src/share/vm/opto/memnode.cpp

Tue, 18 Mar 2008 23:44:46 -0700

author
never
date
Tue, 18 Mar 2008 23:44:46 -0700
changeset 503
daf38130e60d
parent 499
b8f5ba577b02
child 509
2a9af0b9cb1c
permissions
-rw-r--r--

6676841: ClearArrayNode::Identity is incorrect for 64-bit
Summary: ClearArrayNode::Identity should use TypeX instead of TypeInt
Reviewed-by: jrose, kvn, sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 //=============================================================================
    33 uint MemNode::size_of() const { return sizeof(*this); }
    35 const TypePtr *MemNode::adr_type() const {
    36   Node* adr = in(Address);
    37   const TypePtr* cross_check = NULL;
    38   DEBUG_ONLY(cross_check = _adr_type);
    39   return calculate_adr_type(adr->bottom_type(), cross_check);
    40 }
    42 #ifndef PRODUCT
    43 void MemNode::dump_spec(outputStream *st) const {
    44   if (in(Address) == NULL)  return; // node is dead
    45 #ifndef ASSERT
    46   // fake the missing field
    47   const TypePtr* _adr_type = NULL;
    48   if (in(Address) != NULL)
    49     _adr_type = in(Address)->bottom_type()->isa_ptr();
    50 #endif
    51   dump_adr_type(this, _adr_type, st);
    53   Compile* C = Compile::current();
    54   if( C->alias_type(_adr_type)->is_volatile() )
    55     st->print(" Volatile!");
    56 }
    58 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    59   st->print(" @");
    60   if (adr_type == NULL) {
    61     st->print("NULL");
    62   } else {
    63     adr_type->dump_on(st);
    64     Compile* C = Compile::current();
    65     Compile::AliasType* atp = NULL;
    66     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    67     if (atp == NULL)
    68       st->print(", idx=?\?;");
    69     else if (atp->index() == Compile::AliasIdxBot)
    70       st->print(", idx=Bot;");
    71     else if (atp->index() == Compile::AliasIdxTop)
    72       st->print(", idx=Top;");
    73     else if (atp->index() == Compile::AliasIdxRaw)
    74       st->print(", idx=Raw;");
    75     else {
    76       ciField* field = atp->field();
    77       if (field) {
    78         st->print(", name=");
    79         field->print_name_on(st);
    80       }
    81       st->print(", idx=%d;", atp->index());
    82     }
    83   }
    84 }
    86 extern void print_alias_types();
    88 #endif
    90 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
    91   uint alias_idx = phase->C->get_alias_index(tp);
    92   Node *mem = mmem;
    93 #ifdef ASSERT
    94   {
    95     // Check that current type is consistent with the alias index used during graph construction
    96     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
    97     bool consistent =  adr_check == NULL || adr_check->empty() ||
    98                        phase->C->must_alias(adr_check, alias_idx );
    99     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   100     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   101            tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   102         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   103         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   104           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   105           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   106       // don't assert if it is dead code.
   107       consistent = true;
   108     }
   109     if( !consistent ) {
   110       st->print("alias_idx==%d, adr_check==", alias_idx);
   111       if( adr_check == NULL ) {
   112         st->print("NULL");
   113       } else {
   114         adr_check->dump();
   115       }
   116       st->cr();
   117       print_alias_types();
   118       assert(consistent, "adr_check must match alias idx");
   119     }
   120   }
   121 #endif
   122   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   123   // means an array I have not precisely typed yet.  Do not do any
   124   // alias stuff with it any time soon.
   125   const TypeOopPtr *tinst = tp->isa_oopptr();
   126   if( tp->base() != Type::AnyPtr &&
   127       !(tinst &&
   128         tinst->klass()->is_java_lang_Object() &&
   129         tinst->offset() == Type::OffsetBot) ) {
   130     // compress paths and change unreachable cycles to TOP
   131     // If not, we can update the input infinitely along a MergeMem cycle
   132     // Equivalent code in PhiNode::Ideal
   133     Node* m  = phase->transform(mmem);
   134     // If tranformed to a MergeMem, get the desired slice
   135     // Otherwise the returned node represents memory for every slice
   136     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   137     // Update input if it is progress over what we have now
   138   }
   139   return mem;
   140 }
   142 //--------------------------Ideal_common---------------------------------------
   143 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   144 // Unhook non-raw memories from complete (macro-expanded) initializations.
   145 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   146   // If our control input is a dead region, kill all below the region
   147   Node *ctl = in(MemNode::Control);
   148   if (ctl && remove_dead_region(phase, can_reshape))
   149     return this;
   151   // Ignore if memory is dead, or self-loop
   152   Node *mem = in(MemNode::Memory);
   153   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   154   assert( mem != this, "dead loop in MemNode::Ideal" );
   156   Node *address = in(MemNode::Address);
   157   const Type *t_adr = phase->type( address );
   158   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   160   // Avoid independent memory operations
   161   Node* old_mem = mem;
   163   // The code which unhooks non-raw memories from complete (macro-expanded)
   164   // initializations was removed. After macro-expansion all stores catched
   165   // by Initialize node became raw stores and there is no information
   166   // which memory slices they modify. So it is unsafe to move any memory
   167   // operation above these stores. Also in most cases hooked non-raw memories
   168   // were already unhooked by using information from detect_ptr_independence()
   169   // and find_previous_store().
   171   if (mem->is_MergeMem()) {
   172     MergeMemNode* mmem = mem->as_MergeMem();
   173     const TypePtr *tp = t_adr->is_ptr();
   175     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   176   }
   178   if (mem != old_mem) {
   179     set_req(MemNode::Memory, mem);
   180     return this;
   181   }
   183   // let the subclass continue analyzing...
   184   return NULL;
   185 }
   187 // Helper function for proving some simple control dominations.
   188 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
   189 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   190 // is not a constant (dominated by the method's StartNode).
   191 // Used by MemNode::find_previous_store to prove that the
   192 // control input of a memory operation predates (dominates)
   193 // an allocation it wants to look past.
   194 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
   195   if (dom == NULL)      return false;
   196   if (dom->is_Proj())   dom = dom->in(0);
   197   if (dom->is_Start())  return true; // anything inside the method
   198   if (dom->is_Root())   return true; // dom 'controls' a constant
   199   int cnt = 20;                      // detect cycle or too much effort
   200   while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
   201     if (--cnt < 0)   return false;   // in a cycle or too complex
   202     if (sub == dom)  return true;
   203     if (sub->is_Start())  return false;
   204     if (sub->is_Root())   return false;
   205     Node* up = sub->in(0);
   206     if (sub == up && sub->is_Region()) {
   207       for (uint i = 1; i < sub->req(); i++) {
   208         Node* in = sub->in(i);
   209         if (in != NULL && !in->is_top() && in != sub) {
   210           up = in; break;            // take any path on the way up to 'dom'
   211         }
   212       }
   213     }
   214     if (sub == up)  return false;    // some kind of tight cycle
   215     sub = up;
   216   }
   217   return false;
   218 }
   220 //---------------------detect_ptr_independence---------------------------------
   221 // Used by MemNode::find_previous_store to prove that two base
   222 // pointers are never equal.
   223 // The pointers are accompanied by their associated allocations,
   224 // if any, which have been previously discovered by the caller.
   225 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   226                                       Node* p2, AllocateNode* a2,
   227                                       PhaseTransform* phase) {
   228   // Attempt to prove that these two pointers cannot be aliased.
   229   // They may both manifestly be allocations, and they should differ.
   230   // Or, if they are not both allocations, they can be distinct constants.
   231   // Otherwise, one is an allocation and the other a pre-existing value.
   232   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   233     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   234   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   235     return (a1 != a2);
   236   } else if (a1 != NULL) {                  // one allocation a1
   237     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   238     return detect_dominating_control(p2->in(0), a1->in(0));
   239   } else { //(a2 != NULL)                   // one allocation a2
   240     return detect_dominating_control(p1->in(0), a2->in(0));
   241   }
   242   return false;
   243 }
   246 // The logic for reordering loads and stores uses four steps:
   247 // (a) Walk carefully past stores and initializations which we
   248 //     can prove are independent of this load.
   249 // (b) Observe that the next memory state makes an exact match
   250 //     with self (load or store), and locate the relevant store.
   251 // (c) Ensure that, if we were to wire self directly to the store,
   252 //     the optimizer would fold it up somehow.
   253 // (d) Do the rewiring, and return, depending on some other part of
   254 //     the optimizer to fold up the load.
   255 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   256 // specific to loads and stores, so they are handled by the callers.
   257 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   258 //
   259 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   260   Node*         ctrl   = in(MemNode::Control);
   261   Node*         adr    = in(MemNode::Address);
   262   intptr_t      offset = 0;
   263   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   264   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   266   if (offset == Type::OffsetBot)
   267     return NULL;            // cannot unalias unless there are precise offsets
   269   intptr_t size_in_bytes = memory_size();
   271   Node* mem = in(MemNode::Memory);   // start searching here...
   273   int cnt = 50;             // Cycle limiter
   274   for (;;) {                // While we can dance past unrelated stores...
   275     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   277     if (mem->is_Store()) {
   278       Node* st_adr = mem->in(MemNode::Address);
   279       intptr_t st_offset = 0;
   280       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   281       if (st_base == NULL)
   282         break;              // inscrutable pointer
   283       if (st_offset != offset && st_offset != Type::OffsetBot) {
   284         const int MAX_STORE = BytesPerLong;
   285         if (st_offset >= offset + size_in_bytes ||
   286             st_offset <= offset - MAX_STORE ||
   287             st_offset <= offset - mem->as_Store()->memory_size()) {
   288           // Success:  The offsets are provably independent.
   289           // (You may ask, why not just test st_offset != offset and be done?
   290           // The answer is that stores of different sizes can co-exist
   291           // in the same sequence of RawMem effects.  We sometimes initialize
   292           // a whole 'tile' of array elements with a single jint or jlong.)
   293           mem = mem->in(MemNode::Memory);
   294           continue;           // (a) advance through independent store memory
   295         }
   296       }
   297       if (st_base != base &&
   298           detect_ptr_independence(base, alloc,
   299                                   st_base,
   300                                   AllocateNode::Ideal_allocation(st_base, phase),
   301                                   phase)) {
   302         // Success:  The bases are provably independent.
   303         mem = mem->in(MemNode::Memory);
   304         continue;           // (a) advance through independent store memory
   305       }
   307       // (b) At this point, if the bases or offsets do not agree, we lose,
   308       // since we have not managed to prove 'this' and 'mem' independent.
   309       if (st_base == base && st_offset == offset) {
   310         return mem;         // let caller handle steps (c), (d)
   311       }
   313     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   314       InitializeNode* st_init = mem->in(0)->as_Initialize();
   315       AllocateNode*  st_alloc = st_init->allocation();
   316       if (st_alloc == NULL)
   317         break;              // something degenerated
   318       bool known_identical = false;
   319       bool known_independent = false;
   320       if (alloc == st_alloc)
   321         known_identical = true;
   322       else if (alloc != NULL)
   323         known_independent = true;
   324       else if (ctrl != NULL &&
   325                detect_dominating_control(ctrl, st_alloc->in(0)))
   326         known_independent = true;
   328       if (known_independent) {
   329         // The bases are provably independent: Either they are
   330         // manifestly distinct allocations, or else the control
   331         // of this load dominates the store's allocation.
   332         int alias_idx = phase->C->get_alias_index(adr_type());
   333         if (alias_idx == Compile::AliasIdxRaw) {
   334           mem = st_alloc->in(TypeFunc::Memory);
   335         } else {
   336           mem = st_init->memory(alias_idx);
   337         }
   338         continue;           // (a) advance through independent store memory
   339       }
   341       // (b) at this point, if we are not looking at a store initializing
   342       // the same allocation we are loading from, we lose.
   343       if (known_identical) {
   344         // From caller, can_see_stored_value will consult find_captured_store.
   345         return mem;         // let caller handle steps (c), (d)
   346       }
   348     }
   350     // Unless there is an explicit 'continue', we must bail out here,
   351     // because 'mem' is an inscrutable memory state (e.g., a call).
   352     break;
   353   }
   355   return NULL;              // bail out
   356 }
   358 //----------------------calculate_adr_type-------------------------------------
   359 // Helper function.  Notices when the given type of address hits top or bottom.
   360 // Also, asserts a cross-check of the type against the expected address type.
   361 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   362   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   363   #ifdef PRODUCT
   364   cross_check = NULL;
   365   #else
   366   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   367   #endif
   368   const TypePtr* tp = t->isa_ptr();
   369   if (tp == NULL) {
   370     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   371     return TypePtr::BOTTOM;           // touches lots of memory
   372   } else {
   373     #ifdef ASSERT
   374     // %%%% [phh] We don't check the alias index if cross_check is
   375     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   376     if (cross_check != NULL &&
   377         cross_check != TypePtr::BOTTOM &&
   378         cross_check != TypeRawPtr::BOTTOM) {
   379       // Recheck the alias index, to see if it has changed (due to a bug).
   380       Compile* C = Compile::current();
   381       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   382              "must stay in the original alias category");
   383       // The type of the address must be contained in the adr_type,
   384       // disregarding "null"-ness.
   385       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   386       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   387       assert(cross_check->meet(tp_notnull) == cross_check,
   388              "real address must not escape from expected memory type");
   389     }
   390     #endif
   391     return tp;
   392   }
   393 }
   395 //------------------------adr_phi_is_loop_invariant----------------------------
   396 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   397 // loop is loop invariant. Make a quick traversal of Phi and associated
   398 // CastPP nodes, looking to see if they are a closed group within the loop.
   399 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   400   // The idea is that the phi-nest must boil down to only CastPP nodes
   401   // with the same data. This implies that any path into the loop already
   402   // includes such a CastPP, and so the original cast, whatever its input,
   403   // must be covered by an equivalent cast, with an earlier control input.
   404   ResourceMark rm;
   406   // The loop entry input of the phi should be the unique dominating
   407   // node for every Phi/CastPP in the loop.
   408   Unique_Node_List closure;
   409   closure.push(adr_phi->in(LoopNode::EntryControl));
   411   // Add the phi node and the cast to the worklist.
   412   Unique_Node_List worklist;
   413   worklist.push(adr_phi);
   414   if( cast != NULL ){
   415     if( !cast->is_ConstraintCast() ) return false;
   416     worklist.push(cast);
   417   }
   419   // Begin recursive walk of phi nodes.
   420   while( worklist.size() ){
   421     // Take a node off the worklist
   422     Node *n = worklist.pop();
   423     if( !closure.member(n) ){
   424       // Add it to the closure.
   425       closure.push(n);
   426       // Make a sanity check to ensure we don't waste too much time here.
