitmap and getting it ready for the next cycle. During
   837   // this time no other cycle can start. So, let's make sure that this
   838   // is the case.
   839   guarantee(!g1h->mark_in_progress(), "invariant");
   841   // clear the mark bitmap (no grey objects to start with).
   842   // We need to do this in chunks and offer to yield in between
   843   // each chunk.
   844   HeapWord* start  = _nextMarkBitMap->startWord();
   845   HeapWord* end    = _nextMarkBitMap->endWord();
   846   HeapWord* cur    = start;
   847   size_t chunkSize = M;
   848   while (cur < end) {
   849     HeapWord* next = cur + chunkSize;
   850     if (next > end) {
   851       next = end;
   852     }
   853     MemRegion mr(cur,next);
   854     _nextMarkBitMap->clearRange(mr);
   855     cur = next;
   856     do_yield_check();
   858     // Repeat the asserts from above. We'll do them as asserts here to
   859     // minimize their overhead on the product. However, we'll have
   860     // them as guarantees at the beginning / end of the bitmap
   861     // clearing to get some checking in the product.
   862     assert(cmThread()->during_cycle(), "invariant");
   863     assert(!g1h->mark_in_progress(), "invariant");
   864   }
   866   // Clear the liveness counting data
   867   clear_all_count_data();
   869   // Repeat the asserts from above.
   870   guarantee(cmThread()->during_cycle(), "invariant");
   871   guarantee(!g1h->mark_in_progress(), "invariant");
   872 }
   874 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   875 public:
   876   bool doHeapRegion(HeapRegion* r) {
   877     if (!r->continuesHumongous()) {
   878       r->note_start_of_marking();
   879     }
   880     return false;
   881   }
   882 };
   884 void ConcurrentMark::checkpointRootsInitialPre() {
   885   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   886   G1CollectorPolicy* g1p = g1h->g1_policy();
   888   _has_aborted = false;
   890 #ifndef PRODUCT
   891   if (G1PrintReachableAtInitialMark) {
   892     print_reachable("at-cycle-start",
   893                     VerifyOption_G1UsePrevMarking, true /* all */);
   894   }
   895 #endif
   897   // Initialise marking structures. This has to be done in a STW phase.
   898   reset();
   900   // For each region note start of marking.
   901   NoteStartOfMarkHRClosure startcl;
   902   g1h->heap_region_iterate(&startcl);
   903 }
   906 void ConcurrentMark::checkpointRootsInitialPost() {
   907   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   909   // If we force an overflow during remark, the remark operation will
   910   // actually abort and we'll restart concurrent marking. If we always
   911   // force an oveflow during remark we'll never actually complete the
   912   // marking phase. So, we initilize this here, at the start of the
   913   // cycle, so that at the remaining overflow number will decrease at
   914   // every remark and we'll eventually not need to cause one.
   915   force_overflow_stw()->init();
   917   // Start Concurrent Marking weak-reference discovery.
   918   ReferenceProcessor* rp = g1h->ref_processor_cm();
   919   // enable ("weak") refs discovery
   920   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   921   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   923   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   924   // This is the start of  the marking cycle, we're expected all
   925   // threads to have SATB queues with active set to false.
   926   satb_mq_set.set_active_all_threads(true, /* new active value */
   927                                      false /* expected_active */);
   929   _root_regions.prepare_for_scan();
   931   // update_g1_committed() will be called at the end of an evac pause
   932   // when marking is on. So, it's also called at the end of the
   933   // initial-mark pause to update the heap end, if the heap expands
   934   // during it. No need to call it here.
   935 }
   937 /*
   938  * Notice that in the next two methods, we actually leave the STS
   939  * during the barrier sync and join it immediately afterwards. If we
   940  * do not do this, the following deadlock can occur: one thread could
   941  * be in the barrier sync code, waiting for the other thread to also
   942  * sync up, whereas another one could be trying to yield, while also
   943  * waiting for the other threads to sync up too.
   944  *
   945  * Note, however, that this code is also used during remark and in
   946  * this case we should not attempt to leave / enter the STS, otherwise
   947  * we'll either hit an asseert (debug / fastdebug) or deadlock
   948  * (product). So we should only leave / enter the STS if we are
   949  * operating concurrently.
   950  *
   951  * Because the thread that does the sync barrier has left the STS, it
   952  * is possible to be suspended for a Full GC or an evacuation pause
   953  * could occur. This is actually safe, since the entering the sync
   954  * barrier is one of the last things do_marking_step() does, and it
   955  * doesn't manipulate any data structures afterwards.
   956  */
   958 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   959   if (verbose_low()) {
   960     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   961   }
   963   if (concurrent()) {
   964     ConcurrentGCThread::stsLeave();
   965   }
   966   _first_overflow_barrier_sync.enter();
   967   if (concurrent()) {
   968     ConcurrentGCThread::stsJoin();
   969   }
   970   // at this point everyone should have synced up and not be doing any
   971   // more work
   973   if (verbose_low()) {
   974     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
   975   }
   977   // let the task associated with with worker 0 do this
   978   if (worker_id == 0) {
   979     // task 0 is responsible for clearing the global data structures
   980     // We should be here because of an overflow. During STW we should
   981     // not clear the overflow flag since we rely on it being true when
   982     // we exit this method to abort the pause and restart concurent
   983     // marking.
   984     reset_marking_state(concurrent() /* clear_overflow */);
   985     force_overflow()->update();
   987     if (G1Log::fine()) {
   988       gclog_or_tty->date_stamp(PrintGCDateStamps);
   989       gclog_or_tty->stamp(PrintGCTimeStamps);
   990       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
   991     }
   992   }
   994   // after this, each task should reset its own data structures then
   995   // then go into the second barrier
   996 }
   998 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
   999   if (verbose_low()) {
  1000     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1003   if (concurrent()) {
  1004     ConcurrentGCThread::stsLeave();
  1006   _second_overflow_barrier_sync.enter();
  1007   if (concurrent()) {
  1008     ConcurrentGCThread::stsJoin();
  1010   // at this point everything should be re-initialised and ready to go
  1012   if (verbose_low()) {
  1013     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1017 #ifndef PRODUCT
  1018 void ForceOverflowSettings::init() {
  1019   _num_remaining = G1ConcMarkForceOverflow;
  1020   _force = false;
  1021   update();
  1024 void ForceOverflowSettings::update() {
  1025   if (_num_remaining > 0) {
  1026     _num_remaining -= 1;
  1027     _force = true;
  1028   } else {
  1029     _force = false;
  1033 bool ForceOverflowSettings::should_force() {
  1034   if (_force) {
  1035     _force = false;
  1036     return true;
  1037   } else {
  1038     return false;
  1041 #endif // !PRODUCT
  1043 class CMConcurrentMarkingTask: public AbstractGangTask {
  1044 private:
  1045   ConcurrentMark*       _cm;
  1046   ConcurrentMarkThread* _cmt;
  1048 public:
  1049   void work(uint worker_id) {
  1050     assert(Thread::current()->is_ConcurrentGC_thread(),
  1051            "this should only be done by a conc GC thread");
  1052     ResourceMark rm;
  1054     double start_vtime = os::elapsedVTime();
  1056     ConcurrentGCThread::stsJoin();
  1058     assert(worker_id < _cm->active_tasks(), "invariant");
  1059     CMTask* the_task = _cm->task(worker_id);
  1060     the_task->record_start_time();
  1061     if (!_cm->has_aborted()) {
  1062       do {
  1063         double start_vtime_sec = os::elapsedVTime();
  1064         double start_time_sec = os::elapsedTime();
  1065         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1067         the_task->do_marking_step(mark_step_duration_ms,
  1068                                   true /* do_stealing    */,
  1069                                   true /* do_termination */);
  1071         double end_time_sec = os::elapsedTime();
  1072         double end_vtime_sec = os::elapsedVTime();
  1073         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1074         double elapsed_time_sec = end_time_sec - start_time_sec;
  1075         _cm->clear_has_overflown();
  1077         bool ret = _cm->do_yield_check(worker_id);
  1079         jlong sleep_time_ms;
  1080         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1081           sleep_time_ms =
  1082             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1083           ConcurrentGCThread::stsLeave();
  1084           os::sleep(Thread::current(), sleep_time_ms, false);
  1085           ConcurrentGCThread::stsJoin();
  1087         double end_time2_sec = os::elapsedTime();
  1088         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1090 #if 0
  1091           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1092                                  "overhead %1.4lf",
  1093                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1094                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1095           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1096                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1097 #endif
  1098       } while (!_cm->has_aborted() && the_task->has_aborted());
  1100     the_task->record_end_time();
  1101     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1103     ConcurrentGCThread::stsLeave();
  1105     double end_vtime = os::elapsedVTime();
  1106     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1109   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1110                           ConcurrentMarkThread* cmt) :
  1111       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1113   ~CMConcurrentMarkingTask() { }
  1114 };
  1116 // Calculates the number of active workers for a concurrent
  1117 // phase.
  1118 uint ConcurrentMark::calc_parallel_marking_threads() {
  1119   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1120     uint n_conc_workers = 0;
  1121     if (!UseDynamicNumberOfGCThreads ||
  1122         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1123          !ForceDynamicNumberOfGCThreads)) {
  1124       n_conc_workers = max_parallel_marking_threads();
  1125     } else {
  1126       n_conc_workers =
  1127         AdaptiveSizePolicy::calc_default_active_workers(
  1128                                      max_parallel_marking_threads(),
  1129                                      1, /* Minimum workers */
  1130                                      parallel_marking_threads(),
  1131                                      Threads::number_of_non_daemon_threads());
  1132       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1133       // that scaling has already gone into "_max_parallel_marking_threads".
  1135     assert(n_conc_workers > 0, "Always need at least 1");
  1136     return n_conc_workers;
  1138   // If we are not running with any parallel GC threads we will not
  1139   // have spawned any marking threads either. Hence the number of
  1140   // concurrent workers should be 0.
  1141   return 0;
  1144 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1145   // Currently, only survivors can be root regions.
  1146   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1147   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1149   const uintx interval = PrefetchScanIntervalInBytes;
  1150   HeapWord* curr = hr->bottom();
  1151   const HeapWord* end = hr->top();
  1152   while (curr < end) {
  1153     Prefetch::read(curr, interval);
  1154     oop obj = oop(curr);
  1155     int size = obj->oop_iterate(&cl);
  1156     assert(size == obj->size(), "sanity");
  1157     curr += size;
  1161 class CMRootRegionScanTask : public AbstractGangTask {
  1162 private:
  1163   ConcurrentMark* _cm;
  1165 public:
  1166   CMRootRegionScanTask(ConcurrentMark* cm) :
  1167     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1169   void work(uint worker_id) {
  1170     assert(Thread::current()->is_ConcurrentGC_thread(),
  1171            "this should only be done by a conc GC thread");
  1173     CMRootRegions* root_regions = _cm->root_regions();
  1174     HeapRegion* hr = root_regions->claim_next();
  1175     while (hr != NULL) {
  1176       _cm->scanRootRegion(hr, worker_id);
  1177       hr = root_regions->claim_next();
  1180 };
  1182 void ConcurrentMark::scanRootRegions() {
  1183   // scan_in_progress() will have been set to true only if there was
  1184   // at least one root region to scan. So, if it's false, we
  1185   // should not attempt to do any further work.
  1186   if (root_regions()->scan_in_progress()) {
  1187     _parallel_marking_threads = calc_parallel_marking_threads();
  1188     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1189            "Maximum number of marking threads exceeded");
  1190     uint active_workers = MAX2(1U, parallel_marking_threads());
  1192     CMRootRegionScanTask task(this);
  1193     if (parallel_marking_threads() > 0) {
  1194       _parallel_workers->set_active_workers((int) active_workers);
  1195       _parallel_workers->run_task(&task);
  1196     } else {
  1197       task.work(0);
  1200     // It's possible that has_aborted() is true here without actually
  1201     // aborting the survivor scan earlier. This is OK as it's
  1202     // mainly used for sanity checking.
  1203     root_regions()->scan_finished();
  1207 void ConcurrentMark::markFromRoots() {
  1208   // we might be tempted to assert that:
  1209   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1210   //        "inconsistent argument?");
  1211   // However that wouldn't be right, because it's possible that
  1212   // a safepoint is indeed in progress as a younger generation
  1213   // stop-the-world GC happens even as we mark in this generation.
  1215   _restart_for_overflow = false;
  1216   force_overflow_conc()->init();
  1218   // _g1h has _n_par_threads
  1219   _parallel_marking_threads = calc_parallel_marking_threads();
  1220   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1221     "Maximum number of marking threads exceeded");
  1223   uint active_workers = MAX2(1U, parallel_marking_threads());
  1225   // Parallel task terminator is set in "set_phase()"
  1226   set_phase(active_workers, true /* concurrent */);
  1228   CMConcurrentMarkingTask markingTask(this, cmThread());
  1229   if (parallel_marking_threads() > 0) {
  1230     _parallel_workers->set_active_workers((int)active_workers);
  1231     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
  1232     // and the decisions on that MT processing is made elsewhere.
  1233     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1234     _parallel_workers->run_task(&markingTask);
  1235   } else {
  1236     markingTask.work(0);
  1238   print_stats();
  1241 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1242   // world is stopped at this checkpoint
  1243   assert(SafepointSynchronize::is_at_safepoint(),
  1244          "world should be stopped");
  1246   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1248   // If a full collection has happened, we shouldn't do this.
  1249   if (has_aborted()) {
  1250     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1251     return;
  1254   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1256   if (VerifyDuringGC) {
  1257     HandleMark hm;  // handle scope
  1258     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1259     Universe::heap()->prepare_for_verify();
  1260     Universe::verify(/* silent */ false,
  1261                      /* option */ VerifyOption_G1UsePrevMarking);
  1264   G1CollectorPolicy* g1p = g1h->g1_policy();
  1265   g1p->record_concurrent_mark_remark_start();
  1267   double start = os::elapsedTime();
  1269   checkpointRootsFinalWork();
  1271   double mark_work_end = os::elapsedTime();
  1273   weakRefsWork(clear_all_soft_refs);
  1275   if (has_overflown()) {
  1276     // Oops.  We overflowed.  Restart concurrent marking.
  1277     _restart_for_overflow = true;
  1278     // Clear the marking state because we will be restarting
  1279     // marking due to overflowing the global mark stack.
  1280     reset_marking_state();
  1281     if (G1TraceMarkStackOverflow) {
  1282       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1284   } else {
  1285     // Aggregate the per-task counting data that we have accumulated
  1286     // while marking.
  1287     aggregate_count_data();
  1289     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1290     // We're done with marking.
  1291     // This is the end of  the marking cycle, we're expected all
  1292     // threads to have SATB queues with active set to true.
