src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4338
fd74228fd5ca
child 4727
0094485b46c7
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    52 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //------------------------------------------------------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62   // Note: There should be a minimal interpreter frame set up when stack
    63   // overflow occurs since we check explicitly for it now.
    64   //
    65 #ifdef ASSERT
    66   { Label L;
    67     __ lea(rax, Address(rbp,
    68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    70                         //  (stack grows negative)
    71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    72     __ stop ("interpreter frame not set up");
    73     __ bind(L);
    74   }
    75 #endif // ASSERT
    76   // Restore bcp under the assumption that the current frame is still
    77   // interpreted
    78   __ restore_bcp();
    80   // expression stack must be empty before entering the VM if an exception
    81   // happened
    82   __ empty_expression_stack();
    83   __ empty_FPU_stack();
    84   // throw exception
    85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an exception happened
    92   __ empty_expression_stack();
    93   __ empty_FPU_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register rbx,
    96   __ lea(rax, ExternalAddress((address)name));
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    98   return entry;
    99 }
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   102   address entry = __ pc();
   103   // object is at TOS
   104   __ pop(rax);
   105   // expression stack must be empty before entering the VM if an exception
   106   // happened
   107   __ empty_expression_stack();
   108   __ empty_FPU_stack();
   109   __ call_VM(noreg,
   110              CAST_FROM_FN_PTR(address,
   111                               InterpreterRuntime::throw_ClassCastException),
   112              rax);
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   assert(!pass_oop || message == NULL, "either oop or message but not both");
   118   address entry = __ pc();
   119   if (pass_oop) {
   120     // object is at TOS
   121     __ pop(rbx);
   122   }
   123   // expression stack must be empty before entering the VM if an exception happened
   124   __ empty_expression_stack();
   125   __ empty_FPU_stack();
   126   // setup parameters
   127   __ lea(rax, ExternalAddress((address)name));
   128   if (pass_oop) {
   129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   130   } else {
   131     if (message != NULL) {
   132       __ lea(rbx, ExternalAddress((address)message));
   133     } else {
   134       __ movptr(rbx, NULL_WORD);
   135     }
   136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   137   }
   138   // throw exception
   139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   140   return entry;
   141 }
   144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   145   address entry = __ pc();
   146   // NULL last_sp until next java call
   147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   148   __ dispatch_next(state);
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   154   TosState incoming_state = state;
   155   address entry = __ pc();
   157 #ifdef COMPILER2
   158   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   159   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   160     for (int i = 1; i < 8; i++) {
   161         __ ffree(i);
   162     }
   163   } else if (UseSSE < 2) {
   164     __ empty_FPU_stack();
   165   }
   166 #endif
   167   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   168     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   169   } else {
   170     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   171   }
   173   // In SSE mode, interpreter returns FP results in xmm0 but they need
   174   // to end up back on the FPU so it can operate on them.
   175   if (incoming_state == ftos && UseSSE >= 1) {
   176     __ subptr(rsp, wordSize);
   177     __ movflt(Address(rsp, 0), xmm0);
   178     __ fld_s(Address(rsp, 0));
   179     __ addptr(rsp, wordSize);
   180   } else if (incoming_state == dtos && UseSSE >= 2) {
   181     __ subptr(rsp, 2*wordSize);
   182     __ movdbl(Address(rsp, 0), xmm0);
   183     __ fld_d(Address(rsp, 0));
   184     __ addptr(rsp, 2*wordSize);
   185   }
   187   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   189   // Restore stack bottom in case i2c adjusted stack
   190   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   191   // and NULL it as marker that rsp is now tos until next java call
   192   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   194   __ restore_bcp();
   195   __ restore_locals();
   197   Label L_got_cache, L_giant_index;
   198   if (EnableInvokeDynamic) {
   199     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   200     __ jcc(Assembler::equal, L_giant_index);
   201   }
   202   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   203   __ bind(L_got_cache);
   204   __ movl(rbx, Address(rbx, rcx,
   205                     Address::times_ptr, ConstantPoolCache::base_offset() +
   206                     ConstantPoolCacheEntry::flags_offset()));
   207   __ andptr(rbx, 0xFF);
   208   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   209   __ dispatch_next(state, step);
   211   // out of the main line of code...
   212   if (EnableInvokeDynamic) {
   213     __ bind(L_giant_index);
   214     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   215     __ jmp(L_got_cache);
   216   }
   218   return entry;
   219 }
   222 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   223   address entry = __ pc();
   225   // In SSE mode, FP results are in xmm0
   226   if (state == ftos && UseSSE > 0) {
   227     __ subptr(rsp, wordSize);
   228     __ movflt(Address(rsp, 0), xmm0);
   229     __ fld_s(Address(rsp, 0));
   230     __ addptr(rsp, wordSize);
   231   } else if (state == dtos && UseSSE >= 2) {
   232     __ subptr(rsp, 2*wordSize);
   233     __ movdbl(Address(rsp, 0), xmm0);
   234     __ fld_d(Address(rsp, 0));
   235     __ addptr(rsp, 2*wordSize);
   236   }
   238   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   240   // The stack is not extended by deopt but we must NULL last_sp as this
   241   // entry is like a "return".
   242   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   243   __ restore_bcp();
   244   __ restore_locals();
   245   // handle exceptions
   246   { Label L;
   247     const Register thread = rcx;
   248     __ get_thread(thread);
   249     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   250     __ jcc(Assembler::zero, L);
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   252     __ should_not_reach_here();
   253     __ bind(L);
   254   }
   255   __ dispatch_next(state, step);
   256   return entry;
   257 }
   260 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   261   int i = 0;
   262   switch (type) {
   263     case T_BOOLEAN: i = 0; break;
   264     case T_CHAR   : i = 1; break;
   265     case T_BYTE   : i = 2; break;
   266     case T_SHORT  : i = 3; break;
   267     case T_INT    : // fall through
   268     case T_LONG   : // fall through
   269     case T_VOID   : i = 4; break;
   270     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   271     case T_DOUBLE : i = 6; break;
   272     case T_OBJECT : // fall through
   273     case T_ARRAY  : i = 7; break;
   274     default       : ShouldNotReachHere();
   275   }
   276   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   277   return i;
   278 }
   281 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   282   address entry = __ pc();
   283   switch (type) {
   284     case T_BOOLEAN: __ c2bool(rax);            break;
   285     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   286     case T_BYTE   : __ sign_extend_byte (rax); break;
   287     case T_SHORT  : __ sign_extend_short(rax); break;
   288     case T_INT    : /* nothing to do */        break;
   289     case T_DOUBLE :
   290     case T_FLOAT  :
   291       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   292         __ pop(t);                            // remove return address first
   293         // Must return a result for interpreter or compiler. In SSE
   294         // mode, results are returned in xmm0 and the FPU stack must
   295         // be empty.