   427       if( closure.size() > 20) return false;
   428       // This node is OK if:
   429       //  - it is a cast of an identical value
   430       //  - or it is a phi node (then we add its inputs to the worklist)
   431       // Otherwise, the node is not OK, and we presume the cast is not invariant
   432       if( n->is_ConstraintCast() ){
   433         worklist.push(n->in(1));
   434       } else if( n->is_Phi() ) {
   435         for( uint i = 1; i < n->req(); i++ ) {
   436           worklist.push(n->in(i));
   437         }
   438       } else {
   439         return false;
   440       }
   441     }
   442   }
   444   // Quit when the worklist is empty, and we've found no offending nodes.
   445   return true;
   446 }
   448 //------------------------------Ideal_DU_postCCP-------------------------------
   449 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   450 // going away in this pass and we need to make this memory op depend on the
   451 // gating null check.
   453 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   454 // some sense; we get to keep around the knowledge that an oop is not-null
   455 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   456 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   457 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   458 // some of the more trivial cases in the optimizer.  Removing more useless
   459 // Phi's started allowing Loads to illegally float above null checks.  I gave
   460 // up on this approach.  CNC 10/20/2000
   461 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   462   Node *ctr = in(MemNode::Control);
   463   Node *mem = in(MemNode::Memory);
   464   Node *adr = in(MemNode::Address);
   465   Node *skipped_cast = NULL;
   466   // Need a null check?  Regular static accesses do not because they are
   467   // from constant addresses.  Array ops are gated by the range check (which
   468   // always includes a NULL check).  Just check field ops.
   469   if( !ctr ) {
   470     // Scan upwards for the highest location we can place this memory op.
   471     while( true ) {
   472       switch( adr->Opcode() ) {
   474       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   475         adr = adr->in(AddPNode::Base);
   476         continue;
   478       case Op_CastPP:
   479         // If the CastPP is useless, just peek on through it.
   480         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   481           // Remember the cast that we've peeked though. If we peek
   482           // through more than one, then we end up remembering the highest
   483           // one, that is, if in a loop, the one closest to the top.
   484           skipped_cast = adr;
   485           adr = adr->in(1);
   486           continue;
   487         }
   488         // CastPP is going away in this pass!  We need this memory op to be
   489         // control-dependent on the test that is guarding the CastPP.
   490         ccp->hash_delete(this);
   491         set_req(MemNode::Control, adr->in(0));
   492         ccp->hash_insert(this);
   493         return this;
   495       case Op_Phi:
   496         // Attempt to float above a Phi to some dominating point.
   497         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   498           // If we've already peeked through a Cast (which could have set the
   499           // control), we can't float above a Phi, because the skipped Cast
   500           // may not be loop invariant.
   501           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   502             adr = adr->in(1);
   503             continue;
   504           }
   505         }
   507         // Intentional fallthrough!
   509         // No obvious dominating point.  The mem op is pinned below the Phi
   510         // by the Phi itself.  If the Phi goes away (no true value is merged)
   511         // then the mem op can float, but not indefinitely.  It must be pinned
   512         // behind the controls leading to the Phi.
   513       case Op_CheckCastPP:
   514         // These usually stick around to change address type, however a
   515         // useless one can be elided and we still need to pick up a control edge
   516         if (adr->in(0) == NULL) {
   517           // This CheckCastPP node has NO control and is likely useless. But we
   518           // need check further up the ancestor chain for a control input to keep
   519           // the node in place. 4959717.
   520           skipped_cast = adr;
   521           adr = adr->in(1);
   522           continue;
   523         }
   524         ccp->hash_delete(this);
   525         set_req(MemNode::Control, adr->in(0));
   526         ccp->hash_insert(this);
   527         return this;
   529         // List of "safe" opcodes; those that implicitly block the memory
   530         // op below any null check.
   531       case Op_CastX2P:          // no null checks on native pointers
   532       case Op_Parm:             // 'this' pointer is not null
   533       case Op_LoadP:            // Loading from within a klass
   534       case Op_LoadKlass:        // Loading from within a klass
   535       case Op_ConP:             // Loading from a klass
   536       case Op_CreateEx:         // Sucking up the guts of an exception oop
   537       case Op_Con:              // Reading from TLS
   538       case Op_CMoveP:           // CMoveP is pinned
   539         break;                  // No progress
   541       case Op_Proj:             // Direct call to an allocation routine
   542       case Op_SCMemProj:        // Memory state from store conditional ops
   543 #ifdef ASSERT
   544         {
   545           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   546           const Node* call = adr->in(0);
   547           if (call->is_CallStaticJava()) {
   548             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   549             const TypeTuple *r = call_java->tf()->range();
   550             assert(r->cnt() > TypeFunc::Parms, "must return value");
   551             const Type* ret_type = r->field_at(TypeFunc::Parms);
   552             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   553             // We further presume that this is one of
   554             // new_instance_Java, new_array_Java, or
   555             // the like, but do not assert for this.
   556           } else if (call->is_Allocate()) {
   557             // similar case to new_instance_Java, etc.
   558           } else if (!call->is_CallLeaf()) {
   559             // Projections from fetch_oop (OSR) are allowed as well.
   560             ShouldNotReachHere();
   561           }
   562         }
   563 #endif
   564         break;
   565       default:
   566         ShouldNotReachHere();
   567       }
   568       break;
   569     }
   570   }
   572   return  NULL;               // No progress
   573 }
   576 //=============================================================================
   577 uint LoadNode::size_of() const { return sizeof(*this); }
   578 uint LoadNode::cmp( const Node &n ) const
   579 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   580 const Type *LoadNode::bottom_type() const { return _type; }
   581 uint LoadNode::ideal_reg() const {
   582   return Matcher::base2reg[_type->base()];
   583 }
   585 #ifndef PRODUCT
   586 void LoadNode::dump_spec(outputStream *st) const {
   587   MemNode::dump_spec(st);
   588   if( !Verbose && !WizardMode ) {
   589     // standard dump does this in Verbose and WizardMode
   590     st->print(" #"); _type->dump_on(st);
   591   }
   592 }
   593 #endif
   596 //----------------------------LoadNode::make-----------------------------------
   597 // Polymorphic factory method:
   598 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   599   // sanity check the alias category against the created node type
   600   assert(!(adr_type->isa_oopptr() &&
   601            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   602          "use LoadKlassNode instead");
   603   assert(!(adr_type->isa_aryptr() &&
   604            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   605          "use LoadRangeNode instead");
   606   switch (bt) {
   607   case T_BOOLEAN:
   608   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   609   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   610   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   611   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   612   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   613   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   614   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   615   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   616   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   617   }
   618   ShouldNotReachHere();
   619   return (LoadNode*)NULL;
   620 }
   622 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   623   bool require_atomic = true;
   624   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   625 }
   630 //------------------------------hash-------------------------------------------
   631 uint LoadNode::hash() const {
   632   // unroll addition of interesting fields
   633   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   634 }
   636 //---------------------------can_see_stored_value------------------------------
   637 // This routine exists to make sure this set of tests is done the same
   638 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   639 // will change the graph shape in a way which makes memory alive twice at the
   640 // same time (uses the Oracle model of aliasing), then some
   641 // LoadXNode::Identity will fold things back to the equivalence-class model
   642 // of aliasing.
   643 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   644   Node* ld_adr = in(MemNode::Address);
   646   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   647   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   648   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   649       atp->field() != NULL && !atp->field()->is_volatile()) {
   650     uint alias_idx = atp->index();
   651     bool final = atp->field()->is_final();
   652     Node* result = NULL;
   653     Node* current = st;
   654     // Skip through chains of MemBarNodes checking the MergeMems for
   655     // new states for the slice of this load.  Stop once any other
   656     // kind of node is encountered.  Loads from final memory can skip
   657     // through any kind of MemBar but normal loads shouldn't skip
   658     // through MemBarAcquire since the could allow them to move out of
   659     // a synchronized region.
   660     while (current->is_Proj()) {
   661       int opc = current->in(0)->Opcode();
   662       if ((final && opc == Op_MemBarAcquire) ||
   663           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   664         Node* mem = current->in(0)->in(TypeFunc::Memory);
   665         if (mem->is_MergeMem()) {
   666           MergeMemNode* merge = mem->as_MergeMem();
   667           Node* new_st = merge->memory_at(alias_idx);
   668           if (new_st == merge->base_memory()) {
   669             // Keep searching
   670             current = merge->base_memory();
   671             continue;
   672           }
   673           // Save the new memory state for the slice and fall through
   674           // to exit.
   675           result = new_st;
   676         }
   677       }
   678       break;
   679     }
   680     if (result != NULL) {
   681       st = result;
   682     }
   683   }
   686   // Loop around twice in the case Load -> Initialize -> Store.
   687   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   688   for (int trip = 0; trip <= 1; trip++) {
   690     if (st->is_Store()) {
   691       Node* st_adr = st->in(MemNode::Address);
   692       if (!phase->eqv(st_adr, ld_adr)) {
   693         // Try harder before giving up...  Match raw and non-raw pointers.
   694         intptr_t st_off = 0;
   695         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   696         if (alloc == NULL)       return NULL;
   697         intptr_t ld_off = 0;
   698         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   699         if (alloc != allo2)      return NULL;
   700         if (ld_off != st_off)    return NULL;
   701         // At this point we have proven something like this setup:
   702         //  A = Allocate(...)
   703         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   704         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   705         // (Actually, we haven't yet proven the Q's are the same.)
   706         // In other words, we are loading from a casted version of
   707         // the same pointer-and-offset that we stored to.
   708         // Thus, we are able to replace L by V.
   709       }
   710       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   711       if (store_Opcode() != st->Opcode())
   712         return NULL;
   713       return st->in(MemNode::ValueIn);
   714     }
   716     intptr_t offset = 0;  // scratch
   718     // A load from a freshly-created object always returns zero.
   719     // (This can happen after LoadNode::Ideal resets the load's memory input
   720     // to find_captured_store, which returned InitializeNode::zero_memory.)
   721     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   722         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   723         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   724       // return a zero value for the load's basic type
   725       // (This is one of the few places where a generic PhaseTransform
   726       // can create new nodes.  Think of it as lazily manifesting
   727       // virtually pre-existing constants.)
   728       return phase->zerocon(memory_type());
   729     }
   731     // A load from an initialization barrier can match a captured store.
   732     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   733       InitializeNode* init = st->in(0)->as_Initialize();
   734       AllocateNode* alloc = init->allocation();
   735       if (alloc != NULL &&
   736           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   737         // examine a captured store value
   738         st = init->find_captured_store(offset, memory_size(), phase);
   739         if (st != NULL)
   740           continue;             // take one more trip around
   741       }
   742     }
   744     break;
   745   }
   747   return NULL;
   748 }
   750 //----------------------is_instance_field_load_with_local_phi------------------
   751 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   752   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   753       in(MemNode::Address)->is_AddP() ) {
   754     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   755     // Only instances.
   756     if( t_oop != NULL && t_oop->is_instance_field() &&
   757         t_oop->offset() != Type::OffsetBot &&
   758         t_oop->offset() != Type::OffsetTop) {
   759       return true;
   760     }
   761   }
   762   return false;
   763 }
   765 //------------------------------Identity---------------------------------------
   766 // Loads are identity if previous store is to same address
   767 Node *LoadNode::Identity( PhaseTransform *phase ) {
   768   // If the previous store-maker is the right kind of Store, and the store is
   769   // to the same address, then we are equal to the value stored.
   770   Node* mem = in(MemNode::Memory);
   771   Node* value = can_see_stored_value(mem, phase);
   772   if( value ) {
   773     // byte, short & char stores truncate naturally.
   774     // A load has to load the truncated value which requires
   775     // some sort of masking operation and that requires an
   776     // Ideal call instead of an Identity call.
   777     if (memory_size() < BytesPerInt) {
   778       // If the input to the store does not fit with the load's result type,
   779       // it must be truncated via an Ideal call.
   780       if (!phase->type(value)->higher_equal(phase->type(this)))
   781         return this;
   782     }
   783     // (This works even when value is a Con, but LoadNode::Value
   784     // usually runs first, producing the singleton type of the Con.)
   785     return value;
   786   }
   788   // Search for an existing data phi which was generated before for the same
   789   // instance's field to avoid infinite genertion of phis in a loop.
   790   Node *region = mem->in(0);
   791   if (is_instance_field_load_with_local_phi(region)) {
   792     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   793     int this_index  = phase->C->get_alias_index(addr_t);
   794     int this_offset = addr_t->offset();
   795     int this_id    = addr_t->is_oopptr()->instance_id();
   796     const Type* this_type = bottom_type();
   797     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   798       Node* phi = region->fast_out(i);
   799       if (phi->is_Phi() && phi != mem &&
   800           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   801         return phi;
   802       }
   803     }
   804   }
   806   return this;
   807 }
   810 // Returns true if the AliasType refers to the field that holds the
   811 // cached box array.  Currently only handles the IntegerCache case.
   812 static bool is_autobox_cache(Compile::AliasType* atp) {
   813   if (atp != NULL && atp->field() != NULL) {
   814     ciField* field = atp->field();
   815     ciSymbol* klass = field->holder()->name();
   816     if (field->name() == ciSymbol::cache_field_name() &&
   817         field->holder()->uses_default_loader() &&
   818         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   819       return true;
   820     }
   821   }
   822   return false;
   823 }
   825 // Fetch the base value in the autobox array
   826 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   827   if (atp != NULL && atp->field() != NULL) {
   828     ciField* field = atp->field();
   829     ciSymbol* klass = field->holder()->name();
   830     if (field->name() == ciSymbol::cache_field_name() &&
   831         field->holder()->uses_default_loader() &&
   832         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   833       assert(field->is_constant(), "what?");
   834       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   835       // Fetch the box object at the base of the array and get its value
   836       ciInstance* box = array->obj_at(0)->as_instance();
   837       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   838       if (ik->nof_nonstatic_fields() == 1) {
   839         // This should be true nonstatic_field_at requires calling
   840         // nof_nonstatic_fields so check it anyway
   841         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   842         cache_offset = c.as_int();
   843       }
   844       return true;
   845     }
   846   }
   847   return false;
   848 }
   850 // Returns true if the AliasType refers to the value field of an
   851 // autobox object.  Currently only handles Integer.
   852 static bool is_autobox_object(Compile::AliasType* atp) {
   853   if (atp != NULL && atp->field() != NULL) {
   854     ciField* field = atp->field();
   855     ciSymbol* klass = field->holder()->name();
   856     if (field->name() == ciSymbol::value_name() &&
   857         field->holder()->uses_default_loader() &&
   858         klass == ciSymbol::java_lang_Integer()) {
   859       return true;
   860     }
   861   }
   862   return false;
   863 }
   866 // We're loading from an object which has autobox behaviour.
