src/share/vm/opto/escape.cpp

Wed, 17 Feb 2016 13:40:12 +0300

author
igerasim
date
Wed, 17 Feb 2016 13:40:12 +0300
changeset 8307
daaf806995b3
parent 8078
3f47111161d7
child 8318
ea7ac121a5d3
permissions
-rw-r--r--

8081778: Use Intel x64 CPU instructions for RSA acceleration
Summary: Add intrinsics for BigInteger squareToLen and mulAdd methods.
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _in_worklist(C->comp_arena()),
    41   _next_pidx(0),
    42   _collecting(true),
    43   _verify(false),
    44   _compile(C),
    45   _igvn(igvn),
    46   _node_map(C->comp_arena()) {
    47   // Add unknown java object.
    48   add_java_object(C->top(), PointsToNode::GlobalEscape);
    49   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    50   // Add ConP(#NULL) and ConN(#NULL) nodes.
    51   Node* oop_null = igvn->zerocon(T_OBJECT);
    52   assert(oop_null->_idx < nodes_size(), "should be created already");
    53   add_java_object(oop_null, PointsToNode::NoEscape);
    54   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    55   if (UseCompressedOops) {
    56     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    57     assert(noop_null->_idx < nodes_size(), "should be created already");
    58     map_ideal_node(noop_null, null_obj);
    59   }
    60   _pcmp_neq = NULL; // Should be initialized
    61   _pcmp_eq  = NULL;
    62 }
    64 bool ConnectionGraph::has_candidates(Compile *C) {
    65   // EA brings benefits only when the code has allocations and/or locks which
    66   // are represented by ideal Macro nodes.
    67   int cnt = C->macro_count();
    68   for (int i = 0; i < cnt; i++) {
    69     Node *n = C->macro_node(i);
    70     if (n->is_Allocate())
    71       return true;
    72     if (n->is_Lock()) {
    73       Node* obj = n->as_Lock()->obj_node()->uncast();
    74       if (!(obj->is_Parm() || obj->is_Con()))
    75         return true;
    76     }
    77     if (n->is_CallStaticJava() &&
    78         n->as_CallStaticJava()->is_boxing_method()) {
    79       return true;
    80     }
    81   }
    82   return false;
    83 }
    85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    86   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    87   ResourceMark rm;
    89   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    90   // to create space for them in ConnectionGraph::_nodes[].
    91   Node* oop_null = igvn->zerocon(T_OBJECT);
    92   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    93   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    94   // Perform escape analysis
    95   if (congraph->compute_escape()) {
    96     // There are non escaping objects.
    97     C->set_congraph(congraph);
    98   }
    99   // Cleanup.
   100   if (oop_null->outcnt() == 0)
   101     igvn->hash_delete(oop_null);
   102   if (noop_null->outcnt() == 0)
   103     igvn->hash_delete(noop_null);
   104 }
   106 bool ConnectionGraph::compute_escape() {
   107   Compile* C = _compile;
   108   PhaseGVN* igvn = _igvn;
   110   // Worklists used by EA.
   111   Unique_Node_List delayed_worklist;
   112   GrowableArray<Node*> alloc_worklist;
   113   GrowableArray<Node*> ptr_cmp_worklist;
   114   GrowableArray<Node*> storestore_worklist;
   115   GrowableArray<PointsToNode*>   ptnodes_worklist;
   116   GrowableArray<JavaObjectNode*> java_objects_worklist;
   117   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   118   GrowableArray<FieldNode*>      oop_fields_worklist;
   119   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   121   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   123   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   124   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   125   // Initialize worklist
   126   if (C->root() != NULL) {
   127     ideal_nodes.push(C->root());
   128   }
   129   // Processed ideal nodes are unique on ideal_nodes list
   130   // but several ideal nodes are mapped to the phantom_obj.
   131   // To avoid duplicated entries on the following worklists
   132   // add the phantom_obj only once to them.
   133   ptnodes_worklist.append(phantom_obj);
   134   java_objects_worklist.append(phantom_obj);
   135   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   136     Node* n = ideal_nodes.at(next);
   137     // Create PointsTo nodes and add them to Connection Graph. Called
   138     // only once per ideal node since ideal_nodes is Unique_Node list.
   139     add_node_to_connection_graph(n, &delayed_worklist);
   140     PointsToNode* ptn = ptnode_adr(n->_idx);
   141     if (ptn != NULL && ptn != phantom_obj) {
   142       ptnodes_worklist.append(ptn);
   143       if (ptn->is_JavaObject()) {
   144         java_objects_worklist.append(ptn->as_JavaObject());
   145         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   146             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   147           // Only allocations and java static calls results are interesting.
   148           non_escaped_worklist.append(ptn->as_JavaObject());
   149         }
   150       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   151         oop_fields_worklist.append(ptn->as_Field());
   152       }
   153     }
   154     if (n->is_MergeMem()) {
   155       // Collect all MergeMem nodes to add memory slices for
   156       // scalar replaceable objects in split_unique_types().
   157       _mergemem_worklist.append(n->as_MergeMem());
   158     } else if (OptimizePtrCompare && n->is_Cmp() &&
   159                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   160       // Collect compare pointers nodes.
   161       ptr_cmp_worklist.append(n);
   162     } else if (n->is_MemBarStoreStore()) {
   163       // Collect all MemBarStoreStore nodes so that depending on the
   164       // escape status of the associated Allocate node some of them
   165       // may be eliminated.
   166       storestore_worklist.append(n);
   167     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   168                (n->req() > MemBarNode::Precedent)) {
   169       record_for_optimizer(n);
   170 #ifdef ASSERT
   171     } else if (n->is_AddP()) {
   172       // Collect address nodes for graph verification.
   173       addp_worklist.append(n);
   174 #endif
   175     }
   176     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   177       Node* m = n->fast_out(i);   // Get user
   178       ideal_nodes.push(m);
   179     }
   180   }
   181   if (non_escaped_worklist.length() == 0) {
   182     _collecting = false;
   183     return false; // Nothing to do.
   184   }
   185   // Add final simple edges to graph.
