src/cpu/x86/vm/macroAssembler_x86.hpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4413
038dd2875b94
child 4543
8391fdd36e1f
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
    28 #include "asm/assembler.hpp"
    29 #include "utilities/macros.hpp"
    32 // MacroAssembler extends Assembler by frequently used macros.
    33 //
    34 // Instructions for which a 'better' code sequence exists depending
    35 // on arguments should also go in here.
    37 class MacroAssembler: public Assembler {
    38   friend class LIR_Assembler;
    39   friend class Runtime1;      // as_Address()
    41  protected:
    43   Address as_Address(AddressLiteral adr);
    44   Address as_Address(ArrayAddress adr);
    46   // Support for VM calls
    47   //
    48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
    49   // may customize this version by overriding it for its purposes (e.g., to save/restore
    50   // additional registers when doing a VM call).
    51 #ifdef CC_INTERP
    52   // c++ interpreter never wants to use interp_masm version of call_VM
    53   #define VIRTUAL
    54 #else
    55   #define VIRTUAL virtual
    56 #endif
    58   VIRTUAL void call_VM_leaf_base(
    59     address entry_point,               // the entry point
    60     int     number_of_arguments        // the number of arguments to pop after the call
    61   );
    63   // This is the base routine called by the different versions of call_VM. The interpreter
    64   // may customize this version by overriding it for its purposes (e.g., to save/restore
    65   // additional registers when doing a VM call).
    66   //
    67   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
    68   // returns the register which contains the thread upon return. If a thread register has been
    69   // specified, the return value will correspond to that register. If no last_java_sp is specified
    70   // (noreg) than rsp will be used instead.
    71   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
    74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    75     address  entry_point,              // the entry point
    76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    77     bool     check_exceptions          // whether to check for pending exceptions after return
    78   );
    80   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
    81   // The implementation is only non-empty for the InterpreterMacroAssembler,
    82   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
    83   virtual void check_and_handle_popframe(Register java_thread);
    84   virtual void check_and_handle_earlyret(Register java_thread);
    86   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
    88   // helpers for FPU flag access
    89   // tmp is a temporary register, if none is available use noreg
    90   void save_rax   (Register tmp);
    91   void restore_rax(Register tmp);
    93  public:
    94   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
    96   // Support for NULL-checks
    97   //
    98   // Generates code that causes a NULL OS exception if the content of reg is NULL.
    99   // If the accessed location is M[reg + offset] and the offset is known, provide the
   100   // offset. No explicit code generation is needed if the offset is within a certain
   101   // range (0 <= offset <= page_size).
   103   void null_check(Register reg, int offset = -1);
   104   static bool needs_explicit_null_check(intptr_t offset);
   106   // Required platform-specific helpers for Label::patch_instructions.
   107   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   108   void pd_patch_instruction(address branch, address target) {
   109     unsigned char op = branch[0];
   110     assert(op == 0xE8 /* call */ ||
   111         op == 0xE9 /* jmp */ ||
   112         op == 0xEB /* short jmp */ ||
   113         (op & 0xF0) == 0x70 /* short jcc */ ||
   114         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
   115         "Invalid opcode at patch point");
   117     if (op == 0xEB || (op & 0xF0) == 0x70) {
   118       // short offset operators (jmp and jcc)
   119       char* disp = (char*) &branch[1];
   120       int imm8 = target - (address) &disp[1];
   121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
   122       *disp = imm8;
   123     } else {
   124       int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
   125       int imm32 = target - (address) &disp[1];
   126       *disp = imm32;
   127     }
   128   }
   130   // The following 4 methods return the offset of the appropriate move instruction
   132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
   133   int load_unsigned_byte(Register dst, Address src);
   134   int load_unsigned_short(Register dst, Address src);
   136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
   137   int load_signed_byte(Register dst, Address src);
   138   int load_signed_short(Register dst, Address src);
   140   // Support for sign-extension (hi:lo = extend_sign(lo))
   141   void extend_sign(Register hi, Register lo);
   143   // Load and store values by size and signed-ness
   144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
   145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
   147   // Support for inc/dec with optimal instruction selection depending on value
   149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
   150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
   152   void decrementl(Address dst, int value = 1);
   153   void decrementl(Register reg, int value = 1);
   155   void decrementq(Register reg, int value = 1);
   156   void decrementq(Address dst, int value = 1);
   158   void incrementl(Address dst, int value = 1);
   159   void incrementl(Register reg, int value = 1);
   161   void incrementq(Register reg, int value = 1);
   162   void incrementq(Address dst, int value = 1);
   165   // Support optimal SSE move instructions.