  1293     satb_mq_set.set_active_all_threads(false, /* new active value */
  1294                                        true /* expected_active */);
  1296     if (VerifyDuringGC) {
  1297       HandleMark hm;  // handle scope
  1298       gclog_or_tty->print(" VerifyDuringGC:(after)");
  1299       Universe::heap()->prepare_for_verify();
  1300       Universe::verify(/* silent */ false,
  1301                        /* option */ VerifyOption_G1UseNextMarking);
  1303     assert(!restart_for_overflow(), "sanity");
  1304     // Completely reset the marking state since marking completed
  1305     set_non_marking_state();
  1308   // Expand the marking stack, if we have to and if we can.
  1309   if (_markStack.should_expand()) {
  1310     _markStack.expand();
  1313 #if VERIFY_OBJS_PROCESSED
  1314   _scan_obj_cl.objs_processed = 0;
  1315   ThreadLocalObjQueue::objs_enqueued = 0;
  1316 #endif
  1318   // Statistics
  1319   double now = os::elapsedTime();
  1320   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1321   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1322   _remark_times.add((now - start) * 1000.0);
  1324   g1p->record_concurrent_mark_remark_end();
  1327 // Base class of the closures that finalize and verify the
  1328 // liveness counting data.
  1329 class CMCountDataClosureBase: public HeapRegionClosure {
  1330 protected:
  1331   G1CollectedHeap* _g1h;
  1332   ConcurrentMark* _cm;
  1333   CardTableModRefBS* _ct_bs;
  1335   BitMap* _region_bm;
  1336   BitMap* _card_bm;
  1338   // Takes a region that's not empty (i.e., it has at least one
  1339   // live object in it and sets its corresponding bit on the region
  1340   // bitmap to 1. If the region is "starts humongous" it will also set
  1341   // to 1 the bits on the region bitmap that correspond to its
  1342   // associated "continues humongous" regions.
  1343   void set_bit_for_region(HeapRegion* hr) {
  1344     assert(!hr->continuesHumongous(), "should have filtered those out");
  1346     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1347     if (!hr->startsHumongous()) {
  1348       // Normal (non-humongous) case: just set the bit.
  1349       _region_bm->par_at_put(index, true);
  1350     } else {
  1351       // Starts humongous case: calculate how many regions are part of
  1352       // this humongous region and then set the bit range.
  1353       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1354       _region_bm->par_at_put_range(index, end_index, true);
  1358 public:
  1359   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1360                          BitMap* region_bm, BitMap* card_bm):
  1361     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1362     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1363     _region_bm(region_bm), _card_bm(card_bm) { }
  1364 };
  1366 // Closure that calculates the # live objects per region. Used
  1367 // for verification purposes during the cleanup pause.
  1368 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1369   CMBitMapRO* _bm;
  1370   size_t _region_marked_bytes;
  1372 public:
  1373   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1374                          BitMap* region_bm, BitMap* card_bm) :
  1375     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1376     _bm(bm), _region_marked_bytes(0) { }
  1378   bool doHeapRegion(HeapRegion* hr) {
  1380     if (hr->continuesHumongous()) {
  1381       // We will ignore these here and process them when their
  1382       // associated "starts humongous" region is processed (see
  1383       // set_bit_for_heap_region()). Note that we cannot rely on their
  1384       // associated "starts humongous" region to have their bit set to
  1385       // 1 since, due to the region chunking in the parallel region
  1386       // iteration, a "continues humongous" region might be visited
  1387       // before its associated "starts humongous".
  1388       return false;
  1391     HeapWord* ntams = hr->next_top_at_mark_start();
  1392     HeapWord* start = hr->bottom();
  1394     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1395            err_msg("Preconditions not met - "
  1396                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1397                    start, ntams, hr->end()));
  1399     // Find the first marked object at or after "start".
  1400     start = _bm->getNextMarkedWordAddress(start, ntams);
  1402     size_t marked_bytes = 0;
  1404     while (start < ntams) {
  1405       oop obj = oop(start);
  1406       int obj_sz = obj->size();
  1407       HeapWord* obj_end = start + obj_sz;
  1409       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1410       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1412       // Note: if we're looking at the last region in heap - obj_end
  1413       // could be actually just beyond the end of the heap; end_idx
  1414       // will then correspond to a (non-existent) card that is also
  1415       // just beyond the heap.
  1416       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1417         // end of object is not card aligned - increment to cover
  1418         // all the cards spanned by the object
  1419         end_idx += 1;
  1422       // Set the bits in the card BM for the cards spanned by this object.
  1423       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1425       // Add the size of this object to the number of marked bytes.
  1426       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1428       // Find the next marked object after this one.
  1429       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1432     // Mark the allocated-since-marking portion...
  1433     HeapWord* top = hr->top();
  1434     if (ntams < top) {
  1435       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1436       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1438       // Note: if we're looking at the last region in heap - top
  1439       // could be actually just beyond the end of the heap; end_idx
  1440       // will then correspond to a (non-existent) card that is also
  1441       // just beyond the heap.
  1442       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1443         // end of object is not card aligned - increment to cover
  1444         // all the cards spanned by the object
  1445         end_idx += 1;
  1447       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1449       // This definitely means the region has live objects.
  1450       set_bit_for_region(hr);
  1453     // Update the live region bitmap.
  1454     if (marked_bytes > 0) {
  1455       set_bit_for_region(hr);
  1458     // Set the marked bytes for the current region so that
  1459     // it can be queried by a calling verificiation routine
  1460     _region_marked_bytes = marked_bytes;
  1462     return false;
  1465   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1466 };
  1468 // Heap region closure used for verifying the counting data
  1469 // that was accumulated concurrently and aggregated during
  1470 // the remark pause. This closure is applied to the heap
  1471 // regions during the STW cleanup pause.
  1473 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1474   G1CollectedHeap* _g1h;
  1475   ConcurrentMark* _cm;
  1476   CalcLiveObjectsClosure _calc_cl;
  1477   BitMap* _region_bm;   // Region BM to be verified
  1478   BitMap* _card_bm;     // Card BM to be verified
  1479   bool _verbose;        // verbose output?
  1481   BitMap* _exp_region_bm; // Expected Region BM values
  1482   BitMap* _exp_card_bm;   // Expected card BM values
  1484   int _failures;
  1486 public:
  1487   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1488                                 BitMap* region_bm,
  1489                                 BitMap* card_bm,
  1490                                 BitMap* exp_region_bm,
  1491                                 BitMap* exp_card_bm,
  1492                                 bool verbose) :
  1493     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1494     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1495     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1496     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1497     _failures(0) { }
  1499   int failures() const { return _failures; }
  1501   bool doHeapRegion(HeapRegion* hr) {
  1502     if (hr->continuesHumongous()) {
  1503       // We will ignore these here and process them when their
  1504       // associated "starts humongous" region is processed (see
  1505       // set_bit_for_heap_region()). Note that we cannot rely on their
  1506       // associated "starts humongous" region to have their bit set to
  1507       // 1 since, due to the region chunking in the parallel region
  1508       // iteration, a "continues humongous" region might be visited
  1509       // before its associated "starts humongous".
  1510       return false;
  1513     int failures = 0;
  1515     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1516     // this region and set the corresponding bits in the expected region
  1517     // and card bitmaps.
  1518     bool res = _calc_cl.doHeapRegion(hr);
  1519     assert(res == false, "should be continuing");
  1521     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1522                     Mutex::_no_safepoint_check_flag);
  1524     // Verify the marked bytes for this region.
  1525     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1526     size_t act_marked_bytes = hr->next_marked_bytes();
  1528     // We're not OK if expected marked bytes > actual marked bytes. It means
  1529     // we have missed accounting some objects during the actual marking.
  1530     if (exp_marked_bytes > act_marked_bytes) {
  1531       if (_verbose) {
  1532         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1533                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1534                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1536       failures += 1;
  1539     // Verify the bit, for this region, in the actual and expected
  1540     // (which was just calculated) region bit maps.
  1541     // We're not OK if the bit in the calculated expected region
  1542     // bitmap is set and the bit in the actual region bitmap is not.
  1543     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1545     bool expected = _exp_region_bm->at(index);
  1546     bool actual = _region_bm->at(index);
  1547     if (expected && !actual) {
  1548       if (_verbose) {
  1549         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1550                                "expected: %s, actual: %s",
  1551                                hr->hrs_index(),
  1552                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1554       failures += 1;
  1557     // Verify that the card bit maps for the cards spanned by the current
  1558     // region match. We have an error if we have a set bit in the expected
  1559     // bit map and the corresponding bit in the actual bitmap is not set.
  1561     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1562     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1564     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1565       expected = _exp_card_bm->at(i);
  1566       actual = _card_bm->at(i);
  1568       if (expected && !actual) {
  1569         if (_verbose) {
  1570           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1571                                  "expected: %s, actual: %s",
  1572                                  hr->hrs_index(), i,
  1573                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1575         failures += 1;
  1579     if (failures > 0 && _verbose)  {
  1580       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1581                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1582                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
  1583                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1586     _failures += failures;
  1588     // We could stop iteration over the heap when we
  1589     // find the first violating region by returning true.
  1590     return false;
  1592 };
  1595 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1596 protected:
  1597   G1CollectedHeap* _g1h;
  1598   ConcurrentMark* _cm;
  1599   BitMap* _actual_region_bm;
  1600   BitMap* _actual_card_bm;
  1602   uint    _n_workers;
  1604   BitMap* _expected_region_bm;
  1605   BitMap* _expected_card_bm;
  1607   int  _failures;
  1608   bool _verbose;
  1610 public:
  1611   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1612                             BitMap* region_bm, BitMap* card_bm,
  1613                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1614     : AbstractGangTask("G1 verify final counting"),
  1615       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1616       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1617       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1618       _failures(0), _verbose(false),
  1619       _n_workers(0) {
  1620     assert(VerifyDuringGC, "don't call this otherwise");
  1622     // Use the value already set as the number of active threads
  1623     // in the call to run_task().
  1624     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1625       assert( _g1h->workers()->active_workers() > 0,
  1626         "Should have been previously set");
  1627       _n_workers = _g1h->workers()->active_workers();
  1628     } else {
  1629       _n_workers = 1;
  1632     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1633     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1635     _verbose = _cm->verbose_medium();
  1638   void work(uint worker_id) {
  1639     assert(worker_id < _n_workers, "invariant");
  1641     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1642                                             _actual_region_bm, _actual_card_bm,
  1643                                             _expected_region_bm,
  1644                                             _expected_card_bm,
  1645                                             _verbose);
  1647     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1648       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1649                                             worker_id,
  1650                                             _n_workers,
  1651                                             HeapRegion::VerifyCountClaimValue);
  1652     } else {
  1653       _g1h->heap_region_iterate(&verify_cl);
  1656     Atomic::add(verify_cl.failures(), &_failures);
  1659   int failures() const { return _failures; }
  1660 };
  1662 // Closure that finalizes the liveness counting data.
  1663 // Used during the cleanup pause.
  1664 // Sets the bits corresponding to the interval [NTAMS, top]
  1665 // (which contains the implicitly live objects) in the
  1666 // card liveness bitmap. Also sets the bit for each region,
  1667 // containing live data, in the region liveness bitmap.
  1669 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1670  public:
  1671   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1672                               BitMap* region_bm,
  1673                               BitMap* card_bm) :
  1674     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1676   bool doHeapRegion(HeapRegion* hr) {
  1678     if (hr->continuesHumongous()) {
  1679       // We will ignore these here and process them when their
  1680       // associated "starts humongous" region is processed (see
  1681       // set_bit_for_heap_region()). Note that we cannot rely on their
  1682       // associated "starts humongous" region to have their bit set to
  1683       // 1 since, due to the region chunking in the parallel region
  1684       // iteration, a "continues humongous" region might be visited
  1685       // before its associated "starts humongous".
  1686       return false;
  1689     HeapWord* ntams = hr->next_top_at_mark_start();
  1690     HeapWord* top   = hr->top();
  1692     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1694     // Mark the allocated-since-marking portion...
  1695     if (ntams < top) {
  1696       // This definitely means the region has live objects.
  1697       set_bit_for_region(hr);
  1699       // Now set the bits in the card bitmap for [ntams, top)
  1700       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1701       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1703       // Note: if we're looking at the last region in heap - top
  1704       // could be actually just beyond the end of the heap; end_idx
  1705       // will then correspond to a (non-existent) card that is also
  1706       // just beyond the heap.
  1707       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1708         // end of object is not card aligned - increment to cover
  1709         // all the cards spanned by the object
  1710         end_idx += 1;
  1713       assert(end_idx <= _card_bm->size(),
  1714              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1715                      end_idx, _card_bm->size()));
  1716       assert(start_idx < _card_bm->size(),
  1717              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1718                      start_idx, _card_bm->size()));
  1720       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1723     // Set the bit for the region if it contains live data
  1724     if (hr->next_marked_bytes() > 0) {
  1725       set_bit_for_region(hr);
  1728     return false;
  1730 };
  1732 class G1ParFinalCountTask: public AbstractGangTask {
  1733 protected:
  1734   G1CollectedHeap* _g1h;
  1735   ConcurrentMark* _cm;
  1736   BitMap* _actual_region_bm;
  1737   BitMap* _actual_card_bm;
  1739   uint    _n_workers;
  1741 public:
  1742   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1743     : AbstractGangTask("G1 final counting"),
  1744       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1745       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1746       _n_workers(0) {
  1747     // Use the value already set as the number of active threads
  1748     // in the call to run_task().
  1749     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1750       assert( _g1h->workers()->active_workers() > 0,
  1751         "Should have been previously set");
  1752       _n_workers = _g1h->workers()->active_workers();
  1753     } else {
  1754       _n_workers = 1;
  1758   void work(uint worker_id) {
  1759     assert(worker_id < _n_workers, "invariant");
  1761     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1762                                                 _actual_region_bm,
  1763                                                 _actual_card_bm);
  1765     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1766       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1767                                             worker_id,
  1768                                             _n_workers,
  1769                                             HeapRegion::FinalCountClaimValue);
  1770     } else {
  1771       _g1h->heap_region_iterate(&final_update_cl);
  1774 };
  1776 class G1ParNoteEndTask;
  1778 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1779   G1CollectedHeap* _g1;
  1780   int _worker_num;
  1781   size_t _max_live_bytes;
  1782   uint _regions_claimed;
  1783   size_t _freed_bytes;
  1784   FreeRegionList* _local_cleanup_list;
  1785   OldRegionSet* _old_proxy_set;
  1786   HumongousRegionSet* _humongous_proxy_set;
  1787   HRRSCleanupTask* _hrrs_cleanup_task;
  1788   double _claimed_region_time;
  1789   double _max_region_time;
  1791 public:
  1792   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1793                              int worker_num,
  1794                              FreeRegionList* local_cleanup_list,
  1795                              OldRegionSet* old_proxy_set,
  1796                              HumongousRegionSet* humongous_proxy_set,
  1797                              HRRSCleanupTask* hrrs_cleanup_task) :
  1798     _g1(g1), _worker_num(worker_num),
  1799     _max_live_bytes(0), _regions_claimed(0),
  1800     _freed_bytes(0),
  1801     _claimed_region_time(0.0), _max_region_time(0.0),
  1802     _local_cleanup_list(local_cleanup_list),
  1803     _old_proxy_set(old_proxy_set),
  1804     _humongous_proxy_set(humongous_proxy_set),
  1805     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1807   size_t freed_bytes() { return _freed_bytes; }
  1809   bool doHeapRegion(HeapRegion *hr) {
  1810     if (hr->continuesHumongous()) {
  1811       return false;
  1813     // We use a claim value of zero here because all regions
  1814     // were claimed with value 1 in the FinalCount task.