   296         if (type == T_FLOAT && UseSSE >= 1) {
   297           // Load ST0
   298           __ fld_d(Address(rsp, 0));
   299           // Store as float and empty fpu stack
   300           __ fstp_s(Address(rsp, 0));
   301           // and reload
   302           __ movflt(xmm0, Address(rsp, 0));
   303         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   304           __ movdbl(xmm0, Address(rsp, 0));
   305         } else {
   306           // restore ST0
   307           __ fld_d(Address(rsp, 0));
   308         }
   309         // and pop the temp
   310         __ addptr(rsp, 2 * wordSize);
   311         __ push(t);                           // restore return address
   312       }
   313       break;
   314     case T_OBJECT :
   315       // retrieve result from frame
   316       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   317       // and verify it
   318       __ verify_oop(rax);
   319       break;
   320     default       : ShouldNotReachHere();
   321   }
   322   __ ret(0);                                   // return from result handler
   323   return entry;
   324 }
   326 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   327   address entry = __ pc();
   328   __ push(state);
   329   __ call_VM(noreg, runtime_entry);
   330   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   331   return entry;
   332 }
   335 // Helpers for commoning out cases in the various type of method entries.
   336 //
   338 // increment invocation count & check for overflow
   339 //
   340 // Note: checking for negative value instead of overflow
   341 //       so we have a 'sticky' overflow test
   342 //
   343 // rbx,: method
   344 // rcx: invocation counter
   345 //
   346 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   347   const Address invocation_counter(rbx, in_bytes(Method::invocation_counter_offset()) +
   348                                         in_bytes(InvocationCounter::counter_offset()));
   349   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   350   if (TieredCompilation) {
   351     int increment = InvocationCounter::count_increment;
   352     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   353     Label no_mdo, done;
   354     if (ProfileInterpreter) {
   355       // Are we profiling?
   356       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   357       __ testptr(rax, rax);
   358       __ jccb(Assembler::zero, no_mdo);
   359       // Increment counter in the MDO
   360       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   361                                                 in_bytes(InvocationCounter::counter_offset()));
   362       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   363       __ jmpb(done);
   364     }
   365     __ bind(no_mdo);
   366     // Increment counter in Method* (we don't need to load it, it's in rcx).
   367     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   368     __ bind(done);
   369   } else {
   370     const Address backedge_counter  (rbx, Method::backedge_counter_offset() +
   371                                           InvocationCounter::counter_offset());
   373     if (ProfileInterpreter) { // %%% Merge this into MethodData*
   374       __ incrementl(Address(rbx,Method::interpreter_invocation_counter_offset()));
   375     }
   376     // Update standard invocation counters
   377     __ movl(rax, backedge_counter);               // load backedge counter
   379     __ incrementl(rcx, InvocationCounter::count_increment);
   380     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   382     __ movl(invocation_counter, rcx);             // save invocation count
   383     __ addl(rcx, rax);                            // add both counters
   385     // profile_method is non-null only for interpreted method so
   386     // profile_method != NULL == !native_call
   387     // BytecodeInterpreter only calls for native so code is elided.
   389     if (ProfileInterpreter && profile_method != NULL) {
   390       // Test to see if we should create a method data oop
   391       __ cmp32(rcx,
   392                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   393       __ jcc(Assembler::less, *profile_method_continue);
   395       // if no method data exists, go to profile_method
   396       __ test_method_data_pointer(rax, *profile_method);
   397     }
   399     __ cmp32(rcx,
   400              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   401     __ jcc(Assembler::aboveEqual, *overflow);
   402   }
   403 }
   405 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   407   // Asm interpreter on entry
   408   // rdi - locals
   409   // rsi - bcp
   410   // rbx, - method
   411   // rdx - cpool
   412   // rbp, - interpreter frame
   414   // C++ interpreter on entry
   415   // rsi - new interpreter state pointer
   416   // rbp - interpreter frame pointer
   417   // rbx - method
   419   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   420   // rbx, - method
   421   // rcx - rcvr (assuming there is one)
   422   // top of stack return address of interpreter caller
   423   // rsp - sender_sp
   425   // C++ interpreter only
   426   // rsi - previous interpreter state pointer
   428   // InterpreterRuntime::frequency_counter_overflow takes one argument
   429   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   430   // The call returns the address of the verified entry point for the method or NULL
   431   // if the compilation did not complete (either went background or bailed out).
   432   __ movptr(rax, (intptr_t)false);
   433   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   435   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   437   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   438   // and jump to the interpreted entry.
   439   __ jmp(*do_continue, relocInfo::none);
   441 }
   443 void InterpreterGenerator::generate_stack_overflow_check(void) {
   444   // see if we've got enough room on the stack for locals plus overhead.
   445   // the expression stack grows down incrementally, so the normal guard
   446   // page mechanism will work for that.
   447   //
   448   // Registers live on entry:
   449   //
   450   // Asm interpreter
   451   // rdx: number of additional locals this frame needs (what we must check)
   452   // rbx,: Method*
   454   // destroyed on exit
   455   // rax,
   457   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   458   // generate_method_entry) so the guard should work for them too.
   459   //
   461   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   462   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   464   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   465   // be sure to change this if you add/subtract anything to/from the overhead area
   466   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   468   const int page_size = os::vm_page_size();
   470   Label after_frame_check;
   472   // see if the frame is greater than one page in size. If so,
   473   // then we need to verify there is enough stack space remaining
   474   // for the additional locals.
   475   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   476   __ jcc(Assembler::belowEqual, after_frame_check);
   478   // compute rsp as if this were going to be the last frame on
   479   // the stack before the red zone
   481   Label after_frame_check_pop;
   483   __ push(rsi);
   485   const Register thread = rsi;
   487   __ get_thread(thread);
   489   const Address stack_base(thread, Thread::stack_base_offset());
   490   const Address stack_size(thread, Thread::stack_size_offset());
   492   // locals + overhead, in bytes
   493   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   495 #ifdef ASSERT
   496   Label stack_base_okay, stack_size_okay;
   497   // verify that thread stack base is non-zero
   498   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   499   __ jcc(Assembler::notEqual, stack_base_okay);
   500   __ stop("stack base is zero");
   501   __ bind(stack_base_okay);
   502   // verify that thread stack size is non-zero
   503   __ cmpptr(stack_size, 0);
   504   __ jcc(Assembler::notEqual, stack_size_okay);
   505   __ stop("stack size is zero");
   506   __ bind(stack_size_okay);
   507 #endif
   509   // Add stack base to locals and subtract stack size
   510   __ addptr(rax, stack_base);
   511   __ subptr(rax, stack_size);
   513   // Use the maximum number of pages we might bang.
   514   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   515                                                                               (StackRedPages+StackYellowPages);
   516   __ addptr(rax, max_pages * page_size);
   518   // check against the current stack bottom
   519   __ cmpptr(rsp, rax);
   520   __ jcc(Assembler::above, after_frame_check_pop);
   522   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   524   // Restore sender's sp as SP. This is necessary if the sender's
   525   // frame is an extended compiled frame (see gen_c2i_adapter())
   526   // and safer anyway in case of JSR292 adaptations.
   528   __ pop(rax); // return address must be moved if SP is changed
   529   __ mov(rsp, rsi);
   530   __ push(rax);
   532   // Note: the restored frame is not necessarily interpreted.
   533   // Use the shared runtime version of the StackOverflowError.