   166   void movflt(XMMRegister dst, XMMRegister src) {
   167     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
   168     else                       { movss (dst, src); return; }
   169   }
   170   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
   171   void movflt(XMMRegister dst, AddressLiteral src);
   172   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
   174   void movdbl(XMMRegister dst, XMMRegister src) {
   175     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
   176     else                       { movsd (dst, src); return; }
   177   }
   179   void movdbl(XMMRegister dst, AddressLiteral src);
   181   void movdbl(XMMRegister dst, Address src) {
   182     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
   183     else                         { movlpd(dst, src); return; }
   184   }
   185   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
   187   void incrementl(AddressLiteral dst);
   188   void incrementl(ArrayAddress dst);
   190   // Alignment
   191   void align(int modulus);
   193   // A 5 byte nop that is safe for patching (see patch_verified_entry)
   194   void fat_nop();
   196   // Stack frame creation/removal
   197   void enter();
   198   void leave();
   200   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
   201   // The pointer will be loaded into the thread register.
   202   void get_thread(Register thread);
   205   // Support for VM calls
   206   //
   207   // It is imperative that all calls into the VM are handled via the call_VM macros.
   208   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   209   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   212   void call_VM(Register oop_result,
   213                address entry_point,
   214                bool check_exceptions = true);
   215   void call_VM(Register oop_result,
   216                address entry_point,
   217                Register arg_1,
   218                bool check_exceptions = true);
   219   void call_VM(Register oop_result,
   220                address entry_point,
   221                Register arg_1, Register arg_2,
   222                bool check_exceptions = true);
   223   void call_VM(Register oop_result,
   224                address entry_point,
   225                Register arg_1, Register arg_2, Register arg_3,
   226                bool check_exceptions = true);
   228   // Overloadings with last_Java_sp
   229   void call_VM(Register oop_result,
   230                Register last_java_sp,
   231                address entry_point,
   232                int number_of_arguments = 0,
   233                bool check_exceptions = true);
   234   void call_VM(Register oop_result,
   235                Register last_java_sp,
   236                address entry_point,
   237                Register arg_1, bool
   238                check_exceptions = true);
   239   void call_VM(Register oop_result,
   240                Register last_java_sp,
   241                address entry_point,
   242                Register arg_1, Register arg_2,
   243                bool check_exceptions = true);
   244   void call_VM(Register oop_result,
   245                Register last_java_sp,
   246                address entry_point,
   247                Register arg_1, Register arg_2, Register arg_3,
   248                bool check_exceptions = true);
   250   void get_vm_result  (Register oop_result, Register thread);
   251   void get_vm_result_2(Register metadata_result, Register thread);
   253   // These always tightly bind to MacroAssembler::call_VM_base
   254   // bypassing the virtual implementation
   255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
   256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
   257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
   258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
   259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
   261   void call_VM_leaf(address entry_point,
   262                     int number_of_arguments = 0);
   263   void call_VM_leaf(address entry_point,
   264                     Register arg_1);
   265   void call_VM_leaf(address entry_point,
   266                     Register arg_1, Register arg_2);
   267   void call_VM_leaf(address entry_point,
   268                     Register arg_1, Register arg_2, Register arg_3);
   270   // These always tightly bind to MacroAssembler::call_VM_leaf_base
   271   // bypassing the virtual implementation
   272   void super_call_VM_leaf(address entry_point);
   273   void super_call_VM_leaf(address entry_point, Register arg_1);
   274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
   275   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
   276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
   278   // last Java Frame (fills frame anchor)
   279   void set_last_Java_frame(Register thread,
   280                            Register last_java_sp,
   281                            Register last_java_fp,