   186   while(delayed_worklist.size() > 0) {
   187     Node* n = delayed_worklist.pop();
   188     add_final_edges(n);
   189   }
   190   int ptnodes_length = ptnodes_worklist.length();
   192 #ifdef ASSERT
   193   if (VerifyConnectionGraph) {
   194     // Verify that no new simple edges could be created and all
   195     // local vars has edges.
   196     _verify = true;
   197     for (int next = 0; next < ptnodes_length; ++next) {
   198       PointsToNode* ptn = ptnodes_worklist.at(next);
   199       add_final_edges(ptn->ideal_node());
   200       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   201         ptn->dump();
   202         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   203       }
   204     }
   205     _verify = false;
   206   }
   207 #endif
   208   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
   209   // processing, calls to CI to resolve symbols (types, fields, methods)
   210   // referenced in bytecode. During symbol resolution VM may throw
   211   // an exception which CI cleans and converts to compilation failure.
   212   if (C->failing())  return false;
   214   // 2. Finish Graph construction by propagating references to all
   215   //    java objects through graph.
   216   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   217                                  java_objects_worklist, oop_fields_worklist)) {
   218     // All objects escaped or hit time or iterations limits.
   219     _collecting = false;
   220     return false;
   221   }
   223   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   224   //    scalar replaceable allocations on alloc_worklist for processing
   225   //    in split_unique_types().
   226   int non_escaped_length = non_escaped_worklist.length();
   227   for (int next = 0; next < non_escaped_length; next++) {
   228     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   229     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   230     Node* n = ptn->ideal_node();
   231     if (n->is_Allocate()) {
   232       n->as_Allocate()->_is_non_escaping = noescape;
   233     }
   234     if (n->is_CallStaticJava()) {
   235       n->as_CallStaticJava()->_is_non_escaping = noescape;
   236     }
   237     if (noescape && ptn->scalar_replaceable()) {
   238       adjust_scalar_replaceable_state(ptn);
   239       if (ptn->scalar_replaceable()) {
   240         alloc_worklist.append(ptn->ideal_node());
   241       }
   242     }
   243   }
   245 #ifdef ASSERT
   246   if (VerifyConnectionGraph) {
   247     // Verify that graph is complete - no new edges could be added or needed.
   248     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   249                             java_objects_worklist, addp_worklist);
   250   }
   251   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   252   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   253          null_obj->edge_count() == 0 &&
   254          !null_obj->arraycopy_src() &&
   255          !null_obj->arraycopy_dst(), "sanity");
   256 #endif
   258   _collecting = false;
   260   } // TracePhase t3("connectionGraph")
   262   // 4. Optimize ideal graph based on EA information.
   263   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   264   if (has_non_escaping_obj) {
   265     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   266   }
   268 #ifndef PRODUCT
   269   if (PrintEscapeAnalysis) {
   270     dump(ptnodes_worklist); // Dump ConnectionGraph
   271   }
   272 #endif
   274   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   275 #ifdef ASSERT
   276   if (VerifyConnectionGraph) {
   277     int alloc_length = alloc_worklist.length();
   278     for (int next = 0; next < alloc_length; ++next) {
   279       Node* n = alloc_worklist.at(next);
   280       PointsToNode* ptn = ptnode_adr(n->_idx);
   281       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   282     }
   283   }
   284 #endif
   286   // 5. Separate memory graph for scalar replaceable allcations.
   287   if (has_scalar_replaceable_candidates &&
   288       C->AliasLevel() >= 3 && EliminateAllocations) {
   289     // Now use the escape information to create unique types for
   290     // scalar replaceable objects.
   291     split_unique_types(alloc_worklist);
   292     if (C->failing())  return false;
   293     C->print_method(PHASE_AFTER_EA, 2);
   295 #ifdef ASSERT
   296   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   297     tty->print("=== No allocations eliminated for ");
   298     C->method()->print_short_name();
   299     if(!EliminateAllocations) {
   300       tty->print(" since EliminateAllocations is off ===");
   301     } else if(!has_scalar_replaceable_candidates) {
   302       tty->print(" since there are no scalar replaceable candidates ===");
   303     } else if(C->AliasLevel() < 3) {
   304       tty->print(" since AliasLevel < 3 ===");
   305     }
   306     tty->cr();
   307 #endif
   308   }
   309   return has_non_escaping_obj;
   310 }
   312 // Utility function for nodes that load an object
   313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   314   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   315   // ThreadLocal has RawPtr type.
   316   const Type* t = _igvn->type(n);
   317   if (t->make_ptr() != NULL) {
   318     Node* adr = n->in(MemNode::Address);
   319 #ifdef ASSERT
   320     if (!adr->is_AddP()) {
   321       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   322     } else {
   323       assert((ptnode_adr(adr->_idx) == NULL ||
   324               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   325     }
   326 #endif
   327     add_local_var_and_edge(n, PointsToNode::NoEscape,
   328                            adr, delayed_worklist);
   329   }
   330 }
   332 // Populate Connection Graph with PointsTo nodes and create simple
   333 // connection graph edges.
   334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   335   assert(!_verify, "this method sould not be called for verification");
   336   PhaseGVN* igvn = _igvn;
   337   uint n_idx = n->_idx;
   338   PointsToNode* n_ptn = ptnode_adr(n_idx);
   339   if (n_ptn != NULL)
   340     return; // No need to redefine PointsTo node during first iteration.
   342   if (n->is_Call()) {
   343     // Arguments to allocation and locking don't escape.
   344     if (n->is_AbstractLock()) {
   345       // Put Lock and Unlock nodes on IGVN worklist to process them during
   346       // first IGVN optimization when escape information is still available.
   347       record_for_optimizer(n);
   348     } else if (n->is_Allocate()) {
   349       add_call_node(n->as_Call());
   350       record_for_optimizer(n);
   351     } else {
   352       if (n->is_CallStaticJava()) {
   353         const char* name = n->as_CallStaticJava()->_name;
   354         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   355           return; // Skip uncommon traps
   356       }
   357       // Don't mark as processed since call's arguments have to be processed.
   358       delayed_worklist->push(n);
   359       // Check if a call returns an object.