   534   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   535   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   536   // all done with frame size check
   537   __ bind(after_frame_check_pop);
   538   __ pop(rsi);
   540   __ bind(after_frame_check);
   541 }
   543 // Allocate monitor and lock method (asm interpreter)
   544 // rbx, - Method*
   545 //
   546 void InterpreterGenerator::lock_method(void) {
   547   // synchronize method
   548   const Address access_flags      (rbx, Method::access_flags_offset());
   549   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   550   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   552   #ifdef ASSERT
   553     { Label L;
   554       __ movl(rax, access_flags);
   555       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   556       __ jcc(Assembler::notZero, L);
   557       __ stop("method doesn't need synchronization");
   558       __ bind(L);
   559     }
   560   #endif // ASSERT
   561   // get synchronization object
   562   { Label done;
   563     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   564     __ movl(rax, access_flags);
   565     __ testl(rax, JVM_ACC_STATIC);
   566     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   567     __ jcc(Assembler::zero, done);
   568     __ movptr(rax, Address(rbx, Method::const_offset()));
   569     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   570     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   571     __ movptr(rax, Address(rax, mirror_offset));
   572     __ bind(done);
   573   }
   574   // add space for monitor & lock
   575   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   576   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   577   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   578   __ mov(rdx, rsp);                                                    // object address
   579   __ lock_object(rdx);
   580 }
   582 //
   583 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   584 // and for native methods hence the shared code.
   586 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   587   // initialize fixed part of activation frame
   588   __ push(rax);                                       // save return address
   589   __ enter();                                         // save old & set new rbp,
   592   __ push(rsi);                                       // set sender sp
   593   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   594   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
   595   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
   596   __ push(rbx);                                      // save Method*
   597   if (ProfileInterpreter) {
   598     Label method_data_continue;
   599     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   600     __ testptr(rdx, rdx);
   601     __ jcc(Assembler::zero, method_data_continue);
   602     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   603     __ bind(method_data_continue);
   604     __ push(rdx);                                       // set the mdp (method data pointer)
   605   } else {
   606     __ push(0);
   607   }
   609   __ movptr(rdx, Address(rbx, Method::const_offset()));
   610   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   611   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   612   __ push(rdx);                                       // set constant pool cache
   613   __ push(rdi);                                       // set locals pointer
   614   if (native_call) {
   615     __ push(0);                                       // no bcp
   616   } else {
   617     __ push(rsi);                                     // set bcp
   618     }
   619   __ push(0);                                         // reserve word for pointer to expression stack bottom
   620   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   621 }
   623 // End of helpers
   625 //
   626 // Various method entries
   627 //------------------------------------------------------------------------------------------------------------------------
   628 //
   629 //
   631 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   633 address InterpreterGenerator::generate_accessor_entry(void) {
   635   // rbx,: Method*
   636   // rcx: receiver (preserve for slow entry into asm interpreter)
   638   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   640   address entry_point = __ pc();
   641   Label xreturn_path;
   643   // do fastpath for resolved accessor methods
   644   if (UseFastAccessorMethods) {
   645     Label slow_path;
   646     // If we need a safepoint check, generate full interpreter entry.
   647     ExternalAddress state(SafepointSynchronize::address_of_state());
   648     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   649              SafepointSynchronize::_not_synchronized);
   651     __ jcc(Assembler::notEqual, slow_path);
   652     // ASM/C++ Interpreter
   653     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   654     // Note: We can only use this code if the getfield has been resolved
   655     //       and if we don't have a null-pointer exception => check for
   656     //       these conditions first and use slow path if necessary.
   657     // rbx,: method
   658     // rcx: receiver
   659     __ movptr(rax, Address(rsp, wordSize));
   661     // check if local 0 != NULL and read field
   662     __ testptr(rax, rax);
   663     __ jcc(Assembler::zero, slow_path);
   665     // read first instruction word and extract bytecode @ 1 and index @ 2
   666     __ movptr(rdx, Address(rbx, Method::const_offset()));
   667     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   668     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   669     // Shift codes right to get the index on the right.
   670     // The bytecode fetched looks like <index><0xb4><0x2a>
   671     __ shrl(rdx, 2*BitsPerByte);
   672     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   673     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   675     // rax,: local 0
   676     // rbx,: method
   677     // rcx: receiver - do not destroy since it is needed for slow path!
   678     // rcx: scratch
   679     // rdx: constant pool cache index
   680     // rdi: constant pool cache
   681     // rsi: sender sp
   683     // check if getfield has been resolved and read constant pool cache entry
   684     // check the validity of the cache entry by testing whether _indices field
   685     // contains Bytecode::_getfield in b1 byte.
   686     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   687     __ movl(rcx,
   688             Address(rdi,
   689                     rdx,
   690                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   691     __ shrl(rcx, 2*BitsPerByte);
   692     __ andl(rcx, 0xFF);
   693     __ cmpl(rcx, Bytecodes::_getfield);
   694     __ jcc(Assembler::notEqual, slow_path);
   696     // Note: constant pool entry is not valid before bytecode is resolved
   697     __ movptr(rcx,
   698               Address(rdi,
   699                       rdx,
   700                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   701     __ movl(rdx,
   702             Address(rdi,
   703                     rdx,
   704                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   706     Label notByte, notShort, notChar;
   707     const Address field_address (rax, rcx, Address::times_1);
   709     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   710     // because they are different sizes.
   711     // Use the type from the constant pool cache
   712     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   713     // Make sure we don't need to mask rdx after the above shift
   714     ConstantPoolCacheEntry::verify_tos_state_shift();
   715     __ cmpl(rdx, btos);
   716     __ jcc(Assembler::notEqual, notByte);
   717     __ load_signed_byte(rax, field_address);
   718     __ jmp(xreturn_path);
   720     __ bind(notByte);
   721     __ cmpl(rdx, stos);
   722     __ jcc(Assembler::notEqual, notShort);
   723     __ load_signed_short(rax, field_address);
   724     __ jmp(xreturn_path);
   726     __ bind(notShort);
   727     __ cmpl(rdx, ctos);
   728     __ jcc(Assembler::notEqual, notChar);
   729     __ load_unsigned_short(rax, field_address);
   730     __ jmp(xreturn_path);
   732     __ bind(notChar);
   733 #ifdef ASSERT
   734     Label okay;
   735     __ cmpl(rdx, atos);
   736     __ jcc(Assembler::equal, okay);
   737     __ cmpl(rdx, itos);
   738     __ jcc(Assembler::equal, okay);
   739     __ stop("what type is this?");
   740     __ bind(okay);
   741 #endif // ASSERT
   742     // All the rest are a 32 bit wordsize
   743     // This is ok for now. Since fast accessors should be going away
   744     __ movptr(rax, field_address);
   746     __ bind(xreturn_path);
   748     // _ireturn/_areturn
   749     __ pop(rdi);                               // get return address
   750     __ mov(rsp, rsi);                          // set sp to sender sp
   751     __ jmp(rdi);
   753     // generate a vanilla interpreter entry as the slow path
   754     __ bind(slow_path);
   756     (void) generate_normal_entry(false);
   757     return entry_point;
   758   }
   759   return NULL;
   761 }
   763 // Method entry for java.lang.ref.Reference.get.
   764 address InterpreterGenerator::generate_Reference_get_entry(void) {
   765 #if INCLUDE_ALL_GCS
   766   // Code: _aload_0, _getfield, _areturn
   767   // parameter size = 1
   768   //
   769   // The code that gets generated by this routine is split into 2 parts:
   770   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   771   //    2. The slow path - which is an expansion of the regular method entry.