   282                            address last_java_pc);
   284   // thread in the default location (r15_thread on 64bit)
   285   void set_last_Java_frame(Register last_java_sp,
   286                            Register last_java_fp,
   287                            address last_java_pc);
   289   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
   291   // thread in the default location (r15_thread on 64bit)
   292   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
   294   // Stores
   295   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
   296   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
   298 #if INCLUDE_ALL_GCS
   300   void g1_write_barrier_pre(Register obj,
   301                             Register pre_val,
   302                             Register thread,
   303                             Register tmp,
   304                             bool tosca_live,
   305                             bool expand_call);
   307   void g1_write_barrier_post(Register store_addr,
   308                              Register new_val,
   309                              Register thread,
   310                              Register tmp,
   311                              Register tmp2);
   313 #endif // INCLUDE_ALL_GCS
   315   // split store_check(Register obj) to enhance instruction interleaving
   316   void store_check_part_1(Register obj);
   317   void store_check_part_2(Register obj);
   319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
   320   void c2bool(Register x);
   322   // C++ bool manipulation
   324   void movbool(Register dst, Address src);
   325   void movbool(Address dst, bool boolconst);
   326   void movbool(Address dst, Register src);
   327   void testbool(Register dst);
   329   // oop manipulations
   330   void load_klass(Register dst, Register src);
   331   void store_klass(Register dst, Register src);
   333   void load_heap_oop(Register dst, Address src);
   334   void load_heap_oop_not_null(Register dst, Address src);
   335   void store_heap_oop(Address dst, Register src);
   336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
   338   // Used for storing NULL. All other oop constants should be
   339   // stored using routines that take a jobject.
   340   void store_heap_oop_null(Address dst);
   342   void load_prototype_header(Register dst, Register src);
   344 #ifdef _LP64
   345   void store_klass_gap(Register dst, Register src);
   347   // This dummy is to prevent a call to store_heap_oop from
   348   // converting a zero (like NULL) into a Register by giving
   349   // the compiler two choices it can't resolve
   351   void store_heap_oop(Address dst, void* dummy);
   353   void encode_heap_oop(Register r);
   354   void decode_heap_oop(Register r);
   355   void encode_heap_oop_not_null(Register r);
   356   void decode_heap_oop_not_null(Register r);
   357   void encode_heap_oop_not_null(Register dst, Register src);
   358   void decode_heap_oop_not_null(Register dst, Register src);
   360   void set_narrow_oop(Register dst, jobject obj);
   361   void set_narrow_oop(Address dst, jobject obj);
   362   void cmp_narrow_oop(Register dst, jobject obj);
   363   void cmp_narrow_oop(Address dst, jobject obj);
   365   void encode_klass_not_null(Register r);
   366   void decode_klass_not_null(Register r);
   367   void encode_klass_not_null(Register dst, Register src);
   368   void decode_klass_not_null(Register dst, Register src);
   369   void set_narrow_klass(Register dst, Klass* k);
   370   void set_narrow_klass(Address dst, Klass* k);
   371   void cmp_narrow_klass(Register dst, Klass* k);
   372   void cmp_narrow_klass(Address dst, Klass* k);
   374   // if heap base register is used - reinit it with the correct value
   375   void reinit_heapbase();
   377   DEBUG_ONLY(void verify_heapbase(const char* msg);)
   379 #endif // _LP64
   381   // Int division/remainder for Java
   382   // (as idivl, but checks for special case as described in JVM spec.)
   383   // returns idivl instruction offset for implicit exception handling
   384   int corrected_idivl(Register reg);
   386   // Long division/remainder for Java
   387   // (as idivq, but checks for special case as described in JVM spec.)
   388   // returns idivq instruction offset for implicit exception handling
   389   int corrected_idivq(Register reg);
   391   void int3();
   393   // Long operation macros for a 32bit cpu
   394   // Long negation for Java
   395   void lneg(Register hi, Register lo);
   397   // Long multiplication for Java
   398   // (destroys contents of eax, ebx, ecx and edx)
   399   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
   401   // Long shifts for Java
   402   // (semantics as described in JVM spec.)
   403   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
   404   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
   406   // Long compare for Java
   407   // (semantics as described in JVM spec.)