   360       if ((n->as_Call()->returns_pointer() &&
   361            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   362           (n->is_CallStaticJava() &&
   363            n->as_CallStaticJava()->is_boxing_method())) {
   364         add_call_node(n->as_Call());
   365       }
   366     }
   367     return;
   368   }
   369   // Put this check here to process call arguments since some call nodes
   370   // point to phantom_obj.
   371   if (n_ptn == phantom_obj || n_ptn == null_obj)
   372     return; // Skip predefined nodes.
   374   int opcode = n->Opcode();
   375   switch (opcode) {
   376     case Op_AddP: {
   377       Node* base = get_addp_base(n);
   378       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   379       // Field nodes are created for all field types. They are used in
   380       // adjust_scalar_replaceable_state() and split_unique_types().
   381       // Note, non-oop fields will have only base edges in Connection
   382       // Graph because such fields are not used for oop loads and stores.
   383       int offset = address_offset(n, igvn);
   384       add_field(n, PointsToNode::NoEscape, offset);
   385       if (ptn_base == NULL) {
   386         delayed_worklist->push(n); // Process it later.
   387       } else {
   388         n_ptn = ptnode_adr(n_idx);
   389         add_base(n_ptn->as_Field(), ptn_base);
   390       }
   391       break;
   392     }
   393     case Op_CastX2P: {
   394       map_ideal_node(n, phantom_obj);
   395       break;
   396     }
   397     case Op_CastPP:
   398     case Op_CheckCastPP:
   399     case Op_EncodeP:
   400     case Op_DecodeN:
   401     case Op_EncodePKlass:
   402     case Op_DecodeNKlass: {
   403       add_local_var_and_edge(n, PointsToNode::NoEscape,
   404                              n->in(1), delayed_worklist);
   405       break;
   406     }
   407     case Op_CMoveP: {
   408       add_local_var(n, PointsToNode::NoEscape);
   409       // Do not add edges during first iteration because some could be
   410       // not defined yet.
   411       delayed_worklist->push(n);
   412       break;
   413     }
   414     case Op_ConP:
   415     case Op_ConN:
   416     case Op_ConNKlass: {
   417       // assume all oop constants globally escape except for null
   418       PointsToNode::EscapeState es;
   419       const Type* t = igvn->type(n);
   420       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   421         es = PointsToNode::NoEscape;
   422       } else {
   423         es = PointsToNode::GlobalEscape;
   424       }
   425       add_java_object(n, es);
   426       break;
   427     }
   428     case Op_CreateEx: {
   429       // assume that all exception objects globally escape
   430       map_ideal_node(n, phantom_obj);
   431       break;
   432     }
   433     case Op_LoadKlass:
   434     case Op_LoadNKlass: {
   435       // Unknown class is loaded
   436       map_ideal_node(n, phantom_obj);
   437       break;
   438     }
   439     case Op_LoadP:
   440     case Op_LoadN:
   441     case Op_LoadPLocked: {
   442       add_objload_to_connection_graph(n, delayed_worklist);
   443       break;
   444     }
   445     case Op_Parm: {
   446       map_ideal_node(n, phantom_obj);
   447       break;
   448     }
   449     case Op_PartialSubtypeCheck: {
   450       // Produces Null or notNull and is used in only in CmpP so
   451       // phantom_obj could be used.
   452       map_ideal_node(n, phantom_obj); // Result is unknown
   453       break;
   454     }
   455     case Op_Phi: {
   456       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   457       // ThreadLocal has RawPtr type.
   458       const Type* t = n->as_Phi()->type();
   459       if (t->make_ptr() != NULL) {
   460         add_local_var(n, PointsToNode::NoEscape);
   461         // Do not add edges during first iteration because some could be
   462         // not defined yet.
   463         delayed_worklist->push(n);
   464       }
   465       break;
   466     }
   467     case Op_Proj: {
   468       // we are only interested in the oop result projection from a call
   469       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   470           n->in(0)->as_Call()->returns_pointer()) {
   471         add_local_var_and_edge(n, PointsToNode::NoEscape,
   472                                n->in(0), delayed_worklist);
   473       }
   474       break;
   475     }
   476     case Op_Rethrow: // Exception object escapes
   477     case Op_Return: {
   478       if (n->req() > TypeFunc::Parms &&
   479           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   480         // Treat Return value as LocalVar with GlobalEscape escape state.
   481         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   482                                n->in(TypeFunc::Parms), delayed_worklist);
   483       }
   484       break;
   485     }
   486     case Op_GetAndSetP:
   487     case Op_GetAndSetN: {
   488       add_objload_to_connection_graph(n, delayed_worklist);
   489       // fallthrough
   490     }
   491     case Op_StoreP:
   492     case Op_StoreN:
   493     case Op_StoreNKlass:
   494     case Op_StorePConditional:
   495     case Op_CompareAndSwapP:
   496     case Op_CompareAndSwapN: {
   497       Node* adr = n->in(MemNode::Address);
   498       const Type *adr_type = igvn->type(adr);
   499       adr_type = adr_type->make_ptr();
   500       if (adr_type == NULL) {
   501         break; // skip dead nodes
   502       }
   503       if (adr_type->isa_oopptr() ||
   504           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   505                         (adr_type == TypeRawPtr::NOTNULL &&
   506                          adr->in(AddPNode::Address)->is_Proj() &&
   507                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   508         delayed_worklist->push(n); // Process it later.
   509 #ifdef ASSERT
   510         assert(adr->is_AddP(), "expecting an AddP");
   511         if (adr_type == TypeRawPtr::NOTNULL) {
   512           // Verify a raw address for a store captured by Initialize node.
   513           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   514           assert(offs != Type::OffsetBot, "offset must be a constant");
   515         }
   516 #endif
   517       } else {
   518         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   519         if (adr->is_BoxLock())
   520           break;
   521         // Stored value escapes in unsafe access.
   522         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   523           // Pointer stores in G1 barriers looks like unsafe access.
   524           // Ignore such stores to be able scalar replace non-escaping
   525           // allocations.
   526           if (UseG1GC && adr->is_AddP()) {
   527             Node* base = get_addp_base(adr);
   528             if (base->Opcode() == Op_LoadP &&
   529                 base->in(MemNode::Address)->is_AddP()) {
   530               adr = base->in(MemNode::Address);
   531               Node* tls = get_addp_base(adr);
   532               if (tls->Opcode() == Op_ThreadLocal) {
   533                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   534                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   535                                      PtrQueue::byte_offset_of_buf())) {
   536                   break; // G1 pre barier previous oop value store.