   772   //
   773   // Notes:-
   774   // * In the G1 code we do not check whether we need to block for
   775   //   a safepoint. If G1 is enabled then we must execute the specialized
   776   //   code for Reference.get (except when the Reference object is null)
   777   //   so that we can log the value in the referent field with an SATB
   778   //   update buffer.
   779   //   If the code for the getfield template is modified so that the
   780   //   G1 pre-barrier code is executed when the current method is
   781   //   Reference.get() then going through the normal method entry
   782   //   will be fine.
   783   // * The G1 code below can, however, check the receiver object (the instance
   784   //   of java.lang.Reference) and jump to the slow path if null. If the
   785   //   Reference object is null then we obviously cannot fetch the referent
   786   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   787   //   regular method entry code to generate the NPE.
   788   //
   789   // This code is based on generate_accessor_enty.
   791   // rbx,: Method*
   792   // rcx: receiver (preserve for slow entry into asm interpreter)
   794   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   796   address entry = __ pc();
   798   const int referent_offset = java_lang_ref_Reference::referent_offset;
   799   guarantee(referent_offset > 0, "referent offset not initialized");
   801   if (UseG1GC) {
   802     Label slow_path;
   804     // Check if local 0 != NULL
   805     // If the receiver is null then it is OK to jump to the slow path.
   806     __ movptr(rax, Address(rsp, wordSize));
   807     __ testptr(rax, rax);
   808     __ jcc(Assembler::zero, slow_path);
   810     // rax: local 0 (must be preserved across the G1 barrier call)
   811     //
   812     // rbx: method (at this point it's scratch)
   813     // rcx: receiver (at this point it's scratch)
   814     // rdx: scratch
   815     // rdi: scratch
   816     //
   817     // rsi: sender sp
   819     // Preserve the sender sp in case the pre-barrier
   820     // calls the runtime
   821     __ push(rsi);
   823     // Load the value of the referent field.
   824     const Address field_address(rax, referent_offset);
   825     __ movptr(rax, field_address);
   827     // Generate the G1 pre-barrier code to log the value of
   828     // the referent field in an SATB buffer.
   829     __ get_thread(rcx);
   830     __ g1_write_barrier_pre(noreg /* obj */,
   831                             rax /* pre_val */,
   832                             rcx /* thread */,
   833                             rbx /* tmp */,
   834                             true /* tosca_save */,
   835                             true /* expand_call */);
   837     // _areturn
   838     __ pop(rsi);                // get sender sp
   839     __ pop(rdi);                // get return address
   840     __ mov(rsp, rsi);           // set sp to sender sp
   841     __ jmp(rdi);
   843     __ bind(slow_path);
   844     (void) generate_normal_entry(false);
   846     return entry;
   847   }
   848 #endif // INCLUDE_ALL_GCS
   850   // If G1 is not enabled then attempt to go through the accessor entry point
   851   // Reference.get is an accessor
   852   return generate_accessor_entry();
   853 }
   855 //
   856 // Interpreter stub for calling a native method. (asm interpreter)
   857 // This sets up a somewhat different looking stack for calling the native method
   858 // than the typical interpreter frame setup.
   859 //
   861 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   862   // determine code generation flags
   863   bool inc_counter  = UseCompiler || CountCompiledCalls;
   865   // rbx,: Method*
   866   // rsi: sender sp
   867   // rsi: previous interpreter state (C++ interpreter) must preserve
   868   address entry_point = __ pc();
   870   const Address constMethod       (rbx, Method::const_offset());
   871   const Address invocation_counter(rbx, Method::invocation_counter_offset() + InvocationCounter::counter_offset());
   872   const Address access_flags      (rbx, Method::access_flags_offset());
   873   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
   875   // get parameter size (always needed)
   876   __ movptr(rcx, constMethod);
   877   __ load_unsigned_short(rcx, size_of_parameters);
   879   // native calls don't need the stack size check since they have no expression stack
   880   // and the arguments are already on the stack and we only add a handful of words
   881   // to the stack
   883   // rbx,: Method*
   884   // rcx: size of parameters
   885   // rsi: sender sp
   887   __ pop(rax);                                       // get return address
   888   // for natives the size of locals is zero
   890   // compute beginning of parameters (rdi)
   891   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   894   // add 2 zero-initialized slots for native calls
   895   // NULL result handler
   896   __ push((int32_t)NULL_WORD);
   897   // NULL oop temp (mirror or jni oop result)
   898   __ push((int32_t)NULL_WORD);
   900   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   901   // initialize fixed part of activation frame
   903   generate_fixed_frame(true);
   905   // make sure method is native & not abstract
   906 #ifdef ASSERT
   907   __ movl(rax, access_flags);
   908   {
   909     Label L;
   910     __ testl(rax, JVM_ACC_NATIVE);
   911     __ jcc(Assembler::notZero, L);
   912     __ stop("tried to execute non-native method as native");
   913     __ bind(L);
   914   }
   915   { Label L;
   916     __ testl(rax, JVM_ACC_ABSTRACT);
   917     __ jcc(Assembler::zero, L);
   918     __ stop("tried to execute abstract method in interpreter");
   919     __ bind(L);
   920   }
   921 #endif
   923   // Since at this point in the method invocation the exception handler
   924   // would try to exit the monitor of synchronized methods which hasn't
   925   // been entered yet, we set the thread local variable
   926   // _do_not_unlock_if_synchronized to true. The remove_activation will
   927   // check this flag.
   929   __ get_thread(rax);
   930   const Address do_not_unlock_if_synchronized(rax,
   931         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   932   __ movbool(do_not_unlock_if_synchronized, true);
   934   // increment invocation count & check for overflow
   935   Label invocation_counter_overflow;
   936   if (inc_counter) {
   937     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   938   }
   940   Label continue_after_compile;
   941   __ bind(continue_after_compile);
   943   bang_stack_shadow_pages(true);
   945   // reset the _do_not_unlock_if_synchronized flag
   946   __ get_thread(rax);
   947   __ movbool(do_not_unlock_if_synchronized, false);
   949   // check for synchronized methods
   950   // Must happen AFTER invocation_counter check and stack overflow check,
   951   // so method is not locked if overflows.
   952   //
   953   if (synchronized) {
   954     lock_method();
   955   } else {
   956     // no synchronization necessary
   957 #ifdef ASSERT
   958       { Label L;
   959         __ movl(rax, access_flags);
   960         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   961         __ jcc(Assembler::zero, L);
   962         __ stop("method needs synchronization");
   963         __ bind(L);
   964       }
   965 #endif
   966   }
   968   // start execution
   969 #ifdef ASSERT
   970   { Label L;
   971     const Address monitor_block_top (rbp,
   972                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   973     __ movptr(rax, monitor_block_top);
   974     __ cmpptr(rax, rsp);
   975     __ jcc(Assembler::equal, L);
   976     __ stop("broken stack frame setup in interpreter");
   977     __ bind(L);
   978   }
   979 #endif
   981   // jvmti/dtrace support
   982   __ notify_method_entry();
   984   // work registers
   985   const Register method = rbx;
   986   const Register thread = rdi;
   987   const Register t      = rcx;
   989   // allocate space for parameters
   990   __ get_method(method);
   991   __ movptr(t, Address(method, Method::const_offset()));
   992   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
   994   __ shlptr(t, Interpreter::logStackElementSize);
   995   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
   996   __ subptr(rsp, t);
   997   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
   999   // get signature handler
  1000   { Label L;
  1001     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1002     __ testptr(t, t);
  1003     __ jcc(Assembler::notZero, L);
  1004     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1005     __ get_method(method);
  1006     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1007     __ bind(L);
  1010   // call signature handler
  1011   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1012   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1013   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1014   // The generated handlers do not touch RBX (the method oop).