   867 // If this object is result of a valueOf call we'll have a phi
   868 // merging a newly allocated object and a load from the cache.
   869 // We want to replace this load with the original incoming
   870 // argument to the valueOf call.
   871 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
   872   Node* base = in(Address)->in(AddPNode::Base);
   873   if (base->is_Phi() && base->req() == 3) {
   874     AllocateNode* allocation = NULL;
   875     int allocation_index = -1;
   876     int load_index = -1;
   877     for (uint i = 1; i < base->req(); i++) {
   878       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
   879       if (allocation != NULL) {
   880         allocation_index = i;
   881         load_index = 3 - allocation_index;
   882         break;
   883       }
   884     }
   885     LoadNode* load = NULL;
   886     if (allocation != NULL && base->in(load_index)->is_Load()) {
   887       load = base->in(load_index)->as_Load();
   888     }
   889     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
   890       // Push the loads from the phi that comes from valueOf up
   891       // through it to allow elimination of the loads and the recovery
   892       // of the original value.
   893       Node* mem_phi = in(Memory);
   894       Node* offset = in(Address)->in(AddPNode::Offset);
   896       Node* in1 = clone();
   897       Node* in1_addr = in1->in(Address)->clone();
   898       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
   899       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
   900       in1_addr->set_req(AddPNode::Offset, offset);
   901       in1->set_req(0, base->in(allocation_index));
   902       in1->set_req(Address, in1_addr);
   903       in1->set_req(Memory, mem_phi->in(allocation_index));
   905       Node* in2 = clone();
   906       Node* in2_addr = in2->in(Address)->clone();
   907       in2_addr->set_req(AddPNode::Base, base->in(load_index));
   908       in2_addr->set_req(AddPNode::Address, base->in(load_index));
   909       in2_addr->set_req(AddPNode::Offset, offset);
   910       in2->set_req(0, base->in(load_index));
   911       in2->set_req(Address, in2_addr);
   912       in2->set_req(Memory, mem_phi->in(load_index));
   914       in1_addr = phase->transform(in1_addr);
   915       in1 =      phase->transform(in1);
   916       in2_addr = phase->transform(in2_addr);
   917       in2 =      phase->transform(in2);
   919       PhiNode* result = PhiNode::make_blank(base->in(0), this);
   920       result->set_req(allocation_index, in1);
   921       result->set_req(load_index, in2);
   922       return result;
   923     }
   924   } else if (base->is_Load()) {
   925     // Eliminate the load of Integer.value for integers from the cache
   926     // array by deriving the value from the index into the array.
   927     // Capture the offset of the load and then reverse the computation.
   928     Node* load_base = base->in(Address)->in(AddPNode::Base);
   929     if (load_base != NULL) {
   930       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
   931       intptr_t cache_offset;
   932       int shift = -1;
   933       Node* cache = NULL;
   934       if (is_autobox_cache(atp)) {
   935         shift  = exact_log2(type2aelembytes(T_OBJECT));
   936         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
   937       }
   938       if (cache != NULL && base->in(Address)->is_AddP()) {
   939         Node* elements[4];
   940         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
   941         int cache_low;
   942         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
   943           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
   944           // Add up all the offsets making of the address of the load
   945           Node* result = elements[0];
   946           for (int i = 1; i < count; i++) {
   947             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
   948           }
   949           // Remove the constant offset from the address and then
   950           // remove the scaling of the offset to recover the original index.
   951           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
   952           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
   953             // Peel the shift off directly but wrap it in a dummy node
   954             // since Ideal can't return existing nodes
   955             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
   956           } else {
   957             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
   958           }
   959 #ifdef _LP64
   960           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
   961 #endif
   962           return result;
   963         }
   964       }
   965     }
   966   }
   967   return NULL;
   968 }
   971 //------------------------------Ideal------------------------------------------
   972 // If the load is from Field memory and the pointer is non-null, we can
   973 // zero out the control input.
   974 // If the offset is constant and the base is an object allocation,
   975 // try to hook me up to the exact initializing store.
   976 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   977   Node* p = MemNode::Ideal_common(phase, can_reshape);
   978   if (p)  return (p == NodeSentinel) ? NULL : p;
   980   Node* ctrl    = in(MemNode::Control);
   981   Node* address = in(MemNode::Address);
   983   // Skip up past a SafePoint control.  Cannot do this for Stores because
   984   // pointer stores & cardmarks must stay on the same side of a SafePoint.
   985   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
   986       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
   987     ctrl = ctrl->in(0);
   988     set_req(MemNode::Control,ctrl);
   989   }
   991   // Check for useless control edge in some common special cases
   992   if (in(MemNode::Control) != NULL) {
   993     intptr_t ignore = 0;
   994     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
   995     if (base != NULL
   996         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
   997         && detect_dominating_control(base->in(0), phase->C->start())) {
   998       // A method-invariant, non-null address (constant or 'this' argument).
   999       set_req(MemNode::Control, NULL);
  1003   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1004     Node* base = in(Address)->in(AddPNode::Base);
  1005     if (base != NULL) {
  1006       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1007       if (is_autobox_object(atp)) {
  1008         Node* result = eliminate_autobox(phase);
  1009         if (result != NULL) return result;
  1014   // Check for prior store with a different base or offset; make Load
  1015   // independent.  Skip through any number of them.  Bail out if the stores
  1016   // are in an endless dead cycle and report no progress.  This is a key
  1017   // transform for Reflection.  However, if after skipping through the Stores
  1018   // we can't then fold up against a prior store do NOT do the transform as
  1019   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1020   // array memory alive twice: once for the hoisted Load and again after the
  1021   // bypassed Store.  This situation only works if EVERYBODY who does
  1022   // anti-dependence work knows how to bypass.  I.e. we need all
  1023   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1024   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1025   // fold up, do so.
  1026   Node* prev_mem = find_previous_store(phase);
  1027   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1028   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1029     // (c) See if we can fold up on the spot, but don't fold up here.
  1030     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1031     // just return a prior value, which is done by Identity calls.
  1032     if (can_see_stored_value(prev_mem, phase)) {
  1033       // Make ready for step (d):
  1034       set_req(MemNode::Memory, prev_mem);
  1035       return this;
  1039   return NULL;                  // No further progress
  1042 // Helper to recognize certain Klass fields which are invariant across
  1043 // some group of array types (e.g., int[] or all T[] where T < Object).
  1044 const Type*
  1045 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1046                                  ciKlass* klass) const {
  1047   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1048     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1049     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1050     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1051     return TypeInt::make(klass->modifier_flags());
  1053   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1054     // The field is Klass::_access_flags.  Return its (constant) value.
  1055     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1056     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1057     return TypeInt::make(klass->access_flags());
  1059   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1060     // The field is Klass::_layout_helper.  Return its constant value if known.
  1061     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1062     return TypeInt::make(klass->layout_helper());
  1065   // No match.
  1066   return NULL;
  1069 //------------------------------Value-----------------------------------------
  1070 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1071   // Either input is TOP ==> the result is TOP
  1072   Node* mem = in(MemNode::Memory);
  1073   const Type *t1 = phase->type(mem);
  1074   if (t1 == Type::TOP)  return Type::TOP;
  1075   Node* adr = in(MemNode::Address);
  1076   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1077   if (tp == NULL || tp->empty())  return Type::TOP;
  1078   int off = tp->offset();
  1079   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1081   // Try to guess loaded type from pointer type
  1082   if (tp->base() == Type::AryPtr) {
  1083     const Type *t = tp->is_aryptr()->elem();
  1084     // Don't do this for integer types. There is only potential profit if
  1085     // the element type t is lower than _type; that is, for int types, if _type is
  1086     // more restrictive than t.  This only happens here if one is short and the other
  1087     // char (both 16 bits), and in those cases we've made an intentional decision
  1088     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1089     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1090     //
  1091     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1092     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1093     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1094     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1095     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1096     // In fact, that could have been the original type of p1, and p1 could have
  1097     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1098     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1099     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1100         && Opcode() != Op_LoadKlass) {
  1101       // t might actually be lower than _type, if _type is a unique
  1102       // concrete subclass of abstract class t.
  1103       // Make sure the reference is not into the header, by comparing
  1104       // the offset against the offset of the start of the array's data.
  1105       // Different array types begin at slightly different offsets (12 vs. 16).
  1106       // We choose T_BYTE as an example base type that is least restrictive
  1107       // as to alignment, which will therefore produce the smallest
  1108       // possible base offset.
  1109       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1110       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1111         const Type* jt = t->join(_type);
  1112         // In any case, do not allow the join, per se, to empty out the type.
  1113         if (jt->empty() && !t->empty()) {
  1114           // This can happen if a interface-typed array narrows to a class type.
  1115           jt = _type;
  1118         if (EliminateAutoBox) {
  1119           // The pointers in the autobox arrays are always non-null
  1120           Node* base = in(Address)->in(AddPNode::Base);
  1121           if (base != NULL) {
  1122             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1123             if (is_autobox_cache(atp)) {
  1124               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1128         return jt;
  1131   } else if (tp->base() == Type::InstPtr) {
  1132     assert( off != Type::OffsetBot ||
  1133             // arrays can be cast to Objects
  1134             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1135             // unsafe field access may not have a constant offset
  1136             phase->C->has_unsafe_access(),
  1137             "Field accesses must be precise" );
  1138     // For oop loads, we expect the _type to be precise
  1139   } else if (tp->base() == Type::KlassPtr) {
  1140     assert( off != Type::OffsetBot ||
  1141             // arrays can be cast to Objects
  1142             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1143             // also allow array-loading from the primary supertype
  1144             // array during subtype checks
  1145             Opcode() == Op_LoadKlass,
  1146             "Field accesses must be precise" );
  1147     // For klass/static loads, we expect the _type to be precise
  1150   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1151   if (tkls != NULL && !StressReflectiveCode) {
  1152     ciKlass* klass = tkls->klass();
  1153     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1154       // We are loading a field from a Klass metaobject whose identity
  1155       // is known at compile time (the type is "exact" or "precise").
  1156       // Check for fields we know are maintained as constants by the VM.
  1157       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1158         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1159         // (Folds up type checking code.)
  1160         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1161         return TypeInt::make(klass->super_check_offset());
  1163       // Compute index into primary_supers array
  1164       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1165       // Check for overflowing; use unsigned compare to handle the negative case.
  1166       if( depth < ciKlass::primary_super_limit() ) {
  1167         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1168         // (Folds up type checking code.)
  1169         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1170         ciKlass *ss = klass->super_of_depth(depth);
  1171         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1173       const Type* aift = load_array_final_field(tkls, klass);
  1174       if (aift != NULL)  return aift;
  1175       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1176           && klass->is_array_klass()) {
  1177         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1178         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1179         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1180         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1182       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1183         // The field is Klass::_java_mirror.  Return its (constant) value.
  1184         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1185         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1186         return TypeInstPtr::make(klass->java_mirror());
  1190     // We can still check if we are loading from the primary_supers array at a
  1191     // shallow enough depth.  Even though the klass is not exact, entries less
  1192     // than or equal to its super depth are correct.
  1193     if (klass->is_loaded() ) {
  1194       ciType *inner = klass->klass();
  1195       while( inner->is_obj_array_klass() )
  1196         inner = inner->as_obj_array_klass()->base_element_type();
  1197       if( inner->is_instance_klass() &&
  1198           !inner->as_instance_klass()->flags().is_interface() ) {
  1199         // Compute index into primary_supers array
  1200         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1201         // Check for overflowing; use unsigned compare to handle the negative case.
  1202         if( depth < ciKlass::primary_super_limit() &&
  1203             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1204           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1205           // (Folds up type checking code.)
  1206           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1207           ciKlass *ss = klass->super_of_depth(depth);
  1208           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1213     // If the type is enough to determine that the thing is not an array,
  1214     // we can give the layout_helper a positive interval type.
  1215     // This will help short-circuit some reflective code.
  1216     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1217         && !klass->is_array_klass() // not directly typed as an array
  1218         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1219         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1220         ) {
  1221       // Note:  When interfaces are reliable, we can narrow the interface
  1222       // test to (klass != Serializable && klass != Cloneable).
  1223       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1224       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1225       // The key property of this type is that it folds up tests
  1226       // for array-ness, since it proves that the layout_helper is positive.
  1227       // Thus, a generic value like the basic object layout helper works fine.
  1228       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1232   // If we are loading from a freshly-allocated object, produce a zero,
  1233   // if the load is provably beyond the header of the object.
  1234   // (Also allow a variable load from a fresh array to produce zero.)
  1235   if (ReduceFieldZeroing) {
  1236     Node* value = can_see_stored_value(mem,phase);
  1237     if (value != NULL && value->is_Con())
  1238       return value->bottom_type();
  1241   const TypeOopPtr *tinst = tp->isa_oopptr();
  1242   if (tinst != NULL && tinst->is_instance_field()) {
  1243     // If we have an instance type and our memory input is the
  1244     // programs's initial memory state, there is no matching store,
  1245     // so just return a zero of the appropriate type
  1246     Node *mem = in(MemNode::Memory);
  1247     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1248       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1249       return Type::get_zero_type(_type->basic_type());
  1252   return _type;
  1255 //------------------------------match_edge-------------------------------------
  1256 // Do we Match on this edge index or not?  Match only the address.
  1257 uint LoadNode::match_edge(uint idx) const {
  1258   return idx == MemNode::Address;
  1261 //--------------------------LoadBNode::Ideal--------------------------------------
  1262 //
  1263 //  If the previous store is to the same address as this load,
  1264 //  and the value stored was larger than a byte, replace this load
  1265 //  with the value stored truncated to a byte.  If no truncation is
  1266 //  needed, the replacement is done in LoadNode::Identity().
  1267 //
  1268 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1269   Node* mem = in(MemNode::Memory);
  1270   Node* value = can_see_stored_value(mem,phase);
  1271   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1272     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1273     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1275   // Identity call will handle the case where truncation is not needed.
  1276   return LoadNode::Ideal(phase, can_reshape);
  1279 //--------------------------LoadCNode::Ideal--------------------------------------
  1280 //
  1281 //  If the previous store is to the same address as this load,
  1282 //  and the value stored was larger than a char, replace this load
  1283 //  with the value stored truncated to a char.  If no truncation is
  1284 //  needed, the replacement is done in LoadNode::Identity().
  1285 //
  1286 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1287   Node* mem = in(MemNode::Memory);
  1288   Node* value = can_see_stored_value(mem,phase);
  1289   if( value && !phase->type(value)->higher_equal( _type ) )
  1290     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1291   // Identity call will handle the case where truncation is not needed.