   537                 }
   538                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   539                                      PtrQueue::byte_offset_of_buf())) {
   540                   break; // G1 post barier card address store.
   541                 }
   542               }
   543             }
   544           }
   545           delayed_worklist->push(n); // Process unsafe access later.
   546           break;
   547         }
   548 #ifdef ASSERT
   549         n->dump(1);
   550         assert(false, "not unsafe or G1 barrier raw StoreP");
   551 #endif
   552       }
   553       break;
   554     }
   555     case Op_AryEq:
   556     case Op_StrComp:
   557     case Op_StrEquals:
   558     case Op_StrIndexOf:
   559     case Op_EncodeISOArray: {
   560       add_local_var(n, PointsToNode::ArgEscape);
   561       delayed_worklist->push(n); // Process it later.
   562       break;
   563     }
   564     case Op_ThreadLocal: {
   565       add_java_object(n, PointsToNode::ArgEscape);
   566       break;
   567     }
   568     default:
   569       ; // Do nothing for nodes not related to EA.
   570   }
   571   return;
   572 }
   574 #ifdef ASSERT
   575 #define ELSE_FAIL(name)                               \
   576       /* Should not be called for not pointer type. */  \
   577       n->dump(1);                                       \
   578       assert(false, name);                              \
   579       break;
   580 #else
   581 #define ELSE_FAIL(name) \
   582       break;
   583 #endif
   585 // Add final simple edges to graph.
   586 void ConnectionGraph::add_final_edges(Node *n) {
   587   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   588 #ifdef ASSERT
   589   if (_verify && n_ptn->is_JavaObject())
   590     return; // This method does not change graph for JavaObject.
   591 #endif
   593   if (n->is_Call()) {
   594     process_call_arguments(n->as_Call());
   595     return;
   596   }
   597   assert(n->is_Store() || n->is_LoadStore() ||
   598          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   599          "node should be registered already");
   600   int opcode = n->Opcode();
   601   switch (opcode) {
   602     case Op_AddP: {
   603       Node* base = get_addp_base(n);
   604       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   605       assert(ptn_base != NULL, "field's base should be registered");
   606       add_base(n_ptn->as_Field(), ptn_base);
   607       break;
   608     }
   609     case Op_CastPP:
   610     case Op_CheckCastPP:
   611     case Op_EncodeP:
   612     case Op_DecodeN:
   613     case Op_EncodePKlass:
   614     case Op_DecodeNKlass: {
   615       add_local_var_and_edge(n, PointsToNode::NoEscape,
   616                              n->in(1), NULL);
   617       break;
   618     }
   619     case Op_CMoveP: {
   620       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   621         Node* in = n->in(i);
   622         if (in == NULL)
   623           continue;  // ignore NULL
   624         Node* uncast_in = in->uncast();
   625         if (uncast_in->is_top() || uncast_in == n)
   626           continue;  // ignore top or inputs which go back this node
   627         PointsToNode* ptn = ptnode_adr(in->_idx);
   628         assert(ptn != NULL, "node should be registered");
   629         add_edge(n_ptn, ptn);
   630       }
   631       break;
   632     }
   633     case Op_LoadP:
   634     case Op_LoadN:
   635     case Op_LoadPLocked: {
   636       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   637       // ThreadLocal has RawPtr type.
   638       const Type* t = _igvn->type(n);
   639       if (t->make_ptr() != NULL) {
   640         Node* adr = n->in(MemNode::Address);
   641         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   642         break;
   643       }
   644       ELSE_FAIL("Op_LoadP");
   645     }
   646     case Op_Phi: {
   647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   648       // ThreadLocal has RawPtr type.
   649       const Type* t = n->as_Phi()->type();
   650       if (t->make_ptr() != NULL) {
   651         for (uint i = 1; i < n->req(); i++) {
   652           Node* in = n->in(i);
   653           if (in == NULL)
   654             continue;  // ignore NULL
   655           Node* uncast_in = in->uncast();
   656           if (uncast_in->is_top() || uncast_in == n)
   657             continue;  // ignore top or inputs which go back this node
   658           PointsToNode* ptn = ptnode_adr(in->_idx);
   659           assert(ptn != NULL, "node should be registered");
   660           add_edge(n_ptn, ptn);
   661         }
   662         break;
   663       }
   664       ELSE_FAIL("Op_Phi");
   665     }
   666     case Op_Proj: {
   667       // we are only interested in the oop result projection from a call
   668       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   669           n->in(0)->as_Call()->returns_pointer()) {
   670         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   671         break;
   672       }
   673       ELSE_FAIL("Op_Proj");
   674     }
   675     case Op_Rethrow: // Exception object escapes
   676     case Op_Return: {
   677       if (n->req() > TypeFunc::Parms &&
   678           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   679         // Treat Return value as LocalVar with GlobalEscape escape state.
   680         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   681                                n->in(TypeFunc::Parms), NULL);
   682         break;
   683       }
   684       ELSE_FAIL("Op_Return");
   685     }
   686     case Op_StoreP:
   687     case Op_StoreN:
   688     case Op_StoreNKlass:
   689     case Op_StorePConditional:
   690     case Op_CompareAndSwapP:
   691     case Op_CompareAndSwapN:
   692     case Op_GetAndSetP:
   693     case Op_GetAndSetN: {
   694       Node* adr = n->in(MemNode::Address);
   695       const Type *adr_type = _igvn->type(adr);
   696       adr_type = adr_type->make_ptr();
   697 #ifdef ASSERT
   698       if (adr_type == NULL) {
   699         n->dump(1);
   700         assert(adr_type != NULL, "dead node should not be on list");
   701         break;
   702       }
   703 #endif
   704       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   705         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   706       }
   707       if (adr_type->isa_oopptr() ||
   708           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   709                         (adr_type == TypeRawPtr::NOTNULL &&
   710                          adr->in(AddPNode::Address)->is_Proj() &&
   711                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   712         // Point Address to Value
   713         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   714         assert(adr_ptn != NULL &&
   715                adr_ptn->as_Field()->is_oop(), "node should be registered");
   716         Node *val = n->in(MemNode::ValueIn);
   717         PointsToNode* ptn = ptnode_adr(val->_idx);
   718         assert(ptn != NULL, "node should be registered");
   719         add_edge(adr_ptn, ptn);
   720         break;
   721       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   722         // Stored value escapes in unsafe access.
