src/cpu/sparc/vm/templateTable_sparc.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4338
fd74228fd5ca
child 4643
f16e75e0cf11
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodData.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    37 #include "utilities/macros.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Misc helpers
    44 // Do an oop store like *(base + index + offset) = val
    45 // index can be noreg,
    46 static void do_oop_store(InterpreterMacroAssembler* _masm,
    47                          Register base,
    48                          Register index,
    49                          int offset,
    50                          Register val,
    51                          Register tmp,
    52                          BarrierSet::Name barrier,
    53                          bool precise) {
    54   assert(tmp != val && tmp != base && tmp != index, "register collision");
    55   assert(index == noreg || offset == 0, "only one offset");
    56   switch (barrier) {
    57 #if INCLUDE_ALL_GCS
    58     case BarrierSet::G1SATBCT:
    59     case BarrierSet::G1SATBCTLogging:
    60       {
    61         // Load and record the previous value.
    62         __ g1_write_barrier_pre(base, index, offset,
    63                                 noreg /* pre_val */,
    64                                 tmp, true /*preserve_o_regs*/);
    66         if (index == noreg ) {
    67           assert(Assembler::is_simm13(offset), "fix this code");
    68           __ store_heap_oop(val, base, offset);
    69         } else {
    70           __ store_heap_oop(val, base, index);
    71         }
    73         // No need for post barrier if storing NULL
    74         if (val != G0) {
    75           if (precise) {
    76             if (index == noreg) {
    77               __ add(base, offset, base);
    78             } else {
    79               __ add(base, index, base);
    80             }
    81           }
    82           __ g1_write_barrier_post(base, val, tmp);
    83         }
    84       }
    85       break;
    86 #endif // INCLUDE_ALL_GCS
    87     case BarrierSet::CardTableModRef:
    88     case BarrierSet::CardTableExtension:
    89       {
    90         if (index == noreg ) {
    91           assert(Assembler::is_simm13(offset), "fix this code");
    92           __ store_heap_oop(val, base, offset);
    93         } else {
    94           __ store_heap_oop(val, base, index);
    95         }
    96         // No need for post barrier if storing NULL
    97         if (val != G0) {
    98           if (precise) {
    99             if (index == noreg) {
   100               __ add(base, offset, base);
   101             } else {
   102               __ add(base, index, base);
   103             }
   104           }
   105           __ card_write_barrier_post(base, val, tmp);
   106         }
   107       }
   108       break;
   109     case BarrierSet::ModRef:
   110     case BarrierSet::Other:
   111       ShouldNotReachHere();
   112       break;
   113     default      :
   114       ShouldNotReachHere();
   116   }
   117 }
   120 //----------------------------------------------------------------------------------------------------
   121 // Platform-dependent initialization
   123 void TemplateTable::pd_initialize() {
   124   // (none)
   125 }
   128 //----------------------------------------------------------------------------------------------------
   129 // Condition conversion
   130 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   131   switch (cc) {
   132     case TemplateTable::equal        : return Assembler::notEqual;
   133     case TemplateTable::not_equal    : return Assembler::equal;
   134     case TemplateTable::less         : return Assembler::greaterEqual;
   135     case TemplateTable::less_equal   : return Assembler::greater;
   136     case TemplateTable::greater      : return Assembler::lessEqual;
   137     case TemplateTable::greater_equal: return Assembler::less;
   138   }
   139   ShouldNotReachHere();
   140   return Assembler::zero;
   141 }
   143 //----------------------------------------------------------------------------------------------------
   144 // Miscelaneous helper routines
   147 Address TemplateTable::at_bcp(int offset) {
   148   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   149   return Address(Lbcp, offset);
   150 }
   153 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   154                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   155                                    int byte_no) {
   156   // With sharing on, may need to test Method* flag.
   157   if (!RewriteBytecodes)  return;
   158   Label L_patch_done;
   160   switch (bc) {
   161   case Bytecodes::_fast_aputfield:
   162   case Bytecodes::_fast_bputfield:
   163   case Bytecodes::_fast_cputfield:
   164   case Bytecodes::_fast_dputfield:
   165   case Bytecodes::_fast_fputfield:
   166   case Bytecodes::_fast_iputfield:
   167   case Bytecodes::_fast_lputfield:
   168   case Bytecodes::_fast_sputfield:
   169     {
   170       // We skip bytecode quickening for putfield instructions when
   171       // the put_code written to the constant pool cache is zero.
   172       // This is required so that every execution of this instruction
   173       // calls out to InterpreterRuntime::resolve_get_put to do
   174       // additional, required work.
   175       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   176       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   177       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   178       __ set(bc, bc_reg);
   179       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
   180     }
   181     break;
   182   default:
   183     assert(byte_no == -1, "sanity");
   184     if (load_bc_into_bc_reg) {
   185       __ set(bc, bc_reg);
   186     }
   187   }
   189   if (JvmtiExport::can_post_breakpoint()) {
   190     Label L_fast_patch;
   191     __ ldub(at_bcp(0), temp_reg);
   192     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
   193     // perform the quickening, slowly, in the bowels of the breakpoint table
   194     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
   195     __ ba_short(L_patch_done);
   196     __ bind(L_fast_patch);
   197   }
   199 #ifdef ASSERT
   200   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   201   Label L_okay;
   202   __ ldub(at_bcp(0), temp_reg);
   203   __ cmp(temp_reg, orig_bytecode);
   204   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   205   __ delayed()->cmp(temp_reg, bc_reg);
   206   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   207   __ delayed()->nop();
   208   __ stop("patching the wrong bytecode");
   209   __ bind(L_okay);
   210 #endif
   212   // patch bytecode
   213   __ stb(bc_reg, at_bcp(0));
   214   __ bind(L_patch_done);
   215 }
   217 //----------------------------------------------------------------------------------------------------
   218 // Individual instructions
   220 void TemplateTable::nop() {
   221   transition(vtos, vtos);
   222   // nothing to do
   223 }
   225 void TemplateTable::shouldnotreachhere() {
   226   transition(vtos, vtos);
   227   __ stop("shouldnotreachhere bytecode");
   228 }
   230 void TemplateTable::aconst_null() {
   231   transition(vtos, atos);
   232   __ clr(Otos_i);
   233 }
   236 void TemplateTable::iconst(int value) {
   237   transition(vtos, itos);
   238   __ set(value, Otos_i);
   239 }
   242 void TemplateTable::lconst(int value) {
   243   transition(vtos, ltos);
   244   assert(value >= 0, "check this code");
   245 #ifdef _LP64
   246   __ set(value, Otos_l);
   247 #else
   248   __ set(value, Otos_l2);
   249   __ clr( Otos_l1);
   250 #endif
   251 }
   254 void TemplateTable::fconst(int value) {
   255   transition(vtos, ftos);
   256   static float zero = 0.0, one = 1.0, two = 2.0;
   257   float* p;
   258   switch( value ) {
   259    default: ShouldNotReachHere();
   260    case 0:  p = &zero;  break;
   261    case 1:  p = &one;   break;
   262    case 2:  p = &two;   break;
   263   }
   264   AddressLiteral a(p);
   265   __ sethi(a, G3_scratch);
   266   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   267 }
   270 void TemplateTable::dconst(int value) {
   271   transition(vtos, dtos);
   272   static double zero = 0.0, one = 1.0;
   273   double* p;
   274   switch( value ) {
   275    default: ShouldNotReachHere();
   276    case 0:  p = &zero;  break;
   277    case 1:  p = &one;   break;
   278   }
   279   AddressLiteral a(p);
   280   __ sethi(a, G3_scratch);
   281   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   282 }
   285 // %%%%% Should factore most snippet templates across platforms
   287 void TemplateTable::bipush() {
   288   transition(vtos, itos);
   289   __ ldsb( at_bcp(1), Otos_i );
   290 }
   292 void TemplateTable::sipush() {
   293   transition(vtos, itos);
   294   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   295 }
   297 void TemplateTable::ldc(bool wide) {
   298   transition(vtos, vtos);
   299   Label call_ldc, notInt, isString, notString, notClass, exit;
   301   if (wide) {
   302     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   303   } else {
   304     __ ldub(Lbcp, 1, O1);
   305   }
   306   __ get_cpool_and_tags(O0, O2);
   308   const int base_offset = ConstantPool::header_size() * wordSize;
   309   const int tags_offset = Array<u1>::base_offset_in_bytes();
   311   // get type from tags
   312   __ add(O2, tags_offset, O2);
   313   __ ldub(O2, O1, O2);
   315   // unresolved class? If so, must resolve
   316   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
   318   // unresolved class in error state
   319   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
   321   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   322   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   323   __ delayed()->add(O0, base_offset, O0);
   325   __ bind(call_ldc);
   326   __ set(wide, O1);
   327   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   328   __ push(atos);
   329   __ ba_short(exit);
   331   __ bind(notClass);
   332  // __ add(O0, base_offset, O0);
   333   __ sll(O1, LogBytesPerWord, O1);
   334   __ cmp(O2, JVM_CONSTANT_Integer);
   335   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   336   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   337   __ ld(O0, O1, Otos_i);
   338   __ push(itos);
   339   __ ba_short(exit);
   341   __ bind(notInt);
   342  // __ cmp(O2, JVM_CONSTANT_String);
   343   __ brx(Assembler::equal, true, Assembler::pt, isString);
   344   __ delayed()->cmp(O2, JVM_CONSTANT_Object);
   345   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   346   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   347   __ bind(isString);
   348   __ stop("string should be rewritten to fast_aldc");
   349   __ ba_short(exit);
   351   __ bind(notString);
   352  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   353   __ push(ftos);
   355   __ bind(exit);
   356 }
   358 // Fast path for caching oop constants.
   359 // %%% We should use this to handle Class and String constants also.
   360 // %%% It will simplify the ldc/primitive path considerably.
   361 void TemplateTable::fast_aldc(bool wide) {
   362   transition(vtos, atos);
   364   int index_size = wide ? sizeof(u2) : sizeof(u1);
   365   Label resolved;
   367   // We are resolved if the resolved reference cache entry contains a
   368   // non-null object (CallSite, etc.)
   369   assert_different_registers(Otos_i, G3_scratch);
   370   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
   371   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
   372   __ tst(Otos_i);
   373   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
   374   __ delayed()->set((int)bytecode(), O1);
   376   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   378   // first time invocation - must resolve first
   379   __ call_VM(Otos_i, entry, O1);
   380   __ bind(resolved);
   381   __ verify_oop(Otos_i);
   382 }
   385 void TemplateTable::ldc2_w() {
   386   transition(vtos, vtos);
   387   Label Long, exit;
   389   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   390   __ get_cpool_and_tags(O0, O2);
   392   const int base_offset = ConstantPool::header_size() * wordSize;
   393   const int tags_offset = Array<u1>::base_offset_in_bytes();
   394   // get type from tags
   395   __ add(O2, tags_offset, O2);
   396   __ ldub(O2, O1, O2);
   398   __ sll(O1, LogBytesPerWord, O1);
   399   __ add(O0, O1, G3_scratch);
   401   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
   402   // A double can be placed at word-aligned locations in the constant pool.
   403   // Check out Conversions.java for an example.
   404   // Also ConstantPool::header_size() is 20, which makes it very difficult
   405   // to double-align double on the constant pool.  SG, 11/7/97
   406 #ifdef _LP64
   407   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   408 #else
   409   FloatRegister f = Ftos_d;
   410   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   411   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   412          f->successor());
   413 #endif
   414   __ push(dtos);
   415   __ ba_short(exit);
   417   __ bind(Long);
   418 #ifdef _LP64
   419   __ ldx(G3_scratch, base_offset, Otos_l);
   420 #else
   421   __ ld(G3_scratch, base_offset, Otos_l);
   422   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   423 #endif
   424   __ push(ltos);
   426   __ bind(exit);
   427 }
   430 void TemplateTable::locals_index(Register reg, int offset) {
   431   __ ldub( at_bcp(offset), reg );
   432 }
   435 void TemplateTable::locals_index_wide(Register reg) {
   436   // offset is 2, not 1, because Lbcp points to wide prefix code
   437   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   438 }
   440 void TemplateTable::iload() {
   441   transition(vtos, itos);
   442   // Rewrite iload,iload  pair into fast_iload2
   443   //         iload,caload pair into fast_icaload
   444   if (RewriteFrequentPairs) {
   445     Label rewrite, done;
   447     // get next byte
   448     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   450     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   451     // last two iloads in a pair.  Comparing against fast_iload means that
   452     // the next bytecode is neither an iload or a caload, and therefore
   453     // an iload pair.