   408   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
   411   // misc
   413   // Sign extension
   414   void sign_extend_short(Register reg);
   415   void sign_extend_byte(Register reg);
   417   // Division by power of 2, rounding towards 0
   418   void division_with_shift(Register reg, int shift_value);
   420   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
   421   //
   422   // CF (corresponds to C0) if x < y
   423   // PF (corresponds to C2) if unordered
   424   // ZF (corresponds to C3) if x = y
   425   //
   426   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   427   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
   428   void fcmp(Register tmp);
   429   // Variant of the above which allows y to be further down the stack
   430   // and which only pops x and y if specified. If pop_right is
   431   // specified then pop_left must also be specified.
   432   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
   434   // Floating-point comparison for Java
   435   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
   436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   437   // (semantics as described in JVM spec.)
   438   void fcmp2int(Register dst, bool unordered_is_less);
   439   // Variant of the above which allows y to be further down the stack
   440   // and which only pops x and y if specified. If pop_right is
   441   // specified then pop_left must also be specified.
   442   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
   444   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
   445   // tmp is a temporary register, if none is available use noreg
   446   void fremr(Register tmp);
   449   // same as fcmp2int, but using SSE2
   450   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   451   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   453   // Inlined sin/cos generator for Java; must not use CPU instruction
   454   // directly on Intel as it does not have high enough precision
   455   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
   456   // number of FPU stack slots in use; all but the topmost will
   457   // require saving if a slow case is necessary. Assumes argument is
   458   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
   459   // this code.
   460   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
   462   // branch to L if FPU flag C2 is set/not set
   463   // tmp is a temporary register, if none is available use noreg
   464   void jC2 (Register tmp, Label& L);
   465   void jnC2(Register tmp, Label& L);
   467   // Pop ST (ffree & fincstp combined)
   468   void fpop();
   470   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
   471   void push_fTOS();
   473   // pops double TOS element from CPU stack and pushes on FPU stack
   474   void pop_fTOS();
   476   void empty_FPU_stack();
   478   void push_IU_state();
   479   void pop_IU_state();
   481   void push_FPU_state();
   482   void pop_FPU_state();
   484   void push_CPU_state();
   485   void pop_CPU_state();
   487   // Round up to a power of two
   488   void round_to(Register reg, int modulus);
   490   // Callee saved registers handling
   491   void push_callee_saved_registers();
   492   void pop_callee_saved_registers();
   494   // allocation
   495   void eden_allocate(
   496     Register obj,                      // result: pointer to object after successful allocation
   497     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   498     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   499     Register t1,                       // temp register
   500     Label&   slow_case                 // continuation point if fast allocation fails
   501   );
   502   void tlab_allocate(
   503     Register obj,                      // result: pointer to object after successful allocation
   504     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   505     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   506     Register t1,                       // temp register
   507     Register t2,                       // temp register
   508     Label&   slow_case                 // continuation point if fast allocation fails
   509   );
   510   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
   511   void incr_allocated_bytes(Register thread,
   512                             Register var_size_in_bytes, int con_size_in_bytes,
   513                             Register t1 = noreg);
   515   // interface method calling
   516   void lookup_interface_method(Register recv_klass,
   517                                Register intf_klass,
   518                                RegisterOrConstant itable_index,
   519                                Register method_result,
   520                                Register scan_temp,
   521                                Label& no_such_interface);
   523   // virtual method calling
   524   void lookup_virtual_method(Register recv_klass,
   525                              RegisterOrConstant vtable_index,
   526                              Register method_result);
   528   // Test sub_klass against super_klass, with fast and slow paths.
   530   // The fast path produces a tri-state answer: yes / no / maybe-slow.
   531   // One of the three labels can be NULL, meaning take the fall-through.
   532   // If super_check_offset is -1, the value is loaded up from super_klass.
   533   // No registers are killed, except temp_reg.
   534   void check_klass_subtype_fast_path(Register sub_klass,
   535                                      Register super_klass,
   536                                      Register temp_reg,
   537                                      Label* L_success,
   538                                      Label* L_failure,
   539                                      Label* L_slow_path,
   540                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
   542   // The rest of the type check; must be wired to a corresponding fast path.
   543   // It does not repeat the fast path logic, so don't use it standalone.
   544   // The temp_reg and temp2_reg can be noreg, if no temps are available.