  1015   // However, large signatures cannot be cached and are generated
  1016   // each time here.  The slow-path generator will blow RBX
  1017   // sometime, so we must reload it after the call.
  1018   __ call(t);
  1019   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1021   // result handler is in rax,
  1022   // set result handler
  1023   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1025   // pass mirror handle if static call
  1026   { Label L;
  1027     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1028     __ movl(t, Address(method, Method::access_flags_offset()));
  1029     __ testl(t, JVM_ACC_STATIC);
  1030     __ jcc(Assembler::zero, L);
  1031     // get mirror
  1032     __ movptr(t, Address(method, Method:: const_offset()));
  1033     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1034     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1035     __ movptr(t, Address(t, mirror_offset));
  1036     // copy mirror into activation frame
  1037     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1038     // pass handle to mirror
  1039     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1040     __ movptr(Address(rsp, wordSize), t);
  1041     __ bind(L);
  1044   // get native function entry point
  1045   { Label L;
  1046     __ movptr(rax, Address(method, Method::native_function_offset()));
  1047     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1048     __ cmpptr(rax, unsatisfied.addr());
  1049     __ jcc(Assembler::notEqual, L);
  1050     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1051     __ get_method(method);
  1052     __ movptr(rax, Address(method, Method::native_function_offset()));
  1053     __ bind(L);
  1056   // pass JNIEnv
  1057   __ get_thread(thread);
  1058   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1059   __ movptr(Address(rsp, 0), t);
  1061   // set_last_Java_frame_before_call
  1062   // It is enough that the pc()
  1063   // points into the right code segment. It does not have to be the correct return pc.
  1064   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1066   // change thread state
  1067 #ifdef ASSERT
  1068   { Label L;
  1069     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1070     __ cmpl(t, _thread_in_Java);
  1071     __ jcc(Assembler::equal, L);
  1072     __ stop("Wrong thread state in native stub");
  1073     __ bind(L);
  1075 #endif
  1077   // Change state to native
  1078   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1079   __ call(rax);
  1081   // result potentially in rdx:rax or ST0
  1083   // Either restore the MXCSR register after returning from the JNI Call
  1084   // or verify that it wasn't changed.
  1085   if (VM_Version::supports_sse()) {
  1086     if (RestoreMXCSROnJNICalls) {
  1087       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1089     else if (CheckJNICalls ) {
  1090       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1094   // Either restore the x87 floating pointer control word after returning
  1095   // from the JNI call or verify that it wasn't changed.
  1096   if (CheckJNICalls) {
  1097     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1100   // save potential result in ST(0) & rdx:rax
  1101   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1102   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1103   // It is safe to do this push because state is _thread_in_native and return address will be found
  1104   // via _last_native_pc and not via _last_jave_sp
  1106   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1107   // If the order changes or anything else is added to the stack the code in
  1108   // interpreter_frame_result will have to be changed.
  1110   { Label L;
  1111     Label push_double;
  1112     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1113     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1114     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1115               float_handler.addr());
  1116     __ jcc(Assembler::equal, push_double);
  1117     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1118               double_handler.addr());
  1119     __ jcc(Assembler::notEqual, L);
  1120     __ bind(push_double);
  1121     __ push(dtos);
  1122     __ bind(L);
  1124   __ push(ltos);
  1126   // change thread state
  1127   __ get_thread(thread);
  1128   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1129   if(os::is_MP()) {
  1130     if (UseMembar) {
  1131       // Force this write out before the read below
  1132       __ membar(Assembler::Membar_mask_bits(
  1133            Assembler::LoadLoad | Assembler::LoadStore |
  1134            Assembler::StoreLoad | Assembler::StoreStore));
  1135     } else {
  1136       // Write serialization page so VM thread can do a pseudo remote membar.
  1137       // We use the current thread pointer to calculate a thread specific
  1138       // offset to write to within the page. This minimizes bus traffic
  1139       // due to cache line collision.
  1140       __ serialize_memory(thread, rcx);
  1144   if (AlwaysRestoreFPU) {
  1145     //  Make sure the control word is correct.
  1146     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1149   // check for safepoint operation in progress and/or pending suspend requests
  1150   { Label Continue;
  1152     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1153              SafepointSynchronize::_not_synchronized);
  1155     Label L;
  1156     __ jcc(Assembler::notEqual, L);
  1157     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1158     __ jcc(Assembler::equal, Continue);
  1159     __ bind(L);
  1161     // Don't use call_VM as it will see a possible pending exception and forward it
  1162     // and never return here preventing us from clearing _last_native_pc down below.
  1163     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1164     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1165     // by hand.
  1166     //
  1167     __ push(thread);
  1168     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1169                                             JavaThread::check_special_condition_for_native_trans)));
  1170     __ increment(rsp, wordSize);
  1171     __ get_thread(thread);
  1173     __ bind(Continue);
  1176   // change thread state
  1177   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1179   __ reset_last_Java_frame(thread, true, true);
  1181   // reset handle block
  1182   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1183   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1185   // If result was an oop then unbox and save it in the frame
  1186   { Label L;
  1187     Label no_oop, store_result;
  1188     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1189     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1190               handler.addr());
  1191     __ jcc(Assembler::notEqual, no_oop);
  1192     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1193     __ pop(ltos);
  1194     __ testptr(rax, rax);
  1195     __ jcc(Assembler::zero, store_result);
  1196     // unbox
  1197     __ movptr(rax, Address(rax, 0));
  1198     __ bind(store_result);
  1199     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1200     // keep stack depth as expected by pushing oop which will eventually be discarded
  1201     __ push(ltos);
  1202     __ bind(no_oop);
  1206      Label no_reguard;
  1207      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1208      __ jcc(Assembler::notEqual, no_reguard);
  1210      __ pusha();
  1211      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1212      __ popa();
  1214      __ bind(no_reguard);
  1217   // restore rsi to have legal interpreter frame,
  1218   // i.e., bci == 0 <=> rsi == code_base()
  1219   // Can't call_VM until bcp is within reasonable.
  1220   __ get_method(method);      // method is junk from thread_in_native to now.
  1221   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
  1222   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
  1224   // handle exceptions (exception handling will handle unlocking!)
  1225   { Label L;
  1226     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1227     __ jcc(Assembler::zero, L);
  1228     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1229     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1230     //       doesn't work here because the rsp is not correctly set at this point.
  1231     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1232     __ should_not_reach_here();
  1233     __ bind(L);
  1236   // do unlocking if necessary
  1237   { Label L;
  1238     __ movl(t, Address(method, Method::access_flags_offset()));
  1239     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1240     __ jcc(Assembler::zero, L);
  1241     // the code below should be shared with interpreter macro assembler implementation
  1242     { Label unlock;
  1243       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1244       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1245       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1247       __ lea(rdx, monitor);                   // address of first monitor
  1249       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1250       __ testptr(t, t);
  1251       __ jcc(Assembler::notZero, unlock);
  1253       // Entry already unlocked, need to throw exception
  1254       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1255       __ should_not_reach_here();
  1257       __ bind(unlock);
  1258       __ unlock_object(rdx);
  1260     __ bind(L);
  1263   // jvmti/dtrace support
  1264   // Note: This must happen _after_ handling/throwing any exceptions since
  1265   //       the exception handler code notifies the runtime of method exits
  1266   //       too. If this happens before, method entry/exit notifications are
  1267   //       not properly paired (was bug - gri 11/22/99).