   454     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
   456     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   457     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   458     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   460     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   461     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   462     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   464     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   465     // rewrite
   466     // G4_scratch: fast bytecode
   467     __ bind(rewrite);
   468     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   469     __ bind(done);
   470   }
   472   // Get the local value into tos
   473   locals_index(G3_scratch);
   474   __ access_local_int( G3_scratch, Otos_i );
   475 }
   477 void TemplateTable::fast_iload2() {
   478   transition(vtos, itos);
   479   locals_index(G3_scratch);
   480   __ access_local_int( G3_scratch, Otos_i );
   481   __ push_i();
   482   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   483   __ access_local_int( G3_scratch, Otos_i );
   484 }
   486 void TemplateTable::fast_iload() {
   487   transition(vtos, itos);
   488   locals_index(G3_scratch);
   489   __ access_local_int( G3_scratch, Otos_i );
   490 }
   492 void TemplateTable::lload() {
   493   transition(vtos, ltos);
   494   locals_index(G3_scratch);
   495   __ access_local_long( G3_scratch, Otos_l );
   496 }
   499 void TemplateTable::fload() {
   500   transition(vtos, ftos);
   501   locals_index(G3_scratch);
   502   __ access_local_float( G3_scratch, Ftos_f );
   503 }
   506 void TemplateTable::dload() {
   507   transition(vtos, dtos);
   508   locals_index(G3_scratch);
   509   __ access_local_double( G3_scratch, Ftos_d );
   510 }
   513 void TemplateTable::aload() {
   514   transition(vtos, atos);
   515   locals_index(G3_scratch);
   516   __ access_local_ptr( G3_scratch, Otos_i);
   517 }
   520 void TemplateTable::wide_iload() {
   521   transition(vtos, itos);
   522   locals_index_wide(G3_scratch);
   523   __ access_local_int( G3_scratch, Otos_i );
   524 }
   527 void TemplateTable::wide_lload() {
   528   transition(vtos, ltos);
   529   locals_index_wide(G3_scratch);
   530   __ access_local_long( G3_scratch, Otos_l );
   531 }
   534 void TemplateTable::wide_fload() {
   535   transition(vtos, ftos);
   536   locals_index_wide(G3_scratch);
   537   __ access_local_float( G3_scratch, Ftos_f );
   538 }
   541 void TemplateTable::wide_dload() {
   542   transition(vtos, dtos);
   543   locals_index_wide(G3_scratch);
   544   __ access_local_double( G3_scratch, Ftos_d );
   545 }
   548 void TemplateTable::wide_aload() {
   549   transition(vtos, atos);
   550   locals_index_wide(G3_scratch);
   551   __ access_local_ptr( G3_scratch, Otos_i );
   552   __ verify_oop(Otos_i);
   553 }
   556 void TemplateTable::iaload() {
   557   transition(itos, itos);
   558   // Otos_i: index
   559   // tos: array
   560   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   561   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   562 }
   565 void TemplateTable::laload() {
   566   transition(itos, ltos);
   567   // Otos_i: index
   568   // O2: array
   569   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   570   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   571 }
   574 void TemplateTable::faload() {
   575   transition(itos, ftos);
   576   // Otos_i: index
   577   // O2: array
   578   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   579   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   580 }
   583 void TemplateTable::daload() {
   584   transition(itos, dtos);
   585   // Otos_i: index
   586   // O2: array
   587   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   588   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   589 }
   592 void TemplateTable::aaload() {
   593   transition(itos, atos);
   594   // Otos_i: index
   595   // tos: array
   596   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   597   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   598   __ verify_oop(Otos_i);
   599 }
   602 void TemplateTable::baload() {
   603   transition(itos, itos);
   604   // Otos_i: index
   605   // tos: array
   606   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   607   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   608 }
   611 void TemplateTable::caload() {
   612   transition(itos, itos);
   613   // Otos_i: index
   614   // tos: array
   615   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   616   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   617 }
   619 void TemplateTable::fast_icaload() {
   620   transition(vtos, itos);
   621   // Otos_i: index
   622   // tos: array
   623   locals_index(G3_scratch);
   624   __ access_local_int( G3_scratch, Otos_i );
   625   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   626   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   627 }
   630 void TemplateTable::saload() {
   631   transition(itos, itos);
   632   // Otos_i: index
   633   // tos: array
   634   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   635   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   636 }
   639 void TemplateTable::iload(int n) {
   640   transition(vtos, itos);
   641   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   642 }
   645 void TemplateTable::lload(int n) {
   646   transition(vtos, ltos);
   647   assert(n+1 < Argument::n_register_parameters, "would need more code");
   648   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   649 }
   652 void TemplateTable::fload(int n) {
   653   transition(vtos, ftos);
   654   assert(n < Argument::n_register_parameters, "would need more code");
   655   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   656 }
   659 void TemplateTable::dload(int n) {
   660   transition(vtos, dtos);
   661   FloatRegister dst = Ftos_d;
   662   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   663 }
   666 void TemplateTable::aload(int n) {
   667   transition(vtos, atos);
   668   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   669 }
   672 void TemplateTable::aload_0() {
   673   transition(vtos, atos);
   675   // According to bytecode histograms, the pairs:
   676   //
   677   // _aload_0, _fast_igetfield (itos)
   678   // _aload_0, _fast_agetfield (atos)
   679   // _aload_0, _fast_fgetfield (ftos)
   680   //
   681   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   682   // bytecode checks the next bytecode and then rewrites the current
   683   // bytecode into a pair bytecode; otherwise it rewrites the current
   684   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   685   //
   686   if (RewriteFrequentPairs) {
   687     Label rewrite, done;
   689     // get next byte
   690     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   692     // do actual aload_0
   693     aload(0);
   695     // if _getfield then wait with rewrite
   696     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
   698     // if _igetfield then rewrite to _fast_iaccess_0
   699     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   700     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   701     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   702     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   704     // if _agetfield then rewrite to _fast_aaccess_0
   705     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   706     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   707     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   708     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   710     // if _fgetfield then rewrite to _fast_faccess_0
   711     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   712     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   713     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   714     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   716     // else rewrite to _fast_aload0
   717     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   718     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   720     // rewrite
   721     // G4_scratch: fast bytecode
   722     __ bind(rewrite);
   723     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   724     __ bind(done);
   725   } else {
   726     aload(0);
   727   }
   728 }
   731 void TemplateTable::istore() {
   732   transition(itos, vtos);
   733   locals_index(G3_scratch);
   734   __ store_local_int( G3_scratch, Otos_i );
   735 }
   738 void TemplateTable::lstore() {
   739   transition(ltos, vtos);
   740   locals_index(G3_scratch);
   741   __ store_local_long( G3_scratch, Otos_l );
   742 }
   745 void TemplateTable::fstore() {
   746   transition(ftos, vtos);
   747   locals_index(G3_scratch);
   748   __ store_local_float( G3_scratch, Ftos_f );
   749 }
   752 void TemplateTable::dstore() {
   753   transition(dtos, vtos);
   754   locals_index(G3_scratch);
   755   __ store_local_double( G3_scratch, Ftos_d );
   756 }
   759 void TemplateTable::astore() {
   760   transition(vtos, vtos);
   761   __ load_ptr(0, Otos_i);
   762   __ inc(Lesp, Interpreter::stackElementSize);
   763   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   764   locals_index(G3_scratch);
   765   __ store_local_ptr(G3_scratch, Otos_i);
   766 }
   769 void TemplateTable::wide_istore() {
   770   transition(vtos, vtos);
   771   __ pop_i();
   772   locals_index_wide(G3_scratch);
   773   __ store_local_int( G3_scratch, Otos_i );
   774 }
   777 void TemplateTable::wide_lstore() {
   778   transition(vtos, vtos);
   779   __ pop_l();
   780   locals_index_wide(G3_scratch);
   781   __ store_local_long( G3_scratch, Otos_l );
   782 }
   785 void TemplateTable::wide_fstore() {
   786   transition(vtos, vtos);
   787   __ pop_f();
   788   locals_index_wide(G3_scratch);
   789   __ store_local_float( G3_scratch, Ftos_f );
   790 }
   793 void TemplateTable::wide_dstore() {
   794   transition(vtos, vtos);
   795   __ pop_d();
   796   locals_index_wide(G3_scratch);
   797   __ store_local_double( G3_scratch, Ftos_d );
   798 }
   801 void TemplateTable::wide_astore() {
   802   transition(vtos, vtos);
   803   __ load_ptr(0, Otos_i);
   804   __ inc(Lesp, Interpreter::stackElementSize);
   805   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   806   locals_index_wide(G3_scratch);
   807   __ store_local_ptr(G3_scratch, Otos_i);
   808 }
   811 void TemplateTable::iastore() {
   812   transition(itos, vtos);
   813   __ pop_i(O2); // index
   814   // Otos_i: val
   815   // O3: array
   816   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   817   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   818 }
   821 void TemplateTable::lastore() {
   822   transition(ltos, vtos);
   823   __ pop_i(O2); // index
   824   // Otos_l: val
   825   // O3: array
   826   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   827   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   828 }
   831 void TemplateTable::fastore() {
   832   transition(ftos, vtos);
   833   __ pop_i(O2); // index
   834   // Ftos_f: val
   835   // O3: array
   836   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   837   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   838 }
   841 void TemplateTable::dastore() {
   842   transition(dtos, vtos);
   843   __ pop_i(O2); // index
   844   // Fos_d: val
   845   // O3: array
   846   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   847   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   848 }
   851 void TemplateTable::aastore() {
   852   Label store_ok, is_null, done;
   853   transition(vtos, vtos);
   854   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   855   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   856   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   857   // Otos_i: val
   858   // O2: index
   859   // O3: array
   860   __ verify_oop(Otos_i);
   861   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   863   // do array store check - check for NULL value first
   864   __ br_null_short( Otos_i, Assembler::pn, is_null );
   866   __ load_klass(O3, O4); // get array klass
   867   __ load_klass(Otos_i, O5); // get value klass
   869   // do fast instanceof cache test
   871   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
   873   assert(Otos_i == O0, "just checking");
   875   // Otos_i:    value
   876   // O1:        addr - offset
   877   // O2:        index
   878   // O3:        array
   879   // O4:        array element klass
   880   // O5:        value klass
   882   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   884   // Generate a fast subtype check.  Branch to store_ok if no
   885   // failure.  Throw if failure.
   886   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   888   // Not a subtype; so must throw exception
   889   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   891   // Store is OK.
   892   __ bind(store_ok);
   893   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   895   __ ba(done);
   896   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   898   __ bind(is_null);
   899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   901   __ profile_null_seen(G3_scratch);
   902   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   903   __ bind(done);
   904 }
   907 void TemplateTable::bastore() {
   908   transition(itos, vtos);
   909   __ pop_i(O2); // index
   910   // Otos_i: val
   911   // O3: array
   912   __ index_check(O3, O2, 0, G3_scratch, O2);
   913   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   914 }
   917 void TemplateTable::castore() {
   918   transition(itos, vtos);
   919   __ pop_i(O2); // index
   920   // Otos_i: val
   921   // O3: array
   922   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   923   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   924 }
   927 void TemplateTable::sastore() {
   928   // %%%%% Factor across platform
   929   castore();
   930 }
   933 void TemplateTable::istore(int n) {
   934   transition(itos, vtos);
   935   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   936 }
   939 void TemplateTable::lstore(int n) {
   940   transition(ltos, vtos);
   941   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   942   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   944 }
   947 void TemplateTable::fstore(int n) {
   948   transition(ftos, vtos);
   949   assert(n < Argument::n_register_parameters, "only handle register cases");
   950   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   951 }
   954 void TemplateTable::dstore(int n) {
   955   transition(dtos, vtos);
   956   FloatRegister src = Ftos_d;
   957   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   958 }
   961 void TemplateTable::astore(int n) {
   962   transition(vtos, vtos);
   963   __ load_ptr(0, Otos_i);
   964   __ inc(Lesp, Interpreter::stackElementSize);
   965   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   966   __ store_local_ptr(n, Otos_i);
   967 }
   970 void TemplateTable::pop() {
   971   transition(vtos, vtos);
   972   __ inc(Lesp, Interpreter::stackElementSize);
   973 }
   976 void TemplateTable::pop2() {
   977   transition(vtos, vtos);
   978   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   979 }
   982 void TemplateTable::dup() {
   983   transition(vtos, vtos);
   984   // stack: ..., a
   985   // load a and tag
   986   __ load_ptr(0, Otos_i);
   987   __ push_ptr(Otos_i);
   988   // stack: ..., a, a
   989 }
   992 void TemplateTable::dup_x1() {
   993   transition(vtos, vtos);
   994   // stack: ..., a, b
   995   __ load_ptr( 1, G3_scratch);  // get a
   996   __ load_ptr( 0, Otos_l1);     // get b
   997   __ store_ptr(1, Otos_l1);     // put b
   998   __ store_ptr(0, G3_scratch);  // put a - like swap
   999   __ push_ptr(Otos_l1);         // push b
  1000   // stack: ..., b, a, b
  1004 void TemplateTable::dup_x2() {
  1005   transition(vtos, vtos);
  1006   // stack: ..., a, b, c
  1007   // get c and push on stack, reuse registers
  1008   __ load_ptr( 0, G3_scratch);  // get c
  1009   __ push_ptr(G3_scratch);      // push c with tag
  1010   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1011   // (stack offsets n+1 now)
  1012   __ load_ptr( 3, Otos_l1);     // get a
  1013   __ store_ptr(3, G3_scratch);  // put c at 3
  1014   // stack: ..., c, b, c, c  (a in reg)
  1015   __ load_ptr( 2, G3_scratch);  // get b
  1016   __ store_ptr(2, Otos_l1);     // put a at 2
  1017   // stack: ..., c, a, c, c  (b in reg)
  1018   __ store_ptr(1, G3_scratch);  // put b at 1
  1019   // stack: ..., c, a, b, c
  1023 void TemplateTable::dup2() {
  1024   transition(vtos, vtos);
  1025   __ load_ptr(1, G3_scratch);  // get a
  1026   __ load_ptr(0, Otos_l1);     // get b
  1027   __ push_ptr(G3_scratch);     // push a
  1028   __ push_ptr(Otos_l1);        // push b
  1029   // stack: ..., a, b, a, b
  1033 void TemplateTable::dup2_x1() {
  1034   transition(vtos, vtos);
  1035   // stack: ..., a, b, c
  1036   __ load_ptr( 1, Lscratch);    // get b
  1037   __ load_ptr( 2, Otos_l1);     // get a
  1038   __ store_ptr(2, Lscratch);    // put b at a
  1039   // stack: ..., b, b, c
  1040   __ load_ptr( 0, G3_scratch);  // get c
  1041   __ store_ptr(1, G3_scratch);  // put c at b
  1042   // stack: ..., b, c, c
  1043   __ store_ptr(0, Otos_l1);     // put a at c
  1044   // stack: ..., b, c, a
  1045   __ push_ptr(Lscratch);        // push b
  1046   __ push_ptr(G3_scratch);      // push c
  1047   // stack: ..., b, c, a, b, c
  1051 // The spec says that these types can be a mixture of category 1 (1 word)
  1052 // types and/or category 2 types (long and doubles)
  1053 void TemplateTable::dup2_x2() {
  1054   transition(vtos, vtos);
  1055   // stack: ..., a, b, c, d
  1056   __ load_ptr( 1, Lscratch);    // get c
  1057   __ load_ptr( 3, Otos_l1);     // get a
  1058   __ store_ptr(3, Lscratch);    // put c at 3
  1059   __ store_ptr(1, Otos_l1);     // put a at 1
  1060   // stack: ..., c, b, a, d
  1061   __ load_ptr( 2, G3_scratch);  // get b
  1062   __ load_ptr( 0, Otos_l1);     // get d
  1063   __ store_ptr(0, G3_scratch);  // put b at 0
  1064   __ store_ptr(2, Otos_l1);     // put d at 2
  1065   // stack: ..., c, d, a, b
  1066   __ push_ptr(Lscratch);        // push c
  1067   __ push_ptr(Otos_l1);         // push d
  1068   // stack: ..., c, d, a, b, c, d
  1072 void TemplateTable::swap() {
  1073   transition(vtos, vtos);
  1074   // stack: ..., a, b
  1075   __ load_ptr( 1, G3_scratch);  // get a
  1076   __ load_ptr( 0, Otos_l1);     // get b
  1077   __ store_ptr(0, G3_scratch);  // put b
  1078   __ store_ptr(1, Otos_l1);     // put a
  1079   // stack: ..., b, a
  1083 void TemplateTable::iop2(Operation op) {
  1084   transition(itos, itos);
  1085   __ pop_i(O1);
  1086   switch (op) {
  1087    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1088    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1089      // %%%%% Mul may not exist: better to call .mul?