   545   // Updates the sub's secondary super cache as necessary.
   546   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
   547   void check_klass_subtype_slow_path(Register sub_klass,
   548                                      Register super_klass,
   549                                      Register temp_reg,
   550                                      Register temp2_reg,
   551                                      Label* L_success,
   552                                      Label* L_failure,
   553                                      bool set_cond_codes = false);
   555   // Simplified, combined version, good for typical uses.
   556   // Falls through on failure.
   557   void check_klass_subtype(Register sub_klass,
   558                            Register super_klass,
   559                            Register temp_reg,
   560                            Label& L_success);
   562   // method handles (JSR 292)
   563   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
   565   //----
   566   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
   568   // Debugging
   570   // only if +VerifyOops
   571   // TODO: Make these macros with file and line like sparc version!
   572   void verify_oop(Register reg, const char* s = "broken oop");
   573   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
   575   // TODO: verify method and klass metadata (compare against vptr?)
   576   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
   577   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
   579 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
   580 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
   582   // only if +VerifyFPU
   583   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
   585   // prints msg, dumps registers and stops execution
   586   void stop(const char* msg);
   588   // prints msg and continues
   589   void warn(const char* msg);
   591   // dumps registers and other state
   592   void print_state();
   594   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
   595   static void debug64(char* msg, int64_t pc, int64_t regs[]);
   596   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
   597   static void print_state64(int64_t pc, int64_t regs[]);
   599   void os_breakpoint();
   601   void untested()                                { stop("untested"); }
   603   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
   605   void should_not_reach_here()                   { stop("should not reach here"); }
   607   void print_CPU_state();
   609   // Stack overflow checking
   610   void bang_stack_with_offset(int offset) {
   611     // stack grows down, caller passes positive offset
   612     assert(offset > 0, "must bang with negative offset");
   613     movl(Address(rsp, (-offset)), rax);
   614   }
   616   // Writes to stack successive pages until offset reached to check for
   617   // stack overflow + shadow pages.  Also, clobbers tmp
   618   void bang_stack_size(Register size, Register tmp);
   620   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
   621                                                 Register tmp,
   622                                                 int offset);
   624   // Support for serializing memory accesses between threads
   625   void serialize_memory(Register thread, Register tmp);
   627   void verify_tlab();
   629   // Biased locking support
   630   // lock_reg and obj_reg must be loaded up with the appropriate values.
   631   // swap_reg must be rax, and is killed.
   632   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
   633   // be killed; if not supplied, push/pop will be used internally to
   634   // allocate a temporary (inefficient, avoid if possible).
   635   // Optional slow case is for implementations (interpreter and C1) which branch to
   636   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
   637   // Returns offset of first potentially-faulting instruction for null
   638   // check info (currently consumed only by C1). If
   639   // swap_reg_contains_mark is true then returns -1 as it is assumed
   640   // the calling code has already passed any potential faults.
   641   int biased_locking_enter(Register lock_reg, Register obj_reg,
   642                            Register swap_reg, Register tmp_reg,
   643                            bool swap_reg_contains_mark,
   644                            Label& done, Label* slow_case = NULL,
   645                            BiasedLockingCounters* counters = NULL);
   646   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
   649   Condition negate_condition(Condition cond);
   651   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
   652   // operands. In general the names are modified to avoid hiding the instruction in Assembler
   653   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
   654   // here in MacroAssembler. The major exception to this rule is call
   656   // Arithmetics
   659   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
   660   void addptr(Address dst, Register src);
   662   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
   663   void addptr(Register dst, int32_t src);
   664   void addptr(Register dst, Register src);
   665   void addptr(Register dst, RegisterOrConstant src) {
   666     if (src.is_constant()) addptr(dst, (int) src.as_constant());
   667     else                   addptr(dst,       src.as_register());
   668   }
   670   void andptr(Register dst, int32_t src);
   671   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
   673   void cmp8(AddressLiteral src1, int imm);
   675   // renamed to drag out the casting of address to int32_t/intptr_t
   676   void cmp32(Register src1, int32_t imm);
   678   void cmp32(AddressLiteral src1, int32_t imm);
   679   // compare reg - mem, or reg - &mem
   680   void cmp32(Register src1, AddressLiteral src2);
   682   void cmp32(Register src1, Address src2);
   684 #ifndef _LP64
   685   void cmpklass(Address dst, Metadata* obj);
   686   void cmpklass(Register dst, Metadata* obj);
   687   void cmpoop(Address dst, jobject obj);