  1815     _g1->reset_gc_time_stamps(hr);
  1816     double start = os::elapsedTime();
  1817     _regions_claimed++;
  1818     hr->note_end_of_marking();
  1819     _max_live_bytes += hr->max_live_bytes();
  1820     _g1->free_region_if_empty(hr,
  1821                               &_freed_bytes,
  1822                               _local_cleanup_list,
  1823                               _old_proxy_set,
  1824                               _humongous_proxy_set,
  1825                               _hrrs_cleanup_task,
  1826                               true /* par */);
  1827     double region_time = (os::elapsedTime() - start);
  1828     _claimed_region_time += region_time;
  1829     if (region_time > _max_region_time) {
  1830       _max_region_time = region_time;
  1832     return false;
  1835   size_t max_live_bytes() { return _max_live_bytes; }
  1836   uint regions_claimed() { return _regions_claimed; }
  1837   double claimed_region_time_sec() { return _claimed_region_time; }
  1838   double max_region_time_sec() { return _max_region_time; }
  1839 };
  1841 class G1ParNoteEndTask: public AbstractGangTask {
  1842   friend class G1NoteEndOfConcMarkClosure;
  1844 protected:
  1845   G1CollectedHeap* _g1h;
  1846   size_t _max_live_bytes;
  1847   size_t _freed_bytes;
  1848   FreeRegionList* _cleanup_list;
  1850 public:
  1851   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1852                    FreeRegionList* cleanup_list) :
  1853     AbstractGangTask("G1 note end"), _g1h(g1h),
  1854     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1856   void work(uint worker_id) {
  1857     double start = os::elapsedTime();
  1858     FreeRegionList local_cleanup_list("Local Cleanup List");
  1859     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
  1860     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
  1861     HRRSCleanupTask hrrs_cleanup_task;
  1862     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
  1863                                            &old_proxy_set,
  1864                                            &humongous_proxy_set,
  1865                                            &hrrs_cleanup_task);
  1866     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1867       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1868                                             _g1h->workers()->active_workers(),
  1869                                             HeapRegion::NoteEndClaimValue);
  1870     } else {
  1871       _g1h->heap_region_iterate(&g1_note_end);
  1873     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1875     // Now update the lists
  1876     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
  1877                                             NULL /* free_list */,
  1878                                             &old_proxy_set,
  1879                                             &humongous_proxy_set,
  1880                                             true /* par */);
  1882       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1883       _max_live_bytes += g1_note_end.max_live_bytes();
  1884       _freed_bytes += g1_note_end.freed_bytes();
  1886       // If we iterate over the global cleanup list at the end of
  1887       // cleanup to do this printing we will not guarantee to only
  1888       // generate output for the newly-reclaimed regions (the list
  1889       // might not be empty at the beginning of cleanup; we might
  1890       // still be working on its previous contents). So we do the
  1891       // printing here, before we append the new regions to the global
  1892       // cleanup list.
  1894       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1895       if (hr_printer->is_active()) {
  1896         HeapRegionLinkedListIterator iter(&local_cleanup_list);
  1897         while (iter.more_available()) {
  1898           HeapRegion* hr = iter.get_next();
  1899           hr_printer->cleanup(hr);
  1903       _cleanup_list->add_as_tail(&local_cleanup_list);
  1904       assert(local_cleanup_list.is_empty(), "post-condition");
  1906       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1909   size_t max_live_bytes() { return _max_live_bytes; }
  1910   size_t freed_bytes() { return _freed_bytes; }
  1911 };
  1913 class G1ParScrubRemSetTask: public AbstractGangTask {
  1914 protected:
  1915   G1RemSet* _g1rs;
  1916   BitMap* _region_bm;
  1917   BitMap* _card_bm;
  1918 public:
  1919   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1920                        BitMap* region_bm, BitMap* card_bm) :
  1921     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1922     _region_bm(region_bm), _card_bm(card_bm) { }
  1924   void work(uint worker_id) {
  1925     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1926       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1927                        HeapRegion::ScrubRemSetClaimValue);
  1928     } else {
  1929       _g1rs->scrub(_region_bm, _card_bm);
  1933 };
  1935 void ConcurrentMark::cleanup() {
  1936   // world is stopped at this checkpoint
  1937   assert(SafepointSynchronize::is_at_safepoint(),
  1938          "world should be stopped");
  1939   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1941   // If a full collection has happened, we shouldn't do this.
  1942   if (has_aborted()) {
  1943     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1944     return;
  1947   HRSPhaseSetter x(HRSPhaseCleanup);
  1948   g1h->verify_region_sets_optional();
  1950   if (VerifyDuringGC) {
  1951     HandleMark hm;  // handle scope
  1952     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1953     Universe::heap()->prepare_for_verify();
  1954     Universe::verify(/* silent */ false,
  1955                      /* option */ VerifyOption_G1UsePrevMarking);
  1958   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  1959   g1p->record_concurrent_mark_cleanup_start();
  1961   double start = os::elapsedTime();
  1963   HeapRegionRemSet::reset_for_cleanup_tasks();
  1965   uint n_workers;
  1967   // Do counting once more with the world stopped for good measure.
  1968   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  1970   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1971    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1972            "sanity check");
  1974     g1h->set_par_threads();
  1975     n_workers = g1h->n_par_threads();
  1976     assert(g1h->n_par_threads() == n_workers,
  1977            "Should not have been reset");
  1978     g1h->workers()->run_task(&g1_par_count_task);
  1979     // Done with the parallel phase so reset to 0.
  1980     g1h->set_par_threads(0);
  1982     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  1983            "sanity check");
  1984   } else {
  1985     n_workers = 1;
  1986     g1_par_count_task.work(0);
  1989   if (VerifyDuringGC) {
  1990     // Verify that the counting data accumulated during marking matches
  1991     // that calculated by walking the marking bitmap.
  1993     // Bitmaps to hold expected values
  1994     BitMap expected_region_bm(_region_bm.size(), false);
  1995     BitMap expected_card_bm(_card_bm.size(), false);
  1997     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  1998                                                  &_region_bm,
  1999                                                  &_card_bm,
  2000                                                  &expected_region_bm,
  2001                                                  &expected_card_bm);
  2003     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2004       g1h->set_par_threads((int)n_workers);
  2005       g1h->workers()->run_task(&g1_par_verify_task);
  2006       // Done with the parallel phase so reset to 0.
  2007       g1h->set_par_threads(0);
  2009       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2010              "sanity check");
  2011     } else {
  2012       g1_par_verify_task.work(0);
  2015     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2018   size_t start_used_bytes = g1h->used();
  2019   g1h->set_marking_complete();
  2021   double count_end = os::elapsedTime();
  2022   double this_final_counting_time = (count_end - start);
  2023   _total_counting_time += this_final_counting_time;
  2025   if (G1PrintRegionLivenessInfo) {
  2026     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2027     _g1h->heap_region_iterate(&cl);
  2030   // Install newly created mark bitMap as "prev".
  2031   swapMarkBitMaps();
  2033   g1h->reset_gc_time_stamp();
  2035   // Note end of marking in all heap regions.
  2036   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2037   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2038     g1h->set_par_threads((int)n_workers);
  2039     g1h->workers()->run_task(&g1_par_note_end_task);
  2040     g1h->set_par_threads(0);
  2042     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2043            "sanity check");
  2044   } else {
  2045     g1_par_note_end_task.work(0);
  2047   g1h->check_gc_time_stamps();
  2049   if (!cleanup_list_is_empty()) {
  2050     // The cleanup list is not empty, so we'll have to process it
  2051     // concurrently. Notify anyone else that might be wanting free
  2052     // regions that there will be more free regions coming soon.
  2053     g1h->set_free_regions_coming();
  2056   // call below, since it affects the metric by which we sort the heap
  2057   // regions.
  2058   if (G1ScrubRemSets) {
  2059     double rs_scrub_start = os::elapsedTime();
  2060     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2061     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2062       g1h->set_par_threads((int)n_workers);
  2063       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2064       g1h->set_par_threads(0);
  2066       assert(g1h->check_heap_region_claim_values(
  2067                                             HeapRegion::ScrubRemSetClaimValue),
  2068              "sanity check");
  2069     } else {
  2070       g1_par_scrub_rs_task.work(0);
  2073     double rs_scrub_end = os::elapsedTime();
  2074     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2075     _total_rs_scrub_time += this_rs_scrub_time;
  2078   // this will also free any regions totally full of garbage objects,
  2079   // and sort the regions.
  2080   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2082   // Statistics.
  2083   double end = os::elapsedTime();
  2084   _cleanup_times.add((end - start) * 1000.0);
  2086   if (G1Log::fine()) {
  2087     g1h->print_size_transition(gclog_or_tty,
  2088                                start_used_bytes,
  2089                                g1h->used(),
  2090                                g1h->capacity());
  2093   // Clean up will have freed any regions completely full of garbage.
  2094   // Update the soft reference policy with the new heap occupancy.
  2095   Universe::update_heap_info_at_gc();
  2097   // We need to make this be a "collection" so any collection pause that
  2098   // races with it goes around and waits for completeCleanup to finish.
  2099   g1h->increment_total_collections();
  2101   // We reclaimed old regions so we should calculate the sizes to make
  2102   // sure we update the old gen/space data.
  2103   g1h->g1mm()->update_sizes();
  2105   if (VerifyDuringGC) {
  2106     HandleMark hm;  // handle scope
  2107     gclog_or_tty->print(" VerifyDuringGC:(after)");
  2108     Universe::heap()->prepare_for_verify();
  2109     Universe::verify(/* silent */ false,
  2110                      /* option */ VerifyOption_G1UsePrevMarking);
  2113   g1h->verify_region_sets_optional();
  2116 void ConcurrentMark::completeCleanup() {
  2117   if (has_aborted()) return;
  2119   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2121   _cleanup_list.verify_optional();
  2122   FreeRegionList tmp_free_list("Tmp Free List");
  2124   if (G1ConcRegionFreeingVerbose) {
  2125     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2126                            "cleanup list has %u entries",
  2127                            _cleanup_list.length());
  2130   // Noone else should be accessing the _cleanup_list at this point,
  2131   // so it's not necessary to take any locks
  2132   while (!_cleanup_list.is_empty()) {
  2133     HeapRegion* hr = _cleanup_list.remove_head();
  2134     assert(hr != NULL, "the list was not empty");
  2135     hr->par_clear();
  2136     tmp_free_list.add_as_tail(hr);
  2138     // Instead of adding one region at a time to the secondary_free_list,
  2139     // we accumulate them in the local list and move them a few at a
  2140     // time. This also cuts down on the number of notify_all() calls
  2141     // we do during this process. We'll also append the local list when
  2142     // _cleanup_list is empty (which means we just removed the last
  2143     // region from the _cleanup_list).
  2144     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2145         _cleanup_list.is_empty()) {
  2146       if (G1ConcRegionFreeingVerbose) {
  2147         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2148                                "appending %u entries to the secondary_free_list, "
  2149                                "cleanup list still has %u entries",
  2150                                tmp_free_list.length(),
  2151                                _cleanup_list.length());
  2155         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2156         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
  2157         SecondaryFreeList_lock->notify_all();
  2160       if (G1StressConcRegionFreeing) {
  2161         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2162           os::sleep(Thread::current(), (jlong) 1, false);
  2167   assert(tmp_free_list.is_empty(), "post-condition");
  2170 // Support closures for reference procssing in G1
  2172 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2173   HeapWord* addr = (HeapWord*)obj;
  2174   return addr != NULL &&
  2175          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2178 class G1CMKeepAliveClosure: public ExtendedOopClosure {
  2179   G1CollectedHeap* _g1;
  2180   ConcurrentMark*  _cm;
  2181  public:
  2182   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
  2183     _g1(g1), _cm(cm) {
  2184     assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  2187   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2188   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2190   template <class T> void do_oop_work(T* p) {
  2191     oop obj = oopDesc::load_decode_heap_oop(p);
  2192     HeapWord* addr = (HeapWord*)obj;
  2194     if (_cm->verbose_high()) {
  2195       gclog_or_tty->print_cr("\t[0] we're looking at location "
  2196                              "*"PTR_FORMAT" = "PTR_FORMAT,
  2197                              p, (void*) obj);
  2200     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
  2201       _cm->mark_and_count(obj);
  2202       _cm->mark_stack_push(obj);
  2205 };
  2207 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2208   ConcurrentMark*               _cm;
  2209   CMMarkStack*                  _markStack;
  2210   G1CMKeepAliveClosure*         _oopClosure;
  2211  public:
  2212   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
  2213                                G1CMKeepAliveClosure* oopClosure) :
  2214     _cm(cm),
  2215     _markStack(markStack),
  2216     _oopClosure(oopClosure) { }
  2218   void do_void() {
  2219     _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
  2221 };
  2223 // 'Keep Alive' closure used by parallel reference processing.
  2224 // An instance of this closure is used in the parallel reference processing
  2225 // code rather than an instance of G1CMKeepAliveClosure. We could have used
  2226 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
  2227 // placed on to discovered ref lists once so we can mark and push with no
  2228 // need to check whether the object has already been marked. Using the
  2229 // G1CMKeepAliveClosure would mean, however, having all the worker threads
  2230 // operating on the global mark stack. This means that an individual
  2231 // worker would be doing lock-free pushes while it processes its own
  2232 // discovered ref list followed by drain call. If the discovered ref lists
  2233 // are unbalanced then this could cause interference with the other
  2234 // workers. Using a CMTask (and its embedded local data structures)
  2235 // avoids that potential interference.
  2236 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  2237   ConcurrentMark*  _cm;
  2238   CMTask*          _task;
  2239   int              _ref_counter_limit;
  2240   int              _ref_counter;
  2241  public:
  2242   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
  2243     _cm(cm), _task(task),
  2244     _ref_counter_limit(G1RefProcDrainInterval) {
  2245     assert(_ref_counter_limit > 0, "sanity");
  2246     _ref_counter = _ref_counter_limit;
  2249   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2250   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2252   template <class T> void do_oop_work(T* p) {
  2253     if (!_cm->has_overflown()) {
  2254       oop obj = oopDesc::load_decode_heap_oop(p);
  2255       if (_cm->verbose_high()) {
  2256         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2257                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2258                                _task->worker_id(), p, (void*) obj);
  2261       _task->deal_with_reference(obj);
  2262       _ref_counter--;
  2264       if (_ref_counter == 0) {
  2265         // We have dealt with _ref_counter_limit references, pushing them and objects
  2266         // reachable from them on to the local stack (and possibly the global stack).