  1090    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1091    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1092    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1093    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1094    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1095    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1096    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1097    default: ShouldNotReachHere();
  1102 void TemplateTable::lop2(Operation op) {
  1103   transition(ltos, ltos);
  1104   __ pop_l(O2);
  1105   switch (op) {
  1106 #ifdef _LP64
  1107    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1108    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1109    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1110    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1111    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1112 #else
  1113    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1114    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1115    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1116    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1117    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1118 #endif
  1119    default: ShouldNotReachHere();
  1124 void TemplateTable::idiv() {
  1125   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1126   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1128   transition(itos, itos);
  1129   __ pop_i(O1); // get 1st op
  1131   // Y contains upper 32 bits of result, set it to 0 or all ones
  1132   __ wry(G0);
  1133   __ mov(~0, G3_scratch);
  1135   __ tst(O1);
  1136      Label neg;
  1137   __ br(Assembler::negative, true, Assembler::pn, neg);
  1138   __ delayed()->wry(G3_scratch);
  1139   __ bind(neg);
  1141      Label ok;
  1142   __ tst(Otos_i);
  1143   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1145   const int min_int = 0x80000000;
  1146   Label regular;
  1147   __ cmp(Otos_i, -1);
  1148   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1149 #ifdef _LP64
  1150   // Don't put set in delay slot
  1151   // Set will turn into multiple instructions in 64 bit mode
  1152   __ delayed()->nop();
  1153   __ set(min_int, G4_scratch);
  1154 #else
  1155   __ delayed()->set(min_int, G4_scratch);
  1156 #endif
  1157   Label done;
  1158   __ cmp(O1, G4_scratch);
  1159   __ br(Assembler::equal, true, Assembler::pt, done);
  1160   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1162   __ bind(regular);
  1163   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1164   __ bind(done);
  1168 void TemplateTable::irem() {
  1169   transition(itos, itos);
  1170   __ mov(Otos_i, O2); // save divisor
  1171   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1172   __ smul(Otos_i, O2, Otos_i);
  1173   __ sub(O1, Otos_i, Otos_i);
  1177 void TemplateTable::lmul() {
  1178   transition(ltos, ltos);
  1179   __ pop_l(O2);
  1180 #ifdef _LP64
  1181   __ mulx(Otos_l, O2, Otos_l);
  1182 #else
  1183   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1184 #endif
  1189 void TemplateTable::ldiv() {
  1190   transition(ltos, ltos);
  1192   // check for zero
  1193   __ pop_l(O2);
  1194 #ifdef _LP64
  1195   __ tst(Otos_l);
  1196   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1197   __ sdivx(O2, Otos_l, Otos_l);
  1198 #else
  1199   __ orcc(Otos_l1, Otos_l2, G0);
  1200   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1201   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1202 #endif
  1206 void TemplateTable::lrem() {
  1207   transition(ltos, ltos);
  1209   // check for zero
  1210   __ pop_l(O2);
  1211 #ifdef _LP64
  1212   __ tst(Otos_l);
  1213   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1214   __ sdivx(O2, Otos_l, Otos_l2);
  1215   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1216   __ sub  (O2, Otos_l2, Otos_l);
  1217 #else
  1218   __ orcc(Otos_l1, Otos_l2, G0);
  1219   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1220   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1221 #endif
  1225 void TemplateTable::lshl() {
  1226   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1228   __ pop_l(O2);                          // shift value in O2, O3
  1229 #ifdef _LP64
  1230   __ sllx(O2, Otos_i, Otos_l);
  1231 #else
  1232   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1233 #endif
  1237 void TemplateTable::lshr() {
  1238   transition(itos, ltos); // %%%% see lshl comment
  1240   __ pop_l(O2);                          // shift value in O2, O3
  1241 #ifdef _LP64
  1242   __ srax(O2, Otos_i, Otos_l);
  1243 #else
  1244   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1245 #endif
  1250 void TemplateTable::lushr() {
  1251   transition(itos, ltos); // %%%% see lshl comment
  1253   __ pop_l(O2);                          // shift value in O2, O3
  1254 #ifdef _LP64
  1255   __ srlx(O2, Otos_i, Otos_l);
  1256 #else
  1257   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1258 #endif
  1262 void TemplateTable::fop2(Operation op) {
  1263   transition(ftos, ftos);
  1264   switch (op) {
  1265    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1266    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1267    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1268    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1269    case  rem:
  1270      assert(Ftos_f == F0, "just checking");
  1271 #ifdef _LP64
  1272      // LP64 calling conventions use F1, F3 for passing 2 floats
  1273      __ pop_f(F1);
  1274      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1275 #else
  1276      __ pop_i(O0);
  1277      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1278      __ ld( __ d_tmp, O1 );
  1279 #endif
  1280      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1281      assert( Ftos_f == F0, "fix this code" );
  1282      break;
  1284    default: ShouldNotReachHere();
  1289 void TemplateTable::dop2(Operation op) {
  1290   transition(dtos, dtos);
  1291   switch (op) {
  1292    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1293    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1294    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1295    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1296    case  rem:
  1297 #ifdef _LP64
  1298      // Pass arguments in D0, D2
  1299      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1300      __ pop_d( F0 );
  1301 #else
  1302      // Pass arguments in O0O1, O2O3
  1303      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1304      __ ldd( __ d_tmp, O2 );
  1305      __ pop_d(Ftos_f);
  1306      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1307      __ ldd( __ d_tmp, O0 );
  1308 #endif
  1309      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1310      assert( Ftos_d == F0, "fix this code" );
  1311      break;
  1313    default: ShouldNotReachHere();
  1318 void TemplateTable::ineg() {
  1319   transition(itos, itos);
  1320   __ neg(Otos_i);
  1324 void TemplateTable::lneg() {
  1325   transition(ltos, ltos);
  1326 #ifdef _LP64
  1327   __ sub(G0, Otos_l, Otos_l);
  1328 #else
  1329   __ lneg(Otos_l1, Otos_l2);
  1330 #endif
  1334 void TemplateTable::fneg() {
  1335   transition(ftos, ftos);
  1336   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1340 void TemplateTable::dneg() {
  1341   transition(dtos, dtos);
  1342   // v8 has fnegd if source and dest are the same
  1343   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1347 void TemplateTable::iinc() {
  1348   transition(vtos, vtos);
  1349   locals_index(G3_scratch);
  1350   __ ldsb(Lbcp, 2, O2);  // load constant
  1351   __ access_local_int(G3_scratch, Otos_i);
  1352   __ add(Otos_i, O2, Otos_i);
  1353   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1357 void TemplateTable::wide_iinc() {
  1358   transition(vtos, vtos);
  1359   locals_index_wide(G3_scratch);
  1360   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1361   __ access_local_int(G3_scratch, Otos_i);
  1362   __ add(Otos_i, O3, Otos_i);
  1363   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1367 void TemplateTable::convert() {
  1368 // %%%%% Factor this first part accross platforms
  1369   #ifdef ASSERT
  1370     TosState tos_in  = ilgl;
  1371     TosState tos_out = ilgl;
  1372     switch (bytecode()) {
  1373       case Bytecodes::_i2l: // fall through
  1374       case Bytecodes::_i2f: // fall through
  1375       case Bytecodes::_i2d: // fall through
  1376       case Bytecodes::_i2b: // fall through
  1377       case Bytecodes::_i2c: // fall through
  1378       case Bytecodes::_i2s: tos_in = itos; break;
  1379       case Bytecodes::_l2i: // fall through
  1380       case Bytecodes::_l2f: // fall through
  1381       case Bytecodes::_l2d: tos_in = ltos; break;
  1382       case Bytecodes::_f2i: // fall through
  1383       case Bytecodes::_f2l: // fall through
  1384       case Bytecodes::_f2d: tos_in = ftos; break;
  1385       case Bytecodes::_d2i: // fall through
  1386       case Bytecodes::_d2l: // fall through
  1387       case Bytecodes::_d2f: tos_in = dtos; break;
  1388       default             : ShouldNotReachHere();
  1390     switch (bytecode()) {
  1391       case Bytecodes::_l2i: // fall through
  1392       case Bytecodes::_f2i: // fall through
  1393       case Bytecodes::_d2i: // fall through
  1394       case Bytecodes::_i2b: // fall through
  1395       case Bytecodes::_i2c: // fall through
  1396       case Bytecodes::_i2s: tos_out = itos; break;
  1397       case Bytecodes::_i2l: // fall through
  1398       case Bytecodes::_f2l: // fall through
  1399       case Bytecodes::_d2l: tos_out = ltos; break;
  1400       case Bytecodes::_i2f: // fall through
  1401       case Bytecodes::_l2f: // fall through
  1402       case Bytecodes::_d2f: tos_out = ftos; break;
  1403       case Bytecodes::_i2d: // fall through
  1404       case Bytecodes::_l2d: // fall through
  1405       case Bytecodes::_f2d: tos_out = dtos; break;
  1406       default             : ShouldNotReachHere();
  1408     transition(tos_in, tos_out);
  1409   #endif
  1412   // Conversion
  1413   Label done;
  1414   switch (bytecode()) {
  1415    case Bytecodes::_i2l:
  1416 #ifdef _LP64
  1417     // Sign extend the 32 bits
  1418     __ sra ( Otos_i, 0, Otos_l );
  1419 #else
  1420     __ addcc(Otos_i, 0, Otos_l2);
  1421     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1422     __ delayed()->clr(Otos_l1);
  1423     __ set(~0, Otos_l1);
  1424 #endif
  1425     break;
  1427    case Bytecodes::_i2f:
  1428     __ st(Otos_i, __ d_tmp );
  1429     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1430     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1431     break;
  1433    case Bytecodes::_i2d:
  1434     __ st(Otos_i, __ d_tmp);
  1435     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1436     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1437     break;
  1439    case Bytecodes::_i2b:
  1440     __ sll(Otos_i, 24, Otos_i);
  1441     __ sra(Otos_i, 24, Otos_i);
  1442     break;
  1444    case Bytecodes::_i2c:
  1445     __ sll(Otos_i, 16, Otos_i);
  1446     __ srl(Otos_i, 16, Otos_i);
  1447     break;
  1449    case Bytecodes::_i2s:
  1450     __ sll(Otos_i, 16, Otos_i);
  1451     __ sra(Otos_i, 16, Otos_i);
  1452     break;
  1454    case Bytecodes::_l2i:
  1455 #ifndef _LP64
  1456     __ mov(Otos_l2, Otos_i);
  1457 #else
  1458     // Sign-extend into the high 32 bits
  1459     __ sra(Otos_l, 0, Otos_i);
  1460 #endif
  1461     break;
  1463    case Bytecodes::_l2f:
  1464    case Bytecodes::_l2d:
  1465     __ st_long(Otos_l, __ d_tmp);
  1466     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1468     if (VM_Version::v9_instructions_work()) {
  1469       if (bytecode() == Bytecodes::_l2f) {
  1470         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1471       } else {
  1472         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1474     } else {
  1475       __ call_VM_leaf(
  1476         Lscratch,
  1477         bytecode() == Bytecodes::_l2f
  1478           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1479           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1480       );
  1482     break;
  1484   case Bytecodes::_f2i:  {
  1485       Label isNaN;
  1486       // result must be 0 if value is NaN; test by comparing value to itself
  1487       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1488       // According to the v8 manual, you have to have a non-fp instruction
  1489       // between fcmp and fb.