   688   void cmpoop(Register dst, jobject obj);
   689 #endif // _LP64
   691   // NOTE src2 must be the lval. This is NOT an mem-mem compare
   692   void cmpptr(Address src1, AddressLiteral src2);
   694   void cmpptr(Register src1, AddressLiteral src2);
   696   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   697   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   698   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   700   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   701   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   703   // cmp64 to avoild hiding cmpq
   704   void cmp64(Register src1, AddressLiteral src);
   706   void cmpxchgptr(Register reg, Address adr);
   708   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
   711   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
   714   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
   716   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
   718   void shlptr(Register dst, int32_t shift);
   719   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
   721   void shrptr(Register dst, int32_t shift);
   722   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
   724   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
   725   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
   727   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   729   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   730   void subptr(Register dst, int32_t src);
   731   // Force generation of a 4 byte immediate value even if it fits into 8bit
   732   void subptr_imm32(Register dst, int32_t src);
   733   void subptr(Register dst, Register src);
   734   void subptr(Register dst, RegisterOrConstant src) {
   735     if (src.is_constant()) subptr(dst, (int) src.as_constant());
   736     else                   subptr(dst,       src.as_register());
   737   }
   739   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   740   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   742   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   743   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   745   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
   749   // Helper functions for statistics gathering.
   750   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
   751   void cond_inc32(Condition cond, AddressLiteral counter_addr);
   752   // Unconditional atomic increment.
   753   void atomic_incl(AddressLiteral counter_addr);
   755   void lea(Register dst, AddressLiteral adr);
   756   void lea(Address dst, AddressLiteral adr);
   757   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
   759   void leal32(Register dst, Address src) { leal(dst, src); }
   761   // Import other testl() methods from the parent class or else
   762   // they will be hidden by the following overriding declaration.
   763   using Assembler::testl;
   764   void testl(Register dst, AddressLiteral src);
   766   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   767   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   768   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   770   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
   771   void testptr(Register src1, Register src2);
   773   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   774   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   776   // Calls
   778   void call(Label& L, relocInfo::relocType rtype);
   779   void call(Register entry);
   781   // NOTE: this call tranfers to the effective address of entry NOT
   782   // the address contained by entry. This is because this is more natural
   783   // for jumps/calls.
   784   void call(AddressLiteral entry);
   786   // Emit the CompiledIC call idiom
   787   void ic_call(address entry);
   789   // Jumps
   791   // NOTE: these jumps tranfer to the effective address of dst NOT
   792   // the address contained by dst. This is because this is more natural
   793   // for jumps/calls.
   794   void jump(AddressLiteral dst);
   795   void jump_cc(Condition cc, AddressLiteral dst);
   797   // 32bit can do a case table jump in one instruction but we no longer allow the base
   798   // to be installed in the Address class. This jump will tranfers to the address
   799   // contained in the location described by entry (not the address of entry)
   800   void jump(ArrayAddress entry);
   802   // Floating
   804   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
   805   void andpd(XMMRegister dst, AddressLiteral src);
   807   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
   808   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
   809   void andps(XMMRegister dst, AddressLiteral src);
   811   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
   812   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
   813   void comiss(XMMRegister dst, AddressLiteral src);
   815   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
   816   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
   817   void comisd(XMMRegister dst, AddressLiteral src);
   819   void fadd_s(Address src)        { Assembler::fadd_s(src); }
   820   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
   822   void fldcw(Address src) { Assembler::fldcw(src); }
   823   void fldcw(AddressLiteral src);
   825   void fld_s(int index)   { Assembler::fld_s(index); }
   826   void fld_s(Address src) { Assembler::fld_s(src); }
   827   void fld_s(AddressLiteral src);
   829   void fld_d(Address src) { Assembler::fld_d(src); }
   830   void fld_d(AddressLiteral src);
   832   void fld_x(Address src) { Assembler::fld_x(src); }
   833   void fld_x(AddressLiteral src);
   835   void fmul_s(Address src)        { Assembler::fmul_s(src); }
   836   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
   838   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
   839   void ldmxcsr(AddressLiteral src);
   841   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
   842   // all corner cases and may result in NaN and require fallback to a
   843   // runtime call.