  2267         // Call do_marking_step() to process these entries. We call the routine in a
  2268         // loop, which we'll exit if there's nothing more to do (i.e. we're done
  2269         // with the entries that we've pushed as a result of the deal_with_reference
  2270         // calls above) or we overflow.
  2271         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2272         // while there may still be some work to do. (See the comment at the
  2273         // beginning of CMTask::do_marking_step() for those conditions - one of which
  2274         // is reaching the specified time target.) It is only when
  2275         // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2276         // that the marking has completed.
  2277         do {
  2278           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2279           _task->do_marking_step(mark_step_duration_ms,
  2280                                  false /* do_stealing    */,
  2281                                  false /* do_termination */);
  2282         } while (_task->has_aborted() && !_cm->has_overflown());
  2283         _ref_counter = _ref_counter_limit;
  2285     } else {
  2286       if (_cm->verbose_high()) {
  2287          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2291 };
  2293 class G1CMParDrainMarkingStackClosure: public VoidClosure {
  2294   ConcurrentMark* _cm;
  2295   CMTask* _task;
  2296  public:
  2297   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
  2298     _cm(cm), _task(task) { }
  2300   void do_void() {
  2301     do {
  2302       if (_cm->verbose_high()) {
  2303         gclog_or_tty->print_cr("\t[%u] Drain: Calling do marking_step",
  2304                                _task->worker_id());
  2307       // We call CMTask::do_marking_step() to completely drain the local and
  2308       // global marking stacks. The routine is called in a loop, which we'll
  2309       // exit if there's nothing more to do (i.e. we'completely drained the
  2310       // entries that were pushed as a result of applying the
  2311       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
  2312       // lists above) or we overflow the global marking stack.
  2313       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2314       // while there may still be some work to do. (See the comment at the
  2315       // beginning of CMTask::do_marking_step() for those conditions - one of which
  2316       // is reaching the specified time target.) It is only when
  2317       // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2318       // that the marking has completed.
  2320       _task->do_marking_step(1000000000.0 /* something very large */,
  2321                              true /* do_stealing    */,
  2322                              true /* do_termination */);
  2323     } while (_task->has_aborted() && !_cm->has_overflown());
  2325 };
  2327 // Implementation of AbstractRefProcTaskExecutor for parallel
  2328 // reference processing at the end of G1 concurrent marking
  2330 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2331 private:
  2332   G1CollectedHeap* _g1h;
  2333   ConcurrentMark*  _cm;
  2334   WorkGang*        _workers;
  2335   int              _active_workers;
  2337 public:
  2338   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2339                         ConcurrentMark* cm,
  2340                         WorkGang* workers,
  2341                         int n_workers) :
  2342     _g1h(g1h), _cm(cm),
  2343     _workers(workers), _active_workers(n_workers) { }
  2345   // Executes the given task using concurrent marking worker threads.
  2346   virtual void execute(ProcessTask& task);
  2347   virtual void execute(EnqueueTask& task);
  2348 };
  2350 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2351   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2352   ProcessTask&     _proc_task;
  2353   G1CollectedHeap* _g1h;
  2354   ConcurrentMark*  _cm;
  2356 public:
  2357   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2358                      G1CollectedHeap* g1h,
  2359                      ConcurrentMark* cm) :
  2360     AbstractGangTask("Process reference objects in parallel"),
  2361     _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
  2363   virtual void work(uint worker_id) {
  2364     CMTask* marking_task = _cm->task(worker_id);
  2365     G1CMIsAliveClosure g1_is_alive(_g1h);
  2366     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
  2367     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
  2369     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2371 };
  2373 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2374   assert(_workers != NULL, "Need parallel worker threads.");
  2376   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2378   // We need to reset the phase for each task execution so that
  2379   // the termination protocol of CMTask::do_marking_step works.
  2380   _cm->set_phase(_active_workers, false /* concurrent */);
  2381   _g1h->set_par_threads(_active_workers);
  2382   _workers->run_task(&proc_task_proxy);
  2383   _g1h->set_par_threads(0);
  2386 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2387   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2388   EnqueueTask& _enq_task;
  2390 public:
  2391   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2392     AbstractGangTask("Enqueue reference objects in parallel"),
  2393     _enq_task(enq_task) { }
  2395   virtual void work(uint worker_id) {
  2396     _enq_task.work(worker_id);
  2398 };
  2400 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2401   assert(_workers != NULL, "Need parallel worker threads.");
  2403   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2405   _g1h->set_par_threads(_active_workers);
  2406   _workers->run_task(&enq_task_proxy);
  2407   _g1h->set_par_threads(0);
  2410 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2411   ResourceMark rm;
  2412   HandleMark   hm;
  2414   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2416   // Is alive closure.
  2417   G1CMIsAliveClosure g1_is_alive(g1h);
  2419   // Inner scope to exclude the cleaning of the string and symbol
  2420   // tables from the displayed time.
  2422     if (G1Log::finer()) {
  2423       gclog_or_tty->put(' ');
  2425     TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
  2427     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2429     // See the comment in G1CollectedHeap::ref_processing_init()
  2430     // about how reference processing currently works in G1.
  2432     // Process weak references.
  2433     rp->setup_policy(clear_all_soft_refs);
  2434     assert(_markStack.isEmpty(), "mark stack should be empty");
  2436     G1CMKeepAliveClosure g1_keep_alive(g1h, this);
  2437     G1CMDrainMarkingStackClosure
  2438       g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
  2440     // We use the work gang from the G1CollectedHeap and we utilize all
  2441     // the worker threads.
  2442     uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
  2443     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2445     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2446                                               g1h->workers(), active_workers);
  2448     if (rp->processing_is_mt()) {
  2449       // Set the degree of MT here.  If the discovery is done MT, there
  2450       // may have been a different number of threads doing the discovery
  2451       // and a different number of discovered lists may have Ref objects.
  2452       // That is OK as long as the Reference lists are balanced (see
  2453       // balance_all_queues() and balance_queues()).
  2454       rp->set_active_mt_degree(active_workers);
  2456       rp->process_discovered_references(&g1_is_alive,
  2457                                       &g1_keep_alive,
  2458                                       &g1_drain_mark_stack,
  2459                                       &par_task_executor);
  2461       // The work routines of the parallel keep_alive and drain_marking_stack
  2462       // will set the has_overflown flag if we overflow the global marking
  2463       // stack.
  2464     } else {
  2465       rp->process_discovered_references(&g1_is_alive,
  2466                                         &g1_keep_alive,
  2467                                         &g1_drain_mark_stack,
  2468                                         NULL);
  2471     assert(_markStack.overflow() || _markStack.isEmpty(),
  2472             "mark stack should be empty (unless it overflowed)");
  2473     if (_markStack.overflow()) {
  2474       // Should have been done already when we tried to push an
  2475       // entry on to the global mark stack. But let's do it again.
  2476       set_has_overflown();
  2479     if (rp->processing_is_mt()) {
  2480       assert(rp->num_q() == active_workers, "why not");
  2481       rp->enqueue_discovered_references(&par_task_executor);
  2482     } else {
  2483       rp->enqueue_discovered_references();
  2486     rp->verify_no_references_recorded();
  2487     assert(!rp->discovery_enabled(), "Post condition");
  2490   // Now clean up stale oops in StringTable
  2491   StringTable::unlink(&g1_is_alive);
  2492   // Clean up unreferenced symbols in symbol table.
  2493   SymbolTable::unlink();
  2496 void ConcurrentMark::swapMarkBitMaps() {
  2497   CMBitMapRO* temp = _prevMarkBitMap;
  2498   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2499   _nextMarkBitMap  = (CMBitMap*)  temp;
  2502 class CMRemarkTask: public AbstractGangTask {
  2503 private:
  2504   ConcurrentMark *_cm;
  2506 public:
  2507   void work(uint worker_id) {
  2508     // Since all available tasks are actually started, we should
  2509     // only proceed if we're supposed to be actived.
  2510     if (worker_id < _cm->active_tasks()) {
  2511       CMTask* task = _cm->task(worker_id);
  2512       task->record_start_time();
  2513       do {
  2514         task->do_marking_step(1000000000.0 /* something very large */,
  2515                               true /* do_stealing    */,
  2516                               true /* do_termination */);
  2517       } while (task->has_aborted() && !_cm->has_overflown());
  2518       // If we overflow, then we do not want to restart. We instead
  2519       // want to abort remark and do concurrent marking again.
  2520       task->record_end_time();
  2524   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
  2525     AbstractGangTask("Par Remark"), _cm(cm) {
  2526     _cm->terminator()->reset_for_reuse(active_workers);
  2528 };
  2530 void ConcurrentMark::checkpointRootsFinalWork() {
  2531   ResourceMark rm;
  2532   HandleMark   hm;
  2533   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2535   g1h->ensure_parsability(false);
  2537   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2538     G1CollectedHeap::StrongRootsScope srs(g1h);
  2539     // this is remark, so we'll use up all active threads
  2540     uint active_workers = g1h->workers()->active_workers();
  2541     if (active_workers == 0) {
  2542       assert(active_workers > 0, "Should have been set earlier");
  2543       active_workers = (uint) ParallelGCThreads;
  2544       g1h->workers()->set_active_workers(active_workers);
  2546     set_phase(active_workers, false /* concurrent */);
  2547     // Leave _parallel_marking_threads at it's
  2548     // value originally calculated in the ConcurrentMark
  2549     // constructor and pass values of the active workers
  2550     // through the gang in the task.
  2552     CMRemarkTask remarkTask(this, active_workers);
  2553     g1h->set_par_threads(active_workers);
  2554     g1h->workers()->run_task(&remarkTask);
  2555     g1h->set_par_threads(0);
  2556   } else {
  2557     G1CollectedHeap::StrongRootsScope srs(g1h);
  2558     // this is remark, so we'll use up all available threads
  2559     uint active_workers = 1;
  2560     set_phase(active_workers, false /* concurrent */);
  2562     CMRemarkTask remarkTask(this, active_workers);
  2563     // We will start all available threads, even if we decide that the
  2564     // active_workers will be fewer. The extra ones will just bail out
  2565     // immediately.
  2566     remarkTask.work(0);
  2568   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2569   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2571   print_stats();
  2573 #if VERIFY_OBJS_PROCESSED
  2574   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
  2575     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
  2576                            _scan_obj_cl.objs_processed,
  2577                            ThreadLocalObjQueue::objs_enqueued);
  2578     guarantee(_scan_obj_cl.objs_processed ==
  2579               ThreadLocalObjQueue::objs_enqueued,
  2580               "Different number of objs processed and enqueued.");
  2582 #endif
  2585 #ifndef PRODUCT
  2587 class PrintReachableOopClosure: public OopClosure {
  2588 private:
  2589   G1CollectedHeap* _g1h;
  2590   outputStream*    _out;
  2591   VerifyOption     _vo;
  2592   bool             _all;
  2594 public:
  2595   PrintReachableOopClosure(outputStream* out,
  2596                            VerifyOption  vo,
  2597                            bool          all) :
  2598     _g1h(G1CollectedHeap::heap()),
  2599     _out(out), _vo(vo), _all(all) { }
  2601   void do_oop(narrowOop* p) { do_oop_work(p); }
  2602   void do_oop(      oop* p) { do_oop_work(p); }
  2604   template <class T> void do_oop_work(T* p) {
  2605     oop         obj = oopDesc::load_decode_heap_oop(p);
  2606     const char* str = NULL;
  2607     const char* str2 = "";
  2609     if (obj == NULL) {
  2610       str = "";
  2611     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2612       str = " O";
  2613     } else {
  2614       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2615       guarantee(hr != NULL, "invariant");
  2616       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2617       bool marked = _g1h->is_marked(obj, _vo);
  2619       if (over_tams) {
  2620         str = " >";
  2621         if (marked) {
  2622           str2 = " AND MARKED";
  2624       } else if (marked) {
  2625         str = " M";
  2626       } else {
  2627         str = " NOT";
  2631     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2632                    p, (void*) obj, str, str2);
  2634 };
  2636 class PrintReachableObjectClosure : public ObjectClosure {
  2637 private:
  2638   G1CollectedHeap* _g1h;
  2639   outputStream*    _out;
  2640   VerifyOption     _vo;
  2641   bool             _all;
  2642   HeapRegion*      _hr;
  2644 public:
  2645   PrintReachableObjectClosure(outputStream* out,
  2646                               VerifyOption  vo,
  2647                               bool          all,
  2648                               HeapRegion*   hr) :
  2649     _g1h(G1CollectedHeap::heap()),
  2650     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2652   void do_object(oop o) {
  2653     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2654     bool marked = _g1h->is_marked(o, _vo);
  2655     bool print_it = _all || over_tams || marked;
  2657     if (print_it) {
  2658       _out->print_cr(" "PTR_FORMAT"%s",
  2659                      o, (over_tams) ? " >" : (marked) ? " M" : "");
  2660       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2661       o->oop_iterate_no_header(&oopCl);
  2664 };
  2666 class PrintReachableRegionClosure : public HeapRegionClosure {
  2667 private:
  2668   G1CollectedHeap* _g1h;
  2669   outputStream*    _out;
  2670   VerifyOption     _vo;
  2671   bool             _all;
  2673 public:
  2674   bool doHeapRegion(HeapRegion* hr) {
  2675     HeapWord* b = hr->bottom();
  2676     HeapWord* e = hr->end();
  2677     HeapWord* t = hr->top();
  2678     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2679     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2680                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2681     _out->cr();
  2683     HeapWord* from = b;
  2684     HeapWord* to   = t;
  2686     if (to > from) {
  2687       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  2688       _out->cr();
  2689       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2690       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2691       _out->cr();
  2694     return false;
  2697   PrintReachableRegionClosure(outputStream* out,
  2698                               VerifyOption  vo,
  2699                               bool          all) :
  2700     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2701 };
  2703 void ConcurrentMark::print_reachable(const char* str,
  2704                                      VerifyOption vo,
  2705                                      bool all) {
  2706   gclog_or_tty->cr();
  2707   gclog_or_tty->print_cr("== Doing heap dump... ");
  2709   if (G1PrintReachableBaseFile == NULL) {
  2710     gclog_or_tty->print_cr("  #### error: no base file defined");
  2711     return;
  2714   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2715       (JVM_MAXPATHLEN - 1)) {
  2716     gclog_or_tty->print_cr("  #### error: file name too long");
  2717     return;
  2720   char file_name[JVM_MAXPATHLEN];
  2721   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2722   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2724   fileStream fout(file_name);
  2725   if (!fout.is_open()) {
  2726     gclog_or_tty->print_cr("  #### error: could not open file");
  2727     return;
  2730   outputStream* out = &fout;
  2731   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2732   out->cr();
  2734   out->print_cr("--- ITERATING OVER REGIONS");
  2735   out->cr();
  2736   PrintReachableRegionClosure rcl(out, vo, all);
  2737   _g1h->heap_region_iterate(&rcl);
  2738   out->cr();
  2740   gclog_or_tty->print_cr("  done");
  2741   gclog_or_tty->flush();
  2744 #endif // PRODUCT
  2746 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2747   // Note we are overriding the read-only view of the prev map here, via
  2748   // the cast.