  1292   return LoadNode::Ideal(phase, can_reshape);
  1295 //--------------------------LoadSNode::Ideal--------------------------------------
  1296 //
  1297 //  If the previous store is to the same address as this load,
  1298 //  and the value stored was larger than a short, replace this load
  1299 //  with the value stored truncated to a short.  If no truncation is
  1300 //  needed, the replacement is done in LoadNode::Identity().
  1301 //
  1302 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1303   Node* mem = in(MemNode::Memory);
  1304   Node* value = can_see_stored_value(mem,phase);
  1305   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1306     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1307     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1309   // Identity call will handle the case where truncation is not needed.
  1310   return LoadNode::Ideal(phase, can_reshape);
  1313 //=============================================================================
  1314 //------------------------------Value------------------------------------------
  1315 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1316   // Either input is TOP ==> the result is TOP
  1317   const Type *t1 = phase->type( in(MemNode::Memory) );
  1318   if (t1 == Type::TOP)  return Type::TOP;
  1319   Node *adr = in(MemNode::Address);
  1320   const Type *t2 = phase->type( adr );
  1321   if (t2 == Type::TOP)  return Type::TOP;
  1322   const TypePtr *tp = t2->is_ptr();
  1323   if (TypePtr::above_centerline(tp->ptr()) ||
  1324       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1326   // Return a more precise klass, if possible
  1327   const TypeInstPtr *tinst = tp->isa_instptr();
  1328   if (tinst != NULL) {
  1329     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1330     int offset = tinst->offset();
  1331     if (ik == phase->C->env()->Class_klass()
  1332         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1333             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1334       // We are loading a special hidden field from a Class mirror object,
  1335       // the field which points to the VM's Klass metaobject.
  1336       ciType* t = tinst->java_mirror_type();
  1337       // java_mirror_type returns non-null for compile-time Class constants.
  1338       if (t != NULL) {
  1339         // constant oop => constant klass
  1340         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1341           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1343         if (!t->is_klass()) {
  1344           // a primitive Class (e.g., int.class) has NULL for a klass field
  1345           return TypePtr::NULL_PTR;
  1347         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1348         return TypeKlassPtr::make(t->as_klass());
  1350       // non-constant mirror, so we can't tell what's going on
  1352     if( !ik->is_loaded() )
  1353       return _type;             // Bail out if not loaded
  1354     if (offset == oopDesc::klass_offset_in_bytes()) {
  1355       if (tinst->klass_is_exact()) {
  1356         return TypeKlassPtr::make(ik);
  1358       // See if we can become precise: no subklasses and no interface
  1359       // (Note:  We need to support verified interfaces.)
  1360       if (!ik->is_interface() && !ik->has_subklass()) {
  1361         //assert(!UseExactTypes, "this code should be useless with exact types");
  1362         // Add a dependence; if any subclass added we need to recompile
  1363         if (!ik->is_final()) {
  1364           // %%% should use stronger assert_unique_concrete_subtype instead
  1365           phase->C->dependencies()->assert_leaf_type(ik);
  1367         // Return precise klass
  1368         return TypeKlassPtr::make(ik);
  1371       // Return root of possible klass
  1372       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1376   // Check for loading klass from an array
  1377   const TypeAryPtr *tary = tp->isa_aryptr();
  1378   if( tary != NULL ) {
  1379     ciKlass *tary_klass = tary->klass();
  1380     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1381         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1382       if (tary->klass_is_exact()) {
  1383         return TypeKlassPtr::make(tary_klass);
  1385       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1386       // If the klass is an object array, we defer the question to the
  1387       // array component klass.
  1388       if( ak->is_obj_array_klass() ) {
  1389         assert( ak->is_loaded(), "" );
  1390         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1391         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1392           ciInstanceKlass* ik = base_k->as_instance_klass();
  1393           // See if we can become precise: no subklasses and no interface
  1394           if (!ik->is_interface() && !ik->has_subklass()) {
  1395             //assert(!UseExactTypes, "this code should be useless with exact types");
  1396             // Add a dependence; if any subclass added we need to recompile
  1397             if (!ik->is_final()) {
  1398               phase->C->dependencies()->assert_leaf_type(ik);
  1400             // Return precise array klass
  1401             return TypeKlassPtr::make(ak);
  1404         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1405       } else {                  // Found a type-array?
  1406         //assert(!UseExactTypes, "this code should be useless with exact types");
  1407         assert( ak->is_type_array_klass(), "" );
  1408         return TypeKlassPtr::make(ak); // These are always precise
  1413   // Check for loading klass from an array klass
  1414   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1415   if (tkls != NULL && !StressReflectiveCode) {
  1416     ciKlass* klass = tkls->klass();
  1417     if( !klass->is_loaded() )
  1418       return _type;             // Bail out if not loaded
  1419     if( klass->is_obj_array_klass() &&
  1420         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1421       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1422       // // Always returning precise element type is incorrect,
  1423       // // e.g., element type could be object and array may contain strings
  1424       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1426       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1427       // according to the element type's subclassing.
  1428       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1430     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1431         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1432       ciKlass* sup = klass->as_instance_klass()->super();
  1433       // The field is Klass::_super.  Return its (constant) value.
  1434       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1435       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1439   // Bailout case
  1440   return LoadNode::Value(phase);
  1443 //------------------------------Identity---------------------------------------
  1444 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1445 // Also feed through the klass in Allocate(...klass...)._klass.
  1446 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1447   Node* x = LoadNode::Identity(phase);
  1448   if (x != this)  return x;
  1450   // Take apart the address into an oop and and offset.
  1451   // Return 'this' if we cannot.
  1452   Node*    adr    = in(MemNode::Address);
  1453   intptr_t offset = 0;
  1454   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1455   if (base == NULL)     return this;
  1456   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1457   if (toop == NULL)     return this;
  1459   // We can fetch the klass directly through an AllocateNode.
  1460   // This works even if the klass is not constant (clone or newArray).
  1461   if (offset == oopDesc::klass_offset_in_bytes()) {
  1462     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1463     if (allocated_klass != NULL) {
  1464       return allocated_klass;
  1468   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1469   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1470   // See inline_native_Class_query for occurrences of these patterns.
  1471   // Java Example:  x.getClass().isAssignableFrom(y)
  1472   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1473   //
  1474   // This improves reflective code, often making the Class
  1475   // mirror go completely dead.  (Current exception:  Class
  1476   // mirrors may appear in debug info, but we could clean them out by
  1477   // introducing a new debug info operator for klassOop.java_mirror).
  1478   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1479       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1480           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1481     // We are loading a special hidden field from a Class mirror,
  1482     // the field which points to its Klass or arrayKlass metaobject.
  1483     if (base->is_Load()) {
  1484       Node* adr2 = base->in(MemNode::Address);
  1485       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1486       if (tkls != NULL && !tkls->empty()
  1487           && (tkls->klass()->is_instance_klass() ||
  1488               tkls->klass()->is_array_klass())
  1489           && adr2->is_AddP()
  1490           ) {
  1491         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1492         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1493           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1495         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1496           return adr2->in(AddPNode::Base);
  1502   return this;
  1505 //------------------------------Value-----------------------------------------
  1506 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1507   // Either input is TOP ==> the result is TOP
  1508   const Type *t1 = phase->type( in(MemNode::Memory) );
  1509   if( t1 == Type::TOP ) return Type::TOP;
  1510   Node *adr = in(MemNode::Address);
  1511   const Type *t2 = phase->type( adr );
  1512   if( t2 == Type::TOP ) return Type::TOP;
  1513   const TypePtr *tp = t2->is_ptr();
  1514   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1515   const TypeAryPtr *tap = tp->isa_aryptr();
  1516   if( !tap ) return _type;
  1517   return tap->size();
  1520 //------------------------------Identity---------------------------------------
  1521 // Feed through the length in AllocateArray(...length...)._length.
  1522 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1523   Node* x = LoadINode::Identity(phase);
  1524   if (x != this)  return x;
  1526   // Take apart the address into an oop and and offset.
  1527   // Return 'this' if we cannot.
  1528   Node*    adr    = in(MemNode::Address);
  1529   intptr_t offset = 0;
  1530   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1531   if (base == NULL)     return this;
  1532   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1533   if (tary == NULL)     return this;
  1535   // We can fetch the length directly through an AllocateArrayNode.
  1536   // This works even if the length is not constant (clone or newArray).
  1537   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1538     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1539     if (allocated_length != NULL) {
  1540       return allocated_length;
  1544   return this;
  1547 //=============================================================================
  1548 //---------------------------StoreNode::make-----------------------------------
  1549 // Polymorphic factory method:
  1550 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1551   switch (bt) {
  1552   case T_BOOLEAN:
  1553   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1554   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1555   case T_CHAR:
  1556   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1557   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1558   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1559   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1560   case T_ADDRESS:
  1561   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1563   ShouldNotReachHere();
  1564   return (StoreNode*)NULL;
  1567 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1568   bool require_atomic = true;
  1569   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1573 //--------------------------bottom_type----------------------------------------
  1574 const Type *StoreNode::bottom_type() const {
  1575   return Type::MEMORY;
  1578 //------------------------------hash-------------------------------------------
  1579 uint StoreNode::hash() const {
  1580   // unroll addition of interesting fields
  1581   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1583   // Since they are not commoned, do not hash them:
  1584   return NO_HASH;
  1587 //------------------------------Ideal------------------------------------------
  1588 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1589 // When a store immediately follows a relevant allocation/initialization,
  1590 // try to capture it into the initialization, or hoist it above.
  1591 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1592   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1593   if (p)  return (p == NodeSentinel) ? NULL : p;
  1595   Node* mem     = in(MemNode::Memory);
  1596   Node* address = in(MemNode::Address);
  1598   // Back-to-back stores to same address?  Fold em up.
  1599   // Generally unsafe if I have intervening uses...
  1600   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1601     // Looking at a dead closed cycle of memory?
  1602     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1604     assert(Opcode() == mem->Opcode() ||
  1605            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1606            "no mismatched stores, except on raw memory");
  1608     if (mem->outcnt() == 1 &&           // check for intervening uses
  1609         mem->as_Store()->memory_size() <= this->memory_size()) {
  1610       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1611       // For example, 'mem' might be the final state at a conditional return.
  1612       // Or, 'mem' might be used by some node which is live at the same time
  1613       // 'this' is live, which might be unschedulable.  So, require exactly
  1614       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1615       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1616       if (can_reshape) {  // (%%% is this an anachronism?)
  1617         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1618                   phase->is_IterGVN());
  1619       } else {
  1620         // It's OK to do this in the parser, since DU info is always accurate,
  1621         // and the parser always refers to nodes via SafePointNode maps.
  1622         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1624       return this;
  1628   // Capture an unaliased, unconditional, simple store into an initializer.
  1629   // Or, if it is independent of the allocation, hoist it above the allocation.
  1630   if (ReduceFieldZeroing && /*can_reshape &&*/
  1631       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1632     InitializeNode* init = mem->in(0)->as_Initialize();
  1633     intptr_t offset = init->can_capture_store(this, phase);
  1634     if (offset > 0) {
  1635       Node* moved = init->capture_store(this, offset, phase);
  1636       // If the InitializeNode captured me, it made a raw copy of me,
  1637       // and I need to disappear.
  1638       if (moved != NULL) {
  1639         // %%% hack to ensure that Ideal returns a new node:
  1640         mem = MergeMemNode::make(phase->C, mem);
  1641         return mem;             // fold me away
  1646   return NULL;                  // No further progress
  1649 //------------------------------Value-----------------------------------------
  1650 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1651   // Either input is TOP ==> the result is TOP
  1652   const Type *t1 = phase->type( in(MemNode::Memory) );
  1653   if( t1 == Type::TOP ) return Type::TOP;
  1654   const Type *t2 = phase->type( in(MemNode::Address) );
  1655   if( t2 == Type::TOP ) return Type::TOP;
  1656   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1657   if( t3 == Type::TOP ) return Type::TOP;
  1658   return Type::MEMORY;
  1661 //------------------------------Identity---------------------------------------
  1662 // Remove redundant stores:
  1663 //   Store(m, p, Load(m, p)) changes to m.
  1664 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1665 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1666   Node* mem = in(MemNode::Memory);
  1667   Node* adr = in(MemNode::Address);
  1668   Node* val = in(MemNode::ValueIn);
  1670   // Load then Store?  Then the Store is useless
  1671   if (val->is_Load() &&
  1672       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1673       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1674       val->as_Load()->store_Opcode() == Opcode()) {
  1675     return mem;
  1678   // Two stores in a row of the same value?
  1679   if (mem->is_Store() &&
  1680       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1681       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1682       mem->Opcode() == Opcode()) {
  1683     return mem;
  1686   // Store of zero anywhere into a freshly-allocated object?
  1687   // Then the store is useless.
  1688   // (It must already have been captured by the InitializeNode.)
  1689   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1690     // a newly allocated object is already all-zeroes everywhere
  1691     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1692       return mem;
  1695     // the store may also apply to zero-bits in an earlier object
  1696     Node* prev_mem = find_previous_store(phase);
  1697     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1698     if (prev_mem != NULL) {
  1699       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1700       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1701         // prev_val and val might differ by a cast; it would be good
  1702         // to keep the more informative of the two.
  1703         return mem;
  1708   return this;
  1711 //------------------------------match_edge-------------------------------------
  1712 // Do we Match on this edge index or not?  Match only memory & value
  1713 uint StoreNode::match_edge(uint idx) const {
  1714   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1717 //------------------------------cmp--------------------------------------------
  1718 // Do not common stores up together.  They generally have to be split
  1719 // back up anyways, so do not bother.
  1720 uint StoreNode::cmp( const Node &n ) const {
  1721   return (&n == this);          // Always fail except on self
  1724 //------------------------------Ideal_masked_input-----------------------------
  1725 // Check for a useless mask before a partial-word store
  1726 // (StoreB ... (AndI valIn conIa) )
  1727 // If (conIa & mask == mask) this simplifies to
  1728 // (StoreB ... (valIn) )
  1729 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1730   Node *val = in(MemNode::ValueIn);
  1731   if( val->Opcode() == Op_AndI ) {
  1732     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1733     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1734       set_req(MemNode::ValueIn, val->in(1));
  1735       return this;
  1738   return NULL;
  1742 //------------------------------Ideal_sign_extended_input----------------------
  1743 // Check for useless sign-extension before a partial-word store
  1744 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1745 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1746 // (StoreB ... (valIn) )
  1747 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1748   Node *val = in(MemNode::ValueIn);
  1749   if( val->Opcode() == Op_RShiftI ) {
  1750     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1751     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1752       Node *shl = val->in(1);
  1753       if( shl->Opcode() == Op_LShiftI ) {
  1754         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1755         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1756           set_req(MemNode::ValueIn, shl->in(1));
  1757           return this;
  1762   return NULL;
  1765 //------------------------------value_never_loaded-----------------------------------
  1766 // Determine whether there are any possible loads of the value stored.