  1268   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1270   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1271   __ pop(ltos);
  1272   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1273   __ call(t);
  1275   // remove activation
  1276   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1277   __ leave();                                // remove frame anchor
  1278   __ pop(rdi);                               // get return address
  1279   __ mov(rsp, t);                            // set sp to sender sp
  1280   __ jmp(rdi);
  1282   if (inc_counter) {
  1283     // Handle overflow of counter and compile method
  1284     __ bind(invocation_counter_overflow);
  1285     generate_counter_overflow(&continue_after_compile);
  1288   return entry_point;
  1291 //
  1292 // Generic interpreted method entry to (asm) interpreter
  1293 //
  1294 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1295   // determine code generation flags
  1296   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1298   // rbx,: Method*
  1299   // rsi: sender sp
  1300   address entry_point = __ pc();
  1302   const Address constMethod       (rbx, Method::const_offset());
  1303   const Address invocation_counter(rbx, Method::invocation_counter_offset() + InvocationCounter::counter_offset());
  1304   const Address access_flags      (rbx, Method::access_flags_offset());
  1305   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1306   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1308   // get parameter size (always needed)
  1309   __ movptr(rdx, constMethod);
  1310   __ load_unsigned_short(rcx, size_of_parameters);
  1312   // rbx,: Method*
  1313   // rcx: size of parameters
  1315   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1317   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1318   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1320   // see if we've got enough room on the stack for locals plus overhead.
  1321   generate_stack_overflow_check();
  1323   // get return address
  1324   __ pop(rax);
  1326   // compute beginning of parameters (rdi)
  1327   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1329   // rdx - # of additional locals
  1330   // allocate space for locals
  1331   // explicitly initialize locals
  1333     Label exit, loop;
  1334     __ testl(rdx, rdx);
  1335     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1336     __ bind(loop);
  1337     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1338     __ decrement(rdx);                                // until everything initialized
  1339     __ jcc(Assembler::greater, loop);
  1340     __ bind(exit);
  1343   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1344   // initialize fixed part of activation frame
  1345   generate_fixed_frame(false);
  1347   // make sure method is not native & not abstract
  1348 #ifdef ASSERT
  1349   __ movl(rax, access_flags);
  1351     Label L;
  1352     __ testl(rax, JVM_ACC_NATIVE);
  1353     __ jcc(Assembler::zero, L);
  1354     __ stop("tried to execute native method as non-native");
  1355     __ bind(L);
  1357   { Label L;
  1358     __ testl(rax, JVM_ACC_ABSTRACT);
  1359     __ jcc(Assembler::zero, L);
  1360     __ stop("tried to execute abstract method in interpreter");
  1361     __ bind(L);
  1363 #endif
  1365   // Since at this point in the method invocation the exception handler
  1366   // would try to exit the monitor of synchronized methods which hasn't
  1367   // been entered yet, we set the thread local variable
  1368   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1369   // check this flag.
  1371   __ get_thread(rax);
  1372   const Address do_not_unlock_if_synchronized(rax,
  1373         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1374   __ movbool(do_not_unlock_if_synchronized, true);
  1376   // increment invocation count & check for overflow
  1377   Label invocation_counter_overflow;
  1378   Label profile_method;
  1379   Label profile_method_continue;
  1380   if (inc_counter) {
  1381     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1382     if (ProfileInterpreter) {
  1383       __ bind(profile_method_continue);
  1386   Label continue_after_compile;
  1387   __ bind(continue_after_compile);
  1389   bang_stack_shadow_pages(false);
  1391   // reset the _do_not_unlock_if_synchronized flag
  1392   __ get_thread(rax);
  1393   __ movbool(do_not_unlock_if_synchronized, false);
  1395   // check for synchronized methods
  1396   // Must happen AFTER invocation_counter check and stack overflow check,
  1397   // so method is not locked if overflows.
  1398   //
  1399   if (synchronized) {
  1400     // Allocate monitor and lock method
  1401     lock_method();
  1402   } else {
  1403     // no synchronization necessary
  1404 #ifdef ASSERT
  1405       { Label L;
  1406         __ movl(rax, access_flags);
  1407         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1408         __ jcc(Assembler::zero, L);
  1409         __ stop("method needs synchronization");
  1410         __ bind(L);
  1412 #endif
  1415   // start execution
  1416 #ifdef ASSERT
  1417   { Label L;
  1418      const Address monitor_block_top (rbp,
  1419                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1420     __ movptr(rax, monitor_block_top);
  1421     __ cmpptr(rax, rsp);
  1422     __ jcc(Assembler::equal, L);
  1423     __ stop("broken stack frame setup in interpreter");
  1424     __ bind(L);
  1426 #endif
  1428   // jvmti support
  1429   __ notify_method_entry();
  1431   __ dispatch_next(vtos);
  1433   // invocation counter overflow
  1434   if (inc_counter) {
  1435     if (ProfileInterpreter) {
  1436       // We have decided to profile this method in the interpreter
  1437       __ bind(profile_method);
  1438       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1439       __ set_method_data_pointer_for_bcp();
  1440       __ get_method(rbx);
  1441       __ jmp(profile_method_continue);
  1443     // Handle overflow of counter and compile method
  1444     __ bind(invocation_counter_overflow);
  1445     generate_counter_overflow(&continue_after_compile);
  1448   return entry_point;
  1451 //------------------------------------------------------------------------------------------------------------------------
  1452 // Entry points
  1453 //
  1454 // Here we generate the various kind of entries into the interpreter.
  1455 // The two main entry type are generic bytecode methods and native call method.
  1456 // These both come in synchronized and non-synchronized versions but the
  1457 // frame layout they create is very similar. The other method entry
  1458 // types are really just special purpose entries that are really entry
  1459 // and interpretation all in one. These are for trivial methods like
  1460 // accessor, empty, or special math methods.
  1461 //
  1462 // When control flow reaches any of the entry types for the interpreter
  1463 // the following holds ->
  1464 //
  1465 // Arguments:
  1466 //
  1467 // rbx,: Method*
  1468 // rcx: receiver
  1469 //
  1470 //
  1471 // Stack layout immediately at entry
  1472 //
  1473 // [ return address     ] <--- rsp
  1474 // [ parameter n        ]
  1475 //   ...
  1476 // [ parameter 1        ]
  1477 // [ expression stack   ] (caller's java expression stack)
  1479 // Assuming that we don't go to one of the trivial specialized
  1480 // entries the stack will look like below when we are ready to execute
  1481 // the first bytecode (or call the native routine). The register usage
  1482 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1483 //
  1484 // local variables follow incoming parameters immediately; i.e.
  1485 // the return address is moved to the end of the locals).
  1486 //
  1487 // [ monitor entry      ] <--- rsp
  1488 //   ...