  2749   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2752 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2753   _nextMarkBitMap->clearRange(mr);
  2756 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2757   clearRangePrevBitmap(mr);
  2758   clearRangeNextBitmap(mr);
  2761 HeapRegion*
  2762 ConcurrentMark::claim_region(uint worker_id) {
  2763   // "checkpoint" the finger
  2764   HeapWord* finger = _finger;
  2766   // _heap_end will not change underneath our feet; it only changes at
  2767   // yield points.
  2768   while (finger < _heap_end) {
  2769     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2771     // Note on how this code handles humongous regions. In the
  2772     // normal case the finger will reach the start of a "starts
  2773     // humongous" (SH) region. Its end will either be the end of the
  2774     // last "continues humongous" (CH) region in the sequence, or the
  2775     // standard end of the SH region (if the SH is the only region in
  2776     // the sequence). That way claim_region() will skip over the CH
  2777     // regions. However, there is a subtle race between a CM thread
  2778     // executing this method and a mutator thread doing a humongous
  2779     // object allocation. The two are not mutually exclusive as the CM
  2780     // thread does not need to hold the Heap_lock when it gets
  2781     // here. So there is a chance that claim_region() will come across
  2782     // a free region that's in the progress of becoming a SH or a CH
  2783     // region. In the former case, it will either
  2784     //   a) Miss the update to the region's end, in which case it will
  2785     //      visit every subsequent CH region, will find their bitmaps
  2786     //      empty, and do nothing, or
  2787     //   b) Will observe the update of the region's end (in which case
  2788     //      it will skip the subsequent CH regions).
  2789     // If it comes across a region that suddenly becomes CH, the
  2790     // scenario will be similar to b). So, the race between
  2791     // claim_region() and a humongous object allocation might force us
  2792     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2793     // iterations) but it should not introduce and correctness issues.
  2794     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2795     HeapWord*   bottom        = curr_region->bottom();
  2796     HeapWord*   end           = curr_region->end();
  2797     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2799     if (verbose_low()) {
  2800       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2801                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2802                              "limit = "PTR_FORMAT,
  2803                              worker_id, curr_region, bottom, end, limit);
  2806     // Is the gap between reading the finger and doing the CAS too long?
  2807     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2808     if (res == finger) {
  2809       // we succeeded
  2811       // notice that _finger == end cannot be guaranteed here since,
  2812       // someone else might have moved the finger even further
  2813       assert(_finger >= end, "the finger should have moved forward");
  2815       if (verbose_low()) {
  2816         gclog_or_tty->print_cr("[%u] we were successful with region = "
  2817                                PTR_FORMAT, worker_id, curr_region);
  2820       if (limit > bottom) {
  2821         if (verbose_low()) {
  2822           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  2823                                  "returning it ", worker_id, curr_region);
  2825         return curr_region;
  2826       } else {
  2827         assert(limit == bottom,
  2828                "the region limit should be at bottom");
  2829         if (verbose_low()) {
  2830           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  2831                                  "returning NULL", worker_id, curr_region);
  2833         // we return NULL and the caller should try calling
  2834         // claim_region() again.
  2835         return NULL;
  2837     } else {
  2838       assert(_finger > finger, "the finger should have moved forward");
  2839       if (verbose_low()) {
  2840         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  2841                                "global finger = "PTR_FORMAT", "
  2842                                "our finger = "PTR_FORMAT,
  2843                                worker_id, _finger, finger);
  2846       // read it again
  2847       finger = _finger;
  2851   return NULL;
  2854 #ifndef PRODUCT
  2855 enum VerifyNoCSetOopsPhase {
  2856   VerifyNoCSetOopsStack,
  2857   VerifyNoCSetOopsQueues,
  2858   VerifyNoCSetOopsSATBCompleted,
  2859   VerifyNoCSetOopsSATBThread
  2860 };
  2862 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  2863 private:
  2864   G1CollectedHeap* _g1h;
  2865   VerifyNoCSetOopsPhase _phase;
  2866   int _info;
  2868   const char* phase_str() {
  2869     switch (_phase) {
  2870     case VerifyNoCSetOopsStack:         return "Stack";
  2871     case VerifyNoCSetOopsQueues:        return "Queue";
  2872     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  2873     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  2874     default:                            ShouldNotReachHere();
  2876     return NULL;
  2879   void do_object_work(oop obj) {
  2880     guarantee(!_g1h->obj_in_cs(obj),
  2881               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  2882                       (void*) obj, phase_str(), _info));
  2885 public:
  2886   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  2888   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  2889     _phase = phase;
  2890     _info = info;
  2893   virtual void do_oop(oop* p) {
  2894     oop obj = oopDesc::load_decode_heap_oop(p);
  2895     do_object_work(obj);
  2898   virtual void do_oop(narrowOop* p) {
  2899     // We should not come across narrow oops while scanning marking
  2900     // stacks and SATB buffers.
  2901     ShouldNotReachHere();
  2904   virtual void do_object(oop obj) {
  2905     do_object_work(obj);
  2907 };
  2909 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  2910                                          bool verify_enqueued_buffers,
  2911                                          bool verify_thread_buffers,
  2912                                          bool verify_fingers) {
  2913   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2914   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  2915     return;
  2918   VerifyNoCSetOopsClosure cl;
  2920   if (verify_stacks) {
  2921     // Verify entries on the global mark stack
  2922     cl.set_phase(VerifyNoCSetOopsStack);
  2923     _markStack.oops_do(&cl);
  2925     // Verify entries on the task queues
  2926     for (uint i = 0; i < _max_worker_id; i += 1) {
  2927       cl.set_phase(VerifyNoCSetOopsQueues, i);
  2928       CMTaskQueue* queue = _task_queues->queue(i);
  2929       queue->oops_do(&cl);
  2933   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  2935   // Verify entries on the enqueued SATB buffers
  2936   if (verify_enqueued_buffers) {
  2937     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  2938     satb_qs.iterate_completed_buffers_read_only(&cl);
  2941   // Verify entries on the per-thread SATB buffers
  2942   if (verify_thread_buffers) {
  2943     cl.set_phase(VerifyNoCSetOopsSATBThread);
  2944     satb_qs.iterate_thread_buffers_read_only(&cl);
  2947   if (verify_fingers) {
  2948     // Verify the global finger
  2949     HeapWord* global_finger = finger();
  2950     if (global_finger != NULL && global_finger < _heap_end) {
  2951       // The global finger always points to a heap region boundary. We
  2952       // use heap_region_containing_raw() to get the containing region
  2953       // given that the global finger could be pointing to a free region
  2954       // which subsequently becomes continues humongous. If that
  2955       // happens, heap_region_containing() will return the bottom of the
  2956       // corresponding starts humongous region and the check below will
  2957       // not hold any more.
  2958       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  2959       guarantee(global_finger == global_hr->bottom(),
  2960                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  2961                         global_finger, HR_FORMAT_PARAMS(global_hr)));
  2964     // Verify the task fingers
  2965     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  2966     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  2967       CMTask* task = _tasks[i];
  2968       HeapWord* task_finger = task->finger();
  2969       if (task_finger != NULL && task_finger < _heap_end) {
  2970         // See above note on the global finger verification.
  2971         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  2972         guarantee(task_finger == task_hr->bottom() ||
  2973                   !task_hr->in_collection_set(),
  2974                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  2975                           task_finger, HR_FORMAT_PARAMS(task_hr)));
  2980 #endif // PRODUCT
  2982 // Aggregate the counting data that was constructed concurrently
  2983 // with marking.
  2984 class AggregateCountDataHRClosure: public HeapRegionClosure {
  2985   G1CollectedHeap* _g1h;
  2986   ConcurrentMark* _cm;
  2987   CardTableModRefBS* _ct_bs;
  2988   BitMap* _cm_card_bm;
  2989   uint _max_worker_id;
  2991  public:
  2992   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  2993                               BitMap* cm_card_bm,
  2994                               uint max_worker_id) :
  2995     _g1h(g1h), _cm(g1h->concurrent_mark()),
  2996     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  2997     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  2999   bool doHeapRegion(HeapRegion* hr) {
  3000     if (hr->continuesHumongous()) {
  3001       // We will ignore these here and process them when their
  3002       // associated "starts humongous" region is processed.
  3003       // Note that we cannot rely on their associated
  3004       // "starts humongous" region to have their bit set to 1
  3005       // since, due to the region chunking in the parallel region
  3006       // iteration, a "continues humongous" region might be visited
  3007       // before its associated "starts humongous".
  3008       return false;
  3011     HeapWord* start = hr->bottom();
  3012     HeapWord* limit = hr->next_top_at_mark_start();
  3013     HeapWord* end = hr->end();
  3015     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3016            err_msg("Preconditions not met - "
  3017                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3018                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3019                    start, limit, hr->top(), hr->end()));
  3021     assert(hr->next_marked_bytes() == 0, "Precondition");
  3023     if (start == limit) {
  3024       // NTAMS of this region has not been set so nothing to do.
  3025       return false;
  3028     // 'start' should be in the heap.
  3029     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3030     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3031     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3033     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3034     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3035     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3037     // If ntams is not card aligned then we bump card bitmap index
  3038     // for limit so that we get the all the cards spanned by
  3039     // the object ending at ntams.
  3040     // Note: if this is the last region in the heap then ntams
  3041     // could be actually just beyond the end of the the heap;
  3042     // limit_idx will then  correspond to a (non-existent) card
  3043     // that is also outside the heap.
  3044     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3045       limit_idx += 1;
  3048     assert(limit_idx <= end_idx, "or else use atomics");
  3050     // Aggregate the "stripe" in the count data associated with hr.
  3051     uint hrs_index = hr->hrs_index();
  3052     size_t marked_bytes = 0;
  3054     for (uint i = 0; i < _max_worker_id; i += 1) {
  3055       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3056       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3058       // Fetch the marked_bytes in this region for task i and
  3059       // add it to the running total for this region.
  3060       marked_bytes += marked_bytes_array[hrs_index];
  3062       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3063       // into the global card bitmap.
  3064       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3066       while (scan_idx < limit_idx) {
  3067         assert(task_card_bm->at(scan_idx) == true, "should be");
  3068         _cm_card_bm->set_bit(scan_idx);
  3069         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3071         // BitMap::get_next_one_offset() can handle the case when
  3072         // its left_offset parameter is greater than its right_offset
  3073         // parameter. It does, however, have an early exit if
  3074         // left_offset == right_offset. So let's limit the value
  3075         // passed in for left offset here.
  3076         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3077         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3081     // Update the marked bytes for this region.
  3082     hr->add_to_marked_bytes(marked_bytes);
  3084     // Next heap region
  3085     return false;
  3087 };
  3089 class G1AggregateCountDataTask: public AbstractGangTask {
  3090 protected:
  3091   G1CollectedHeap* _g1h;
  3092   ConcurrentMark* _cm;
  3093   BitMap* _cm_card_bm;
  3094   uint _max_worker_id;
  3095   int _active_workers;
  3097 public:
  3098   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3099                            ConcurrentMark* cm,
  3100                            BitMap* cm_card_bm,
  3101                            uint max_worker_id,
  3102                            int n_workers) :
  3103     AbstractGangTask("Count Aggregation"),
  3104     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3105     _max_worker_id(max_worker_id),
  3106     _active_workers(n_workers) { }
  3108   void work(uint worker_id) {
  3109     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3111     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3112       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3113                                             _active_workers,
  3114                                             HeapRegion::AggregateCountClaimValue);
  3115     } else {
  3116       _g1h->heap_region_iterate(&cl);
  3119 };
  3122 void ConcurrentMark::aggregate_count_data() {
  3123   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3124                         _g1h->workers()->active_workers() :
  3125                         1);
  3127   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3128                                            _max_worker_id, n_workers);
  3130   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3131     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3132            "sanity check");
  3133     _g1h->set_par_threads(n_workers);
  3134     _g1h->workers()->run_task(&g1_par_agg_task);
  3135     _g1h->set_par_threads(0);
  3137     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3138            "sanity check");
  3139     _g1h->reset_heap_region_claim_values();
  3140   } else {
  3141     g1_par_agg_task.work(0);
  3145 // Clear the per-worker arrays used to store the per-region counting data
  3146 void ConcurrentMark::clear_all_count_data() {
  3147   // Clear the global card bitmap - it will be filled during
  3148   // liveness count aggregation (during remark) and the
  3149   // final counting task.
  3150   _card_bm.clear();
  3152   // Clear the global region bitmap - it will be filled as part
  3153   // of the final counting task.
  3154   _region_bm.clear();
  3156   uint max_regions = _g1h->max_regions();
  3157   assert(_max_worker_id > 0, "uninitialized");
  3159   for (uint i = 0; i < _max_worker_id; i += 1) {
  3160     BitMap* task_card_bm = count_card_bitmap_for(i);
  3161     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3163     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3164     assert(marked_bytes_array != NULL, "uninitialized");
  3166     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3167     task_card_bm->clear();
  3171 void ConcurrentMark::print_stats() {
  3172   if (verbose_stats()) {
  3173     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3174     for (size_t i = 0; i < _active_tasks; ++i) {
  3175       _tasks[i]->print_stats();
  3176       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3181 // abandon current marking iteration due to a Full GC
  3182 void ConcurrentMark::abort() {
  3183   // Clear all marks to force marking thread to do nothing
  3184   _nextMarkBitMap->clearAll();
  3185   // Clear the liveness counting data
  3186   clear_all_count_data();
  3187   // Empty mark stack
  3188   reset_marking_state();
  3189   for (uint i = 0; i < _max_worker_id; ++i) {
  3190     _tasks[i]->clear_region_fields();
  3192   _has_aborted = true;
  3194   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3195   satb_mq_set.abandon_partial_marking();
  3196   // This can be called either during or outside marking, we'll read
  3197   // the expected_active value from the SATB queue set.
  3198   satb_mq_set.set_active_all_threads(
  3199                                  false, /* new active value */
  3200                                  satb_mq_set.is_active() /* expected_active */);
  3203 static void print_ms_time_info(const char* prefix, const char* name,
  3204                                NumberSeq& ns) {
  3205   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3206                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3207   if (ns.num() > 0) {
  3208     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3209                            prefix, ns.sd(), ns.maximum());
  3213 void ConcurrentMark::print_summary_info() {
  3214   gclog_or_tty->print_cr(" Concurrent marking:");
  3215   print_ms_time_info("  ", "init marks", _init_times);
  3216   print_ms_time_info("  ", "remarks", _remark_times);
  3218     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3219     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3222   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3223   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3224                          _total_counting_time,
  3225                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3226                           (double)_cleanup_times.num()
  3227                          : 0.0));
  3228   if (G1ScrubRemSets) {
  3229     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3230                            _total_rs_scrub_time,
  3231                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3232                             (double)_cleanup_times.num()
  3233                            : 0.0));
  3235   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3236                          (_init_times.sum() + _remark_times.sum() +
  3237                           _cleanup_times.sum())/1000.0);
  3238   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3239                 "(%8.2f s marking).",
  3240                 cmThread()->vtime_accum(),
  3241                 cmThread()->vtime_mark_accum());
  3244 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3245   _parallel_workers->print_worker_threads_on(st);
  3248 // We take a break if someone is trying to stop the world.