  1490       if (!VM_Version::v9_instructions_work()) {
  1491         __ nop();
  1493       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1494       __ delayed()->clr(Otos_i);                                     // NaN
  1495       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1496       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1497       __ ld(__ d_tmp, Otos_i);
  1498       __ bind(isNaN);
  1500     break;
  1502    case Bytecodes::_f2l:
  1503     // must uncache tos
  1504     __ push_f();
  1505 #ifdef _LP64
  1506     __ pop_f(F1);
  1507 #else
  1508     __ pop_i(O0);
  1509 #endif
  1510     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1511     break;
  1513    case Bytecodes::_f2d:
  1514     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1515     break;
  1517    case Bytecodes::_d2i:
  1518    case Bytecodes::_d2l:
  1519     // must uncache tos
  1520     __ push_d();
  1521 #ifdef _LP64
  1522     // LP64 calling conventions pass first double arg in D0
  1523     __ pop_d( Ftos_d );
  1524 #else
  1525     __ pop_i( O0 );
  1526     __ pop_i( O1 );
  1527 #endif
  1528     __ call_VM_leaf(Lscratch,
  1529         bytecode() == Bytecodes::_d2i
  1530           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1531           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1532     break;
  1534     case Bytecodes::_d2f:
  1535     if (VM_Version::v9_instructions_work()) {
  1536       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1538     else {
  1539       // must uncache tos
  1540       __ push_d();
  1541       __ pop_i(O0);
  1542       __ pop_i(O1);
  1543       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1545     break;
  1547     default: ShouldNotReachHere();
  1549   __ bind(done);
  1553 void TemplateTable::lcmp() {
  1554   transition(ltos, itos);
  1556 #ifdef _LP64
  1557   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1558   __ lcmp( O1, Otos_l, Otos_i );
  1559 #else
  1560   __ pop_l(O2); // cmp O2,3 to O0,1
  1561   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1562 #endif
  1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1568   if (is_float) __ pop_f(F2);
  1569   else          __ pop_d(F2);
  1571   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1573   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1576 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1577   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1578   __ verify_thread();
  1580   const Register O2_bumped_count = O2;
  1581   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1583   // get (wide) offset to O1_disp
  1584   const Register O1_disp = O1;
  1585   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1586   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1588   // Handle all the JSR stuff here, then exit.
  1589   // It's much shorter and cleaner than intermingling with the
  1590   // non-JSR normal-branch stuff occurring below.
  1591   if( is_jsr ) {
  1592     // compute return address as bci in Otos_i
  1593     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1594     __ sub(Lbcp, G3_scratch, G3_scratch);
  1595     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1597     // Bump Lbcp to target of JSR
  1598     __ add(Lbcp, O1_disp, Lbcp);
  1599     // Push returnAddress for "ret" on stack
  1600     __ push_ptr(Otos_i);
  1601     // And away we go!
  1602     __ dispatch_next(vtos);
  1603     return;
  1606   // Normal (non-jsr) branch handling
  1608   // Save the current Lbcp
  1609   const Register O0_cur_bcp = O0;
  1610   __ mov( Lbcp, O0_cur_bcp );
  1613   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1614   if ( increment_invocation_counter_for_backward_branches ) {
  1615     Label Lforward;
  1616     // check branch direction
  1617     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1618     // Bump bytecode pointer by displacement (take the branch)
  1619     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1621     if (TieredCompilation) {
  1622       Label Lno_mdo, Loverflow;
  1623       int increment = InvocationCounter::count_increment;
  1624       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1625       if (ProfileInterpreter) {
  1626         // If no method data exists, go to profile_continue.
  1627         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
  1628         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
  1630         // Increment backedge counter in the MDO
  1631         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
  1632                                                  in_bytes(InvocationCounter::counter_offset()));
  1633         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
  1634                                    Assembler::notZero, &Lforward);
  1635         __ ba_short(Loverflow);
  1638       // If there's no MDO, increment counter in Method*
  1639       __ bind(Lno_mdo);
  1640       Address backedge_counter(Lmethod, in_bytes(Method::backedge_counter_offset()) +
  1641                                         in_bytes(InvocationCounter::counter_offset()));
  1642       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
  1643                                  Assembler::notZero, &Lforward);
  1644       __ bind(Loverflow);
  1646       // notify point for loop, pass branch bytecode
  1647       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
  1649       // Was an OSR adapter generated?
  1650       // O0 = osr nmethod
  1651       __ br_null_short(O0, Assembler::pn, Lforward);
  1653       // Has the nmethod been invalidated already?
  1654       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1655       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
  1657       // migrate the interpreter frame off of the stack
  1659       __ mov(G2_thread, L7);
  1660       // save nmethod
  1661       __ mov(O0, L6);
  1662       __ set_last_Java_frame(SP, noreg);
  1663       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1664       __ reset_last_Java_frame();
  1665       __ mov(L7, G2_thread);
  1667       // move OSR nmethod to I1
  1668       __ mov(L6, I1);
  1670       // OSR buffer to I0
  1671       __ mov(O0, I0);
  1673       // remove the interpreter frame
  1674       __ restore(I5_savedSP, 0, SP);
  1676       // Jump to the osr code.
  1677       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1678       __ jmp(O2, G0);
  1679       __ delayed()->nop();
  1681     } else {
  1682       // Update Backedge branch separately from invocations
  1683       const Register G4_invoke_ctr = G4;
  1684       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1685       if (ProfileInterpreter) {
  1686         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
  1687         if (UseOnStackReplacement) {
  1688           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1690       } else {
  1691         if (UseOnStackReplacement) {
  1692           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1697     __ bind(Lforward);
  1698   } else
  1699     // Bump bytecode pointer by displacement (take the branch)
  1700     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1702   // continue with bytecode @ target
  1703   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1704   // %%%%% and changing dispatch_next to dispatch_only
  1705   __ dispatch_next(vtos);
  1709 // Note Condition in argument is TemplateTable::Condition
  1710 // arg scope is within class scope
  1712 void TemplateTable::if_0cmp(Condition cc) {
  1713   // no pointers, integer only!
  1714   transition(itos, vtos);
  1715   // assume branch is more often taken than not (loops use backward branches)
  1716   __ cmp( Otos_i, 0);
  1717   __ if_cmp(ccNot(cc), false);
  1721 void TemplateTable::if_icmp(Condition cc) {
  1722   transition(itos, vtos);
  1723   __ pop_i(O1);
  1724   __ cmp(O1, Otos_i);
  1725   __ if_cmp(ccNot(cc), false);
  1729 void TemplateTable::if_nullcmp(Condition cc) {
  1730   transition(atos, vtos);
  1731   __ tst(Otos_i);
  1732   __ if_cmp(ccNot(cc), true);
  1736 void TemplateTable::if_acmp(Condition cc) {
  1737   transition(atos, vtos);
  1738   __ pop_ptr(O1);
  1739   __ verify_oop(O1);
  1740   __ verify_oop(Otos_i);
  1741   __ cmp(O1, Otos_i);
  1742   __ if_cmp(ccNot(cc), true);
  1747 void TemplateTable::ret() {
  1748   transition(vtos, vtos);
  1749   locals_index(G3_scratch);
  1750   __ access_local_returnAddress(G3_scratch, Otos_i);
  1751   // Otos_i contains the bci, compute the bcp from that
  1753 #ifdef _LP64
  1754 #ifdef ASSERT
  1755   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1756   // the result.  The return address (really a BCI) was stored with an
  1757   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1758   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1759   // loaded value.
  1760   { Label zzz ;
  1761      __ set (65536, G3_scratch) ;
  1762      __ cmp (Otos_i, G3_scratch) ;
  1763      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1764      __ delayed()->nop();
  1765      __ stop("BCI is in the wrong register half?");
  1766      __ bind (zzz) ;
  1768 #endif
  1769 #endif
  1771   __ profile_ret(vtos, Otos_i, G4_scratch);
  1773   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1774   __ add(G3_scratch, Otos_i, G3_scratch);
  1775   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1776   __ dispatch_next(vtos);
  1780 void TemplateTable::wide_ret() {
  1781   transition(vtos, vtos);
  1782   locals_index_wide(G3_scratch);
  1783   __ access_local_returnAddress(G3_scratch, Otos_i);
  1784   // Otos_i contains the bci, compute the bcp from that
  1786   __ profile_ret(vtos, Otos_i, G4_scratch);
  1788   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1789   __ add(G3_scratch, Otos_i, G3_scratch);
  1790   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1791   __ dispatch_next(vtos);
  1795 void TemplateTable::tableswitch() {
  1796   transition(itos, vtos);
  1797   Label default_case, continue_execution;
  1799   // align bcp
  1800   __ add(Lbcp, BytesPerInt, O1);
  1801   __ and3(O1, -BytesPerInt, O1);
  1802   // load lo, hi
  1803   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1804   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1805 #ifdef _LP64
  1806   // Sign extend the 32 bits
  1807   __ sra ( Otos_i, 0, Otos_i );
  1808 #endif /* _LP64 */
  1810   // check against lo & hi
  1811   __ cmp( Otos_i, O2);
  1812   __ br( Assembler::less, false, Assembler::pn, default_case);
  1813   __ delayed()->cmp( Otos_i, O3 );
  1814   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1815   // lookup dispatch offset
  1816   __ delayed()->sub(Otos_i, O2, O2);
  1817   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1818   __ sll(O2, LogBytesPerInt, O2);
  1819   __ add(O2, 3 * BytesPerInt, O2);
  1820   __ ba(continue_execution);
  1821   __ delayed()->ld(O1, O2, O2);
  1822   // handle default
  1823   __ bind(default_case);
  1824   __ profile_switch_default(O3);
  1825   __ ld(O1, 0, O2); // get default offset
  1826   // continue execution
  1827   __ bind(continue_execution);
  1828   __ add(Lbcp, O2, Lbcp);
  1829   __ dispatch_next(vtos);
  1833 void TemplateTable::lookupswitch() {
  1834   transition(itos, itos);
  1835   __ stop("lookupswitch bytecode should have been rewritten");
  1838 void TemplateTable::fast_linearswitch() {
  1839   transition(itos, vtos);
  1840     Label loop_entry, loop, found, continue_execution;
  1841   // align bcp
  1842   __ add(Lbcp, BytesPerInt, O1);
  1843   __ and3(O1, -BytesPerInt, O1);
  1844  // set counter
  1845   __ ld(O1, BytesPerInt, O2);
  1846   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1847   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1848   __ ba(loop_entry);
  1849   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1851   // table search
  1852   __ bind(loop);
  1853   __ cmp(O4, Otos_i);
  1854   __ br(Assembler::equal, true, Assembler::pn, found);
  1855   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1856   __ inc(O3, 2 * BytesPerInt);
  1858   __ bind(loop_entry);
  1859   __ cmp(O2, O3);
  1860   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1861   __ delayed()->ld(O3, 0, O4);
  1863   // default case
  1864   __ ld(O1, 0, O4); // get default offset
  1865   if (ProfileInterpreter) {
  1866     __ profile_switch_default(O3);
  1867     __ ba_short(continue_execution);
  1870   // entry found -> get offset
  1871   __ bind(found);
  1872   if (ProfileInterpreter) {
  1873     __ sub(O3, O1, O3);
  1874     __ sub(O3, 2*BytesPerInt, O3);
  1875     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1876     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1878     __ bind(continue_execution);
  1880   __ add(Lbcp, O4, Lbcp);
  1881   __ dispatch_next(vtos);
  1885 void TemplateTable::fast_binaryswitch() {
  1886   transition(itos, vtos);
  1887   // Implementation using the following core algorithm: (copied from Intel)
  1888   //
  1889   // int binary_search(int key, LookupswitchPair* array, int n) {
  1890   //   // Binary search according to "Methodik des Programmierens" by
  1891   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1892   //   int i = 0;
  1893   //   int j = n;
  1894   //   while (i+1 < j) {
  1895   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1896   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1897   //     // where a stands for the array and assuming that the (inexisting)
  1898   //     // element a[n] is infinitely big.