   723         Node *val = n->in(MemNode::ValueIn);
   724         PointsToNode* ptn = ptnode_adr(val->_idx);
   725         assert(ptn != NULL, "node should be registered");
   726         set_escape_state(ptn, PointsToNode::GlobalEscape);
   727         // Add edge to object for unsafe access with offset.
   728         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   729         assert(adr_ptn != NULL, "node should be registered");
   730         if (adr_ptn->is_Field()) {
   731           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   732           add_edge(adr_ptn, ptn);
   733         }
   734         break;
   735       }
   736       ELSE_FAIL("Op_StoreP");
   737     }
   738     case Op_AryEq:
   739     case Op_StrComp:
   740     case Op_StrEquals:
   741     case Op_StrIndexOf:
   742     case Op_EncodeISOArray: {
   743       // char[] arrays passed to string intrinsic do not escape but
   744       // they are not scalar replaceable. Adjust escape state for them.
   745       // Start from in(2) edge since in(1) is memory edge.
   746       for (uint i = 2; i < n->req(); i++) {
   747         Node* adr = n->in(i);
   748         const Type* at = _igvn->type(adr);
   749         if (!adr->is_top() && at->isa_ptr()) {
   750           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   751                  at->isa_ptr() != NULL, "expecting a pointer");
   752           if (adr->is_AddP()) {
   753             adr = get_addp_base(adr);
   754           }
   755           PointsToNode* ptn = ptnode_adr(adr->_idx);
   756           assert(ptn != NULL, "node should be registered");
   757           add_edge(n_ptn, ptn);
   758         }
   759       }
   760       break;
   761     }
   762     default: {
   763       // This method should be called only for EA specific nodes which may
   764       // miss some edges when they were created.
   765 #ifdef ASSERT
   766       n->dump(1);
   767 #endif
   768       guarantee(false, "unknown node");
   769     }
   770   }
   771   return;
   772 }
   774 void ConnectionGraph::add_call_node(CallNode* call) {
   775   assert(call->returns_pointer(), "only for call which returns pointer");
   776   uint call_idx = call->_idx;
   777   if (call->is_Allocate()) {
   778     Node* k = call->in(AllocateNode::KlassNode);
   779     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   780     assert(kt != NULL, "TypeKlassPtr  required.");
   781     ciKlass* cik = kt->klass();
   782     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   783     bool scalar_replaceable = true;
   784     if (call->is_AllocateArray()) {
   785       if (!cik->is_array_klass()) { // StressReflectiveCode
   786         es = PointsToNode::GlobalEscape;
   787       } else {
   788         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   789         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   790           // Not scalar replaceable if the length is not constant or too big.
   791           scalar_replaceable = false;
   792         }
   793       }
   794     } else {  // Allocate instance
   795       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   796           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
   797          !cik->is_instance_klass() || // StressReflectiveCode
   798           cik->as_instance_klass()->has_finalizer()) {
   799         es = PointsToNode::GlobalEscape;
   800       }
   801     }
   802     add_java_object(call, es);
   803     PointsToNode* ptn = ptnode_adr(call_idx);
   804     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   805       ptn->set_scalar_replaceable(false);
   806     }
   807   } else if (call->is_CallStaticJava()) {
   808     // Call nodes could be different types:
   809     //
   810     // 1. CallDynamicJavaNode (what happened during call is unknown):
   811     //
   812     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   813     //
   814     //    - all oop arguments are escaping globally;
   815     //
   816     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   817     //
   818     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   819     //
   820     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   821     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   822     //      during call is returned;
   823     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   824     //      which are returned and does not escape during call;
   825     //
   826     //    - oop arguments escaping status is defined by bytecode analysis;
   827     //
   828     // For a static call, we know exactly what method is being called.
   829     // Use bytecode estimator to record whether the call's return value escapes.
   830     ciMethod* meth = call->as_CallJava()->method();
   831     if (meth == NULL) {
   832       const char* name = call->as_CallStaticJava()->_name;
   833       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   834       // Returns a newly allocated unescaped object.
   835       add_java_object(call, PointsToNode::NoEscape);
   836       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   837     } else if (meth->is_boxing_method()) {
   838       // Returns boxing object
   839       PointsToNode::EscapeState es;
   840       vmIntrinsics::ID intr = meth->intrinsic_id();
   841       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   842         // It does not escape if object is always allocated.
   843         es = PointsToNode::NoEscape;
   844       } else {
   845         // It escapes globally if object could be loaded from cache.
   846         es = PointsToNode::GlobalEscape;
   847       }
   848       add_java_object(call, es);
   849     } else {
   850       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   851       call_analyzer->copy_dependencies(_compile->dependencies());
   852       if (call_analyzer->is_return_allocated()) {
   853         // Returns a newly allocated unescaped object, simply
   854         // update dependency information.
   855         // Mark it as NoEscape so that objects referenced by
   856         // it's fields will be marked as NoEscape at least.
   857         add_java_object(call, PointsToNode::NoEscape);
   858         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   859       } else {
   860         // Determine whether any arguments are returned.
   861         const TypeTuple* d = call->tf()->domain();
   862         bool ret_arg = false;
   863         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   864           if (d->field_at(i)->isa_ptr() != NULL &&
   865               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   866             ret_arg = true;
   867             break;
   868           }
   869         }
   870         if (ret_arg) {
   871           add_local_var(call, PointsToNode::ArgEscape);
   872         } else {
   873           // Returns unknown object.
   874           map_ideal_node(call, phantom_obj);
   875         }
   876       }
   877     }
   878   } else {
   879     // An other type of call, assume the worst case:
   880     // returned value is unknown and globally escapes.