  1767 // For simplicity, we actually check if there are any loads from the
  1768 // address stored to, not just for loads of the value stored by this node.
  1769 //
  1770 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1771   Node *adr = in(Address);
  1772   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1773   if (adr_oop == NULL)
  1774     return false;
  1775   if (!adr_oop->is_instance_field())
  1776     return false; // if not a distinct instance, there may be aliases of the address
  1777   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1778     Node *use = adr->fast_out(i);
  1779     int opc = use->Opcode();
  1780     if (use->is_Load() || use->is_LoadStore()) {
  1781       return false;
  1784   return true;
  1787 //=============================================================================
  1788 //------------------------------Ideal------------------------------------------
  1789 // If the store is from an AND mask that leaves the low bits untouched, then
  1790 // we can skip the AND operation.  If the store is from a sign-extension
  1791 // (a left shift, then right shift) we can skip both.
  1792 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1793   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1794   if( progress != NULL ) return progress;
  1796   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1797   if( progress != NULL ) return progress;
  1799   // Finally check the default case
  1800   return StoreNode::Ideal(phase, can_reshape);
  1803 //=============================================================================
  1804 //------------------------------Ideal------------------------------------------
  1805 // If the store is from an AND mask that leaves the low bits untouched, then
  1806 // we can skip the AND operation
  1807 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1808   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  1809   if( progress != NULL ) return progress;
  1811   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  1812   if( progress != NULL ) return progress;
  1814   // Finally check the default case
  1815   return StoreNode::Ideal(phase, can_reshape);
  1818 //=============================================================================
  1819 //------------------------------Identity---------------------------------------
  1820 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  1821   // No need to card mark when storing a null ptr
  1822   Node* my_store = in(MemNode::OopStore);
  1823   if (my_store->is_Store()) {
  1824     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  1825     if( t1 == TypePtr::NULL_PTR ) {
  1826       return in(MemNode::Memory);
  1829   return this;
  1832 //------------------------------Value-----------------------------------------
  1833 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  1834   // Either input is TOP ==> the result is TOP
  1835   const Type *t = phase->type( in(MemNode::Memory) );
  1836   if( t == Type::TOP ) return Type::TOP;
  1837   t = phase->type( in(MemNode::Address) );
  1838   if( t == Type::TOP ) return Type::TOP;
  1839   t = phase->type( in(MemNode::ValueIn) );
  1840   if( t == Type::TOP ) return Type::TOP;
  1841   // If extra input is TOP ==> the result is TOP
  1842   t = phase->type( in(MemNode::OopStore) );
  1843   if( t == Type::TOP ) return Type::TOP;
  1845   return StoreNode::Value( phase );
  1849 //=============================================================================
  1850 //----------------------------------SCMemProjNode------------------------------
  1851 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  1853   return bottom_type();
  1856 //=============================================================================
  1857 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  1858   init_req(MemNode::Control, c  );
  1859   init_req(MemNode::Memory , mem);
  1860   init_req(MemNode::Address, adr);
  1861   init_req(MemNode::ValueIn, val);
  1862   init_req(         ExpectedIn, ex );
  1863   init_class_id(Class_LoadStore);
  1867 //=============================================================================
  1868 //-------------------------------adr_type--------------------------------------
  1869 // Do we Match on this edge index or not?  Do not match memory
  1870 const TypePtr* ClearArrayNode::adr_type() const {
  1871   Node *adr = in(3);
  1872   return MemNode::calculate_adr_type(adr->bottom_type());
  1875 //------------------------------match_edge-------------------------------------
  1876 // Do we Match on this edge index or not?  Do not match memory
  1877 uint ClearArrayNode::match_edge(uint idx) const {
  1878   return idx > 1;
  1881 //------------------------------Identity---------------------------------------
  1882 // Clearing a zero length array does nothing
  1883 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  1884   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  1887 //------------------------------Idealize---------------------------------------
  1888 // Clearing a short array is faster with stores
  1889 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1890   const int unit = BytesPerLong;
  1891   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  1892   if (!t)  return NULL;
  1893   if (!t->is_con())  return NULL;
  1894   intptr_t raw_count = t->get_con();
  1895   intptr_t size = raw_count;
  1896   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  1897   // Clearing nothing uses the Identity call.
  1898   // Negative clears are possible on dead ClearArrays
  1899   // (see jck test stmt114.stmt11402.val).
  1900   if (size <= 0 || size % unit != 0)  return NULL;
  1901   intptr_t count = size / unit;
  1902   // Length too long; use fast hardware clear
  1903   if (size > Matcher::init_array_short_size)  return NULL;
  1904   Node *mem = in(1);
  1905   if( phase->type(mem)==Type::TOP ) return NULL;
  1906   Node *adr = in(3);
  1907   const Type* at = phase->type(adr);
  1908   if( at==Type::TOP ) return NULL;
  1909   const TypePtr* atp = at->isa_ptr();
  1910   // adjust atp to be the correct array element address type
  1911   if (atp == NULL)  atp = TypePtr::BOTTOM;
  1912   else              atp = atp->add_offset(Type::OffsetBot);
  1913   // Get base for derived pointer purposes
  1914   if( adr->Opcode() != Op_AddP ) Unimplemented();
  1915   Node *base = adr->in(1);
  1917   Node *zero = phase->makecon(TypeLong::ZERO);
  1918   Node *off  = phase->MakeConX(BytesPerLong);
  1919   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1920   count--;
  1921   while( count-- ) {
  1922     mem = phase->transform(mem);
  1923     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  1924     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1926   return mem;
  1929 //----------------------------clear_memory-------------------------------------
  1930 // Generate code to initialize object storage to zero.
  1931 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1932                                    intptr_t start_offset,
  1933                                    Node* end_offset,
  1934                                    PhaseGVN* phase) {
  1935   Compile* C = phase->C;
  1936   intptr_t offset = start_offset;
  1938   int unit = BytesPerLong;
  1939   if ((offset % unit) != 0) {
  1940     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  1941     adr = phase->transform(adr);
  1942     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1943     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1944     mem = phase->transform(mem);
  1945     offset += BytesPerInt;
  1947   assert((offset % unit) == 0, "");
  1949   // Initialize the remaining stuff, if any, with a ClearArray.
  1950   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  1953 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1954                                    Node* start_offset,
  1955                                    Node* end_offset,
  1956                                    PhaseGVN* phase) {
  1957   if (start_offset == end_offset) {
  1958     // nothing to do
  1959     return mem;
  1962   Compile* C = phase->C;
  1963   int unit = BytesPerLong;
  1964   Node* zbase = start_offset;
  1965   Node* zend  = end_offset;
  1967   // Scale to the unit required by the CPU:
  1968   if (!Matcher::init_array_count_is_in_bytes) {
  1969     Node* shift = phase->intcon(exact_log2(unit));
  1970     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  1971     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  1974   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  1975   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  1977   // Bulk clear double-words
  1978   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  1979   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  1980   return phase->transform(mem);
  1983 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1984                                    intptr_t start_offset,
  1985                                    intptr_t end_offset,
  1986                                    PhaseGVN* phase) {
  1987   if (start_offset == end_offset) {
  1988     // nothing to do
  1989     return mem;
  1992   Compile* C = phase->C;
  1993   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  1994   intptr_t done_offset = end_offset;
  1995   if ((done_offset % BytesPerLong) != 0) {
  1996     done_offset -= BytesPerInt;
  1998   if (done_offset > start_offset) {
  1999     mem = clear_memory(ctl, mem, dest,
  2000                        start_offset, phase->MakeConX(done_offset), phase);
  2002   if (done_offset < end_offset) { // emit the final 32-bit store
  2003     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2004     adr = phase->transform(adr);
  2005     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2006     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2007     mem = phase->transform(mem);
  2008     done_offset += BytesPerInt;
  2010   assert(done_offset == end_offset, "");
  2011   return mem;
  2014 //=============================================================================
  2015 // Do we match on this edge? No memory edges
  2016 uint StrCompNode::match_edge(uint idx) const {
  2017   return idx == 5 || idx == 6;
  2020 //------------------------------Ideal------------------------------------------
  2021 // Return a node which is more "ideal" than the current node.  Strip out
  2022 // control copies
  2023 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2024   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2028 //=============================================================================
  2029 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2030   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2031     _adr_type(C->get_adr_type(alias_idx))
  2033   init_class_id(Class_MemBar);
  2034   Node* top = C->top();
  2035   init_req(TypeFunc::I_O,top);
  2036   init_req(TypeFunc::FramePtr,top);
  2037   init_req(TypeFunc::ReturnAdr,top);
  2038   if (precedent != NULL)
  2039     init_req(TypeFunc::Parms, precedent);
  2042 //------------------------------cmp--------------------------------------------
  2043 uint MemBarNode::hash() const { return NO_HASH; }
  2044 uint MemBarNode::cmp( const Node &n ) const {
  2045   return (&n == this);          // Always fail except on self
  2048 //------------------------------make-------------------------------------------
  2049 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2050   int len = Precedent + (pn == NULL? 0: 1);
  2051   switch (opcode) {
  2052   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2053   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2054   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2055   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2056   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2057   default:                 ShouldNotReachHere(); return NULL;
  2061 //------------------------------Ideal------------------------------------------
  2062 // Return a node which is more "ideal" than the current node.  Strip out
  2063 // control copies
  2064 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2065   if (remove_dead_region(phase, can_reshape))  return this;
  2066   return NULL;
  2069 //------------------------------Value------------------------------------------
  2070 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2071   if( !in(0) ) return Type::TOP;
  2072   if( phase->type(in(0)) == Type::TOP )
  2073     return Type::TOP;
  2074   return TypeTuple::MEMBAR;
  2077 //------------------------------match------------------------------------------
  2078 // Construct projections for memory.
  2079 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2080   switch (proj->_con) {
  2081   case TypeFunc::Control:
  2082   case TypeFunc::Memory:
  2083     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2085   ShouldNotReachHere();
  2086   return NULL;
  2089 //===========================InitializeNode====================================
  2090 // SUMMARY:
  2091 // This node acts as a memory barrier on raw memory, after some raw stores.
  2092 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2093 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2094 // It can coalesce related raw stores into larger units (called 'tiles').
  2095 // It can avoid zeroing new storage for memory units which have raw inits.
  2096 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2097 //
  2098 // EXAMPLE:
  2099 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2100 //   ctl = incoming control; mem* = incoming memory
  2101 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2102 // First allocate uninitialized memory and fill in the header:
  2103 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2104 //   ctl := alloc.Control; mem* := alloc.Memory*
  2105 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2106 // Then initialize to zero the non-header parts of the raw memory block:
  2107 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2108 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2109 // After the initialize node executes, the object is ready for service:
  2110 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2111 // Suppose its body is immediately initialized as {1,2}:
  2112 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2113 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2114 //   mem.SLICE(#short[*]) := store2
  2115 //
  2116 // DETAILS:
  2117 // An InitializeNode collects and isolates object initialization after
  2118 // an AllocateNode and before the next possible safepoint.  As a
  2119 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2120 // down past any safepoint or any publication of the allocation.
  2121 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2122 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2123 //
  2124 // The semantics of the InitializeNode include an implicit zeroing of
  2125 // the new object from object header to the end of the object.
  2126 // (The object header and end are determined by the AllocateNode.)
  2127 //
  2128 // Certain stores may be added as direct inputs to the InitializeNode.
  2129 // These stores must update raw memory, and they must be to addresses
  2130 // derived from the raw address produced by AllocateNode, and with
  2131 // a constant offset.  They must be ordered by increasing offset.
  2132 // The first one is at in(RawStores), the last at in(req()-1).
  2133 // Unlike most memory operations, they are not linked in a chain,
  2134 // but are displayed in parallel as users of the rawmem output of
  2135 // the allocation.
  2136 //
  2137 // (See comments in InitializeNode::capture_store, which continue
  2138 // the example given above.)
  2139 //
  2140 // When the associated Allocate is macro-expanded, the InitializeNode
  2141 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2142 // may also be created at that point to represent any required zeroing.
  2143 // The InitializeNode is then marked 'complete', prohibiting further
  2144 // capturing of nearby memory operations.
  2145 //
  2146 // During macro-expansion, all captured initializations which store
  2147 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2148 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2149 // initialized in fewer memory operations.  Memory words which are
  2150 // covered by neither tiles nor non-constant stores are pre-zeroed
  2151 // by explicit stores of zero.  (The code shape happens to do all
  2152 // zeroing first, then all other stores, with both sequences occurring
  2153 // in order of ascending offsets.)
  2154 //
  2155 // Alternatively, code may be inserted between an AllocateNode and its
  2156 // InitializeNode, to perform arbitrary initialization of the new object.
  2157 // E.g., the object copying intrinsics insert complex data transfers here.
  2158 // The initialization must then be marked as 'complete' disable the
  2159 // built-in zeroing semantics and the collection of initializing stores.
  2160 //
  2161 // While an InitializeNode is incomplete, reads from the memory state
  2162 // produced by it are optimizable if they match the control edge and
  2163 // new oop address associated with the allocation/initialization.
  2164 // They return a stored value (if the offset matches) or else zero.
  2165 // A write to the memory state, if it matches control and address,
  2166 // and if it is to a constant offset, may be 'captured' by the
  2167 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2168 // inside the initialization, to the raw oop produced by the allocation.
  2169 // Operations on addresses which are provably distinct (e.g., to
  2170 // other AllocateNodes) are allowed to bypass the initialization.
  2171 //
  2172 // The effect of all this is to consolidate object initialization
  2173 // (both arrays and non-arrays, both piecewise and bulk) into a
  2174 // single location, where it can be optimized as a unit.
  2175 //
  2176 // Only stores with an offset less than TrackedInitializationLimit words
  2177 // will be considered for capture by an InitializeNode.  This puts a
  2178 // reasonable limit on the complexity of optimized initializations.
  2180 //---------------------------InitializeNode------------------------------------
  2181 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2182   : _is_complete(false),
  2183     MemBarNode(C, adr_type, rawoop)
  2185   init_class_id(Class_Initialize);
  2187   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2188   assert(in(RawAddress) == rawoop, "proper init");
  2189   // Note:  allocation() can be NULL, for secondary initialization barriers
  2192 // Since this node is not matched, it will be processed by the
  2193 // register allocator.  Declare that there are no constraints
  2194 // on the allocation of the RawAddress edge.
  2195 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2196   // This edge should be set to top, by the set_complete.  But be conservative.