  3249 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3250   if (should_yield()) {
  3251     if (worker_id == 0) {
  3252       _g1h->g1_policy()->record_concurrent_pause();
  3254     cmThread()->yield();
  3255     return true;
  3256   } else {
  3257     return false;
  3261 bool ConcurrentMark::should_yield() {
  3262   return cmThread()->should_yield();
  3265 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3266   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3267   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3270 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3271                                                  void* last) {
  3272   return containing_card_is_marked(start) &&
  3273          containing_card_is_marked(last);
  3276 #ifndef PRODUCT
  3277 // for debugging purposes
  3278 void ConcurrentMark::print_finger() {
  3279   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3280                          _heap_start, _heap_end, _finger);
  3281   for (uint i = 0; i < _max_worker_id; ++i) {
  3282     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
  3284   gclog_or_tty->print_cr("");
  3286 #endif
  3288 void CMTask::scan_object(oop obj) {
  3289   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3291   if (_cm->verbose_high()) {
  3292     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3293                            _worker_id, (void*) obj);
  3296   size_t obj_size = obj->size();
  3297   _words_scanned += obj_size;
  3299   obj->oop_iterate(_cm_oop_closure);
  3300   statsOnly( ++_objs_scanned );
  3301   check_limits();
  3304 // Closure for iteration over bitmaps
  3305 class CMBitMapClosure : public BitMapClosure {
  3306 private:
  3307   // the bitmap that is being iterated over
  3308   CMBitMap*                   _nextMarkBitMap;
  3309   ConcurrentMark*             _cm;
  3310   CMTask*                     _task;
  3312 public:
  3313   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3314     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3316   bool do_bit(size_t offset) {
  3317     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3318     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3319     assert( addr < _cm->finger(), "invariant");
  3321     statsOnly( _task->increase_objs_found_on_bitmap() );
  3322     assert(addr >= _task->finger(), "invariant");
  3324     // We move that task's local finger along.
  3325     _task->move_finger_to(addr);
  3327     _task->scan_object(oop(addr));
  3328     // we only partially drain the local queue and global stack
  3329     _task->drain_local_queue(true);
  3330     _task->drain_global_stack(true);
  3332     // if the has_aborted flag has been raised, we need to bail out of
  3333     // the iteration
  3334     return !_task->has_aborted();
  3336 };
  3338 // Closure for iterating over objects, currently only used for
  3339 // processing SATB buffers.
  3340 class CMObjectClosure : public ObjectClosure {
  3341 private:
  3342   CMTask* _task;
  3344 public:
  3345   void do_object(oop obj) {
  3346     _task->deal_with_reference(obj);
  3349   CMObjectClosure(CMTask* task) : _task(task) { }
  3350 };
  3352 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3353                                ConcurrentMark* cm,
  3354                                CMTask* task)
  3355   : _g1h(g1h), _cm(cm), _task(task) {
  3356   assert(_ref_processor == NULL, "should be initialized to NULL");
  3358   if (G1UseConcMarkReferenceProcessing) {
  3359     _ref_processor = g1h->ref_processor_cm();
  3360     assert(_ref_processor != NULL, "should not be NULL");
  3364 void CMTask::setup_for_region(HeapRegion* hr) {
  3365   // Separated the asserts so that we know which one fires.
  3366   assert(hr != NULL,
  3367         "claim_region() should have filtered out continues humongous regions");
  3368   assert(!hr->continuesHumongous(),
  3369         "claim_region() should have filtered out continues humongous regions");
  3371   if (_cm->verbose_low()) {
  3372     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3373                            _worker_id, hr);
  3376   _curr_region  = hr;
  3377   _finger       = hr->bottom();
  3378   update_region_limit();
  3381 void CMTask::update_region_limit() {
  3382   HeapRegion* hr            = _curr_region;
  3383   HeapWord* bottom          = hr->bottom();
  3384   HeapWord* limit           = hr->next_top_at_mark_start();
  3386   if (limit == bottom) {
  3387     if (_cm->verbose_low()) {
  3388       gclog_or_tty->print_cr("[%u] found an empty region "
  3389                              "["PTR_FORMAT", "PTR_FORMAT")",
  3390                              _worker_id, bottom, limit);
  3392     // The region was collected underneath our feet.
  3393     // We set the finger to bottom to ensure that the bitmap
  3394     // iteration that will follow this will not do anything.
  3395     // (this is not a condition that holds when we set the region up,
  3396     // as the region is not supposed to be empty in the first place)
  3397     _finger = bottom;
  3398   } else if (limit >= _region_limit) {
  3399     assert(limit >= _finger, "peace of mind");
  3400   } else {
  3401     assert(limit < _region_limit, "only way to get here");
  3402     // This can happen under some pretty unusual circumstances.  An
  3403     // evacuation pause empties the region underneath our feet (NTAMS
  3404     // at bottom). We then do some allocation in the region (NTAMS
  3405     // stays at bottom), followed by the region being used as a GC
  3406     // alloc region (NTAMS will move to top() and the objects
  3407     // originally below it will be grayed). All objects now marked in
  3408     // the region are explicitly grayed, if below the global finger,
  3409     // and we do not need in fact to scan anything else. So, we simply
  3410     // set _finger to be limit to ensure that the bitmap iteration
  3411     // doesn't do anything.
  3412     _finger = limit;
  3415   _region_limit = limit;
  3418 void CMTask::giveup_current_region() {
  3419   assert(_curr_region != NULL, "invariant");
  3420   if (_cm->verbose_low()) {
  3421     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3422                            _worker_id, _curr_region);
  3424   clear_region_fields();
  3427 void CMTask::clear_region_fields() {
  3428   // Values for these three fields that indicate that we're not
  3429   // holding on to a region.
  3430   _curr_region   = NULL;
  3431   _finger        = NULL;
  3432   _region_limit  = NULL;
  3435 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3436   if (cm_oop_closure == NULL) {
  3437     assert(_cm_oop_closure != NULL, "invariant");
  3438   } else {
  3439     assert(_cm_oop_closure == NULL, "invariant");
  3441   _cm_oop_closure = cm_oop_closure;
  3444 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3445   guarantee(nextMarkBitMap != NULL, "invariant");
  3447   if (_cm->verbose_low()) {
  3448     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3451   _nextMarkBitMap                = nextMarkBitMap;
  3452   clear_region_fields();
  3454   _calls                         = 0;
  3455   _elapsed_time_ms               = 0.0;
  3456   _termination_time_ms           = 0.0;
  3457   _termination_start_time_ms     = 0.0;
  3459 #if _MARKING_STATS_
  3460   _local_pushes                  = 0;
  3461   _local_pops                    = 0;
  3462   _local_max_size                = 0;
  3463   _objs_scanned                  = 0;
  3464   _global_pushes                 = 0;
  3465   _global_pops                   = 0;
  3466   _global_max_size               = 0;
  3467   _global_transfers_to           = 0;
  3468   _global_transfers_from         = 0;
  3469   _regions_claimed               = 0;
  3470   _objs_found_on_bitmap          = 0;
  3471   _satb_buffers_processed        = 0;
  3472   _steal_attempts                = 0;
  3473   _steals                        = 0;
  3474   _aborted                       = 0;
  3475   _aborted_overflow              = 0;
  3476   _aborted_cm_aborted            = 0;
  3477   _aborted_yield                 = 0;
  3478   _aborted_timed_out             = 0;
  3479   _aborted_satb                  = 0;
  3480   _aborted_termination           = 0;
  3481 #endif // _MARKING_STATS_
  3484 bool CMTask::should_exit_termination() {
  3485   regular_clock_call();
  3486   // This is called when we are in the termination protocol. We should
  3487   // quit if, for some reason, this task wants to abort or the global
  3488   // stack is not empty (this means that we can get work from it).
  3489   return !_cm->mark_stack_empty() || has_aborted();
  3492 void CMTask::reached_limit() {
  3493   assert(_words_scanned >= _words_scanned_limit ||
  3494          _refs_reached >= _refs_reached_limit ,
  3495          "shouldn't have been called otherwise");
  3496   regular_clock_call();
  3499 void CMTask::regular_clock_call() {
  3500   if (has_aborted()) return;
  3502   // First, we need to recalculate the words scanned and refs reached
  3503   // limits for the next clock call.
  3504   recalculate_limits();
  3506   // During the regular clock call we do the following
  3508   // (1) If an overflow has been flagged, then we abort.
  3509   if (_cm->has_overflown()) {
  3510     set_has_aborted();
  3511     return;
  3514   // If we are not concurrent (i.e. we're doing remark) we don't need
  3515   // to check anything else. The other steps are only needed during
  3516   // the concurrent marking phase.
  3517   if (!concurrent()) return;
  3519   // (2) If marking has been aborted for Full GC, then we also abort.
  3520   if (_cm->has_aborted()) {
  3521     set_has_aborted();
  3522     statsOnly( ++_aborted_cm_aborted );
  3523     return;
  3526   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3528   // (3) If marking stats are enabled, then we update the step history.
  3529 #if _MARKING_STATS_
  3530   if (_words_scanned >= _words_scanned_limit) {
  3531     ++_clock_due_to_scanning;
  3533   if (_refs_reached >= _refs_reached_limit) {
  3534     ++_clock_due_to_marking;
  3537   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3538   _interval_start_time_ms = curr_time_ms;
  3539   _all_clock_intervals_ms.add(last_interval_ms);
  3541   if (_cm->verbose_medium()) {
  3542       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3543                         "scanned = %d%s, refs reached = %d%s",
  3544                         _worker_id, last_interval_ms,
  3545                         _words_scanned,
  3546                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3547                         _refs_reached,
  3548                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3550 #endif // _MARKING_STATS_
  3552   // (4) We check whether we should yield. If we have to, then we abort.
  3553   if (_cm->should_yield()) {
  3554     // We should yield. To do this we abort the task. The caller is
  3555     // responsible for yielding.
  3556     set_has_aborted();
  3557     statsOnly( ++_aborted_yield );
  3558     return;
  3561   // (5) We check whether we've reached our time quota. If we have,
  3562   // then we abort.
  3563   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3564   if (elapsed_time_ms > _time_target_ms) {
  3565     set_has_aborted();
  3566     _has_timed_out = true;
  3567     statsOnly( ++_aborted_timed_out );
  3568     return;
  3571   // (6) Finally, we check whether there are enough completed STAB
  3572   // buffers available for processing. If there are, we abort.
  3573   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3574   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3575     if (_cm->verbose_low()) {
  3576       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3577                              _worker_id);
  3579     // we do need to process SATB buffers, we'll abort and restart
  3580     // the marking task to do so
  3581     set_has_aborted();
  3582     statsOnly( ++_aborted_satb );
  3583     return;
  3587 void CMTask::recalculate_limits() {
  3588   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3589   _words_scanned_limit      = _real_words_scanned_limit;
  3591   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3592   _refs_reached_limit       = _real_refs_reached_limit;
  3595 void CMTask::decrease_limits() {
  3596   // This is called when we believe that we're going to do an infrequent
  3597   // operation which will increase the per byte scanned cost (i.e. move
  3598   // entries to/from the global stack). It basically tries to decrease the
  3599   // scanning limit so that the clock is called earlier.
  3601   if (_cm->verbose_medium()) {
  3602     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3605   _words_scanned_limit = _real_words_scanned_limit -
  3606     3 * words_scanned_period / 4;
  3607   _refs_reached_limit  = _real_refs_reached_limit -
  3608     3 * refs_reached_period / 4;
  3611 void CMTask::move_entries_to_global_stack() {
  3612   // local array where we'll store the entries that will be popped
  3613   // from the local queue
  3614   oop buffer[global_stack_transfer_size];
  3616   int n = 0;
  3617   oop obj;
  3618   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3619     buffer[n] = obj;
  3620     ++n;
  3623   if (n > 0) {
  3624     // we popped at least one entry from the local queue
  3626     statsOnly( ++_global_transfers_to; _local_pops += n );
  3628     if (!_cm->mark_stack_push(buffer, n)) {
  3629       if (_cm->verbose_low()) {
  3630         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3631                                _worker_id);
  3633       set_has_aborted();
  3634     } else {
  3635       // the transfer was successful
  3637       if (_cm->verbose_medium()) {
  3638         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3639                                _worker_id, n);
  3641       statsOnly( int tmp_size = _cm->mark_stack_size();
  3642                  if (tmp_size > _global_max_size) {
  3643                    _global_max_size = tmp_size;
  3645                  _global_pushes += n );
  3649   // this operation was quite expensive, so decrease the limits
  3650   decrease_limits();
  3653 void CMTask::get_entries_from_global_stack() {
  3654   // local array where we'll store the entries that will be popped
  3655   // from the global stack.
  3656   oop buffer[global_stack_transfer_size];
  3657   int n;
  3658   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3659   assert(n <= global_stack_transfer_size,
  3660          "we should not pop more than the given limit");
  3661   if (n > 0) {
  3662     // yes, we did actually pop at least one entry
  3664     statsOnly( ++_global_transfers_from; _global_pops += n );
  3665     if (_cm->verbose_medium()) {
  3666       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3667                              _worker_id, n);
  3669     for (int i = 0; i < n; ++i) {
  3670       bool success = _task_queue->push(buffer[i]);
  3671       // We only call this when the local queue is empty or under a
  3672       // given target limit. So, we do not expect this push to fail.
  3673       assert(success, "invariant");
  3676     statsOnly( int tmp_size = _task_queue->size();
  3677                if (tmp_size > _local_max_size) {
  3678                  _local_max_size = tmp_size;
  3680                _local_pushes += n );
  3683   // this operation was quite expensive, so decrease the limits
  3684   decrease_limits();
  3687 void CMTask::drain_local_queue(bool partially) {
  3688   if (has_aborted()) return;
  3690   // Decide what the target size is, depending whether we're going to
  3691   // drain it partially (so that other tasks can steal if they run out
  3692   // of things to do) or totally (at the very end).
  3693   size_t target_size;
  3694   if (partially) {
  3695     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3696   } else {
  3697     target_size = 0;
  3700   if (_task_queue->size() > target_size) {
  3701     if (_cm->verbose_high()) {
  3702       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
  3703                              _worker_id, target_size);
  3706     oop obj;
  3707     bool ret = _task_queue->pop_local(obj);
  3708     while (ret) {
  3709       statsOnly( ++_local_pops );
  3711       if (_cm->verbose_high()) {
  3712         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3713                                (void*) obj);
  3716       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3717       assert(!_g1h->is_on_master_free_list(
  3718                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3720       scan_object(obj);
  3722       if (_task_queue->size() <= target_size || has_aborted()) {
  3723         ret = false;
  3724       } else {
  3725         ret = _task_queue->pop_local(obj);
  3729     if (_cm->verbose_high()) {
  3730       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3731                              _worker_id, _task_queue->size());
  3736 void CMTask::drain_global_stack(bool partially) {
  3737   if (has_aborted()) return;
  3739   // We have a policy to drain the local queue before we attempt to
  3740   // drain the global stack.