  1899   //     int h = (i + j) >> 1;
  1900   //     // i < h < j
  1901   //     if (key < array[h].fast_match()) {
  1902   //       j = h;
  1903   //     } else {
  1904   //       i = h;
  1905   //     }
  1906   //   }
  1907   //   // R: a[i] <= key < a[i+1] or Q
  1908   //   // (i.e., if key is within array, i is the correct index)
  1909   //   return i;
  1910   // }
  1912   // register allocation
  1913   assert(Otos_i == O0, "alias checking");
  1914   const Register Rkey     = Otos_i;                    // already set (tosca)
  1915   const Register Rarray   = O1;
  1916   const Register Ri       = O2;
  1917   const Register Rj       = O3;
  1918   const Register Rh       = O4;
  1919   const Register Rscratch = O5;
  1921   const int log_entry_size = 3;
  1922   const int entry_size = 1 << log_entry_size;
  1924   Label found;
  1925   // Find Array start
  1926   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1927   __ and3(Rarray, -BytesPerInt, Rarray);
  1928   // initialize i & j (in delay slot)
  1929   __ clr( Ri );
  1931   // and start
  1932   Label entry;
  1933   __ ba(entry);
  1934   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1935   // (Rj is already in the native byte-ordering.)
  1937   // binary search loop
  1938   { Label loop;
  1939     __ bind( loop );
  1940     // int h = (i + j) >> 1;
  1941     __ sra( Rh, 1, Rh );
  1942     // if (key < array[h].fast_match()) {
  1943     //   j = h;
  1944     // } else {
  1945     //   i = h;
  1946     // }
  1947     __ sll( Rh, log_entry_size, Rscratch );
  1948     __ ld( Rarray, Rscratch, Rscratch );
  1949     // (Rscratch is already in the native byte-ordering.)
  1950     __ cmp( Rkey, Rscratch );
  1951     if ( VM_Version::v9_instructions_work() ) {
  1952       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1953       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1955     else {
  1956       Label end_of_if;
  1957       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1958       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1959       __ mov( Rh, Ri );            // else i = h
  1960       __ bind(end_of_if);          // }
  1963     // while (i+1 < j)
  1964     __ bind( entry );
  1965     __ add( Ri, 1, Rscratch );
  1966     __ cmp(Rscratch, Rj);
  1967     __ br( Assembler::less, true, Assembler::pt, loop );
  1968     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1971   // end of binary search, result index is i (must check again!)
  1972   Label default_case;
  1973   Label continue_execution;
  1974   if (ProfileInterpreter) {
  1975     __ mov( Ri, Rh );              // Save index in i for profiling
  1977   __ sll( Ri, log_entry_size, Ri );
  1978   __ ld( Rarray, Ri, Rscratch );
  1979   // (Rscratch is already in the native byte-ordering.)
  1980   __ cmp( Rkey, Rscratch );
  1981   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1982   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1984   // entry found -> j = offset
  1985   __ inc( Ri, BytesPerInt );
  1986   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1987   __ ld( Rarray, Ri, Rj );
  1988   // (Rj is already in the native byte-ordering.)
  1990   if (ProfileInterpreter) {
  1991     __ ba_short(continue_execution);
  1994   __ bind(default_case); // fall through (if not profiling)
  1995   __ profile_switch_default(Ri);
  1997   __ bind(continue_execution);
  1998   __ add( Lbcp, Rj, Lbcp );
  1999   __ dispatch_next( vtos );
  2003 void TemplateTable::_return(TosState state) {
  2004   transition(state, state);
  2005   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  2007   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2008     assert(state == vtos, "only valid state");
  2009     __ mov(G0, G3_scratch);
  2010     __ access_local_ptr(G3_scratch, Otos_i);
  2011     __ load_klass(Otos_i, O2);
  2012     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2013     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
  2014     __ andcc(G3, O2, G0);
  2015     Label skip_register_finalizer;
  2016     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2017     __ delayed()->nop();
  2019     // Call out to do finalizer registration
  2020     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2022     __ bind(skip_register_finalizer);
  2025   __ remove_activation(state, /* throw_monitor_exception */ true);
  2027   // The caller's SP was adjusted upon method entry to accomodate
  2028   // the callee's non-argument locals. Undo that adjustment.
  2029   __ ret();                             // return to caller
  2030   __ delayed()->restore(I5_savedSP, G0, SP);
  2034 // ----------------------------------------------------------------------------
  2035 // Volatile variables demand their effects be made known to all CPU's in
  2036 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2037 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2038 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2039 // reorder volatile references, the hardware also must not reorder them).
  2040 //
  2041 // According to the new Java Memory Model (JMM):
  2042 // (1) All volatiles are serialized wrt to each other.
  2043 // ALSO reads & writes act as aquire & release, so:
  2044 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2045 // the read float up to before the read.  It's OK for non-volatile memory refs
  2046 // that happen before the volatile read to float down below it.
  2047 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2048 // that happen BEFORE the write float down to after the write.  It's OK for
  2049 // non-volatile memory refs that happen after the volatile write to float up
  2050 // before it.
  2051 //
  2052 // We only put in barriers around volatile refs (they are expensive), not
  2053 // _between_ memory refs (that would require us to track the flavor of the
  2054 // previous memory refs).  Requirements (2) and (3) require some barriers
  2055 // before volatile stores and after volatile loads.  These nearly cover
  2056 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2057 // case is placed after volatile-stores although it could just as well go
  2058 // before volatile-loads.
  2059 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2060   // Helper function to insert a is-volatile test and memory barrier
  2061   // All current sparc implementations run in TSO, needing only StoreLoad
  2062   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2063   __ membar( order_constraint );
  2066 // ----------------------------------------------------------------------------
  2067 void TemplateTable::resolve_cache_and_index(int byte_no,
  2068                                             Register Rcache,
  2069                                             Register index,
  2070                                             size_t index_size) {
  2071   // Depends on cpCacheOop layout!
  2072   Label resolved;
  2074     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2075     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
  2076     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
  2077     __ br(Assembler::equal, false, Assembler::pt, resolved);
  2078     __ delayed()->set((int)bytecode(), O1);
  2080   address entry;
  2081   switch (bytecode()) {
  2082     case Bytecodes::_getstatic      : // fall through
  2083     case Bytecodes::_putstatic      : // fall through
  2084     case Bytecodes::_getfield       : // fall through
  2085     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2086     case Bytecodes::_invokevirtual  : // fall through
  2087     case Bytecodes::_invokespecial  : // fall through
  2088     case Bytecodes::_invokestatic   : // fall through
  2089     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2090     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
  2091     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2092     default:
  2093       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2094       break;
  2096   // first time invocation - must resolve first
  2097   __ call_VM(noreg, entry, O1);
  2098   // Update registers with resolved info
  2099   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2100   __ bind(resolved);
  2103 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2104                                                Register method,
  2105                                                Register itable_index,
  2106                                                Register flags,
  2107                                                bool is_invokevirtual,
  2108                                                bool is_invokevfinal,
  2109                                                bool is_invokedynamic) {
  2110   // Uses both G3_scratch and G4_scratch
  2111   Register cache = G3_scratch;
  2112   Register index = G4_scratch;
  2113   assert_different_registers(cache, method, itable_index);
  2115   // determine constant pool cache field offsets
  2116   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2117   const int method_offset = in_bytes(
  2118       ConstantPoolCache::base_offset() +
  2119       ((byte_no == f2_byte)
  2120        ? ConstantPoolCacheEntry::f2_offset()
  2121        : ConstantPoolCacheEntry::f1_offset()
  2123     );
  2124   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2125                                     ConstantPoolCacheEntry::flags_offset());
  2126   // access constant pool cache fields
  2127   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2128                                     ConstantPoolCacheEntry::f2_offset());
  2130   if (is_invokevfinal) {
  2131     __ get_cache_and_index_at_bcp(cache, index, 1);
  2132     __ ld_ptr(Address(cache, method_offset), method);
  2133   } else {
  2134     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2135     resolve_cache_and_index(byte_no, cache, index, index_size);
  2136     __ ld_ptr(Address(cache, method_offset), method);
  2139   if (itable_index != noreg) {
  2140     // pick up itable or appendix index from f2 also:
  2141     __ ld_ptr(Address(cache, index_offset), itable_index);
  2143   __ ld_ptr(Address(cache, flags_offset), flags);
  2146 // The Rcache register must be set before call
  2147 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2148                                               Register Rcache,
  2149                                               Register index,
  2150                                               Register Roffset,
  2151                                               Register Rflags,
  2152                                               bool is_static) {
  2153   assert_different_registers(Rcache, Rflags, Roffset);
  2155   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2157   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2158   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2159   if (is_static) {
  2160     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2161     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2162     __ ld_ptr( Robj, mirror_offset, Robj);
  2166 // The registers Rcache and index expected to be set before call.
  2167 // Correct values of the Rcache and index registers are preserved.
  2168 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2169                                             Register index,
  2170                                             bool is_static,
  2171                                             bool has_tos) {
  2172   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2174   if (JvmtiExport::can_post_field_access()) {
  2175     // Check to see if a field access watch has been set before we take
  2176     // the time to call into the VM.
  2177     Label Label1;
  2178     assert_different_registers(Rcache, index, G1_scratch);
  2179     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2180     __ load_contents(get_field_access_count_addr, G1_scratch);
  2181     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
  2183     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2185     if (is_static) {
  2186       __ clr(Otos_i);
  2187     } else {
  2188       if (has_tos) {
  2189       // save object pointer before call_VM() clobbers it
  2190         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2191       } else {
  2192         // Load top of stack (do not pop the value off the stack);
  2193         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2195       __ verify_oop(Otos_i);
  2197     // Otos_i: object pointer or NULL if static
  2198     // Rcache: cache entry pointer
  2199     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2200                Otos_i, Rcache);
  2201     if (!is_static && has_tos) {
  2202       __ pop_ptr(Otos_i);  // restore object pointer
  2203       __ verify_oop(Otos_i);
  2205     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2206     __ bind(Label1);
  2210 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2211   transition(vtos, vtos);
  2213   Register Rcache = G3_scratch;
  2214   Register index  = G4_scratch;
  2215   Register Rclass = Rcache;
  2216   Register Roffset= G4_scratch;
  2217   Register Rflags = G1_scratch;
  2218   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2220   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2221   jvmti_post_field_access(Rcache, index, is_static, false);
  2222   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2224   if (!is_static) {
  2225     pop_and_check_object(Rclass);
  2226   } else {
  2227     __ verify_oop(Rclass);
  2230   Label exit;
  2232   Assembler::Membar_mask_bits membar_bits =
  2233     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2235   if (__ membar_has_effect(membar_bits)) {
  2236     // Get volatile flag
  2237     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2238     __ and3(Rflags, Lscratch, Lscratch);
  2241   Label checkVolatile;
  2243   // compute field type
  2244   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2245   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2246   // Make sure we don't need to mask Rflags after the above shift
  2247   ConstantPoolCacheEntry::verify_tos_state_shift();
  2249   // Check atos before itos for getstatic, more likely (in Queens at least)
  2250   __ cmp(Rflags, atos);
  2251   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2252   __ delayed() ->cmp(Rflags, itos);
  2254   // atos
  2255   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2256   __ verify_oop(Otos_i);
  2257   __ push(atos);
  2258   if (!is_static) {
  2259     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2261   __ ba(checkVolatile);
  2262   __ delayed()->tst(Lscratch);
  2264   __ bind(notObj);
  2266   // cmp(Rflags, itos);
  2267   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2268   __ delayed() ->cmp(Rflags, ltos);
  2270   // itos
  2271   __ ld(Rclass, Roffset, Otos_i);
  2272   __ push(itos);
  2273   if (!is_static) {
  2274     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2276   __ ba(checkVolatile);
  2277   __ delayed()->tst(Lscratch);
  2279   __ bind(notInt);
  2281   // cmp(Rflags, ltos);
  2282   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2283   __ delayed() ->cmp(Rflags, btos);
  2285   // ltos
  2286   // load must be atomic
  2287   __ ld_long(Rclass, Roffset, Otos_l);
  2288   __ push(ltos);
  2289   if (!is_static) {
  2290     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2292   __ ba(checkVolatile);
  2293   __ delayed()->tst(Lscratch);
  2295   __ bind(notLong);
  2297   // cmp(Rflags, btos);
  2298   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2299   __ delayed() ->cmp(Rflags, ctos);
  2301   // btos
  2302   __ ldsb(Rclass, Roffset, Otos_i);
  2303   __ push(itos);
  2304   if (!is_static) {
  2305     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2307   __ ba(checkVolatile);
  2308   __ delayed()->tst(Lscratch);
  2310   __ bind(notByte);
  2312   // cmp(Rflags, ctos);
  2313   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2314   __ delayed() ->cmp(Rflags, stos);
  2316   // ctos
  2317   __ lduh(Rclass, Roffset, Otos_i);
  2318   __ push(itos);
  2319   if (!is_static) {
  2320     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2322   __ ba(checkVolatile);
  2323   __ delayed()->tst(Lscratch);
  2325   __ bind(notChar);
  2327   // cmp(Rflags, stos);
  2328   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2329   __ delayed() ->cmp(Rflags, ftos);
  2331   // stos
  2332   __ ldsh(Rclass, Roffset, Otos_i);
  2333   __ push(itos);
  2334   if (!is_static) {
  2335     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2337   __ ba(checkVolatile);
  2338   __ delayed()->tst(Lscratch);
  2340   __ bind(notShort);
  2343   // cmp(Rflags, ftos);
  2344   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2345   __ delayed() ->tst(Lscratch);
  2347   // ftos
  2348   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2349   __ push(ftos);
  2350   if (!is_static) {
  2351     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2353   __ ba(checkVolatile);
  2354   __ delayed()->tst(Lscratch);
  2356   __ bind(notFloat);
  2359   // dtos
  2360   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2361   __ push(dtos);
  2362   if (!is_static) {
  2363     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2366   __ bind(checkVolatile);
  2367   if (__ membar_has_effect(membar_bits)) {
  2368     // __ tst(Lscratch); executed in delay slot
  2369     __ br(Assembler::zero, false, Assembler::pt, exit);
  2370     __ delayed()->nop();
  2371     volatile_barrier(membar_bits);
  2374   __ bind(exit);
  2378 void TemplateTable::getfield(int byte_no) {
  2379   getfield_or_static(byte_no, false);
  2382 void TemplateTable::getstatic(int byte_no) {
  2383   getfield_or_static(byte_no, true);
  2387 void TemplateTable::fast_accessfield(TosState state) {
  2388   transition(atos, state);
  2389   Register Rcache  = G3_scratch;
  2390   Register index   = G4_scratch;
  2391   Register Roffset = G4_scratch;
  2392   Register Rflags  = Rcache;
  2393   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2395   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2396   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2398   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2400   __ null_check(Otos_i);
  2401   __ verify_oop(Otos_i);
  2403   Label exit;
  2405   Assembler::Membar_mask_bits membar_bits =
  2406     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2407   if (__ membar_has_effect(membar_bits)) {
  2408     // Get volatile flag
  2409     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2410     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2413   switch (bytecode()) {
  2414     case Bytecodes::_fast_bgetfield:
  2415       __ ldsb(Otos_i, Roffset, Otos_i);
  2416       break;
  2417     case Bytecodes::_fast_cgetfield:
  2418       __ lduh(Otos_i, Roffset, Otos_i);
  2419       break;
  2420     case Bytecodes::_fast_sgetfield:
  2421       __ ldsh(Otos_i, Roffset, Otos_i);
  2422       break;
  2423     case Bytecodes::_fast_igetfield:
  2424       __ ld(Otos_i, Roffset, Otos_i);
  2425       break;
  2426     case Bytecodes::_fast_lgetfield:
  2427       __ ld_long(Otos_i, Roffset, Otos_l);
  2428       break;
  2429     case Bytecodes::_fast_fgetfield:
  2430       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2431       break;
  2432     case Bytecodes::_fast_dgetfield:
  2433       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2434       break;
  2435     case Bytecodes::_fast_agetfield:
  2436       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2437       break;
  2438     default:
  2439       ShouldNotReachHere();
  2442   if (__ membar_has_effect(membar_bits)) {
  2443     __ btst(Lscratch, Rflags);
  2444     __ br(Assembler::zero, false, Assembler::pt, exit);
  2445     __ delayed()->nop();
  2446     volatile_barrier(membar_bits);
  2447     __ bind(exit);
  2450   if (state == atos) {
  2451     __ verify_oop(Otos_i);    // does not blow flags!