  2197   if (idx == InitializeNode::RawAddress)
  2198     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2199   return RegMask::Empty;
  2202 Node* InitializeNode::memory(uint alias_idx) {
  2203   Node* mem = in(Memory);
  2204   if (mem->is_MergeMem()) {
  2205     return mem->as_MergeMem()->memory_at(alias_idx);
  2206   } else {
  2207     // incoming raw memory is not split
  2208     return mem;
  2212 bool InitializeNode::is_non_zero() {
  2213   if (is_complete())  return false;
  2214   remove_extra_zeroes();
  2215   return (req() > RawStores);
  2218 void InitializeNode::set_complete(PhaseGVN* phase) {
  2219   assert(!is_complete(), "caller responsibility");
  2220   _is_complete = true;
  2222   // After this node is complete, it contains a bunch of
  2223   // raw-memory initializations.  There is no need for
  2224   // it to have anything to do with non-raw memory effects.
  2225   // Therefore, tell all non-raw users to re-optimize themselves,
  2226   // after skipping the memory effects of this initialization.
  2227   PhaseIterGVN* igvn = phase->is_IterGVN();
  2228   if (igvn)  igvn->add_users_to_worklist(this);
  2231 // convenience function
  2232 // return false if the init contains any stores already
  2233 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2234   InitializeNode* init = initialization();
  2235   if (init == NULL || init->is_complete())  return false;
  2236   init->remove_extra_zeroes();
  2237   // for now, if this allocation has already collected any inits, bail:
  2238   if (init->is_non_zero())  return false;
  2239   init->set_complete(phase);
  2240   return true;
  2243 void InitializeNode::remove_extra_zeroes() {
  2244   if (req() == RawStores)  return;
  2245   Node* zmem = zero_memory();
  2246   uint fill = RawStores;
  2247   for (uint i = fill; i < req(); i++) {
  2248     Node* n = in(i);
  2249     if (n->is_top() || n == zmem)  continue;  // skip
  2250     if (fill < i)  set_req(fill, n);          // compact
  2251     ++fill;
  2253   // delete any empty spaces created:
  2254   while (fill < req()) {
  2255     del_req(fill);
  2259 // Helper for remembering which stores go with which offsets.
  2260 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2261   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2262   intptr_t offset = -1;
  2263   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2264                                                phase, offset);
  2265   if (base == NULL)     return -1;  // something is dead,
  2266   if (offset < 0)       return -1;  //        dead, dead
  2267   return offset;
  2270 // Helper for proving that an initialization expression is
  2271 // "simple enough" to be folded into an object initialization.
  2272 // Attempts to prove that a store's initial value 'n' can be captured
  2273 // within the initialization without creating a vicious cycle, such as:
  2274 //     { Foo p = new Foo(); p.next = p; }
  2275 // True for constants and parameters and small combinations thereof.
  2276 bool InitializeNode::detect_init_independence(Node* n,
  2277                                               bool st_is_pinned,
  2278                                               int& count) {
  2279   if (n == NULL)      return true;   // (can this really happen?)
  2280   if (n->is_Proj())   n = n->in(0);
  2281   if (n == this)      return false;  // found a cycle
  2282   if (n->is_Con())    return true;
  2283   if (n->is_Start())  return true;   // params, etc., are OK
  2284   if (n->is_Root())   return true;   // even better
  2286   Node* ctl = n->in(0);
  2287   if (ctl != NULL && !ctl->is_top()) {
  2288     if (ctl->is_Proj())  ctl = ctl->in(0);
  2289     if (ctl == this)  return false;
  2291     // If we already know that the enclosing memory op is pinned right after
  2292     // the init, then any control flow that the store has picked up
  2293     // must have preceded the init, or else be equal to the init.
  2294     // Even after loop optimizations (which might change control edges)
  2295     // a store is never pinned *before* the availability of its inputs.
  2296     if (!MemNode::detect_dominating_control(ctl, this->in(0)))
  2297       return false;                  // failed to prove a good control
  2301   // Check data edges for possible dependencies on 'this'.
  2302   if ((count += 1) > 20)  return false;  // complexity limit
  2303   for (uint i = 1; i < n->req(); i++) {
  2304     Node* m = n->in(i);
  2305     if (m == NULL || m == n || m->is_top())  continue;
  2306     uint first_i = n->find_edge(m);
  2307     if (i != first_i)  continue;  // process duplicate edge just once
  2308     if (!detect_init_independence(m, st_is_pinned, count)) {
  2309       return false;
  2313   return true;
  2316 // Here are all the checks a Store must pass before it can be moved into
  2317 // an initialization.  Returns zero if a check fails.
  2318 // On success, returns the (constant) offset to which the store applies,
  2319 // within the initialized memory.
  2320 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2321   const int FAIL = 0;
  2322   if (st->req() != MemNode::ValueIn + 1)
  2323     return FAIL;                // an inscrutable StoreNode (card mark?)
  2324   Node* ctl = st->in(MemNode::Control);
  2325   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2326     return FAIL;                // must be unconditional after the initialization
  2327   Node* mem = st->in(MemNode::Memory);
  2328   if (!(mem->is_Proj() && mem->in(0) == this))
  2329     return FAIL;                // must not be preceded by other stores
  2330   Node* adr = st->in(MemNode::Address);
  2331   intptr_t offset;
  2332   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2333   if (alloc == NULL)
  2334     return FAIL;                // inscrutable address
  2335   if (alloc != allocation())
  2336     return FAIL;                // wrong allocation!  (store needs to float up)
  2337   Node* val = st->in(MemNode::ValueIn);
  2338   int complexity_count = 0;
  2339   if (!detect_init_independence(val, true, complexity_count))
  2340     return FAIL;                // stored value must be 'simple enough'
  2342   return offset;                // success
  2345 // Find the captured store in(i) which corresponds to the range
  2346 // [start..start+size) in the initialized object.
  2347 // If there is one, return its index i.  If there isn't, return the
  2348 // negative of the index where it should be inserted.
  2349 // Return 0 if the queried range overlaps an initialization boundary
  2350 // or if dead code is encountered.
  2351 // If size_in_bytes is zero, do not bother with overlap checks.
  2352 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2353                                                    int size_in_bytes,
  2354                                                    PhaseTransform* phase) {
  2355   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2357   if (is_complete())
  2358     return FAIL;                // arraycopy got here first; punt
  2360   assert(allocation() != NULL, "must be present");
  2362   // no negatives, no header fields:
  2363   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2364   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2365       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2367   // after a certain size, we bail out on tracking all the stores:
  2368   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2369   if (start >= ti_limit)  return FAIL;
  2371   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2372     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2374     Node*    st     = in(i);
  2375     intptr_t st_off = get_store_offset(st, phase);
  2376     if (st_off < 0) {
  2377       if (st != zero_memory()) {
  2378         return FAIL;            // bail out if there is dead garbage
  2380     } else if (st_off > start) {
  2381       // ...we are done, since stores are ordered
  2382       if (st_off < start + size_in_bytes) {
  2383         return FAIL;            // the next store overlaps
  2385       return -(int)i;           // not found; here is where to put it
  2386     } else if (st_off < start) {
  2387       if (size_in_bytes != 0 &&
  2388           start < st_off + MAX_STORE &&
  2389           start < st_off + st->as_Store()->memory_size()) {
  2390         return FAIL;            // the previous store overlaps
  2392     } else {
  2393       if (size_in_bytes != 0 &&
  2394           st->as_Store()->memory_size() != size_in_bytes) {
  2395         return FAIL;            // mismatched store size
  2397       return i;
  2400     ++i;
  2404 // Look for a captured store which initializes at the offset 'start'
  2405 // with the given size.  If there is no such store, and no other
  2406 // initialization interferes, then return zero_memory (the memory
  2407 // projection of the AllocateNode).
  2408 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2409                                           PhaseTransform* phase) {
  2410   assert(stores_are_sane(phase), "");
  2411   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2412   if (i == 0) {
  2413     return NULL;                // something is dead
  2414   } else if (i < 0) {
  2415     return zero_memory();       // just primordial zero bits here
  2416   } else {
  2417     Node* st = in(i);           // here is the store at this position
  2418     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2419     return st;
  2423 // Create, as a raw pointer, an address within my new object at 'offset'.
  2424 Node* InitializeNode::make_raw_address(intptr_t offset,
  2425                                        PhaseTransform* phase) {
  2426   Node* addr = in(RawAddress);
  2427   if (offset != 0) {
  2428     Compile* C = phase->C;
  2429     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2430                                                  phase->MakeConX(offset)) );
  2432   return addr;
  2435 // Clone the given store, converting it into a raw store
  2436 // initializing a field or element of my new object.
  2437 // Caller is responsible for retiring the original store,
  2438 // with subsume_node or the like.
  2439 //
  2440 // From the example above InitializeNode::InitializeNode,
  2441 // here are the old stores to be captured:
  2442 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2443 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2444 //
  2445 // Here is the changed code; note the extra edges on init:
  2446 //   alloc = (Allocate ...)
  2447 //   rawoop = alloc.RawAddress
  2448 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2449 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2450 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2451 //                      rawstore1 rawstore2)
  2452 //
  2453 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2454                                     PhaseTransform* phase) {
  2455   assert(stores_are_sane(phase), "");
  2457   if (start < 0)  return NULL;
  2458   assert(can_capture_store(st, phase) == start, "sanity");
  2460   Compile* C = phase->C;
  2461   int size_in_bytes = st->memory_size();
  2462   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2463   if (i == 0)  return NULL;     // bail out
  2464   Node* prev_mem = NULL;        // raw memory for the captured store
  2465   if (i > 0) {
  2466     prev_mem = in(i);           // there is a pre-existing store under this one
  2467     set_req(i, C->top());       // temporarily disconnect it
  2468     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2469   } else {
  2470     i = -i;                     // no pre-existing store
  2471     prev_mem = zero_memory();   // a slice of the newly allocated object
  2472     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2473       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2474     else
  2475       ins_req(i, C->top());     // build a new edge
  2477   Node* new_st = st->clone();
  2478   new_st->set_req(MemNode::Control, in(Control));
  2479   new_st->set_req(MemNode::Memory,  prev_mem);
  2480   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2481   new_st = phase->transform(new_st);
  2483   // At this point, new_st might have swallowed a pre-existing store
  2484   // at the same offset, or perhaps new_st might have disappeared,
  2485   // if it redundantly stored the same value (or zero to fresh memory).
  2487   // In any case, wire it in:
  2488   set_req(i, new_st);
  2490   // The caller may now kill the old guy.
  2491   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2492   assert(check_st == new_st || check_st == NULL, "must be findable");
  2493   assert(!is_complete(), "");
  2494   return new_st;
  2497 static bool store_constant(jlong* tiles, int num_tiles,
  2498                            intptr_t st_off, int st_size,
  2499                            jlong con) {
  2500   if ((st_off & (st_size-1)) != 0)
  2501     return false;               // strange store offset (assume size==2**N)
  2502   address addr = (address)tiles + st_off;
  2503   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2504   switch (st_size) {
  2505   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2506   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2507   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2508   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2509   default: return false;        // strange store size (detect size!=2**N here)
  2511   return true;                  // return success to caller
  2514 // Coalesce subword constants into int constants and possibly
  2515 // into long constants.  The goal, if the CPU permits,
  2516 // is to initialize the object with a small number of 64-bit tiles.
  2517 // Also, convert floating-point constants to bit patterns.
  2518 // Non-constants are not relevant to this pass.
  2519 //
  2520 // In terms of the running example on InitializeNode::InitializeNode
  2521 // and InitializeNode::capture_store, here is the transformation
  2522 // of rawstore1 and rawstore2 into rawstore12:
  2523 //   alloc = (Allocate ...)
  2524 //   rawoop = alloc.RawAddress
  2525 //   tile12 = 0x00010002
  2526 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2527 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2528 //
  2529 void
  2530 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2531                                         Node* size_in_bytes,
  2532                                         PhaseGVN* phase) {
  2533   Compile* C = phase->C;
  2535   assert(stores_are_sane(phase), "");
  2536   // Note:  After this pass, they are not completely sane,
  2537   // since there may be some overlaps.
  2539   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2541   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2542   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2543   size_limit = MIN2(size_limit, ti_limit);
  2544   size_limit = align_size_up(size_limit, BytesPerLong);
  2545   int num_tiles = size_limit / BytesPerLong;
  2547   // allocate space for the tile map:
  2548   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2549   jlong  tiles_buf[small_len];
  2550   Node*  nodes_buf[small_len];
  2551   jlong  inits_buf[small_len];
  2552   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2553                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2554   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2555                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2556   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2557                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2558   // tiles: exact bitwise model of all primitive constants
  2559   // nodes: last constant-storing node subsumed into the tiles model
  2560   // inits: which bytes (in each tile) are touched by any initializations
  2562   //// Pass A: Fill in the tile model with any relevant stores.
  2564   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2565   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2566   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2567   Node* zmem = zero_memory(); // initially zero memory state
  2568   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2569     Node* st = in(i);
  2570     intptr_t st_off = get_store_offset(st, phase);
  2572     // Figure out the store's offset and constant value:
  2573     if (st_off < header_size)             continue; //skip (ignore header)
  2574     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2575     int st_size = st->as_Store()->memory_size();
  2576     if (st_off + st_size > size_limit)    break;
  2578     // Record which bytes are touched, whether by constant or not.
  2579     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2580       continue;                 // skip (strange store size)
  2582     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2583     if (!val->singleton())                continue; //skip (non-con store)
  2584     BasicType type = val->basic_type();
  2586     jlong con = 0;
  2587     switch (type) {
  2588     case T_INT:    con = val->is_int()->get_con();  break;
  2589     case T_LONG:   con = val->is_long()->get_con(); break;
  2590     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2591     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2592     default:                              continue; //skip (odd store type)
  2595     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2596         st->Opcode() == Op_StoreL) {
  2597       continue;                 // This StoreL is already optimal.
  2600     // Store down the constant.
  2601     store_constant(tiles, num_tiles, st_off, st_size, con);
  2603     intptr_t j = st_off >> LogBytesPerLong;
  2605     if (type == T_INT && st_size == BytesPerInt
  2606         && (st_off & BytesPerInt) == BytesPerInt) {
  2607       jlong lcon = tiles[j];
  2608       if (!Matcher::isSimpleConstant64(lcon) &&
  2609           st->Opcode() == Op_StoreI) {
  2610         // This StoreI is already optimal by itself.
  2611         jint* intcon = (jint*) &tiles[j];
  2612         intcon[1] = 0;  // undo the store_constant()
  2614         // If the previous store is also optimal by itself, back up and
  2615         // undo the action of the previous loop iteration... if we can.
  2616         // But if we can't, just let the previous half take care of itself.