   881     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   882     map_ideal_node(call, phantom_obj);
   883   }
   884 }
   886 void ConnectionGraph::process_call_arguments(CallNode *call) {
   887     bool is_arraycopy = false;
   888     switch (call->Opcode()) {
   889 #ifdef ASSERT
   890     case Op_Allocate:
   891     case Op_AllocateArray:
   892     case Op_Lock:
   893     case Op_Unlock:
   894       assert(false, "should be done already");
   895       break;
   896 #endif
   897     case Op_CallLeafNoFP:
   898       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   899                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   900       // fall through
   901     case Op_CallLeaf: {
   902       // Stub calls, objects do not escape but they are not scale replaceable.
   903       // Adjust escape state for outgoing arguments.
   904       const TypeTuple * d = call->tf()->domain();
   905       bool src_has_oops = false;
   906       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   907         const Type* at = d->field_at(i);
   908         Node *arg = call->in(i);
   909         const Type *aat = _igvn->type(arg);
   910         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   911           continue;
   912         if (arg->is_AddP()) {
   913           //
   914           // The inline_native_clone() case when the arraycopy stub is called
   915           // after the allocation before Initialize and CheckCastPP nodes.
   916           // Or normal arraycopy for object arrays case.
   917           //
   918           // Set AddP's base (Allocate) as not scalar replaceable since
   919           // pointer to the base (with offset) is passed as argument.
   920           //
   921           arg = get_addp_base(arg);
   922         }
   923         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   924         assert(arg_ptn != NULL, "should be registered");
   925         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   926         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   927           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   928                  aat->isa_ptr() != NULL, "expecting an Ptr");
   929           bool arg_has_oops = aat->isa_oopptr() &&
   930                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   931                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   932           if (i == TypeFunc::Parms) {
   933             src_has_oops = arg_has_oops;
   934           }
   935           //
   936           // src or dst could be j.l.Object when other is basic type array:
   937           //
   938           //   arraycopy(char[],0,Object*,0,size);
   939           //   arraycopy(Object*,0,char[],0,size);
   940           //
   941           // Don't add edges in such cases.
   942           //
   943           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   944                                        arg_has_oops && (i > TypeFunc::Parms);
   945 #ifdef ASSERT
   946           if (!(is_arraycopy ||
   947                 (call->as_CallLeaf()->_name != NULL &&
   948                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   949                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   950                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   951                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   952                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   953                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   954                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
   955                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
   956                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
   957                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
   958                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
   959                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
   960                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
   961                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
   962                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
   963                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0)
   964                   ))) {
   965             call->dump();
   966             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   967           }
   968 #endif
   969           // Always process arraycopy's destination object since
   970           // we need to add all possible edges to references in
   971           // source object.
   972           if (arg_esc >= PointsToNode::ArgEscape &&
   973               !arg_is_arraycopy_dest) {
   974             continue;
   975           }
   976           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   977           if (arg_is_arraycopy_dest) {
   978             Node* src = call->in(TypeFunc::Parms);
   979             if (src->is_AddP()) {
   980               src = get_addp_base(src);
   981             }
   982             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   983             assert(src_ptn != NULL, "should be registered");
   984             if (arg_ptn != src_ptn) {
   985               // Special arraycopy edge:
   986               // A destination object's field can't have the source object
   987               // as base since objects escape states are not related.
   988               // Only escape state of destination object's fields affects
   989               // escape state of fields in source object.
   990               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   991             }
   992           }
   993         }
   994       }
   995       break;
   996     }
   997     case Op_CallStaticJava: {
   998       // For a static call, we know exactly what method is being called.
   999       // Use bytecode estimator to record the call's escape affects
  1000 #ifdef ASSERT
  1001       const char* name = call->as_CallStaticJava()->_name;
  1002       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
  1003 #endif
  1004       ciMethod* meth = call->as_CallJava()->method();
  1005       if ((meth != NULL) && meth->is_boxing_method()) {
  1006         break; // Boxing methods do not modify any oops.
  1008       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1009       // fall-through if not a Java method or no analyzer information
  1010       if (call_analyzer != NULL) {
  1011         PointsToNode* call_ptn = ptnode_adr(call->_idx);
  1012         const TypeTuple* d = call->tf()->domain();
  1013         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1014           const Type* at = d->field_at(i);
  1015           int k = i - TypeFunc::Parms;
  1016           Node* arg = call->in(i);
  1017           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
  1018           if (at->isa_ptr() != NULL &&
  1019               call_analyzer->is_arg_returned(k)) {
  1020             // The call returns arguments.
  1021             if (call_ptn != NULL) { // Is call's result used?
  1022               assert(call_ptn->is_LocalVar(), "node should be registered");
  1023               assert(arg_ptn != NULL, "node should be registered");
  1024               add_edge(call_ptn, arg_ptn);
  1027           if (at->isa_oopptr() != NULL &&
  1028               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1029             if (!call_analyzer->is_arg_stack(k)) {
  1030               // The argument global escapes
  1031               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1032             } else {
  1033               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1034               if (!call_analyzer->is_arg_local(k)) {
  1035                 // The argument itself doesn't escape, but any fields might
  1036                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1041         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1042           // The call returns arguments.
  1043           assert(call_ptn->edge_count() > 0, "sanity");
  1044           if (!call_analyzer->is_return_local()) {
  1045             // Returns also unknown object.
  1046             add_edge(call_ptn, phantom_obj);
  1049         break;
  1052     default: {
  1053       // Fall-through here if not a Java method or no analyzer information
  1054       // or some other type of call, assume the worst case: all arguments
  1055       // globally escape.
  1056       const TypeTuple* d = call->tf()->domain();
  1057       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1058         const Type* at = d->field_at(i);
  1059         if (at->isa_oopptr() != NULL) {
  1060           Node* arg = call->in(i);
  1061           if (arg->is_AddP()) {
  1062             arg = get_addp_base(arg);
  1064           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1065           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1073 // Finish Graph construction.
  1074 bool ConnectionGraph::complete_connection_graph(
  1075                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1076                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1077                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1078                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1079   // Normally only 1-3 passes needed to build Connection Graph depending
  1080   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1081   // Set limit to 20 to catch situation when something did go wrong and
  1082   // bailout Escape Analysis.