  2455 void TemplateTable::jvmti_post_fast_field_mod() {
  2456   if (JvmtiExport::can_post_field_modification()) {
  2457     // Check to see if a field modification watch has been set before we take
  2458     // the time to call into the VM.
  2459     Label done;
  2460     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2461     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2462     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
  2463     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2464     __ verify_oop(G4_scratch);
  2465     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2466     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2467     // Save tos values before call_VM() clobbers them. Since we have
  2468     // to do it for every data type, we use the saved values as the
  2469     // jvalue object.
  2470     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2471     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2472     case Bytecodes::_fast_bputfield: // fall through
  2473     case Bytecodes::_fast_sputfield: // fall through
  2474     case Bytecodes::_fast_cputfield: // fall through
  2475     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2476     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2477     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2478     // get words in right order for use as jvalue object
  2479     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2481     // setup pointer to jvalue object
  2482     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2483     // G4_scratch:  object pointer
  2484     // G1_scratch: cache entry pointer
  2485     // G3_scratch: jvalue object on the stack
  2486     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2487     switch (bytecode()) {             // restore tos values
  2488     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2489     case Bytecodes::_fast_bputfield: // fall through
  2490     case Bytecodes::_fast_sputfield: // fall through
  2491     case Bytecodes::_fast_cputfield: // fall through
  2492     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2493     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2494     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2495     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2497     __ bind(done);
  2501 // The registers Rcache and index expected to be set before call.
  2502 // The function may destroy various registers, just not the Rcache and index registers.
  2503 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2504   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2506   if (JvmtiExport::can_post_field_modification()) {
  2507     // Check to see if a field modification watch has been set before we take
  2508     // the time to call into the VM.
  2509     Label Label1;
  2510     assert_different_registers(Rcache, index, G1_scratch);
  2511     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2512     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2513     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
  2515     // The Rcache and index registers have been already set.
  2516     // This allows to eliminate this call but the Rcache and index
  2517     // registers must be correspondingly used after this line.
  2518     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2520     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2521     if (is_static) {
  2522       // Life is simple.  Null out the object pointer.
  2523       __ clr(G4_scratch);
  2524     } else {
  2525       Register Rflags = G1_scratch;
  2526       // Life is harder. The stack holds the value on top, followed by the
  2527       // object.  We don't know the size of the value, though; it could be
  2528       // one or two words depending on its type. As a result, we must find
  2529       // the type to determine where the object is.
  2531       Label two_word, valsizeknown;
  2532       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2533       __ mov(Lesp, G4_scratch);
  2534       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2535       // Make sure we don't need to mask Rflags after the above shift
  2536       ConstantPoolCacheEntry::verify_tos_state_shift();
  2537       __ cmp(Rflags, ltos);
  2538       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2539       __ delayed()->cmp(Rflags, dtos);
  2540       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2541       __ delayed()->nop();
  2542       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2543       __ ba_short(valsizeknown);
  2544       __ bind(two_word);
  2546       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2548       __ bind(valsizeknown);
  2549       // setup object pointer
  2550       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2551       __ verify_oop(G4_scratch);
  2553     // setup pointer to jvalue object
  2554     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2555     // G4_scratch:  object pointer or NULL if static
  2556     // G3_scratch: cache entry pointer
  2557     // G1_scratch: jvalue object on the stack
  2558     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2559                G4_scratch, G3_scratch, G1_scratch);
  2560     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2561     __ bind(Label1);
  2565 void TemplateTable::pop_and_check_object(Register r) {
  2566   __ pop_ptr(r);
  2567   __ null_check(r);  // for field access must check obj.
  2568   __ verify_oop(r);
  2571 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2572   transition(vtos, vtos);
  2573   Register Rcache = G3_scratch;
  2574   Register index  = G4_scratch;
  2575   Register Rclass = Rcache;
  2576   Register Roffset= G4_scratch;
  2577   Register Rflags = G1_scratch;
  2578   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2580   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2581   jvmti_post_field_mod(Rcache, index, is_static);
  2582   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2584   Assembler::Membar_mask_bits read_bits =
  2585     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2586   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2588   Label notVolatile, checkVolatile, exit;
  2589   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2590     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2591     __ and3(Rflags, Lscratch, Lscratch);
  2593     if (__ membar_has_effect(read_bits)) {
  2594       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2595       volatile_barrier(read_bits);
  2596       __ bind(notVolatile);
  2600   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2601   // Make sure we don't need to mask Rflags after the above shift
  2602   ConstantPoolCacheEntry::verify_tos_state_shift();
  2604   // compute field type
  2605   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2607   if (is_static) {
  2608     // putstatic with object type most likely, check that first
  2609     __ cmp(Rflags, atos);
  2610     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2611     __ delayed()->cmp(Rflags, itos);
  2613     // atos
  2615       __ pop_ptr();
  2616       __ verify_oop(Otos_i);
  2617       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2618       __ ba(checkVolatile);
  2619       __ delayed()->tst(Lscratch);
  2622     __ bind(notObj);
  2623     // cmp(Rflags, itos);
  2624     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2625     __ delayed()->cmp(Rflags, btos);
  2627     // itos
  2629       __ pop_i();
  2630       __ st(Otos_i, Rclass, Roffset);
  2631       __ ba(checkVolatile);
  2632       __ delayed()->tst(Lscratch);
  2635     __ bind(notInt);
  2636   } else {
  2637     // putfield with int type most likely, check that first
  2638     __ cmp(Rflags, itos);
  2639     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2640     __ delayed()->cmp(Rflags, atos);
  2642     // itos
  2644       __ pop_i();
  2645       pop_and_check_object(Rclass);
  2646       __ st(Otos_i, Rclass, Roffset);
  2647       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
  2648       __ ba(checkVolatile);
  2649       __ delayed()->tst(Lscratch);
  2652     __ bind(notInt);
  2653     // cmp(Rflags, atos);
  2654     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2655     __ delayed()->cmp(Rflags, btos);
  2657     // atos
  2659       __ pop_ptr();
  2660       pop_and_check_object(Rclass);
  2661       __ verify_oop(Otos_i);
  2662       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2663       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
  2664       __ ba(checkVolatile);
  2665       __ delayed()->tst(Lscratch);
  2668     __ bind(notObj);
  2671   // cmp(Rflags, btos);
  2672   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2673   __ delayed()->cmp(Rflags, ltos);
  2675   // btos
  2677     __ pop_i();
  2678     if (!is_static) pop_and_check_object(Rclass);
  2679     __ stb(Otos_i, Rclass, Roffset);
  2680     if (!is_static) {
  2681       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
  2683     __ ba(checkVolatile);
  2684     __ delayed()->tst(Lscratch);
  2687   __ bind(notByte);
  2688   // cmp(Rflags, ltos);
  2689   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2690   __ delayed()->cmp(Rflags, ctos);
  2692   // ltos
  2694     __ pop_l();
  2695     if (!is_static) pop_and_check_object(Rclass);
  2696     __ st_long(Otos_l, Rclass, Roffset);
  2697     if (!is_static) {
  2698       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
  2700     __ ba(checkVolatile);
  2701     __ delayed()->tst(Lscratch);
  2704   __ bind(notLong);
  2705   // cmp(Rflags, ctos);
  2706   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2707   __ delayed()->cmp(Rflags, stos);
  2709   // ctos (char)
  2711     __ pop_i();
  2712     if (!is_static) pop_and_check_object(Rclass);
  2713     __ sth(Otos_i, Rclass, Roffset);
  2714     if (!is_static) {
  2715       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
  2717     __ ba(checkVolatile);
  2718     __ delayed()->tst(Lscratch);
  2721   __ bind(notChar);
  2722   // cmp(Rflags, stos);
  2723   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2724   __ delayed()->cmp(Rflags, ftos);
  2726   // stos (short)
  2728     __ pop_i();
  2729     if (!is_static) pop_and_check_object(Rclass);
  2730     __ sth(Otos_i, Rclass, Roffset);
  2731     if (!is_static) {
  2732       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
  2734     __ ba(checkVolatile);
  2735     __ delayed()->tst(Lscratch);
  2738   __ bind(notShort);
  2739   // cmp(Rflags, ftos);
  2740   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2741   __ delayed()->nop();
  2743   // ftos
  2745     __ pop_f();
  2746     if (!is_static) pop_and_check_object(Rclass);
  2747     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2748     if (!is_static) {
  2749       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
  2751     __ ba(checkVolatile);
  2752     __ delayed()->tst(Lscratch);
  2755   __ bind(notFloat);
  2757   // dtos
  2759     __ pop_d();
  2760     if (!is_static) pop_and_check_object(Rclass);
  2761     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2762     if (!is_static) {
  2763       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
  2767   __ bind(checkVolatile);
  2768   __ tst(Lscratch);
  2770   if (__ membar_has_effect(write_bits)) {
  2771     // __ tst(Lscratch); in delay slot
  2772     __ br(Assembler::zero, false, Assembler::pt, exit);
  2773     __ delayed()->nop();
  2774     volatile_barrier(Assembler::StoreLoad);
  2775     __ bind(exit);
  2779 void TemplateTable::fast_storefield(TosState state) {
  2780   transition(state, vtos);
  2781   Register Rcache = G3_scratch;
  2782   Register Rclass = Rcache;
  2783   Register Roffset= G4_scratch;
  2784   Register Rflags = G1_scratch;
  2785   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2787   jvmti_post_fast_field_mod();
  2789   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2791   Assembler::Membar_mask_bits read_bits =
  2792     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2793   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2795   Label notVolatile, checkVolatile, exit;
  2796   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2797     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2798     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2799     __ and3(Rflags, Lscratch, Lscratch);
  2800     if (__ membar_has_effect(read_bits)) {
  2801       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2802       volatile_barrier(read_bits);
  2803       __ bind(notVolatile);
  2807   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2808   pop_and_check_object(Rclass);
  2810   switch (bytecode()) {
  2811     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2812     case Bytecodes::_fast_cputfield: /* fall through */
  2813     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2814     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2815     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2816     case Bytecodes::_fast_fputfield:
  2817       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2818       break;
  2819     case Bytecodes::_fast_dputfield:
  2820       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2821       break;
  2822     case Bytecodes::_fast_aputfield:
  2823       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2824       break;
  2825     default:
  2826       ShouldNotReachHere();
  2829   if (__ membar_has_effect(write_bits)) {
  2830     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
  2831     volatile_barrier(Assembler::StoreLoad);
  2832     __ bind(exit);
  2837 void TemplateTable::putfield(int byte_no) {
  2838   putfield_or_static(byte_no, false);
  2841 void TemplateTable::putstatic(int byte_no) {
  2842   putfield_or_static(byte_no, true);
  2846 void TemplateTable::fast_xaccess(TosState state) {
  2847   transition(vtos, state);
  2848   Register Rcache = G3_scratch;
  2849   Register Roffset = G4_scratch;
  2850   Register Rflags  = G4_scratch;
  2851   Register Rreceiver = Lscratch;
  2853   __ ld_ptr(Llocals, 0, Rreceiver);
  2855   // access constant pool cache  (is resolved)
  2856   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2857   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2858   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2860   __ verify_oop(Rreceiver);
  2861   __ null_check(Rreceiver);
  2862   if (state == atos) {
  2863     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2864   } else if (state == itos) {
  2865     __ ld (Rreceiver, Roffset, Otos_i) ;
  2866   } else if (state == ftos) {
  2867     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2868   } else {
  2869     ShouldNotReachHere();
  2872   Assembler::Membar_mask_bits membar_bits =
  2873     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2874   if (__ membar_has_effect(membar_bits)) {
  2876     // Get is_volatile value in Rflags and check if membar is needed
  2877     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2879     // Test volatile
  2880     Label notVolatile;
  2881     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2882     __ btst(Rflags, Lscratch);
  2883     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2884     __ delayed()->nop();
  2885     volatile_barrier(membar_bits);
  2886     __ bind(notVolatile);
  2889   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2890   __ sub(Lbcp, 1, Lbcp);
  2893 //----------------------------------------------------------------------------------------------------