  1489 // [ monitor entry      ]
  1490 // [ expr. stack bottom ]
  1491 // [ saved rsi          ]
  1492 // [ current rdi        ]
  1493 // [ Method*            ]
  1494 // [ saved rbp,          ] <--- rbp,
  1495 // [ return address     ]
  1496 // [ local variable m   ]
  1497 //   ...
  1498 // [ local variable 1   ]
  1499 // [ parameter n        ]
  1500 //   ...
  1501 // [ parameter 1        ] <--- rdi
  1503 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1504   // determine code generation flags
  1505   bool synchronized = false;
  1506   address entry_point = NULL;
  1508   switch (kind) {
  1509     case Interpreter::zerolocals             :                                                                             break;
  1510     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1511     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1512     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1513     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1514     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1515     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1517     case Interpreter::java_lang_math_sin     : // fall thru
  1518     case Interpreter::java_lang_math_cos     : // fall thru
  1519     case Interpreter::java_lang_math_tan     : // fall thru
  1520     case Interpreter::java_lang_math_abs     : // fall thru
  1521     case Interpreter::java_lang_math_log     : // fall thru
  1522     case Interpreter::java_lang_math_log10   : // fall thru
  1523     case Interpreter::java_lang_math_sqrt    : // fall thru
  1524     case Interpreter::java_lang_math_pow     : // fall thru
  1525     case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1526     case Interpreter::java_lang_ref_reference_get
  1527                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1528     default:
  1529       fatal(err_msg("unexpected method kind: %d", kind));
  1530       break;
  1533   if (entry_point) return entry_point;
  1535   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1539 // These should never be compiled since the interpreter will prefer
  1540 // the compiled version to the intrinsic version.
  1541 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1542   switch (method_kind(m)) {
  1543     case Interpreter::java_lang_math_sin     : // fall thru
  1544     case Interpreter::java_lang_math_cos     : // fall thru
  1545     case Interpreter::java_lang_math_tan     : // fall thru
  1546     case Interpreter::java_lang_math_abs     : // fall thru
  1547     case Interpreter::java_lang_math_log     : // fall thru
  1548     case Interpreter::java_lang_math_log10   : // fall thru
  1549     case Interpreter::java_lang_math_sqrt    : // fall thru
  1550     case Interpreter::java_lang_math_pow     : // fall thru
  1551     case Interpreter::java_lang_math_exp     :
  1552       return false;
  1553     default:
  1554       return true;
  1558 // How much stack a method activation needs in words.
  1559 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1561   const int stub_code = 4;  // see generate_call_stub
  1562   // Save space for one monitor to get into the interpreted method in case
  1563   // the method is synchronized
  1564   int monitor_size    = method->is_synchronized() ?
  1565                                 1*frame::interpreter_frame_monitor_size() : 0;
  1567   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1568   // be sure to change this if you add/subtract anything to/from the overhead area
  1569   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1571   const int extra_stack = Method::extra_stack_entries();
  1572   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1573                            Interpreter::stackElementWords;
  1574   return overhead_size + method_stack + stub_code;
  1577 // asm based interpreter deoptimization helpers
  1579 int AbstractInterpreter::layout_activation(Method* method,
  1580                                            int tempcount,
  1581                                            int popframe_extra_args,
  1582                                            int moncount,
  1583                                            int caller_actual_parameters,
  1584                                            int callee_param_count,
  1585                                            int callee_locals,
  1586                                            frame* caller,
  1587                                            frame* interpreter_frame,
  1588                                            bool is_top_frame) {
  1589   // Note: This calculation must exactly parallel the frame setup
  1590   // in AbstractInterpreterGenerator::generate_method_entry.
  1591   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1592   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1593   // as determined by a previous call to this method.
  1594   // It is also guaranteed to be walkable even though it is in a skeletal state
  1595   // NOTE: return size is in words not bytes
  1597   // fixed size of an interpreter frame:
  1598   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1599   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1600                      Interpreter::stackElementWords;
  1602   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1604   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1605   // Since the callee parameters already account for the callee's params we only need to account for
  1606   // the extra locals.
  1609   int size = overhead +
  1610          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1611          (moncount*frame::interpreter_frame_monitor_size()) +
  1612          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1614   if (interpreter_frame != NULL) {
  1615 #ifdef ASSERT
  1616     if (!EnableInvokeDynamic)
  1617       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1618       // Probably, since deoptimization doesn't work yet.
  1619       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1620     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1621 #endif
  1623     interpreter_frame->interpreter_frame_set_method(method);
  1624     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1625     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1626     // and sender_sp is fp+8
  1627     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1629 #ifdef ASSERT
  1630     if (caller->is_interpreted_frame()) {
  1631       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1633 #endif
  1635     interpreter_frame->interpreter_frame_set_locals(locals);
  1636     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1637     BasicObjectLock* monbot = montop - moncount;
  1638     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1640     // Set last_sp
  1641     intptr_t*  rsp = (intptr_t*) monbot  -
  1642                      tempcount*Interpreter::stackElementWords -
  1643                      popframe_extra_args;
  1644     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1646     // All frames but the initial (oldest) interpreter frame we fill in have a
  1647     // value for sender_sp that allows walking the stack but isn't
  1648     // truly correct. Correct the value here.
  1650     if (extra_locals != 0 &&
  1651         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1652       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1654     *interpreter_frame->interpreter_frame_cache_addr() =
  1655       method->constants()->cache();
  1657   return size;
  1661 //------------------------------------------------------------------------------------------------------------------------
  1662 // Exceptions
  1664 void TemplateInterpreterGenerator::generate_throw_exception() {
  1665   // Entry point in previous activation (i.e., if the caller was interpreted)
  1666   Interpreter::_rethrow_exception_entry = __ pc();
  1667   const Register thread = rcx;
  1669   // Restore sp to interpreter_frame_last_sp even though we are going
  1670   // to empty the expression stack for the exception processing.
  1671   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1672   // rax,: exception
  1673   // rdx: return address/pc that threw exception
  1674   __ restore_bcp();                              // rsi points to call/send
  1675   __ restore_locals();
  1677   // Entry point for exceptions thrown within interpreter code
  1678   Interpreter::_throw_exception_entry = __ pc();
  1679   // expression stack is undefined here
  1680   // rax,: exception
  1681   // rsi: exception bcp
  1682   __ verify_oop(rax);
  1684   // expression stack must be empty before entering the VM in case of an exception
  1685   __ empty_expression_stack();
  1686   __ empty_FPU_stack();
  1687   // find exception handler address and preserve exception oop
  1688   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1689   // rax,: exception handler entry point
  1690   // rdx: preserved exception oop
  1691   // rsi: bcp for exception handler
  1692   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1693   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1695   // If the exception is not handled in the current frame the frame is removed and
  1696   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1697   //
  1698   // Note: At this point the bci is still the bxi for the instruction which caused
  1699   //       the exception and the expression stack is empty. Thus, for any VM calls
  1700   //       at this point, GC will find a legal oop map (with empty expression stack).
  1702   // In current activation
  1703   // tos: exception
  1704   // rsi: exception bcp
  1706   //
  1707   // JVMTI PopFrame support
  1708   //
  1710    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1711   __ empty_expression_stack();
  1712   __ empty_FPU_stack();
  1713   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1714   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1715   // popframe handling cycles.
  1716   __ get_thread(thread);
  1717   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1718   __ orl(rdx, JavaThread::popframe_processing_bit);
  1719   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1722     // Check to see whether we are returning to a deoptimized frame.