  3741   assert(partially || _task_queue->size() == 0, "invariant");
  3743   // Decide what the target size is, depending whether we're going to
  3744   // drain it partially (so that other tasks can steal if they run out
  3745   // of things to do) or totally (at the very end).  Notice that,
  3746   // because we move entries from the global stack in chunks or
  3747   // because another task might be doing the same, we might in fact
  3748   // drop below the target. But, this is not a problem.
  3749   size_t target_size;
  3750   if (partially) {
  3751     target_size = _cm->partial_mark_stack_size_target();
  3752   } else {
  3753     target_size = 0;
  3756   if (_cm->mark_stack_size() > target_size) {
  3757     if (_cm->verbose_low()) {
  3758       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
  3759                              _worker_id, target_size);
  3762     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3763       get_entries_from_global_stack();
  3764       drain_local_queue(partially);
  3767     if (_cm->verbose_low()) {
  3768       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
  3769                              _worker_id, _cm->mark_stack_size());
  3774 // SATB Queue has several assumptions on whether to call the par or
  3775 // non-par versions of the methods. this is why some of the code is
  3776 // replicated. We should really get rid of the single-threaded version
  3777 // of the code to simplify things.
  3778 void CMTask::drain_satb_buffers() {
  3779   if (has_aborted()) return;
  3781   // We set this so that the regular clock knows that we're in the
  3782   // middle of draining buffers and doesn't set the abort flag when it
  3783   // notices that SATB buffers are available for draining. It'd be
  3784   // very counter productive if it did that. :-)
  3785   _draining_satb_buffers = true;
  3787   CMObjectClosure oc(this);
  3788   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3789   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3790     satb_mq_set.set_par_closure(_worker_id, &oc);
  3791   } else {
  3792     satb_mq_set.set_closure(&oc);
  3795   // This keeps claiming and applying the closure to completed buffers
  3796   // until we run out of buffers or we need to abort.
  3797   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3798     while (!has_aborted() &&
  3799            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3800       if (_cm->verbose_medium()) {
  3801         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3803       statsOnly( ++_satb_buffers_processed );
  3804       regular_clock_call();
  3806   } else {
  3807     while (!has_aborted() &&
  3808            satb_mq_set.apply_closure_to_completed_buffer()) {
  3809       if (_cm->verbose_medium()) {
  3810         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3812       statsOnly( ++_satb_buffers_processed );
  3813       regular_clock_call();
  3817   if (!concurrent() && !has_aborted()) {
  3818     // We should only do this during remark.
  3819     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3820       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
  3821     } else {
  3822       satb_mq_set.iterate_closure_all_threads();
  3826   _draining_satb_buffers = false;
  3828   assert(has_aborted() ||
  3829          concurrent() ||
  3830          satb_mq_set.completed_buffers_num() == 0, "invariant");
  3832   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3833     satb_mq_set.set_par_closure(_worker_id, NULL);
  3834   } else {
  3835     satb_mq_set.set_closure(NULL);
  3838   // again, this was a potentially expensive operation, decrease the
  3839   // limits to get the regular clock call early
  3840   decrease_limits();
  3843 void CMTask::print_stats() {
  3844   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  3845                          _worker_id, _calls);
  3846   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  3847                          _elapsed_time_ms, _termination_time_ms);
  3848   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3849                          _step_times_ms.num(), _step_times_ms.avg(),
  3850                          _step_times_ms.sd());
  3851   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  3852                          _step_times_ms.maximum(), _step_times_ms.sum());
  3854 #if _MARKING_STATS_
  3855   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3856                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  3857                          _all_clock_intervals_ms.sd());
  3858   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  3859                          _all_clock_intervals_ms.maximum(),
  3860                          _all_clock_intervals_ms.sum());
  3861   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  3862                          _clock_due_to_scanning, _clock_due_to_marking);
  3863   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  3864                          _objs_scanned, _objs_found_on_bitmap);
  3865   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  3866                          _local_pushes, _local_pops, _local_max_size);
  3867   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  3868                          _global_pushes, _global_pops, _global_max_size);
  3869   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  3870                          _global_transfers_to,_global_transfers_from);
  3871   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  3872   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  3873   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  3874                          _steal_attempts, _steals);
  3875   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  3876   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  3877                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  3878   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  3879                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  3880 #endif // _MARKING_STATS_
  3883 /*****************************************************************************
  3885     The do_marking_step(time_target_ms) method is the building block
  3886     of the parallel marking framework. It can be called in parallel
  3887     with other invocations of do_marking_step() on different tasks
  3888     (but only one per task, obviously) and concurrently with the
  3889     mutator threads, or during remark, hence it eliminates the need
  3890     for two versions of the code. When called during remark, it will
  3891     pick up from where the task left off during the concurrent marking
  3892     phase. Interestingly, tasks are also claimable during evacuation
  3893     pauses too, since do_marking_step() ensures that it aborts before
  3894     it needs to yield.
  3896     The data structures that is uses to do marking work are the
  3897     following:
  3899       (1) Marking Bitmap. If there are gray objects that appear only
  3900       on the bitmap (this happens either when dealing with an overflow
  3901       or when the initial marking phase has simply marked the roots
  3902       and didn't push them on the stack), then tasks claim heap
  3903       regions whose bitmap they then scan to find gray objects. A
  3904       global finger indicates where the end of the last claimed region
  3905       is. A local finger indicates how far into the region a task has
  3906       scanned. The two fingers are used to determine how to gray an
  3907       object (i.e. whether simply marking it is OK, as it will be
  3908       visited by a task in the future, or whether it needs to be also
  3909       pushed on a stack).
  3911       (2) Local Queue. The local queue of the task which is accessed
  3912       reasonably efficiently by the task. Other tasks can steal from
  3913       it when they run out of work. Throughout the marking phase, a
  3914       task attempts to keep its local queue short but not totally
  3915       empty, so that entries are available for stealing by other
  3916       tasks. Only when there is no more work, a task will totally
  3917       drain its local queue.
  3919       (3) Global Mark Stack. This handles local queue overflow. During
  3920       marking only sets of entries are moved between it and the local
  3921       queues, as access to it requires a mutex and more fine-grain
  3922       interaction with it which might cause contention. If it
  3923       overflows, then the marking phase should restart and iterate
  3924       over the bitmap to identify gray objects. Throughout the marking
  3925       phase, tasks attempt to keep the global mark stack at a small
  3926       length but not totally empty, so that entries are available for
  3927       popping by other tasks. Only when there is no more work, tasks
  3928       will totally drain the global mark stack.
  3930       (4) SATB Buffer Queue. This is where completed SATB buffers are
  3931       made available. Buffers are regularly removed from this queue
  3932       and scanned for roots, so that the queue doesn't get too
  3933       long. During remark, all completed buffers are processed, as
  3934       well as the filled in parts of any uncompleted buffers.
  3936     The do_marking_step() method tries to abort when the time target
  3937     has been reached. There are a few other cases when the
  3938     do_marking_step() method also aborts:
  3940       (1) When the marking phase has been aborted (after a Full GC).
  3942       (2) When a global overflow (on the global stack) has been
  3943       triggered. Before the task aborts, it will actually sync up with
  3944       the other tasks to ensure that all the marking data structures
  3945       (local queues, stacks, fingers etc.)  are re-initialised so that
  3946       when do_marking_step() completes, the marking phase can
  3947       immediately restart.
  3949       (3) When enough completed SATB buffers are available. The
  3950       do_marking_step() method only tries to drain SATB buffers right
  3951       at the beginning. So, if enough buffers are available, the
  3952       marking step aborts and the SATB buffers are processed at
  3953       the beginning of the next invocation.
  3955       (4) To yield. when we have to yield then we abort and yield
  3956       right at the end of do_marking_step(). This saves us from a lot
  3957       of hassle as, by yielding we might allow a Full GC. If this
  3958       happens then objects will be compacted underneath our feet, the
  3959       heap might shrink, etc. We save checking for this by just
  3960       aborting and doing the yield right at the end.
  3962     From the above it follows that the do_marking_step() method should
  3963     be called in a loop (or, otherwise, regularly) until it completes.
  3965     If a marking step completes without its has_aborted() flag being
  3966     true, it means it has completed the current marking phase (and
  3967     also all other marking tasks have done so and have all synced up).
  3969     A method called regular_clock_call() is invoked "regularly" (in
  3970     sub ms intervals) throughout marking. It is this clock method that
  3971     checks all the abort conditions which were mentioned above and
  3972     decides when the task should abort. A work-based scheme is used to
  3973     trigger this clock method: when the number of object words the
  3974     marking phase has scanned or the number of references the marking
  3975     phase has visited reach a given limit. Additional invocations to
  3976     the method clock have been planted in a few other strategic places
  3977     too. The initial reason for the clock method was to avoid calling
  3978     vtime too regularly, as it is quite expensive. So, once it was in
  3979     place, it was natural to piggy-back all the other conditions on it
  3980     too and not constantly check them throughout the code.
  3982  *****************************************************************************/
  3984 void CMTask::do_marking_step(double time_target_ms,
  3985                              bool do_stealing,
  3986                              bool do_termination) {
  3987   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  3988   assert(concurrent() == _cm->concurrent(), "they should be the same");
  3990   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  3991   assert(_task_queues != NULL, "invariant");
  3992   assert(_task_queue != NULL, "invariant");
  3993   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  3995   assert(!_claimed,
  3996          "only one thread should claim this task at any one time");
  3998   // OK, this doesn't safeguard again all possible scenarios, as it is
  3999   // possible for two threads to set the _claimed flag at the same
  4000   // time. But it is only for debugging purposes anyway and it will
  4001   // catch most problems.
  4002   _claimed = true;
  4004   _start_time_ms = os::elapsedVTime() * 1000.0;
  4005   statsOnly( _interval_start_time_ms = _start_time_ms );
  4007   double diff_prediction_ms =
  4008     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4009   _time_target_ms = time_target_ms - diff_prediction_ms;
  4011   // set up the variables that are used in the work-based scheme to
  4012   // call the regular clock method
  4013   _words_scanned = 0;
  4014   _refs_reached  = 0;
  4015   recalculate_limits();
  4017   // clear all flags
  4018   clear_has_aborted();
  4019   _has_timed_out = false;
  4020   _draining_satb_buffers = false;
  4022   ++_calls;
  4024   if (_cm->verbose_low()) {
  4025     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4026                            "target = %1.2lfms >>>>>>>>>>",
  4027                            _worker_id, _calls, _time_target_ms);
  4030   // Set up the bitmap and oop closures. Anything that uses them is
  4031   // eventually called from this method, so it is OK to allocate these
  4032   // statically.
  4033   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4034   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4035   set_cm_oop_closure(&cm_oop_closure);
  4037   if (_cm->has_overflown()) {
  4038     // This can happen if the mark stack overflows during a GC pause
  4039     // and this task, after a yield point, restarts. We have to abort
  4040     // as we need to get into the overflow protocol which happens
  4041     // right at the end of this task.
  4042     set_has_aborted();
  4045   // First drain any available SATB buffers. After this, we will not
  4046   // look at SATB buffers before the next invocation of this method.
  4047   // If enough completed SATB buffers are queued up, the regular clock
  4048   // will abort this task so that it restarts.
  4049   drain_satb_buffers();
  4050   // ...then partially drain the local queue and the global stack
  4051   drain_local_queue(true);
  4052   drain_global_stack(true);
  4054   do {
  4055     if (!has_aborted() && _curr_region != NULL) {
  4056       // This means that we're already holding on to a region.
  4057       assert(_finger != NULL, "if region is not NULL, then the finger "
  4058              "should not be NULL either");
  4060       // We might have restarted this task after an evacuation pause
  4061       // which might have evacuated the region we're holding on to
  4062       // underneath our feet. Let's read its limit again to make sure
  4063       // that we do not iterate over a region of the heap that
  4064       // contains garbage (update_region_limit() will also move
  4065       // _finger to the start of the region if it is found empty).
  4066       update_region_limit();
  4067       // We will start from _finger not from the start of the region,
  4068       // as we might be restarting this task after aborting half-way
  4069       // through scanning this region. In this case, _finger points to
  4070       // the address where we last found a marked object. If this is a
  4071       // fresh region, _finger points to start().
  4072       MemRegion mr = MemRegion(_finger, _region_limit);
  4074       if (_cm->verbose_low()) {
  4075         gclog_or_tty->print_cr("[%u] we're scanning part "
  4076                                "["PTR_FORMAT", "PTR_FORMAT") "
  4077                                "of region "PTR_FORMAT,
  4078                                _worker_id, _finger, _region_limit, _curr_region);
  4081       // Let's iterate over the bitmap of the part of the
  4082       // region that is left.
  4083       if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4084         // We successfully completed iterating over the region. Now,
  4085         // let's give up the region.
  4086         giveup_current_region();
  4087         regular_clock_call();
  4088       } else {
  4089         assert(has_aborted(), "currently the only way to do so");
  4090         // The only way to abort the bitmap iteration is to return
  4091         // false from the do_bit() method. However, inside the
  4092         // do_bit() method we move the _finger to point to the
  4093         // object currently being looked at. So, if we bail out, we
  4094         // have definitely set _finger to something non-null.
  4095         assert(_finger != NULL, "invariant");
  4097         // Region iteration was actually aborted. So now _finger
  4098         // points to the address of the object we last scanned. If we
  4099         // leave it there, when we restart this task, we will rescan
  4100         // the object. It is easy to avoid this. We move the finger by
  4101         // enough to point to the next possible object header (the
  4102         // bitmap knows by how much we need to move it as it knows its
  4103         // granularity).
  4104         assert(_finger < _region_limit, "invariant");
  4105         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
  4106         // Check if bitmap iteration was aborted while scanning the last object
  4107         if (new_finger >= _region_limit) {
  4108           giveup_current_region();
  4109         } else {
  4110           move_finger_to(new_finger);
  4114     // At this point we have either completed iterating over the
  4115     // region we were holding on to, or we have aborted.
  4117     // We then partially drain the local queue and the global stack.
  4118     // (Do we really need this?)
  4119     drain_local_queue(true);
  4120     drain_global_stack(true);
  4122     // Read the note on the claim_region() method on why it might
  4123     // return NULL with potentially more regions available for
  4124     // claiming and why we have to check out_of_regions() to determine
  4125     // whether we're done or not.
  4126     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4127       // We are going to try to claim a new region. We should have
  4128       // given up on the previous one.
  4129       // Separated the asserts so that we know which one fires.