  2894 // Calls
  2896 void TemplateTable::count_calls(Register method, Register temp) {
  2897   // implemented elsewhere
  2898   ShouldNotReachHere();
  2901 void TemplateTable::prepare_invoke(int byte_no,
  2902                                    Register method,  // linked method (or i-klass)
  2903                                    Register ra,      // return address
  2904                                    Register index,   // itable index, MethodType, etc.
  2905                                    Register recv,    // if caller wants to see it
  2906                                    Register flags    // if caller wants to test it
  2907                                    ) {
  2908   // determine flags
  2909   const Bytecodes::Code code = bytecode();
  2910   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2911   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2912   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2913   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2914   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2915   const bool load_receiver       = (recv != noreg);
  2916   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2917   assert(recv  == noreg || recv  == O0, "");
  2918   assert(flags == noreg || flags == O1, "");
  2920   // setup registers & access constant pool cache
  2921   if (recv  == noreg)  recv  = O0;
  2922   if (flags == noreg)  flags = O1;
  2923   const Register temp = O2;
  2924   assert_different_registers(method, ra, index, recv, flags, temp);
  2926   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2928   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  2930   // maybe push appendix to arguments
  2931   if (is_invokedynamic || is_invokehandle) {
  2932     Label L_no_push;
  2933     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
  2934     __ btst(flags, temp);
  2935     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
  2936     __ delayed()->nop();
  2937     // Push the appendix as a trailing parameter.
  2938     // This must be done before we get the receiver,
  2939     // since the parameter_size includes it.
  2940     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2941     __ load_resolved_reference_at_index(temp, index);
  2942     __ verify_oop(temp);
  2943     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
  2944     __ bind(L_no_push);
  2947   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2948   if (load_receiver) {
  2949     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
  2950     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
  2951     __ verify_oop(recv);
  2954   // compute return type
  2955   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
  2956   // Make sure we don't need to mask flags after the above shift
  2957   ConstantPoolCacheEntry::verify_tos_state_shift();
  2958   // load return address
  2960     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2961         (address)Interpreter::return_5_addrs_by_index_table() :
  2962         (address)Interpreter::return_3_addrs_by_index_table();
  2963     AddressLiteral table(table_addr);
  2964     __ set(table, temp);
  2965     __ sll(ra, LogBytesPerWord, ra);
  2966     __ ld_ptr(Address(temp, ra), ra);
  2971 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2972   Register Rtemp = G4_scratch;
  2973   Register Rcall = Rindex;
  2974   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2976   // get target Method* & entry point
  2977   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
  2978   __ call_from_interpreter(Rcall, Gargs, Rret);
  2981 void TemplateTable::invokevirtual(int byte_no) {
  2982   transition(vtos, vtos);
  2983   assert(byte_no == f2_byte, "use this argument");
  2985   Register Rscratch = G3_scratch;
  2986   Register Rtemp    = G4_scratch;
  2987   Register Rret     = Lscratch;
  2988   Register O0_recv  = O0;
  2989   Label notFinal;
  2991   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2992   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2994   // Check for vfinal
  2995   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
  2996   __ btst(Rret, G4_scratch);
  2997   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2998   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  3000   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  3002   invokevfinal_helper(Rscratch, Rret);
  3004   __ bind(notFinal);
  3006   __ mov(G5_method, Rscratch);  // better scratch register
  3007   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
  3008   // receiver is in O0_recv
  3009   __ verify_oop(O0_recv);
  3011   // get return address
  3012   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3013   __ set(table, Rtemp);
  3014   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3015   // Make sure we don't need to mask Rret after the above shift
  3016   ConstantPoolCacheEntry::verify_tos_state_shift();
  3017   __ sll(Rret,  LogBytesPerWord, Rret);
  3018   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3020   // get receiver klass
  3021   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3022   __ load_klass(O0_recv, O0_recv);
  3023   __ verify_klass_ptr(O0_recv);
  3025   __ profile_virtual_call(O0_recv, O4);
  3027   generate_vtable_call(O0_recv, Rscratch, Rret);
  3030 void TemplateTable::fast_invokevfinal(int byte_no) {
  3031   transition(vtos, vtos);
  3032   assert(byte_no == f2_byte, "use this argument");
  3034   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3035                              /*is_invokevfinal*/true, false);
  3036   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3037   invokevfinal_helper(G3_scratch, Lscratch);
  3040 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3041   Register Rtemp = G4_scratch;
  3043   // Load receiver from stack slot
  3044   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
  3045   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
  3046   __ load_receiver(G4_scratch, O0);
  3048   // receiver NULL check
  3049   __ null_check(O0);
  3051   __ profile_final_call(O4);
  3053   // get return address
  3054   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3055   __ set(table, Rtemp);
  3056   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3057   // Make sure we don't need to mask Rret after the above shift
  3058   ConstantPoolCacheEntry::verify_tos_state_shift();
  3059   __ sll(Rret,  LogBytesPerWord, Rret);
  3060   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3063   // do the call
  3064   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3068 void TemplateTable::invokespecial(int byte_no) {
  3069   transition(vtos, vtos);
  3070   assert(byte_no == f1_byte, "use this argument");
  3072   const Register Rret     = Lscratch;
  3073   const Register O0_recv  = O0;
  3074   const Register Rscratch = G3_scratch;
  3076   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
  3077   __ null_check(O0_recv);
  3079   // do the call
  3080   __ profile_call(O4);
  3081   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3085 void TemplateTable::invokestatic(int byte_no) {
  3086   transition(vtos, vtos);
  3087   assert(byte_no == f1_byte, "use this argument");
  3089   const Register Rret     = Lscratch;
  3090   const Register Rscratch = G3_scratch;
  3092   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
  3094   // do the call
  3095   __ profile_call(O4);
  3096   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3099 void TemplateTable::invokeinterface_object_method(Register RKlass,
  3100                                                   Register Rcall,
  3101                                                   Register Rret,
  3102                                                   Register Rflags) {
  3103   Register Rscratch = G4_scratch;
  3104   Register Rindex = Lscratch;
  3106   assert_different_registers(Rscratch, Rindex, Rret);
  3108   Label notFinal;
  3110   // Check for vfinal
  3111   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
  3112   __ btst(Rflags, Rscratch);
  3113   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3114   __ delayed()->nop();
  3116   __ profile_final_call(O4);
  3118   // do the call - the index (f2) contains the Method*
  3119   assert_different_registers(G5_method, Gargs, Rcall);
  3120   __ mov(Rindex, G5_method);
  3121   __ call_from_interpreter(Rcall, Gargs, Rret);
  3122   __ bind(notFinal);
  3124   __ profile_virtual_call(RKlass, O4);
  3125   generate_vtable_call(RKlass, Rindex, Rret);
  3129 void TemplateTable::invokeinterface(int byte_no) {
  3130   transition(vtos, vtos);
  3131   assert(byte_no == f1_byte, "use this argument");
  3133   const Register Rinterface  = G1_scratch;
  3134   const Register Rret        = G3_scratch;
  3135   const Register Rindex      = Lscratch;
  3136   const Register O0_recv     = O0;
  3137   const Register O1_flags    = O1;
  3138   const Register O2_Klass    = O2;
  3139   const Register Rscratch    = G4_scratch;
  3140   assert_different_registers(Rscratch, G5_method);
  3142   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
  3144   // get receiver klass
  3145   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3146   __ load_klass(O0_recv, O2_Klass);
  3148   // Special case of invokeinterface called for virtual method of
  3149   // java.lang.Object.  See cpCacheOop.cpp for details.
  3150   // This code isn't produced by javac, but could be produced by
  3151   // another compliant java compiler.
  3152   Label notMethod;
  3153   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
  3154   __ btst(O1_flags, Rscratch);
  3155   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3156   __ delayed()->nop();
  3158   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
  3160   __ bind(notMethod);
  3162   __ profile_virtual_call(O2_Klass, O4);
  3164   //
  3165   // find entry point to call
  3166   //
  3168   // compute start of first itableOffsetEntry (which is at end of vtable)
  3169   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  3170   Label search;
  3171   Register Rtemp = O1_flags;
  3173   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3174   if (align_object_offset(1) > 1) {
  3175     __ round_to(Rtemp, align_object_offset(1));
  3177   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3178   if (Assembler::is_simm13(base)) {
  3179     __ add(Rtemp, base, Rtemp);
  3180   } else {
  3181     __ set(base, Rscratch);
  3182     __ add(Rscratch, Rtemp, Rtemp);
  3184   __ add(O2_Klass, Rtemp, Rscratch);
  3186   __ bind(search);
  3188   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3190     Label ok;
  3192     // Check that entry is non-null.  Null entries are probably a bytecode
  3193     // problem.  If the interface isn't implemented by the receiver class,
  3194     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3195     // this too but that's only if the entry isn't already resolved, so we
  3196     // need to check again.
  3197     __ br_notnull_short( Rtemp, Assembler::pt, ok);
  3198     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3199     __ should_not_reach_here();
  3200     __ bind(ok);
  3203   __ cmp(Rinterface, Rtemp);
  3204   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3205   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3207   // entry found and Rscratch points to it
  3208   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3210   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3211   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3212   __ add(Rscratch, Rindex, Rscratch);
  3213   __ ld_ptr(O2_Klass, Rscratch, G5_method);
  3215   // Check for abstract method error.
  3217     Label ok;
  3218     __ br_notnull_short(G5_method, Assembler::pt, ok);
  3219     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3220     __ should_not_reach_here();
  3221     __ bind(ok);
  3224   Register Rcall = Rinterface;
  3225   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3227   __ call_from_interpreter(Rcall, Gargs, Rret);
  3230 void TemplateTable::invokehandle(int byte_no) {
  3231   transition(vtos, vtos);
  3232   assert(byte_no == f1_byte, "use this argument");
  3234   if (!EnableInvokeDynamic) {
  3235     // rewriter does not generate this bytecode
  3236     __ should_not_reach_here();
  3237     return;
  3240   const Register Rret       = Lscratch;
  3241   const Register G4_mtype   = G4_scratch;
  3242   const Register O0_recv    = O0;
  3243   const Register Rscratch   = G3_scratch;
  3245   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
  3246   __ null_check(O0_recv);
  3248   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
  3249   // G5: MH.invokeExact_MT method (from f2)
  3251   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
  3253   // do the call
  3254   __ verify_oop(G4_mtype);
  3255   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
  3256   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3260 void TemplateTable::invokedynamic(int byte_no) {
  3261   transition(vtos, vtos);
  3262   assert(byte_no == f1_byte, "use this argument");
  3264   if (!EnableInvokeDynamic) {
  3265     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3266     // The verifier will stop it.  However, if we get past the verifier,
  3267     // this will stop the thread in a reasonable way, without crashing the JVM.
  3268     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3269                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3270     // the call_VM checks for exception, so we should never return here.
  3271     __ should_not_reach_here();
  3272     return;
  3275   const Register Rret        = Lscratch;
  3276   const Register G4_callsite = G4_scratch;
  3277   const Register Rscratch    = G3_scratch;
  3279   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
  3281   // G4: CallSite object (from cpool->resolved_references[f1])
  3282   // G5: MH.linkToCallSite method (from f2)
  3284   // Note:  G4_callsite is already pushed by prepare_invoke
  3286   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3287   // profile this call
  3288   __ profile_call(O4);
  3290   // do the call
  3291   __ verify_oop(G4_callsite);
  3292   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3296 //----------------------------------------------------------------------------------------------------
  3297 // Allocation
  3299 void TemplateTable::_new() {
  3300   transition(vtos, atos);
  3302   Label slow_case;
  3303   Label done;
  3304   Label initialize_header;
  3305   Label initialize_object;  // including clearing the fields
  3307   Register RallocatedObject = Otos_i;
  3308   Register RinstanceKlass = O1;
  3309   Register Roffset = O3;
  3310   Register Rscratch = O4;
  3312   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3313   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3314   // make sure the class we're about to instantiate has been resolved
  3315   // This is done before loading InstanceKlass to be consistent with the order
  3316   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3317   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3318   __ ldub(G3_scratch, Roffset, G3_scratch);
  3319   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3320   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3321   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3322   // get InstanceKlass
  3323   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3324   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3325   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3327   // make sure klass is fully initialized:
  3328   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
  3329   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
  3330   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3331   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3333   // get instance_size in InstanceKlass (already aligned)
  3334   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3336   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3337   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3338   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3339   __ delayed()->nop();
  3341   // allocate the instance
  3342   // 1) Try to allocate in the TLAB
  3343   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3344   // 3) if the above fails (or is not applicable), go to a slow case
  3345   // (creates a new TLAB, etc.)
  3347   const bool allow_shared_alloc =
  3348     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3350   if(UseTLAB) {
  3351     Register RoldTopValue = RallocatedObject;
  3352     Register RtlabWasteLimitValue = G3_scratch;
  3353     Register RnewTopValue = G1_scratch;
  3354     Register RendValue = Rscratch;
  3355     Register RfreeValue = RnewTopValue;
  3357     // check if we can allocate in the TLAB
  3358     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3359     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3360     __ add(RoldTopValue, Roffset, RnewTopValue);
  3362     // if there is enough space, we do not CAS and do not clear
  3363     __ cmp(RnewTopValue, RendValue);
  3364     if(ZeroTLAB) {
  3365       // the fields have already been cleared
  3366       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3367     } else {
  3368       // initialize both the header and fields
  3369       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3371     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3373     if (allow_shared_alloc) {
  3374       // Check if tlab should be discarded (refill_waste_limit >= free)
  3375       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3376       __ sub(RendValue, RoldTopValue, RfreeValue);
  3377 #ifdef _LP64
  3378       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3379 #else
  3380       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3381 #endif
  3382       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
  3384       // increment waste limit to prevent getting stuck on this slow path
  3385       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3386       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3387     } else {
  3388       // No allocation in the shared eden.
  3389       __ ba_short(slow_case);
  3393   // Allocation in the shared Eden
  3394   if (allow_shared_alloc) {
  3395     Register RoldTopValue = G1_scratch;
  3396     Register RtopAddr = G3_scratch;
  3397     Register RnewTopValue = RallocatedObject;
  3398     Register RendValue = Rscratch;
  3400     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3402     Label retry;
  3403     __ bind(retry);
  3404     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3405     __ ld_ptr(RendValue, 0, RendValue);
  3406     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3407     __ add(RoldTopValue, Roffset, RnewTopValue);
  3409     // RnewTopValue contains the top address after the new object
  3410     // has been allocated.
  3411     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
  3413     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3414       VM_Version::v9_instructions_work() ? NULL :
  3415       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3417     // if someone beat us on the allocation, try again, otherwise continue
  3418     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
  3420     // bump total bytes allocated by this thread
  3421     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
  3422     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  3425   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3426     // clear object fields
  3427     __ bind(initialize_object);
  3428     __ deccc(Roffset, sizeof(oopDesc));
  3429     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3430     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3432     // initialize remaining object fields
  3433     if (UseBlockZeroing) {
  3434       // Use BIS for zeroing
  3435       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
  3436     } else {
  3437       Label loop;
  3438       __ subcc(Roffset, wordSize, Roffset);
  3439       __ bind(loop);
  3440       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3441       __ st_ptr(G0, G3_scratch, Roffset);
  3442       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3443       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3445     __ ba_short(initialize_header);
  3448   // slow case
  3449   __ bind(slow_case);
  3450   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3451   __ get_constant_pool(O1);
  3453   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3455   __ ba_short(done);
  3457   // Initialize the header: mark, klass
  3458   __ bind(initialize_header);
  3460   if (UseBiasedLocking) {
  3461     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
  3462   } else {
  3463     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3465   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3466   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3467   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3470     SkipIfEqual skip_if(
  3471       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3472     // Trigger dtrace event
  3473     __ push(atos);
  3474     __ call_VM_leaf(noreg,
  3475        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3476     __ pop(atos);
  3479   // continue
  3480   __ bind(done);
  3485 void TemplateTable::newarray() {
  3486   transition(itos, atos);
  3487   __ ldub(Lbcp, 1, O1);
  3488      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3492 void TemplateTable::anewarray() {
  3493   transition(itos, atos);
  3494   __ get_constant_pool(O1);
  3495   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3496      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3500 void TemplateTable::arraylength() {
  3501   transition(atos, itos);
  3502   Label ok;
  3503   __ verify_oop(Otos_i);
  3504   __ tst(Otos_i);
  3505   __ throw_if_not_1_x( Assembler::notZero, ok );
  3506   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3507   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3511 void TemplateTable::checkcast() {
  3512   transition(atos, atos);
  3513   Label done, is_null, quicked, cast_ok, resolved;
  3514   Register Roffset = G1_scratch;
  3515   Register RobjKlass = O5;
  3516   Register RspecifiedKlass = O4;
  3518   // Check for casting a NULL
  3519   __ br_null_short(Otos_i, Assembler::pn, is_null);
  3521   // Get value klass in RobjKlass
  3522   __ load_klass(Otos_i, RobjKlass); // get value klass
  3524   // Get constant pool tag
  3525   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3527   // See if the checkcast has been quickened
  3528   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3529   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3530   __ ldub(G3_scratch, Roffset, G3_scratch);
  3531   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3532   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3533   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3535   __ push_ptr(); // save receiver for result, and for GC
  3536   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3537   __ get_vm_result_2(RspecifiedKlass);
  3538   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3540   __ ba_short(resolved);
  3542   // Extract target class from constant pool
  3543   __ bind(quicked);
  3544   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3545   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3546   __ bind(resolved);
  3547   __ load_klass(Otos_i, RobjKlass); // get value klass
  3549   // Generate a fast subtype check.  Branch to cast_ok if no
  3550   // failure.  Throw exception if failure.
  3551   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3553   // Not a subtype; so must throw exception
  3554   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3556   __ bind(cast_ok);
  3558   if (ProfileInterpreter) {
  3559     __ ba_short(done);
  3561   __ bind(is_null);
  3562   __ profile_null_seen(G3_scratch);
  3563   __ bind(done);
  3567 void TemplateTable::instanceof() {
  3568   Label done, is_null, quicked, resolved;
  3569   transition(atos, itos);
  3570   Register Roffset = G1_scratch;
  3571   Register RobjKlass = O5;
  3572   Register RspecifiedKlass = O4;
  3574   // Check for casting a NULL
  3575   __ br_null_short(Otos_i, Assembler::pt, is_null);
  3577   // Get value klass in RobjKlass
  3578   __ load_klass(Otos_i, RobjKlass); // get value klass
  3580   // Get constant pool tag
  3581   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3583   // See if the checkcast has been quickened
  3584   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3585   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3586   __ ldub(G3_scratch, Roffset, G3_scratch);
  3587   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3588   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3589   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3591   __ push_ptr(); // save receiver for result, and for GC
  3592   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3593   __ get_vm_result_2(RspecifiedKlass);
  3594   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3596   __ ba_short(resolved);
  3598   // Extract target class from constant pool
  3599   __ bind(quicked);
  3600   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3601   __ get_constant_pool(Lscratch);
  3602   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3603   __ bind(resolved);
  3604   __ load_klass(Otos_i, RobjKlass); // get value klass
  3606   // Generate a fast subtype check.  Branch to cast_ok if no
  3607   // failure.  Return 0 if failure.
  3608   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3609   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3610   // Not a subtype; return 0;
  3611   __ clr( Otos_i );
  3613   if (ProfileInterpreter) {
  3614     __ ba_short(done);
  3616   __ bind(is_null);
  3617   __ profile_null_seen(G3_scratch);
  3618   __ bind(done);
  3621 void TemplateTable::_breakpoint() {
  3623    // Note: We get here even if we are single stepping..
  3624    // jbug inists on setting breakpoints at every bytecode
  3625    // even if we are in single step mode.
  3627    transition(vtos, vtos);
  3628    // get the unpatched byte code
  3629    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3630    __ mov(O0, Lbyte_code);
  3632    // post the breakpoint event
  3633    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3635    // complete the execution of original bytecode
  3636    __ dispatch_normal(vtos);
  3640 //----------------------------------------------------------------------------------------------------
  3641 // Exceptions
  3643 void TemplateTable::athrow() {
  3644   transition(atos, vtos);
  3646   // This works because exception is cached in Otos_i which is same as O0,
  3647   // which is same as what throw_exception_entry_expects
  3648   assert(Otos_i == Oexception, "see explanation above");
  3650   __ verify_oop(Otos_i);
  3651   __ null_check(Otos_i);
  3652   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3656 //----------------------------------------------------------------------------------------------------
  3657 // Synchronization
  3660 // See frame_sparc.hpp for monitor block layout.
  3661 // Monitor elements are dynamically allocated by growing stack as needed.
  3663 void TemplateTable::monitorenter() {
  3664   transition(atos, vtos);
  3665   __ verify_oop(Otos_i);
  3666   // Try to acquire a lock on the object
  3667   // Repeat until succeeded (i.e., until
  3668   // monitorenter returns true).
  3670   {   Label ok;
  3671     __ tst(Otos_i);
  3672     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3673     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3674     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3677   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3679   // find a free slot in the monitor block
  3682   // initialize entry pointer
  3683   __ clr(O1); // points to free slot or NULL
  3686     Label entry, loop, exit;
  3687     __ add( __ top_most_monitor(), O2 ); // last one to check
  3688     __ ba( entry );
  3689     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3692     __ bind( loop );
  3694     __ verify_oop(O4);          // verify each monitor's oop
  3695     __ tst(O4); // is this entry unused?
  3696     if (VM_Version::v9_instructions_work())
  3697       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3698     else {
  3699       Label L;
  3700       __ br( Assembler::zero, true, Assembler::pn, L );
  3701       __ delayed()->mov(O3, O1); // rememeber this one if match
  3702       __ bind(L);
  3705     __ cmp(O4, O0); // check if current entry is for same object
  3706     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3707     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3709     __ bind( entry );
  3711     __ cmp( O3, O2 );
  3712     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3713     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3715     __ bind( exit );
  3718   { Label allocated;
  3720     // found free slot?
  3721     __ br_notnull_short(O1, Assembler::pn, allocated);
  3723     __ add_monitor_to_stack( false, O2, O3 );
  3724     __ mov(Lmonitors, O1);
  3726     __ bind(allocated);
  3729   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3730   // The object has already been poped from the stack, so the expression stack looks correct.
  3731   __ inc(Lbcp);
  3733   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3734   __ lock_object(O1, O0);
  3736   // check if there's enough space on the stack for the monitors after locking
  3737   __ generate_stack_overflow_check(0);
  3739   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3740   __ dispatch_next(vtos);
  3744 void TemplateTable::monitorexit() {
  3745   transition(atos, vtos);
  3746   __ verify_oop(Otos_i);
  3747   __ tst(Otos_i);
  3748   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3750   assert(O0 == Otos_i, "just checking");
  3752   { Label entry, loop, found;
  3753     __ add( __ top_most_monitor(), O2 ); // last one to check
  3754     __ ba(entry);
  3755     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3756     // By using a local it survives the call to the C routine.
  3757     __ delayed()->mov( Lmonitors, Lscratch );
  3759     __ bind( loop );
  3761     __ verify_oop(O4);          // verify each monitor's oop
  3762     __ cmp(O4, O0); // check if current entry is for desired object
  3763     __ brx( Assembler::equal, true, Assembler::pt, found );
  3764     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3766     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3768     __ bind( entry );
  3770     __ cmp( Lscratch, O2 );
  3771     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3772     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3774     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3775     __ should_not_reach_here();
  3777     __ bind(found);
  3779   __ unlock_object(O1);
  3783 //----------------------------------------------------------------------------------------------------
  3784 // Wide instructions
  3786 void TemplateTable::wide() {
  3787   transition(vtos, vtos);
  3788   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3789   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3790   AddressLiteral ep(Interpreter::_wentry_point);
  3791   __ set(ep, G4_scratch);
  3792   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3793   __ jmp(G3_scratch, G0);
  3794   __ delayed()->nop();
  3795   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3799 //----------------------------------------------------------------------------------------------------
  3800 // Multi arrays
  3802 void TemplateTable::multianewarray() {
  3803   transition(vtos, atos);
  3804      // put ndims * wordSize into Lscratch
  3805   __ ldub( Lbcp,     3,               Lscratch);
  3806   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3807      // Lesp points past last_dim, so set to O1 to first_dim address
  3808   __ add(  Lesp,     Lscratch,        O1);
  3809      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3810   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3812 #endif /* !CC_INTERP */

mercurial