  2617         st = nodes[j];
  2618         st_off -= BytesPerInt;
  2619         con = intcon[0];
  2620         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2621           assert(st_off >= header_size, "still ignoring header");
  2622           assert(get_store_offset(st, phase) == st_off, "must be");
  2623           assert(in(i-1) == zmem, "must be");
  2624           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2625           assert(con == tcon->is_int()->get_con(), "must be");
  2626           // Undo the effects of the previous loop trip, which swallowed st:
  2627           intcon[0] = 0;        // undo store_constant()
  2628           set_req(i-1, st);     // undo set_req(i, zmem)
  2629           nodes[j] = NULL;      // undo nodes[j] = st
  2630           --old_subword;        // undo ++old_subword
  2632         continue;               // This StoreI is already optimal.
  2636     // This store is not needed.
  2637     set_req(i, zmem);
  2638     nodes[j] = st;              // record for the moment
  2639     if (st_size < BytesPerLong) // something has changed
  2640           ++old_subword;        // includes int/float, but who's counting...
  2641     else  ++old_long;
  2644   if ((old_subword + old_long) == 0)
  2645     return;                     // nothing more to do
  2647   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2648   // Be sure to insert them before overlapping non-constant stores.
  2649   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2650   for (int j = 0; j < num_tiles; j++) {
  2651     jlong con  = tiles[j];
  2652     jlong init = inits[j];
  2653     if (con == 0)  continue;
  2654     jint con0,  con1;           // split the constant, address-wise
  2655     jint init0, init1;          // split the init map, address-wise
  2656     { union { jlong con; jint intcon[2]; } u;
  2657       u.con = con;
  2658       con0  = u.intcon[0];
  2659       con1  = u.intcon[1];
  2660       u.con = init;
  2661       init0 = u.intcon[0];
  2662       init1 = u.intcon[1];
  2665     Node* old = nodes[j];
  2666     assert(old != NULL, "need the prior store");
  2667     intptr_t offset = (j * BytesPerLong);
  2669     bool split = !Matcher::isSimpleConstant64(con);
  2671     if (offset < header_size) {
  2672       assert(offset + BytesPerInt >= header_size, "second int counts");
  2673       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2674       split = true;             // only the second word counts
  2675       // Example:  int a[] = { 42 ... }
  2676     } else if (con0 == 0 && init0 == -1) {
  2677       split = true;             // first word is covered by full inits
  2678       // Example:  int a[] = { ... foo(), 42 ... }
  2679     } else if (con1 == 0 && init1 == -1) {
  2680       split = true;             // second word is covered by full inits
  2681       // Example:  int a[] = { ... 42, foo() ... }
  2684     // Here's a case where init0 is neither 0 nor -1:
  2685     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2686     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2687     // In this case the tile is not split; it is (jlong)42.
  2688     // The big tile is stored down, and then the foo() value is inserted.
  2689     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2691     Node* ctl = old->in(MemNode::Control);
  2692     Node* adr = make_raw_address(offset, phase);
  2693     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2695     // One or two coalesced stores to plop down.
  2696     Node*    st[2];
  2697     intptr_t off[2];
  2698     int  nst = 0;
  2699     if (!split) {
  2700       ++new_long;
  2701       off[nst] = offset;
  2702       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2703                                   phase->longcon(con), T_LONG);
  2704     } else {
  2705       // Omit either if it is a zero.
  2706       if (con0 != 0) {
  2707         ++new_int;
  2708         off[nst]  = offset;
  2709         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2710                                     phase->intcon(con0), T_INT);
  2712       if (con1 != 0) {
  2713         ++new_int;
  2714         offset += BytesPerInt;
  2715         adr = make_raw_address(offset, phase);
  2716         off[nst]  = offset;
  2717         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2718                                     phase->intcon(con1), T_INT);
  2722     // Insert second store first, then the first before the second.
  2723     // Insert each one just before any overlapping non-constant stores.
  2724     while (nst > 0) {
  2725       Node* st1 = st[--nst];
  2726       C->copy_node_notes_to(st1, old);
  2727       st1 = phase->transform(st1);
  2728       offset = off[nst];
  2729       assert(offset >= header_size, "do not smash header");
  2730       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2731       guarantee(ins_idx != 0, "must re-insert constant store");
  2732       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2733       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2734         set_req(--ins_idx, st1);
  2735       else
  2736         ins_req(ins_idx, st1);
  2740   if (PrintCompilation && WizardMode)
  2741     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2742                   old_subword, old_long, new_int, new_long);
  2743   if (C->log() != NULL)
  2744     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2745                    old_subword, old_long, new_int, new_long);
  2747   // Clean up any remaining occurrences of zmem:
  2748   remove_extra_zeroes();
  2751 // Explore forward from in(start) to find the first fully initialized
  2752 // word, and return its offset.  Skip groups of subword stores which
  2753 // together initialize full words.  If in(start) is itself part of a
  2754 // fully initialized word, return the offset of in(start).  If there
  2755 // are no following full-word stores, or if something is fishy, return
  2756 // a negative value.
  2757 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  2758   int       int_map = 0;
  2759   intptr_t  int_map_off = 0;
  2760   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  2762   for (uint i = start, limit = req(); i < limit; i++) {
  2763     Node* st = in(i);
  2765     intptr_t st_off = get_store_offset(st, phase);
  2766     if (st_off < 0)  break;  // return conservative answer
  2768     int st_size = st->as_Store()->memory_size();
  2769     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  2770       return st_off;            // we found a complete word init
  2773     // update the map:
  2775     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  2776     if (this_int_off != int_map_off) {
  2777       // reset the map:
  2778       int_map = 0;
  2779       int_map_off = this_int_off;
  2782     int subword_off = st_off - this_int_off;
  2783     int_map |= right_n_bits(st_size) << subword_off;
  2784     if ((int_map & FULL_MAP) == FULL_MAP) {
  2785       return this_int_off;      // we found a complete word init
  2788     // Did this store hit or cross the word boundary?
  2789     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  2790     if (next_int_off == this_int_off + BytesPerInt) {
  2791       // We passed the current int, without fully initializing it.
  2792       int_map_off = next_int_off;
  2793       int_map >>= BytesPerInt;
  2794     } else if (next_int_off > this_int_off + BytesPerInt) {
  2795       // We passed the current and next int.
  2796       return this_int_off + BytesPerInt;
  2800   return -1;
  2804 // Called when the associated AllocateNode is expanded into CFG.
  2805 // At this point, we may perform additional optimizations.
  2806 // Linearize the stores by ascending offset, to make memory
  2807 // activity as coherent as possible.
  2808 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  2809                                       intptr_t header_size,
  2810                                       Node* size_in_bytes,
  2811                                       PhaseGVN* phase) {
  2812   assert(!is_complete(), "not already complete");
  2813   assert(stores_are_sane(phase), "");
  2814   assert(allocation() != NULL, "must be present");
  2816   remove_extra_zeroes();
  2818   if (ReduceFieldZeroing || ReduceBulkZeroing)
  2819     // reduce instruction count for common initialization patterns
  2820     coalesce_subword_stores(header_size, size_in_bytes, phase);
  2822   Node* zmem = zero_memory();   // initially zero memory state
  2823   Node* inits = zmem;           // accumulating a linearized chain of inits
  2824   #ifdef ASSERT
  2825   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  2826   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  2827   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  2828   #endif
  2829   intptr_t zeroes_done = header_size;
  2831   bool do_zeroing = true;       // we might give up if inits are very sparse
  2832   int  big_init_gaps = 0;       // how many large gaps have we seen?
  2834   if (ZeroTLAB)  do_zeroing = false;
  2835   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  2837   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2838     Node* st = in(i);
  2839     intptr_t st_off = get_store_offset(st, phase);
  2840     if (st_off < 0)
  2841       break;                    // unknown junk in the inits
  2842     if (st->in(MemNode::Memory) != zmem)
  2843       break;                    // complicated store chains somehow in list
  2845     int st_size = st->as_Store()->memory_size();
  2846     intptr_t next_init_off = st_off + st_size;
  2848     if (do_zeroing && zeroes_done < next_init_off) {
  2849       // See if this store needs a zero before it or under it.
  2850       intptr_t zeroes_needed = st_off;
  2852       if (st_size < BytesPerInt) {
  2853         // Look for subword stores which only partially initialize words.
  2854         // If we find some, we must lay down some word-level zeroes first,
  2855         // underneath the subword stores.
  2856         //
  2857         // Examples:
  2858         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  2859         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  2860         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  2861         //
  2862         // Note:  coalesce_subword_stores may have already done this,
  2863         // if it was prompted by constant non-zero subword initializers.
  2864         // But this case can still arise with non-constant stores.
  2866         intptr_t next_full_store = find_next_fullword_store(i, phase);
  2868         // In the examples above:
  2869         //   in(i)          p   q   r   s     x   y     z
  2870         //   st_off        12  13  14  15    12  13    14
  2871         //   st_size        1   1   1   1     1   1     1
  2872         //   next_full_s.  12  16  16  16    16  16    16
  2873         //   z's_done      12  16  16  16    12  16    12
  2874         //   z's_needed    12  16  16  16    16  16    16
  2875         //   zsize          0   0   0   0     4   0     4
  2876         if (next_full_store < 0) {
  2877           // Conservative tack:  Zero to end of current word.
  2878           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  2879         } else {
  2880           // Zero to beginning of next fully initialized word.
  2881           // Or, don't zero at all, if we are already in that word.
  2882           assert(next_full_store >= zeroes_needed, "must go forward");
  2883           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  2884           zeroes_needed = next_full_store;
  2888       if (zeroes_needed > zeroes_done) {
  2889         intptr_t zsize = zeroes_needed - zeroes_done;
  2890         // Do some incremental zeroing on rawmem, in parallel with inits.
  2891         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2892         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2893                                               zeroes_done, zeroes_needed,
  2894                                               phase);
  2895         zeroes_done = zeroes_needed;
  2896         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  2897           do_zeroing = false;   // leave the hole, next time
  2901     // Collect the store and move on:
  2902     st->set_req(MemNode::Memory, inits);
  2903     inits = st;                 // put it on the linearized chain
  2904     set_req(i, zmem);           // unhook from previous position
  2906     if (zeroes_done == st_off)
  2907       zeroes_done = next_init_off;
  2909     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  2911     #ifdef ASSERT
  2912     // Various order invariants.  Weaker than stores_are_sane because
  2913     // a large constant tile can be filled in by smaller non-constant stores.
  2914     assert(st_off >= last_init_off, "inits do not reverse");
  2915     last_init_off = st_off;
  2916     const Type* val = NULL;
  2917     if (st_size >= BytesPerInt &&
  2918         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  2919         (int)val->basic_type() < (int)T_OBJECT) {
  2920       assert(st_off >= last_tile_end, "tiles do not overlap");
  2921       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  2922       last_tile_end = MAX2(last_tile_end, next_init_off);
  2923     } else {
  2924       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  2925       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  2926       assert(st_off      >= last_init_end, "inits do not overlap");
  2927       last_init_end = next_init_off;  // it's a non-tile
  2929     #endif //ASSERT
  2932   remove_extra_zeroes();        // clear out all the zmems left over
  2933   add_req(inits);
  2935   if (!ZeroTLAB) {
  2936     // If anything remains to be zeroed, zero it all now.
  2937     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2938     // if it is the last unused 4 bytes of an instance, forget about it
  2939     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  2940     if (zeroes_done + BytesPerLong >= size_limit) {
  2941       assert(allocation() != NULL, "");
  2942       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  2943       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  2944       if (zeroes_done == k->layout_helper())
  2945         zeroes_done = size_limit;
  2947     if (zeroes_done < size_limit) {
  2948       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2949                                             zeroes_done, size_in_bytes, phase);
  2953   set_complete(phase);
  2954   return rawmem;
  2958 #ifdef ASSERT
  2959 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  2960   if (is_complete())
  2961     return true;                // stores could be anything at this point
  2962   intptr_t last_off = sizeof(oopDesc);
  2963   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  2964     Node* st = in(i);
  2965     intptr_t st_off = get_store_offset(st, phase);
  2966     if (st_off < 0)  continue;  // ignore dead garbage
  2967     if (last_off > st_off) {
  2968       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  2969       this->dump(2);
  2970       assert(false, "ascending store offsets");
  2971       return false;
  2973     last_off = st_off + st->as_Store()->memory_size();
  2975   return true;
  2977 #endif //ASSERT
  2982 //============================MergeMemNode=====================================
  2983 //
  2984 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  2985 // contributing store or call operations.  Each contributor provides the memory
  2986 // state for a particular "alias type" (see Compile::alias_type).  For example,
  2987 // if a MergeMem has an input X for alias category #6, then any memory reference
  2988 // to alias category #6 may use X as its memory state input, as an exact equivalent
  2989 // to using the MergeMem as a whole.
  2990 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  2991 //
  2992 // (Here, the <N> notation gives the index of the relevant adr_type.)
  2993 //
  2994 // In one special case (and more cases in the future), alias categories overlap.
  2995 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  2996 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  2997 // it is exactly equivalent to that state W:
  2998 //   MergeMem(<Bot>: W) <==> W
  2999 //
  3000 // Usually, the merge has more than one input.  In that case, where inputs
  3001 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3002 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3003 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3004 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3005 //
  3006 // A merge can take a "wide" memory state as one of its narrow inputs.
  3007 // This simply means that the merge observes out only the relevant parts of
  3008 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3009 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3010 //
  3011 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3012 // and that memory slices "leak through":
  3013 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3014 //
  3015 // But, in such a cascade, repeated memory slices can "block the leak":
  3016 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3017 //
  3018 // In the last example, Y is not part of the combined memory state of the
  3019 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3020 // memory states from arising, so you can be sure that the state Y is somehow
  3021 // a precursor to state Y'.
  3022 //
  3023 //
  3024 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3025 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3026 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3027 // Compile::alias_type (and kin) produce and manage these indexes.
  3028 //
  3029 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3030 // (Note that this provides quick access to the top node inside MergeMem methods,
  3031 // without the need to reach out via TLS to Compile::current.)
  3032 //
  3033 // As a consequence of what was just described, a MergeMem that represents a full
  3034 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3035 // containing all alias categories.
  3036 //
  3037 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3038 //
  3039 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3040 // a memory state for the alias type <N>, or else the top node, meaning that
  3041 // there is no particular input for that alias type.  Note that the length of
  3042 // a MergeMem is variable, and may be extended at any time to accommodate new
  3043 // memory states at larger alias indexes.  When merges grow, they are of course
  3044 // filled with "top" in the unused in() positions.
  3045 //
  3046 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3047 // (Top was chosen because it works smoothly with passes like GCM.)
  3048 //
  3049 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3050 // the type of random VM bits like TLS references.)  Since it is always the
  3051 // first non-Bot memory slice, some low-level loops use it to initialize an
  3052 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3053 //
  3054 //
  3055 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3056 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3057 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3058 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3059 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3060 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3061 //
  3062 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3063 // really that different from the other memory inputs.  An abbreviation called
  3064 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3065 //
  3066 //
  3067 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3068 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3069 // that "emerges though" the base memory will be marked as excluding the alias types
  3070 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3071 //
  3072 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3073 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3074 //
  3075 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3076 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3077 // actually a disjoint union of memory states, rather than an overlay.
  3078 //
  3080 //------------------------------MergeMemNode-----------------------------------
  3081 Node* MergeMemNode::make_empty_memory() {
  3082   Node* empty_memory = (Node*) Compile::current()->top();
  3083   assert(empty_memory->is_top(), "correct sentinel identity");
  3084   return empty_memory;
  3087 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3088   init_class_id(Class_MergeMem);
  3089   // all inputs are nullified in Node::Node(int)
  3090   // set_input(0, NULL);  // no control input
  3092   // Initialize the edges uniformly to top, for starters.
  3093   Node* empty_mem = make_empty_memory();
  3094   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3095     init_req(i,empty_mem);
  3097   assert(empty_memory() == empty_mem, "");
  3099   if( new_base != NULL && new_base->is_MergeMem() ) {
  3100     MergeMemNode* mdef = new_base->as_MergeMem();
  3101     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3102     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3103       mms.set_memory(mms.memory2());
  3105     assert(base_memory() == mdef->base_memory(), "");
  3106   } else {
  3107     set_base_memory(new_base);
  3111 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3112 // If mem is itself a MergeMem, populate the result with the same edges.
  3113 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3114   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3117 //------------------------------cmp--------------------------------------------
  3118 uint MergeMemNode::hash() const { return NO_HASH; }
  3119 uint MergeMemNode::cmp( const Node &n ) const {
  3120   return (&n == this);          // Always fail except on self
  3123 //------------------------------Identity---------------------------------------
  3124 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3125   // Identity if this merge point does not record any interesting memory
  3126   // disambiguations.
  3127   Node* base_mem = base_memory();
  3128   Node* empty_mem = empty_memory();
  3129   if (base_mem != empty_mem) {  // Memory path is not dead?
  3130     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3131       Node* mem = in(i);
  3132       if (mem != empty_mem && mem != base_mem) {
  3133         return this;            // Many memory splits; no change
  3137   return base_mem;              // No memory splits; ID on the one true input
  3140 //------------------------------Ideal------------------------------------------
  3141 // This method is invoked recursively on chains of MergeMem nodes
  3142 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3143   // Remove chain'd MergeMems
  3144   //
  3145   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3146   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3147   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3148   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3149   Node *progress = NULL;
  3152   Node* old_base = base_memory();
  3153   Node* empty_mem = empty_memory();
  3154   if (old_base == empty_mem)
  3155     return NULL; // Dead memory path.
  3157   MergeMemNode* old_mbase;
  3158   if (old_base != NULL && old_base->is_MergeMem())
  3159     old_mbase = old_base->as_MergeMem();
  3160   else
  3161     old_mbase = NULL;
  3162   Node* new_base = old_base;
  3164   // simplify stacked MergeMems in base memory
  3165   if (old_mbase)  new_base = old_mbase->base_memory();
  3167   // the base memory might contribute new slices beyond my req()
  3168   if (old_mbase)  grow_to_match(old_mbase);
  3170   // Look carefully at the base node if it is a phi.
  3171   PhiNode* phi_base;
  3172   if (new_base != NULL && new_base->is_Phi())
  3173     phi_base = new_base->as_Phi();
  3174   else
  3175     phi_base = NULL;
  3177   Node*    phi_reg = NULL;
  3178   uint     phi_len = (uint)-1;
  3179   if (phi_base != NULL && !phi_base->is_copy()) {
  3180     // do not examine phi if degraded to a copy
  3181     phi_reg = phi_base->region();
  3182     phi_len = phi_base->req();
  3183     // see if the phi is unfinished
  3184     for (uint i = 1; i < phi_len; i++) {
  3185       if (phi_base->in(i) == NULL) {
  3186         // incomplete phi; do not look at it yet!
  3187         phi_reg = NULL;
  3188         phi_len = (uint)-1;
  3189         break;
  3194   // Note:  We do not call verify_sparse on entry, because inputs
  3195   // can normalize to the base_memory via subsume_node or similar
  3196   // mechanisms.  This method repairs that damage.
  3198   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3200   // Look at each slice.
  3201   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3202     Node* old_in = in(i);
  3203     // calculate the old memory value
  3204     Node* old_mem = old_in;
  3205     if (old_mem == empty_mem)  old_mem = old_base;
  3206     assert(old_mem == memory_at(i), "");
  3208     // maybe update (reslice) the old memory value
  3210     // simplify stacked MergeMems
  3211     Node* new_mem = old_mem;
  3212     MergeMemNode* old_mmem;
  3213     if (old_mem != NULL && old_mem->is_MergeMem())
  3214       old_mmem = old_mem->as_MergeMem();
  3215     else
  3216       old_mmem = NULL;
  3217     if (old_mmem == this) {
  3218       // This can happen if loops break up and safepoints disappear.
  3219       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3220       // safepoint can be rewritten to a merge of the same BotPtr with
  3221       // the BotPtr phi coming into the loop.  If that phi disappears
  3222       // also, we can end up with a self-loop of the mergemem.
  3223       // In general, if loops degenerate and memory effects disappear,
  3224       // a mergemem can be left looking at itself.  This simply means
  3225       // that the mergemem's default should be used, since there is
  3226       // no longer any apparent effect on this slice.
  3227       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3228       //       from start.  Update the input to TOP.
  3229       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3231     else if (old_mmem != NULL) {
  3232       new_mem = old_mmem->memory_at(i);
  3234     // else preceeding memory was not a MergeMem
  3236     // replace equivalent phis (unfortunately, they do not GVN together)
  3237     if (new_mem != NULL && new_mem != new_base &&
  3238         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3239       if (new_mem->is_Phi()) {
  3240         PhiNode* phi_mem = new_mem->as_Phi();
  3241         for (uint i = 1; i < phi_len; i++) {
  3242           if (phi_base->in(i) != phi_mem->in(i)) {
  3243             phi_mem = NULL;
  3244             break;
  3247         if (phi_mem != NULL) {
  3248           // equivalent phi nodes; revert to the def
  3249           new_mem = new_base;
  3254     // maybe store down a new value
  3255     Node* new_in = new_mem;
  3256     if (new_in == new_base)  new_in = empty_mem;
  3258     if (new_in != old_in) {
  3259       // Warning:  Do not combine this "if" with the previous "if"
  3260       // A memory slice might have be be rewritten even if it is semantically
  3261       // unchanged, if the base_memory value has changed.
  3262       set_req(i, new_in);
  3263       progress = this;          // Report progress
  3267   if (new_base != old_base) {
  3268     set_req(Compile::AliasIdxBot, new_base);
  3269     // Don't use set_base_memory(new_base), because we need to update du.
  3270     assert(base_memory() == new_base, "");
  3271     progress = this;
  3274   if( base_memory() == this ) {
  3275     // a self cycle indicates this memory path is dead
  3276     set_req(Compile::AliasIdxBot, empty_mem);
  3279   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3280   // Recursion must occur after the self cycle check above
  3281   if( base_memory()->is_MergeMem() ) {
  3282     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3283     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3284     if( m != NULL && (m->is_top() ||
  3285         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3286       // propagate rollup of dead cycle to self
  3287       set_req(Compile::AliasIdxBot, empty_mem);
  3291   if( base_memory() == empty_mem ) {
  3292     progress = this;
  3293     // Cut inputs during Parse phase only.
  3294     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3295     if( !can_reshape ) {
  3296       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3297         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3302   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3303     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3304     // transform should be attempted. Look for this->phi->this cycle.
  3305     uint merge_width = req();
  3306     if (merge_width > Compile::AliasIdxRaw) {
  3307       PhiNode* phi = base_memory()->as_Phi();
  3308       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3309         if (phi->in(i) == this) {
  3310           phase->is_IterGVN()->_worklist.push(phi);
  3311           break;
  3317   assert(progress || verify_sparse(), "please, no dups of base");
  3318   return progress;
  3321 //-------------------------set_base_memory-------------------------------------
  3322 void MergeMemNode::set_base_memory(Node *new_base) {
  3323   Node* empty_mem = empty_memory();
  3324   set_req(Compile::AliasIdxBot, new_base);
  3325   assert(memory_at(req()) == new_base, "must set default memory");
  3326   // Clear out other occurrences of new_base:
  3327   if (new_base != empty_mem) {
  3328     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3329       if (in(i) == new_base)  set_req(i, empty_mem);
  3334 //------------------------------out_RegMask------------------------------------
  3335 const RegMask &MergeMemNode::out_RegMask() const {
  3336   return RegMask::Empty;
  3339 //------------------------------dump_spec--------------------------------------
  3340 #ifndef PRODUCT
  3341 void MergeMemNode::dump_spec(outputStream *st) const {
  3342   st->print(" {");
  3343   Node* base_mem = base_memory();
  3344   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3345     Node* mem = memory_at(i);
  3346     if (mem == base_mem) { st->print(" -"); continue; }
  3347     st->print( " N%d:", mem->_idx );
  3348     Compile::current()->get_adr_type(i)->dump_on(st);
  3350   st->print(" }");
  3352 #endif // !PRODUCT
  3355 #ifdef ASSERT
  3356 static bool might_be_same(Node* a, Node* b) {
  3357   if (a == b)  return true;
  3358   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3359   // phis shift around during optimization
  3360   return true;  // pretty stupid...
  3363 // verify a narrow slice (either incoming or outgoing)
  3364 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3365   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3366   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3367   if (Node::in_dump())      return;  // muzzle asserts when printing
  3368   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3369   assert(n != NULL, "");
  3370   // Elide intervening MergeMem's
  3371   while (n->is_MergeMem()) {
  3372     n = n->as_MergeMem()->memory_at(alias_idx);
  3374   Compile* C = Compile::current();
  3375   const TypePtr* n_adr_type = n->adr_type();
  3376   if (n == m->empty_memory()) {
  3377     // Implicit copy of base_memory()
  3378   } else if (n_adr_type != TypePtr::BOTTOM) {
  3379     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3380     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3381   } else {
  3382     // A few places like make_runtime_call "know" that VM calls are narrow,
  3383     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3384     bool expected_wide_mem = false;
  3385     if (n == m->base_memory()) {
  3386       expected_wide_mem = true;
  3387     } else if (alias_idx == Compile::AliasIdxRaw ||
  3388                n == m->memory_at(Compile::AliasIdxRaw)) {
  3389       expected_wide_mem = true;
  3390     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3391       // memory can "leak through" calls on channels that
  3392       // are write-once.  Allow this also.
  3393       expected_wide_mem = true;
  3395     assert(expected_wide_mem, "expected narrow slice replacement");
  3398 #else // !ASSERT
  3399 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3400 #endif
  3403 //-----------------------------memory_at---------------------------------------
  3404 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3405   assert(alias_idx >= Compile::AliasIdxRaw ||
  3406          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3407          "must avoid base_memory and AliasIdxTop");
  3409   // Otherwise, it is a narrow slice.
  3410   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3411   Compile *C = Compile::current();
  3412   if (is_empty_memory(n)) {
  3413     // the array is sparse; empty slots are the "top" node
  3414     n = base_memory();
  3415     assert(Node::in_dump()
  3416            || n == NULL || n->bottom_type() == Type::TOP
  3417            || n->adr_type() == TypePtr::BOTTOM
  3418            || n->adr_type() == TypeRawPtr::BOTTOM
  3419            || Compile::current()->AliasLevel() == 0,
  3420            "must be a wide memory");
  3421     // AliasLevel == 0 if we are organizing the memory states manually.
  3422     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3423   } else {
  3424     // make sure the stored slice is sane
  3425     #ifdef ASSERT
  3426     if (is_error_reported() || Node::in_dump()) {
  3427     } else if (might_be_same(n, base_memory())) {
  3428       // Give it a pass:  It is a mostly harmless repetition of the base.
  3429       // This can arise normally from node subsumption during optimization.
  3430     } else {
  3431       verify_memory_slice(this, alias_idx, n);
  3433     #endif
  3435   return n;
  3438 //---------------------------set_memory_at-------------------------------------
  3439 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3440   verify_memory_slice(this, alias_idx, n);
  3441   Node* empty_mem = empty_memory();
  3442   if (n == base_memory())  n = empty_mem;  // collapse default
  3443   uint need_req = alias_idx+1;
  3444   if (req() < need_req) {
  3445     if (n == empty_mem)  return;  // already the default, so do not grow me
  3446     // grow the sparse array
  3447     do {
  3448       add_req(empty_mem);
  3449     } while (req() < need_req);
  3451   set_req( alias_idx, n );
  3456 //--------------------------iteration_setup------------------------------------
  3457 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3458   if (other != NULL) {
  3459     grow_to_match(other);
  3460     // invariant:  the finite support of mm2 is within mm->req()
  3461     #ifdef ASSERT
  3462     for (uint i = req(); i < other->req(); i++) {
  3463       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3465     #endif
  3467   // Replace spurious copies of base_memory by top.
  3468   Node* base_mem = base_memory();
  3469   if (base_mem != NULL && !base_mem->is_top()) {
  3470     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3471       if (in(i) == base_mem)
  3472         set_req(i, empty_memory());
  3477 //---------------------------grow_to_match-------------------------------------
  3478 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3479   Node* empty_mem = empty_memory();
  3480   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3481   // look for the finite support of the other memory
  3482   for (uint i = other->req(); --i >= req(); ) {
  3483     if (other->in(i) != empty_mem) {
  3484       uint new_len = i+1;
  3485       while (req() < new_len)  add_req(empty_mem);
  3486       break;
  3491 //---------------------------verify_sparse-------------------------------------
  3492 #ifndef PRODUCT
  3493 bool MergeMemNode::verify_sparse() const {
  3494   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3495   Node* base_mem = base_memory();
  3496   // The following can happen in degenerate cases, since empty==top.
  3497   if (is_empty_memory(base_mem))  return true;
  3498   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3499     assert(in(i) != NULL, "sane slice");
  3500     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3502   return true;
  3505 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3506   Node* n;
  3507   n = mm->in(idx);
  3508   if (mem == n)  return true;  // might be empty_memory()
  3509   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3510   if (mem == n)  return true;
  3511   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3512     if (mem == n)  return true;
  3513     if (n == NULL)  break;
  3515   return false;
  3517 #endif // !PRODUCT

mercurial