   844   void fast_pow();
   845   void fast_exp();
   846   void increase_precision();
   847   void restore_precision();
   849   // computes exp(x). Fallback to runtime call included.
   850   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
   851   // computes pow(x,y). Fallback to runtime call included.
   852   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
   854 private:
   856   // call runtime as a fallback for trig functions and pow/exp.
   857   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
   859   // computes 2^(Ylog2X); Ylog2X in ST(0)
   860   void pow_exp_core_encoding();
   862   // computes pow(x,y) or exp(x). Fallback to runtime call included.
   863   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
   865   // these are private because users should be doing movflt/movdbl
   867   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
   868   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
   869   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
   870   void movss(XMMRegister dst, AddressLiteral src);
   872   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
   873   void movlpd(XMMRegister dst, AddressLiteral src);
   875 public:
   877   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
   878   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
   879   void addsd(XMMRegister dst, AddressLiteral src);
   881   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
   882   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
   883   void addss(XMMRegister dst, AddressLiteral src);
   885   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
   886   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
   887   void divsd(XMMRegister dst, AddressLiteral src);
   889   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
   890   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
   891   void divss(XMMRegister dst, AddressLiteral src);
   893   // Move Unaligned Double Quadword
   894   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   895   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
   896   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   897   void movdqu(XMMRegister dst, AddressLiteral src);
   899   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
   900   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
   901   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
   902   void movsd(XMMRegister dst, AddressLiteral src);
   904   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
   905   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
   906   void mulsd(XMMRegister dst, AddressLiteral src);
   908   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
   909   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
   910   void mulss(XMMRegister dst, AddressLiteral src);
   912   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
   913   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
   914   void sqrtsd(XMMRegister dst, AddressLiteral src);
   916   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
   917   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
   918   void sqrtss(XMMRegister dst, AddressLiteral src);
   920   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
   921   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
   922   void subsd(XMMRegister dst, AddressLiteral src);
   924   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
   925   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
   926   void subss(XMMRegister dst, AddressLiteral src);
   928   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
   929   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
   930   void ucomiss(XMMRegister dst, AddressLiteral src);
   932   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
   933   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
   934   void ucomisd(XMMRegister dst, AddressLiteral src);
   936   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
   937   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
   938   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
   939   void xorpd(XMMRegister dst, AddressLiteral src);
   941   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
   942   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
   943   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
   944   void xorps(XMMRegister dst, AddressLiteral src);
   946   // Shuffle Bytes
   947   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
   948   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
   949   void pshufb(XMMRegister dst, AddressLiteral src);
   950   // AVX 3-operands instructions
   952   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
   953   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
   954   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   956   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
   957   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
   958   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   960   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
   961   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
   962   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   964   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
   965   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
   966   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   968   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
   969   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
   970   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   972   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
   973   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
   974   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   976   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
   977   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
   978   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   980   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
   981   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
   982   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   984   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
   985   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
   986   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   988   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
   989   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
   990   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   992   // AVX Vector instructions
   994   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
   995   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
   996   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   998   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
   999   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1000   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1002   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  1003     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1004       Assembler::vpxor(dst, nds, src, vector256);
  1005     else
  1006       Assembler::vxorpd(dst, nds, src, vector256);
  1008   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  1009     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1010       Assembler::vpxor(dst, nds, src, vector256);
  1011     else
  1012       Assembler::vxorpd(dst, nds, src, vector256);
  1015   // Simple version for AVX2 256bit vectors
  1016   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  1017   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
  1019   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  1020   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1021     if (UseAVX > 1) // vinserti128h is available only in AVX2
  1022       Assembler::vinserti128h(dst, nds, src);
  1023     else
  1024       Assembler::vinsertf128h(dst, nds, src);
  1027   // Data
  1029   void cmov32( Condition cc, Register dst, Address  src);
  1030   void cmov32( Condition cc, Register dst, Register src);
  1032   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  1034   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1035   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1037   void movoop(Register dst, jobject obj);
  1038   void movoop(Address dst, jobject obj);
  1040   void mov_metadata(Register dst, Metadata* obj);
  1041   void mov_metadata(Address dst, Metadata* obj);
  1043   void movptr(ArrayAddress dst, Register src);
  1044   // can this do an lea?