  1083   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
  1084 #define CG_BUILD_ITER_LIMIT 20
  1086   // Propagate GlobalEscape and ArgEscape escape states and check that
  1087   // we still have non-escaping objects. The method pushs on _worklist
  1088   // Field nodes which reference phantom_object.
  1089   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1090     return false; // Nothing to do.
  1092   // Now propagate references to all JavaObject nodes.
  1093   int java_objects_length = java_objects_worklist.length();
  1094   elapsedTimer time;
  1095   bool timeout = false;
  1096   int new_edges = 1;
  1097   int iterations = 0;
  1098   do {
  1099     while ((new_edges > 0) &&
  1100            (iterations++ < CG_BUILD_ITER_LIMIT)) {
  1101       double start_time = time.seconds();
  1102       time.start();
  1103       new_edges = 0;
  1104       // Propagate references to phantom_object for nodes pushed on _worklist
  1105       // by find_non_escaped_objects() and find_field_value().
  1106       new_edges += add_java_object_edges(phantom_obj, false);
  1107       for (int next = 0; next < java_objects_length; ++next) {
  1108         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1109         new_edges += add_java_object_edges(ptn, true);
  1111 #define SAMPLE_SIZE 4
  1112         if ((next % SAMPLE_SIZE) == 0) {
  1113           // Each 4 iterations calculate how much time it will take
  1114           // to complete graph construction.
  1115           time.stop();
  1116           // Poll for requests from shutdown mechanism to quiesce compiler
  1117           // because Connection graph construction may take long time.
  1118           CompileBroker::maybe_block();
  1119           double stop_time = time.seconds();
  1120           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
  1121           double time_until_end = time_per_iter * (double)(java_objects_length - next);
  1122           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
  1123             timeout = true;
  1124             break; // Timeout
  1126           start_time = stop_time;
  1127           time.start();
  1129 #undef SAMPLE_SIZE
  1132       if (timeout) break;
  1133       if (new_edges > 0) {
  1134         // Update escape states on each iteration if graph was updated.
  1135         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1136           return false; // Nothing to do.
  1139       time.stop();
  1140       if (time.seconds() >= EscapeAnalysisTimeout) {
  1141         timeout = true;
  1142         break;
  1145     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
  1146       time.start();
  1147       // Find fields which have unknown value.
  1148       int fields_length = oop_fields_worklist.length();
  1149       for (int next = 0; next < fields_length; next++) {
  1150         FieldNode* field = oop_fields_worklist.at(next);
  1151         if (field->edge_count() == 0) {
  1152           new_edges += find_field_value(field);
  1153           // This code may added new edges to phantom_object.
  1154           // Need an other cycle to propagate references to phantom_object.
  1157       time.stop();
  1158       if (time.seconds() >= EscapeAnalysisTimeout) {
  1159         timeout = true;
  1160         break;
  1162     } else {
  1163       new_edges = 0; // Bailout
  1165   } while (new_edges > 0);
  1167   // Bailout if passed limits.
  1168   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
  1169     Compile* C = _compile;
  1170     if (C->log() != NULL) {
  1171       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1172       C->log()->text("%s", timeout ? "time" : "iterations");
  1173       C->log()->end_elem(" limit'");
  1175     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1176            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1177     // Possible infinite build_connection_graph loop,
  1178     // bailout (no changes to ideal graph were made).
  1179     return false;
  1181 #ifdef ASSERT
  1182   if (Verbose && PrintEscapeAnalysis) {
  1183     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1184                   iterations, nodes_size(), ptnodes_worklist.length());
  1186 #endif
  1188 #undef CG_BUILD_ITER_LIMIT
  1190   // Find fields initialized by NULL for non-escaping Allocations.
  1191   int non_escaped_length = non_escaped_worklist.length();
  1192   for (int next = 0; next < non_escaped_length; next++) {
  1193     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1194     PointsToNode::EscapeState es = ptn->escape_state();
  1195     assert(es <= PointsToNode::ArgEscape, "sanity");
  1196     if (es == PointsToNode::NoEscape) {
  1197       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1198         // Adding references to NULL object does not change escape states
  1199         // since it does not escape. Also no fields are added to NULL object.
  1200         add_java_object_edges(null_obj, false);
  1203     Node* n = ptn->ideal_node();
  1204     if (n->is_Allocate()) {
  1205       // The object allocated by this Allocate node will never be
  1206       // seen by an other thread. Mark it so that when it is
  1207       // expanded no MemBarStoreStore is added.
  1208       InitializeNode* ini = n->as_Allocate()->initialization();
  1209       if (ini != NULL)
  1210         ini->set_does_not_escape();
  1213   return true; // Finished graph construction.
  1216 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1217 // and check that we still have non-escaping java objects.
  1218 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1219                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1220   GrowableArray<PointsToNode*> escape_worklist;
  1221   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1222   int ptnodes_length = ptnodes_worklist.length();
  1223   for (int next = 0; next < ptnodes_length; ++next) {
  1224     PointsToNode* ptn = ptnodes_worklist.at(next);
  1225     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1226         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1227       escape_worklist.push(ptn);
  1230   // Set escape states to referenced nodes (edges list).
  1231   while (escape_worklist.length() > 0) {
  1232     PointsToNode* ptn = escape_worklist.pop();
  1233     PointsToNode::EscapeState es  = ptn->escape_state();
  1234     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1235     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1236         es >= PointsToNode::ArgEscape) {
  1237       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1238       if (add_edge(ptn, phantom_obj)) {
  1239         // New edge was added
  1240         add_field_uses_to_worklist(ptn->as_Field());
  1243     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1244       PointsToNode* e = i.get();
  1245       if (e->is_Arraycopy()) {
  1246         assert(ptn->arraycopy_dst(), "sanity");
  1247         // Propagate only fields escape state through arraycopy edge.
  1248         if (e->fields_escape_state() < field_es) {
  1249           set_fields_escape_state(e, field_es);
  1250           escape_worklist.push(e);
  1252       } else if (es >= field_es) {
  1253         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1254         if (e->escape_state() < es) {
  1255           set_escape_state(e, es);
  1256           escape_worklist.push(e);
  1258       } else {
  1259         // Propagate field escape state.