  1723     // (The PopFrame call ensures that the caller of the popped frame is
  1724     // either interpreted or compiled and deoptimizes it if compiled.)
  1725     // In this case, we can't call dispatch_next() after the frame is
  1726     // popped, but instead must save the incoming arguments and restore
  1727     // them after deoptimization has occurred.
  1728     //
  1729     // Note that we don't compare the return PC against the
  1730     // deoptimization blob's unpack entry because of the presence of
  1731     // adapter frames in C2.
  1732     Label caller_not_deoptimized;
  1733     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1734     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1735     __ testl(rax, rax);
  1736     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1738     // Compute size of arguments for saving when returning to deoptimized caller
  1739     __ get_method(rax);
  1740     __ movptr(rax, Address(rax, Method::const_offset()));
  1741     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
  1742     __ shlptr(rax, Interpreter::logStackElementSize);
  1743     __ restore_locals();
  1744     __ subptr(rdi, rax);
  1745     __ addptr(rdi, wordSize);
  1746     // Save these arguments
  1747     __ get_thread(thread);
  1748     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1750     __ remove_activation(vtos, rdx,
  1751                          /* throw_monitor_exception */ false,
  1752                          /* install_monitor_exception */ false,
  1753                          /* notify_jvmdi */ false);
  1755     // Inform deoptimization that it is responsible for restoring these arguments
  1756     __ get_thread(thread);
  1757     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1759     // Continue in deoptimization handler
  1760     __ jmp(rdx);
  1762     __ bind(caller_not_deoptimized);
  1765   __ remove_activation(vtos, rdx,
  1766                        /* throw_monitor_exception */ false,
  1767                        /* install_monitor_exception */ false,
  1768                        /* notify_jvmdi */ false);
  1770   // Finish with popframe handling
  1771   // A previous I2C followed by a deoptimization might have moved the
  1772   // outgoing arguments further up the stack. PopFrame expects the
  1773   // mutations to those outgoing arguments to be preserved and other
  1774   // constraints basically require this frame to look exactly as
  1775   // though it had previously invoked an interpreted activation with
  1776   // no space between the top of the expression stack (current
  1777   // last_sp) and the top of stack. Rather than force deopt to
  1778   // maintain this kind of invariant all the time we call a small
  1779   // fixup routine to move the mutated arguments onto the top of our
  1780   // expression stack if necessary.
  1781   __ mov(rax, rsp);
  1782   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1783   __ get_thread(thread);
  1784   // PC must point into interpreter here
  1785   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1786   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1787   __ get_thread(thread);
  1788   __ reset_last_Java_frame(thread, true, true);
  1789   // Restore the last_sp and null it out
  1790   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1791   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1793   __ restore_bcp();
  1794   __ restore_locals();
  1795   // The method data pointer was incremented already during
  1796   // call profiling. We have to restore the mdp for the current bcp.
  1797   if (ProfileInterpreter) {
  1798     __ set_method_data_pointer_for_bcp();
  1801   // Clear the popframe condition flag
  1802   __ get_thread(thread);
  1803   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1805   __ dispatch_next(vtos);
  1806   // end of PopFrame support
  1808   Interpreter::_remove_activation_entry = __ pc();
  1810   // preserve exception over this code sequence
  1811   __ pop_ptr(rax);
  1812   __ get_thread(thread);
  1813   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1814   // remove the activation (without doing throws on illegalMonitorExceptions)
  1815   __ remove_activation(vtos, rdx, false, true, false);
  1816   // restore exception
  1817   __ get_thread(thread);
  1818   __ get_vm_result(rax, thread);
  1820   // Inbetween activations - previous activation type unknown yet
  1821   // compute continuation point - the continuation point expects
  1822   // the following registers set up:
  1823   //
  1824   // rax: exception
  1825   // rdx: return address/pc that threw exception
  1826   // rsp: expression stack of caller
  1827   // rbp: rbp, of caller
  1828   __ push(rax);                                  // save exception
  1829   __ push(rdx);                                  // save return address
  1830   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1831   __ mov(rbx, rax);                              // save exception handler
  1832   __ pop(rdx);                                   // restore return address
  1833   __ pop(rax);                                   // restore exception
  1834   // Note that an "issuing PC" is actually the next PC after the call
  1835   __ jmp(rbx);                                   // jump to exception handler of caller
  1839 //
  1840 // JVMTI ForceEarlyReturn support
  1841 //
  1842 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1843   address entry = __ pc();
  1844   const Register thread = rcx;
  1846   __ restore_bcp();
  1847   __ restore_locals();
  1848   __ empty_expression_stack();
  1849   __ empty_FPU_stack();
  1850   __ load_earlyret_value(state);
  1852   __ get_thread(thread);
  1853   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1854   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1856   // Clear the earlyret state
  1857   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1859   __ remove_activation(state, rsi,
  1860                        false, /* throw_monitor_exception */
  1861                        false, /* install_monitor_exception */
  1862                        true); /* notify_jvmdi */
  1863   __ jmp(rsi);
  1864   return entry;
  1865 } // end of ForceEarlyReturn support
  1868 //------------------------------------------------------------------------------------------------------------------------
  1869 // Helper for vtos entry point generation
  1871 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1872   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1873   Label L;
  1874   fep = __ pc(); __ push(ftos); __ jmp(L);
  1875   dep = __ pc(); __ push(dtos); __ jmp(L);
  1876   lep = __ pc(); __ push(ltos); __ jmp(L);
  1877   aep = __ pc(); __ push(atos); __ jmp(L);
  1878   bep = cep = sep =             // fall through
  1879   iep = __ pc(); __ push(itos); // fall through
  1880   vep = __ pc(); __ bind(L);    // fall through
  1881   generate_and_dispatch(t);
  1884 //------------------------------------------------------------------------------------------------------------------------
  1885 // Generation of individual instructions
  1887 // helpers for generate_and_dispatch
  1891 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1892  : TemplateInterpreterGenerator(code) {
  1893    generate_all(); // down here so it can be "virtual"
  1896 //------------------------------------------------------------------------------------------------------------------------
  1898 // Non-product code
  1899 #ifndef PRODUCT
  1900 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1901   address entry = __ pc();
  1903   // prepare expression stack
  1904   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1905   __ push(state);       // save tosca
  1907   // pass tosca registers as arguments & call tracer
  1908   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1909   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1910   __ pop(state);        // restore tosca
  1912   // return
  1913   __ jmp(rcx);
  1915   return entry;
  1919 void TemplateInterpreterGenerator::count_bytecode() {
  1920   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1924 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1925   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1929 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1930   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1931   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1932   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1933   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1934   Address index(noreg, rbx, Address::times_4);
  1935   __ incrementl(ArrayAddress(table, index));
  1939 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1940   // Call a little run-time stub to avoid blow-up for each bytecode.
  1941   // The run-time runtime saves the right registers, depending on
  1942   // the tosca in-state for the given template.
  1943   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1944          "entry must have been generated");
  1945   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1949 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1950   Label L;
  1951   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1952            StopInterpreterAt);
  1953   __ jcc(Assembler::notEqual, L);
  1954   __ int3();
  1955   __ bind(L);
  1957 #endif // !PRODUCT
  1958 #endif // CC_INTERP

mercurial