  4130       assert(_curr_region  == NULL, "invariant");
  4131       assert(_finger       == NULL, "invariant");
  4132       assert(_region_limit == NULL, "invariant");
  4133       if (_cm->verbose_low()) {
  4134         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4136       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4137       if (claimed_region != NULL) {
  4138         // Yes, we managed to claim one
  4139         statsOnly( ++_regions_claimed );
  4141         if (_cm->verbose_low()) {
  4142           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4143                                  "region "PTR_FORMAT,
  4144                                  _worker_id, claimed_region);
  4147         setup_for_region(claimed_region);
  4148         assert(_curr_region == claimed_region, "invariant");
  4150       // It is important to call the regular clock here. It might take
  4151       // a while to claim a region if, for example, we hit a large
  4152       // block of empty regions. So we need to call the regular clock
  4153       // method once round the loop to make sure it's called
  4154       // frequently enough.
  4155       regular_clock_call();
  4158     if (!has_aborted() && _curr_region == NULL) {
  4159       assert(_cm->out_of_regions(),
  4160              "at this point we should be out of regions");
  4162   } while ( _curr_region != NULL && !has_aborted());
  4164   if (!has_aborted()) {
  4165     // We cannot check whether the global stack is empty, since other
  4166     // tasks might be pushing objects to it concurrently.
  4167     assert(_cm->out_of_regions(),
  4168            "at this point we should be out of regions");
  4170     if (_cm->verbose_low()) {
  4171       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4174     // Try to reduce the number of available SATB buffers so that
  4175     // remark has less work to do.
  4176     drain_satb_buffers();
  4179   // Since we've done everything else, we can now totally drain the
  4180   // local queue and global stack.
  4181   drain_local_queue(false);
  4182   drain_global_stack(false);
  4184   // Attempt at work stealing from other task's queues.
  4185   if (do_stealing && !has_aborted()) {
  4186     // We have not aborted. This means that we have finished all that
  4187     // we could. Let's try to do some stealing...
  4189     // We cannot check whether the global stack is empty, since other
  4190     // tasks might be pushing objects to it concurrently.
  4191     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4192            "only way to reach here");
  4194     if (_cm->verbose_low()) {
  4195       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4198     while (!has_aborted()) {
  4199       oop obj;
  4200       statsOnly( ++_steal_attempts );
  4202       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4203         if (_cm->verbose_medium()) {
  4204           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4205                                  _worker_id, (void*) obj);
  4208         statsOnly( ++_steals );
  4210         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4211                "any stolen object should be marked");
  4212         scan_object(obj);
  4214         // And since we're towards the end, let's totally drain the
  4215         // local queue and global stack.
  4216         drain_local_queue(false);
  4217         drain_global_stack(false);
  4218       } else {
  4219         break;
  4224   // If we are about to wrap up and go into termination, check if we
  4225   // should raise the overflow flag.
  4226   if (do_termination && !has_aborted()) {
  4227     if (_cm->force_overflow()->should_force()) {
  4228       _cm->set_has_overflown();
  4229       regular_clock_call();
  4233   // We still haven't aborted. Now, let's try to get into the
  4234   // termination protocol.
  4235   if (do_termination && !has_aborted()) {
  4236     // We cannot check whether the global stack is empty, since other
  4237     // tasks might be concurrently pushing objects on it.
  4238     // Separated the asserts so that we know which one fires.
  4239     assert(_cm->out_of_regions(), "only way to reach here");
  4240     assert(_task_queue->size() == 0, "only way to reach here");
  4242     if (_cm->verbose_low()) {
  4243       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4246     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4247     // The CMTask class also extends the TerminatorTerminator class,
  4248     // hence its should_exit_termination() method will also decide
  4249     // whether to exit the termination protocol or not.
  4250     bool finished = _cm->terminator()->offer_termination(this);
  4251     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4252     _termination_time_ms +=
  4253       termination_end_time_ms - _termination_start_time_ms;
  4255     if (finished) {
  4256       // We're all done.
  4258       if (_worker_id == 0) {
  4259         // let's allow task 0 to do this
  4260         if (concurrent()) {
  4261           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4262           // we need to set this to false before the next
  4263           // safepoint. This way we ensure that the marking phase
  4264           // doesn't observe any more heap expansions.
  4265           _cm->clear_concurrent_marking_in_progress();
  4269       // We can now guarantee that the global stack is empty, since
  4270       // all other tasks have finished. We separated the guarantees so
  4271       // that, if a condition is false, we can immediately find out
  4272       // which one.
  4273       guarantee(_cm->out_of_regions(), "only way to reach here");
  4274       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4275       guarantee(_task_queue->size() == 0, "only way to reach here");
  4276       guarantee(!_cm->has_overflown(), "only way to reach here");
  4277       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4279       if (_cm->verbose_low()) {
  4280         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4282     } else {
  4283       // Apparently there's more work to do. Let's abort this task. It
  4284       // will restart it and we can hopefully find more things to do.
  4286       if (_cm->verbose_low()) {
  4287         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4288                                _worker_id);
  4291       set_has_aborted();
  4292       statsOnly( ++_aborted_termination );
  4296   // Mainly for debugging purposes to make sure that a pointer to the
  4297   // closure which was statically allocated in this frame doesn't
  4298   // escape it by accident.
  4299   set_cm_oop_closure(NULL);
  4300   double end_time_ms = os::elapsedVTime() * 1000.0;
  4301   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4302   // Update the step history.
  4303   _step_times_ms.add(elapsed_time_ms);
  4305   if (has_aborted()) {
  4306     // The task was aborted for some reason.
  4308     statsOnly( ++_aborted );
  4310     if (_has_timed_out) {
  4311       double diff_ms = elapsed_time_ms - _time_target_ms;
  4312       // Keep statistics of how well we did with respect to hitting
  4313       // our target only if we actually timed out (if we aborted for
  4314       // other reasons, then the results might get skewed).
  4315       _marking_step_diffs_ms.add(diff_ms);
  4318     if (_cm->has_overflown()) {
  4319       // This is the interesting one. We aborted because a global
  4320       // overflow was raised. This means we have to restart the
  4321       // marking phase and start iterating over regions. However, in
  4322       // order to do this we have to make sure that all tasks stop
  4323       // what they are doing and re-initialise in a safe manner. We
  4324       // will achieve this with the use of two barrier sync points.
  4326       if (_cm->verbose_low()) {
  4327         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4330       _cm->enter_first_sync_barrier(_worker_id);
  4331       // When we exit this sync barrier we know that all tasks have
  4332       // stopped doing marking work. So, it's now safe to
  4333       // re-initialise our data structures. At the end of this method,
  4334       // task 0 will clear the global data structures.
  4336       statsOnly( ++_aborted_overflow );
  4338       // We clear the local state of this task...
  4339       clear_region_fields();
  4341       // ...and enter the second barrier.
  4342       _cm->enter_second_sync_barrier(_worker_id);
  4343       // At this point everything has bee re-initialised and we're
  4344       // ready to restart.
  4347     if (_cm->verbose_low()) {
  4348       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4349                              "elapsed = %1.2lfms <<<<<<<<<<",
  4350                              _worker_id, _time_target_ms, elapsed_time_ms);
  4351       if (_cm->has_aborted()) {
  4352         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4353                                _worker_id);
  4356   } else {
  4357     if (_cm->verbose_low()) {
  4358       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4359                              "elapsed = %1.2lfms <<<<<<<<<<",
  4360                              _worker_id, _time_target_ms, elapsed_time_ms);
  4364   _claimed = false;
  4367 CMTask::CMTask(uint worker_id,
  4368                ConcurrentMark* cm,
  4369                size_t* marked_bytes,
  4370                BitMap* card_bm,
  4371                CMTaskQueue* task_queue,
  4372                CMTaskQueueSet* task_queues)
  4373   : _g1h(G1CollectedHeap::heap()),
  4374     _worker_id(worker_id), _cm(cm),
  4375     _claimed(false),
  4376     _nextMarkBitMap(NULL), _hash_seed(17),
  4377     _task_queue(task_queue),
  4378     _task_queues(task_queues),
  4379     _cm_oop_closure(NULL),
  4380     _marked_bytes_array(marked_bytes),
  4381     _card_bm(card_bm) {
  4382   guarantee(task_queue != NULL, "invariant");
  4383   guarantee(task_queues != NULL, "invariant");
  4385   statsOnly( _clock_due_to_scanning = 0;
  4386              _clock_due_to_marking  = 0 );
  4388   _marking_step_diffs_ms.add(0.5);
  4391 // These are formatting macros that are used below to ensure
  4392 // consistent formatting. The *_H_* versions are used to format the
  4393 // header for a particular value and they should be kept consistent
  4394 // with the corresponding macro. Also note that most of the macros add
  4395 // the necessary white space (as a prefix) which makes them a bit
  4396 // easier to compose.
  4398 // All the output lines are prefixed with this string to be able to
  4399 // identify them easily in a large log file.
  4400 #define G1PPRL_LINE_PREFIX            "###"
  4402 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4403 #ifdef _LP64
  4404 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4405 #else // _LP64
  4406 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4407 #endif // _LP64
  4409 // For per-region info
  4410 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4411 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4412 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4413 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4414 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4415 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4417 // For summary info
  4418 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4419 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4420 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4421 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4423 G1PrintRegionLivenessInfoClosure::
  4424 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4425   : _out(out),
  4426     _total_used_bytes(0), _total_capacity_bytes(0),
  4427     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4428     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4429     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  4430   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4431   MemRegion g1_committed = g1h->g1_committed();
  4432   MemRegion g1_reserved = g1h->g1_reserved();
  4433   double now = os::elapsedTime();
  4435   // Print the header of the output.
  4436   _out->cr();
  4437   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4438   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4439                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4440                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4441                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4442                  g1_committed.start(), g1_committed.end(),
  4443                  g1_reserved.start(), g1_reserved.end(),
  4444                  HeapRegion::GrainBytes);
  4445   _out->print_cr(G1PPRL_LINE_PREFIX);
  4446   _out->print_cr(G1PPRL_LINE_PREFIX
  4447                  G1PPRL_TYPE_H_FORMAT
  4448                  G1PPRL_ADDR_BASE_H_FORMAT
  4449                  G1PPRL_BYTE_H_FORMAT
  4450                  G1PPRL_BYTE_H_FORMAT
  4451                  G1PPRL_BYTE_H_FORMAT
  4452                  G1PPRL_DOUBLE_H_FORMAT,
  4453                  "type", "address-range",
  4454                  "used", "prev-live", "next-live", "gc-eff");
  4455   _out->print_cr(G1PPRL_LINE_PREFIX
  4456                  G1PPRL_TYPE_H_FORMAT
  4457                  G1PPRL_ADDR_BASE_H_FORMAT
  4458                  G1PPRL_BYTE_H_FORMAT
  4459                  G1PPRL_BYTE_H_FORMAT
  4460                  G1PPRL_BYTE_H_FORMAT
  4461                  G1PPRL_DOUBLE_H_FORMAT,
  4462                  "", "",
  4463                  "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
  4466 // It takes as a parameter a reference to one of the _hum_* fields, it
  4467 // deduces the corresponding value for a region in a humongous region
  4468 // series (either the region size, or what's left if the _hum_* field
  4469 // is < the region size), and updates the _hum_* field accordingly.
  4470 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4471   size_t bytes = 0;
  4472   // The > 0 check is to deal with the prev and next live bytes which
  4473   // could be 0.
  4474   if (*hum_bytes > 0) {
  4475     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4476     *hum_bytes -= bytes;
  4478   return bytes;
  4481 // It deduces the values for a region in a humongous region series
  4482 // from the _hum_* fields and updates those accordingly. It assumes
  4483 // that that _hum_* fields have already been set up from the "starts
  4484 // humongous" region and we visit the regions in address order.
  4485 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4486                                                      size_t* capacity_bytes,
  4487                                                      size_t* prev_live_bytes,
  4488                                                      size_t* next_live_bytes) {
  4489   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4490   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4491   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4492   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4493   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4496 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4497   const char* type = "";
  4498   HeapWord* bottom       = r->bottom();
  4499   HeapWord* end          = r->end();
  4500   size_t capacity_bytes  = r->capacity();
  4501   size_t used_bytes      = r->used();
  4502   size_t prev_live_bytes = r->live_bytes();
  4503   size_t next_live_bytes = r->next_live_bytes();
  4504   double gc_eff          = r->gc_efficiency();
  4505   if (r->used() == 0) {
  4506     type = "FREE";
  4507   } else if (r->is_survivor()) {
  4508     type = "SURV";
  4509   } else if (r->is_young()) {
  4510     type = "EDEN";
  4511   } else if (r->startsHumongous()) {
  4512     type = "HUMS";
  4514     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4515            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4516            "they should have been zeroed after the last time we used them");
  4517     // Set up the _hum_* fields.
  4518     _hum_capacity_bytes  = capacity_bytes;
  4519     _hum_used_bytes      = used_bytes;
  4520     _hum_prev_live_bytes = prev_live_bytes;
  4521     _hum_next_live_bytes = next_live_bytes;
  4522     get_hum_bytes(&used_bytes, &capacity_bytes,
  4523                   &prev_live_bytes, &next_live_bytes);
  4524     end = bottom + HeapRegion::GrainWords;
  4525   } else if (r->continuesHumongous()) {
  4526     type = "HUMC";
  4527     get_hum_bytes(&used_bytes, &capacity_bytes,
  4528                   &prev_live_bytes, &next_live_bytes);
  4529     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4530   } else {
  4531     type = "OLD";
  4534   _total_used_bytes      += used_bytes;
  4535   _total_capacity_bytes  += capacity_bytes;
  4536   _total_prev_live_bytes += prev_live_bytes;
  4537   _total_next_live_bytes += next_live_bytes;
  4539   // Print a line for this particular region.
  4540   _out->print_cr(G1PPRL_LINE_PREFIX
  4541                  G1PPRL_TYPE_FORMAT
  4542                  G1PPRL_ADDR_BASE_FORMAT
  4543                  G1PPRL_BYTE_FORMAT
  4544                  G1PPRL_BYTE_FORMAT
  4545                  G1PPRL_BYTE_FORMAT
  4546                  G1PPRL_DOUBLE_FORMAT,
  4547                  type, bottom, end,
  4548                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
  4550   return false;
  4553 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4554   // Print the footer of the output.
  4555   _out->print_cr(G1PPRL_LINE_PREFIX);
  4556   _out->print_cr(G1PPRL_LINE_PREFIX
  4557                  " SUMMARY"
  4558                  G1PPRL_SUM_MB_FORMAT("capacity")
  4559                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4560                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4561                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
  4562                  bytes_to_mb(_total_capacity_bytes),
  4563                  bytes_to_mb(_total_used_bytes),
  4564                  perc(_total_used_bytes, _total_capacity_bytes),
  4565                  bytes_to_mb(_total_prev_live_bytes),
  4566                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4567                  bytes_to_mb(_total_next_live_bytes),
  4568                  perc(_total_next_live_bytes, _total_capacity_bytes));
  4569   _out->cr();

mercurial