  1045   void movptr(Register dst, ArrayAddress src);
  1047   void movptr(Register dst, Address src);
  1049   void movptr(Register dst, AddressLiteral src);
  1051   void movptr(Register dst, intptr_t src);
  1052   void movptr(Register dst, Register src);
  1053   void movptr(Address dst, intptr_t src);
  1055   void movptr(Address dst, Register src);
  1057   void movptr(Register dst, RegisterOrConstant src) {
  1058     if (src.is_constant()) movptr(dst, src.as_constant());
  1059     else                   movptr(dst, src.as_register());
  1062 #ifdef _LP64
  1063   // Generally the next two are only used for moving NULL
  1064   // Although there are situations in initializing the mark word where
  1065   // they could be used. They are dangerous.
  1067   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1068   // and we have ambiguous declarations.
  1070   void movptr(Address dst, int32_t imm32);
  1071   void movptr(Register dst, int32_t imm32);
  1072 #endif // _LP64
  1074   // to avoid hiding movl
  1075   void mov32(AddressLiteral dst, Register src);
  1076   void mov32(Register dst, AddressLiteral src);
  1078   // to avoid hiding movb
  1079   void movbyte(ArrayAddress dst, int src);
  1081   // Import other mov() methods from the parent class or else
  1082   // they will be hidden by the following overriding declaration.
  1083   using Assembler::movdl;
  1084   using Assembler::movq;
  1085   void movdl(XMMRegister dst, AddressLiteral src);
  1086   void movq(XMMRegister dst, AddressLiteral src);
  1088   // Can push value or effective address
  1089   void pushptr(AddressLiteral src);
  1091   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  1092   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  1094   void pushoop(jobject obj);
  1095   void pushklass(Metadata* obj);
  1097   // sign extend as need a l to ptr sized element
  1098   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  1099   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  1101   // C2 compiled method's prolog code.
  1102   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
  1104   // clear memory of size 'cnt' qwords, starting at 'base'.
  1105   void clear_mem(Register base, Register cnt, Register rtmp);
  1107   // IndexOf strings.
  1108   // Small strings are loaded through stack if they cross page boundary.
  1109   void string_indexof(Register str1, Register str2,
  1110                       Register cnt1, Register cnt2,
  1111                       int int_cnt2,  Register result,
  1112                       XMMRegister vec, Register tmp);
  1114   // IndexOf for constant substrings with size >= 8 elements
  1115   // which don't need to be loaded through stack.
  1116   void string_indexofC8(Register str1, Register str2,
  1117                       Register cnt1, Register cnt2,
  1118                       int int_cnt2,  Register result,
  1119                       XMMRegister vec, Register tmp);
  1121     // Smallest code: we don't need to load through stack,
  1122     // check string tail.
  1124   // Compare strings.
  1125   void string_compare(Register str1, Register str2,
  1126                       Register cnt1, Register cnt2, Register result,
  1127                       XMMRegister vec1);
  1129   // Compare char[] arrays.
  1130   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  1131                           Register limit, Register result, Register chr,
  1132                           XMMRegister vec1, XMMRegister vec2);
  1134   // Fill primitive arrays
  1135   void generate_fill(BasicType t, bool aligned,
  1136                      Register to, Register value, Register count,
  1137                      Register rtmp, XMMRegister xtmp);
  1139 #undef VIRTUAL
  1141 };
  1143 /**
  1144  * class SkipIfEqual:
  1146  * Instantiating this class will result in assembly code being output that will
  1147  * jump around any code emitted between the creation of the instance and it's
  1148  * automatic destruction at the end of a scope block, depending on the value of
  1149  * the flag passed to the constructor, which will be checked at run-time.
  1150  */
  1151 class SkipIfEqual {
  1152  private:
  1153   MacroAssembler* _masm;
  1154   Label _label;
  1156  public:
  1157    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1158    ~SkipIfEqual();
  1159 };
  1161 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial