src/cpu/x86/vm/vm_version_x86_32.cpp

Wed, 24 Dec 2008 13:06:09 -0800

author
xlu
date
Wed, 24 Dec 2008 13:06:09 -0800
changeset 947
db4caa99ef11
parent 840
2649e5276dd7
permissions
-rw-r--r--

6787106: Hotspot 32 bit build fails on platforms having different definitions for intptr_t & int32_t
Summary: Avoid casting between int32_t and intptr_t specifically for MasmAssembler::movptr in 32 bit platforms.
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_vm_version_x86_32.cpp.incl"
    29 int VM_Version::_cpu;
    30 int VM_Version::_model;
    31 int VM_Version::_stepping;
    32 int VM_Version::_cpuFeatures;
    33 const char*           VM_Version::_features_str = "";
    34 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    36 static BufferBlob* stub_blob;
    37 static const int stub_size = 300;
    39 extern "C" {
    40   typedef void (*getPsrInfo_stub_t)(void*);
    41 }
    42 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    45 class VM_Version_StubGenerator: public StubCodeGenerator {
    46  public:
    48   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    50   address generate_getPsrInfo() {
    51     // Flags to test CPU type.
    52     const uint32_t EFL_AC           = 0x40000;
    53     const uint32_t EFL_ID           = 0x200000;
    54     // Values for when we don't have a CPUID instruction.
    55     const int      CPU_FAMILY_SHIFT = 8;
    56     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    57     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    59     Label detect_486, cpu486, detect_586, std_cpuid1;
    60     Label ext_cpuid1, ext_cpuid5, done;
    62     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    63 #   define __ _masm->
    65     address start = __ pc();
    67     //
    68     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    69     //
    70     __ push(rbp);
    71     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    72     __ push(rbx);
    73     __ push(rsi);
    74     __ pushf();          // preserve rbx, and flags
    75     __ pop(rax);
    76     __ push(rax);
    77     __ mov(rcx, rax);
    78     //
    79     // if we are unable to change the AC flag, we have a 386
    80     //
    81     __ xorl(rax, EFL_AC);
    82     __ push(rax);
    83     __ popf();
    84     __ pushf();
    85     __ pop(rax);
    86     __ cmpptr(rax, rcx);
    87     __ jccb(Assembler::notEqual, detect_486);
    89     __ movl(rax, CPU_FAMILY_386);
    90     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    91     __ jmp(done);
    93     //
    94     // If we are unable to change the ID flag, we have a 486 which does
    95     // not support the "cpuid" instruction.
    96     //
    97     __ bind(detect_486);
    98     __ mov(rax, rcx);
    99     __ xorl(rax, EFL_ID);
   100     __ push(rax);
   101     __ popf();
   102     __ pushf();
   103     __ pop(rax);
   104     __ cmpptr(rcx, rax);
   105     __ jccb(Assembler::notEqual, detect_586);
   107     __ bind(cpu486);
   108     __ movl(rax, CPU_FAMILY_486);
   109     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   110     __ jmp(done);
   112     //
   113     // at this point, we have a chip which supports the "cpuid" instruction
   114     //
   115     __ bind(detect_586);
   116     __ xorptr(rax, rax);
   117     __ cpuid();
   118     __ orptr(rax, rax);
   119     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   120                                         // value of at least 1, we give up and
   121                                         // assume a 486
   122     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   123     __ movl(Address(rsi, 0), rax);
   124     __ movl(Address(rsi, 4), rbx);
   125     __ movl(Address(rsi, 8), rcx);
   126     __ movl(Address(rsi,12), rdx);
   128     __ cmpl(rax, 3);     // Is cpuid(0x4) supported?
   129     __ jccb(Assembler::belowEqual, std_cpuid1);
   131     //
   132     // cpuid(0x4) Deterministic cache params
   133     //
   134     __ movl(rax, 4);     // and rcx already set to 0x0
   135     __ xorl(rcx, rcx);
   136     __ cpuid();
   137     __ push(rax);
   138     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   139     __ orl(rax, rax);    // rax,[4:0] == 0 indicates invalid cache
   140     __ pop(rax);
   141     __ jccb(Assembler::equal, std_cpuid1);
   143     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   144     __ movl(Address(rsi, 0), rax);
   145     __ movl(Address(rsi, 4), rbx);
   146     __ movl(Address(rsi, 8), rcx);
   147     __ movl(Address(rsi,12), rdx);
   149     //
   150     // Standard cpuid(0x1)
   151     //
   152     __ bind(std_cpuid1);
   153     __ movl(rax, 1);
   154     __ cpuid();
   155     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   156     __ movl(Address(rsi, 0), rax);
   157     __ movl(Address(rsi, 4), rbx);
   158     __ movl(Address(rsi, 8), rcx);
   159     __ movl(Address(rsi,12), rdx);
   161     __ movl(rax, 0x80000000);
   162     __ cpuid();
   163     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   164     __ jcc(Assembler::belowEqual, done);
   165     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   166     __ jccb(Assembler::belowEqual, ext_cpuid1);
   167     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   168     __ jccb(Assembler::belowEqual, ext_cpuid5);
   169     //
   170     // Extended cpuid(0x80000008)
   171     //
   172     __ movl(rax, 0x80000008);
   173     __ cpuid();
   174     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   175     __ movl(Address(rsi, 0), rax);
   176     __ movl(Address(rsi, 4), rbx);
   177     __ movl(Address(rsi, 8), rcx);
   178     __ movl(Address(rsi,12), rdx);
   180     //
   181     // Extended cpuid(0x80000005)
   182     //
   183     __ bind(ext_cpuid5);
   184     __ movl(rax, 0x80000005);
   185     __ cpuid();
   186     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   187     __ movl(Address(rsi, 0), rax);
   188     __ movl(Address(rsi, 4), rbx);
   189     __ movl(Address(rsi, 8), rcx);
   190     __ movl(Address(rsi,12), rdx);
   192     //
   193     // Extended cpuid(0x80000001)
   194     //
   195     __ bind(ext_cpuid1);
   196     __ movl(rax, 0x80000001);
   197     __ cpuid();
   198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   199     __ movl(Address(rsi, 0), rax);
   200     __ movl(Address(rsi, 4), rbx);
   201     __ movl(Address(rsi, 8), rcx);
   202     __ movl(Address(rsi,12), rdx);
   204     //
   205     // return
   206     //
   207     __ bind(done);
   208     __ popf();
   209     __ pop(rsi);
   210     __ pop(rbx);
   211     __ pop(rbp);
   212     __ ret(0);
   214 #   undef __
   216     return start;
   217   };
   218 };
   221 void VM_Version::get_processor_features() {
   223   _cpu = 4; // 486 by default
   224   _model = 0;
   225   _stepping = 0;
   226   _cpuFeatures = 0;
   227   _logical_processors_per_package = 1;
   228   if (!Use486InstrsOnly) {
   229     // Get raw processor info
   230     getPsrInfo_stub(&_cpuid_info);
   231     assert_is_initialized();
   232     _cpu = extended_cpu_family();
   233     _model = extended_cpu_model();
   234     _stepping = cpu_stepping();
   235     if (cpu_family() > 4) { // it supports CPUID
   236       _cpuFeatures = feature_flags();
   237       // Logical processors are only available on P4s and above,
   238       // and only if hyperthreading is available.
   239       _logical_processors_per_package = logical_processor_count();
   240     }
   241   }
   242   _supports_cx8 = supports_cmpxchg8();
   243   // if the OS doesn't support SSE, we can't use this feature even if the HW does
   244   if( !os::supports_sse())
   245     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   246   if (UseSSE < 4) {
   247     _cpuFeatures &= ~CPU_SSE4_1;
   248     _cpuFeatures &= ~CPU_SSE4_2;
   249   }
   250   if (UseSSE < 3) {
   251     _cpuFeatures &= ~CPU_SSE3;
   252     _cpuFeatures &= ~CPU_SSSE3;
   253     _cpuFeatures &= ~CPU_SSE4A;
   254   }
   255   if (UseSSE < 2)
   256     _cpuFeatures &= ~CPU_SSE2;
   257   if (UseSSE < 1)
   258     _cpuFeatures &= ~CPU_SSE;
   260   if (logical_processors_per_package() == 1) {
   261     // HT processor could be installed on a system which doesn't support HT.
   262     _cpuFeatures &= ~CPU_HT;
   263   }
   265   char buf[256];
   266   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   267                cores_per_cpu(), threads_per_core(),
   268                cpu_family(), _model, _stepping,
   269                (supports_cmov() ? ", cmov" : ""),
   270                (supports_cmpxchg8() ? ", cx8" : ""),
   271                (supports_fxsr() ? ", fxsr" : ""),
   272                (supports_mmx()  ? ", mmx"  : ""),
   273                (supports_sse()  ? ", sse"  : ""),
   274                (supports_sse2() ? ", sse2" : ""),
   275                (supports_sse3() ? ", sse3" : ""),
   276                (supports_ssse3()? ", ssse3": ""),
   277                (supports_sse4_1() ? ", sse4.1" : ""),
   278                (supports_sse4_2() ? ", sse4.2" : ""),
   279                (supports_mmx_ext() ? ", mmxext" : ""),
   280                (supports_3dnow()   ? ", 3dnow"  : ""),
   281                (supports_3dnow2()  ? ", 3dnowext" : ""),
   282                (supports_sse4a()   ? ", sse4a": ""),
   283                (supports_ht() ? ", ht": ""));
   284   _features_str = strdup(buf);
   286   // UseSSE is set to the smaller of what hardware supports and what
   287   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   288   // older Pentiums which do not support it.
   289   if( UseSSE > 4 ) UseSSE=4;
   290   if( UseSSE < 0 ) UseSSE=0;
   291   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
   292     UseSSE = MIN2((intx)3,UseSSE);
   293   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
   294     UseSSE = MIN2((intx)2,UseSSE);
   295   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
   296     UseSSE = MIN2((intx)1,UseSSE);
   297   if( !supports_sse () ) // Drop to 0 if no SSE  support
   298     UseSSE = 0;
   300   // On new cpus instructions which update whole XMM register should be used
   301   // to prevent partial register stall due to dependencies on high half.
   302   //
   303   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   304   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   305   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   306   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   308   if( is_amd() ) { // AMD cpus specific settings
   309     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   310       // Use it on new AMD cpus starting from Opteron.
   311       UseAddressNop = true;
   312     }
   313     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   314       // Use it on new AMD cpus starting from Opteron.
   315       UseNewLongLShift = true;
   316     }
   317     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   318       if( supports_sse4a() ) {
   319         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   320       } else {
   321         UseXmmLoadAndClearUpper = false;
   322       }
   323     }
   324     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   325       if( supports_sse4a() ) {
   326         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   327       } else {
   328         UseXmmRegToRegMoveAll = false;
   329       }
   330     }
   331     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   332       if( supports_sse4a() ) {
   333         UseXmmI2F = true;
   334       } else {
   335         UseXmmI2F = false;
   336       }
   337     }
   338     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   339       if( supports_sse4a() ) {
   340         UseXmmI2D = true;
   341       } else {
   342         UseXmmI2D = false;
   343       }
   344     }
   345   }
   347   if( is_intel() ) { // Intel cpus specific settings
   348     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   349       UseStoreImmI16 = false; // don't use it on Intel cpus
   350     }
   351     if( cpu_family() == 6 || cpu_family() == 15 ) {
   352       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   353         // Use it on all Intel cpus starting from PentiumPro
   354         UseAddressNop = true;
   355       }
   356     }
   357     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   358       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   359     }
   360     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   361       if( supports_sse3() ) {
   362         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   363       } else {
   364         UseXmmRegToRegMoveAll = false;
   365       }
   366     }
   367     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   368 #ifdef COMPILER2
   369       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   370         // For new Intel cpus do the next optimization:
   371         // don't align the beginning of a loop if there are enough instructions
   372         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   373         // in current fetch line (OptoLoopAlignment) or the padding
   374         // is big (> MaxLoopPad).
   375         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   376         // generated NOP instructions. 11 is the largest size of one
   377         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   378         MaxLoopPad = 11;
   379       }
   380 #endif // COMPILER2
   381       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   382         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   383       }
   384       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   385         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   386           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   387         }
   388       }
   389     }
   390   }
   392   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   393   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   395   // set valid Prefetch instruction
   396   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   397   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   398   if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
   399   if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;
   401   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   402   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   403   if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
   404   if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;
   406   // Allocation prefetch settings
   407   intx cache_line_size = L1_data_cache_line_size();
   408   if( cache_line_size > AllocatePrefetchStepSize )
   409     AllocatePrefetchStepSize = cache_line_size;
   410   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
   411     AllocatePrefetchLines = 3; // Optimistic value
   412   assert(AllocatePrefetchLines > 0, "invalid value");
   413   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
   414     AllocatePrefetchLines = 1; // Conservative value
   416   AllocatePrefetchDistance = allocate_prefetch_distance();
   417   AllocatePrefetchStyle    = allocate_prefetch_style();
   419   if( AllocatePrefetchStyle == 2 && is_intel() &&
   420       cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
   421     AllocatePrefetchDistance = 320;
   422   }
   423   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   425 #ifndef PRODUCT
   426   if (PrintMiscellaneous && Verbose) {
   427     tty->print_cr("Logical CPUs per core: %u",
   428                   logical_processors_per_package());
   429     tty->print_cr("UseSSE=%d",UseSSE);
   430     tty->print("Allocation: ");
   431     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
   432       tty->print_cr("no prefetching");
   433     } else {
   434       if (UseSSE == 0 && supports_3dnow()) {
   435         tty->print("PREFETCHW");
   436       } else if (UseSSE >= 1) {
   437         if (AllocatePrefetchInstr == 0) {
   438           tty->print("PREFETCHNTA");
   439         } else if (AllocatePrefetchInstr == 1) {
   440           tty->print("PREFETCHT0");
   441         } else if (AllocatePrefetchInstr == 2) {
   442           tty->print("PREFETCHT2");
   443         } else if (AllocatePrefetchInstr == 3) {
   444           tty->print("PREFETCHW");
   445         }
   446       }
   447       if (AllocatePrefetchLines > 1) {
   448         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   449       } else {
   450         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
   451       }
   452     }
   453   }
   454 #endif // !PRODUCT
   455 }
   457 void VM_Version::initialize() {
   458   ResourceMark rm;
   459   // Making this stub must be FIRST use of assembler
   461   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   462   if (stub_blob == NULL) {
   463     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   464   }
   465   CodeBuffer c(stub_blob->instructions_begin(),
   466                stub_blob->instructions_size());
   467   VM_Version_StubGenerator g(&c);
   468   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   469                                    g.generate_getPsrInfo());
   471   get_processor_features();
   472 }

mercurial