  1260         bool es_changed = false;
  1261         if (e->fields_escape_state() < field_es) {
  1262           set_fields_escape_state(e, field_es);
  1263           es_changed = true;
  1265         if ((e->escape_state() < field_es) &&
  1266             e->is_Field() && ptn->is_JavaObject() &&
  1267             e->as_Field()->is_oop()) {
  1268           // Change escape state of referenced fileds.
  1269           set_escape_state(e, field_es);
  1270           es_changed = true;;
  1271         } else if (e->escape_state() < es) {
  1272           set_escape_state(e, es);
  1273           es_changed = true;;
  1275         if (es_changed) {
  1276           escape_worklist.push(e);
  1281   // Remove escaped objects from non_escaped list.
  1282   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1283     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1284     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1285       non_escaped_worklist.delete_at(next);
  1287     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1288       // Find fields in non-escaped allocations which have unknown value.
  1289       find_init_values(ptn, phantom_obj, NULL);
  1292   return (non_escaped_worklist.length() > 0);
  1295 // Add all references to JavaObject node by walking over all uses.
  1296 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1297   int new_edges = 0;
  1298   if (populate_worklist) {
  1299     // Populate _worklist by uses of jobj's uses.
  1300     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1301       PointsToNode* use = i.get();
  1302       if (use->is_Arraycopy())
  1303         continue;
  1304       add_uses_to_worklist(use);
  1305       if (use->is_Field() && use->as_Field()->is_oop()) {
  1306         // Put on worklist all field's uses (loads) and
  1307         // related field nodes (same base and offset).
  1308         add_field_uses_to_worklist(use->as_Field());
  1312   for (int l = 0; l < _worklist.length(); l++) {
  1313     PointsToNode* use = _worklist.at(l);
  1314     if (PointsToNode::is_base_use(use)) {
  1315       // Add reference from jobj to field and from field to jobj (field's base).
  1316       use = PointsToNode::get_use_node(use)->as_Field();
  1317       if (add_base(use->as_Field(), jobj)) {
  1318         new_edges++;
  1320       continue;
  1322     assert(!use->is_JavaObject(), "sanity");
  1323     if (use->is_Arraycopy()) {
  1324       if (jobj == null_obj) // NULL object does not have field edges
  1325         continue;
  1326       // Added edge from Arraycopy node to arraycopy's source java object
  1327       if (add_edge(use, jobj)) {
  1328         jobj->set_arraycopy_src();
  1329         new_edges++;
  1331       // and stop here.
  1332       continue;
  1334     if (!add_edge(use, jobj))
  1335       continue; // No new edge added, there was such edge already.
  1336     new_edges++;
  1337     if (use->is_LocalVar()) {
  1338       add_uses_to_worklist(use);
  1339       if (use->arraycopy_dst()) {
  1340         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1341           PointsToNode* e = i.get();
  1342           if (e->is_Arraycopy()) {
  1343             if (jobj == null_obj) // NULL object does not have field edges
  1344               continue;
  1345             // Add edge from arraycopy's destination java object to Arraycopy node.
  1346             if (add_edge(jobj, e)) {
  1347               new_edges++;
  1348               jobj->set_arraycopy_dst();
  1353     } else {
  1354       // Added new edge to stored in field values.
  1355       // Put on worklist all field's uses (loads) and
  1356       // related field nodes (same base and offset).
  1357       add_field_uses_to_worklist(use->as_Field());
  1360   _worklist.clear();
  1361   _in_worklist.Reset();
  1362   return new_edges;
  1365 // Put on worklist all related field nodes.
  1366 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1367   assert(field->is_oop(), "sanity");
  1368   int offset = field->offset();
  1369   add_uses_to_worklist(field);
  1370   // Loop over all bases of this field and push on worklist Field nodes
  1371   // with the same offset and base (since they may reference the same field).
  1372   for (BaseIterator i(field); i.has_next(); i.next()) {
  1373     PointsToNode* base = i.get();
  1374     add_fields_to_worklist(field, base);
  1375     // Check if the base was source object of arraycopy and go over arraycopy's
  1376     // destination objects since values stored to a field of source object are
  1377     // accessable by uses (loads) of fields of destination objects.
  1378     if (base->arraycopy_src()) {
  1379       for (UseIterator j(base); j.has_next(); j.next()) {
  1380         PointsToNode* arycp = j.get();
  1381         if (arycp->is_Arraycopy()) {
  1382           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1383             PointsToNode* abase = k.get();
  1384             if (abase->arraycopy_dst() && abase != base) {
  1385               // Look for the same arracopy reference.
  1386               add_fields_to_worklist(field, abase);
  1395 // Put on worklist all related field nodes.
  1396 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1397   int offset = field->offset();
  1398   if (base->is_LocalVar()) {
  1399     for (UseIterator j(base); j.has_next(); j.next()) {
  1400       PointsToNode* f = j.get();
  1401       if (PointsToNode::is_base_use(f)) { // Field
  1402         f = PointsToNode::get_use_node(f);
  1403         if (f == field || !f->as_Field()->is_oop())
  1404           continue;
  1405         int offs = f->as_Field()->offset();
  1406         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1407           add_to_worklist(f);
  1411   } else {
  1412     assert(base->is_JavaObject(), "sanity");
  1413     if (// Skip phantom_object since it is only used to indicate that
  1414         // this field's content globally escapes.
  1415         (base != phantom_obj) &&
  1416         // NULL object node does not have fields.
  1417         (base != null_obj)) {
  1418       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1419         PointsToNode* f = i.get();
  1420         // Skip arraycopy edge since store to destination object field
  1421         // does not update value in source object field.
  1422         if (f->is_Arraycopy()) {
  1423           assert(base->arraycopy_dst(), "sanity");
  1424           continue;
  1426         if (f == field || !f->as_Field()->is_oop())
  1427           continue;
  1428         int offs = f->as_Field()->offset();
  1429         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1430           add_to_worklist(f);
  1437 // Find fields which have unknown value.
  1438 int ConnectionGraph::find_field_value(FieldNode* field) {
  1439   // Escaped fields should have init value already.
  1440   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1441   int new_edges = 0;
  1442   for (BaseIterator i(field); i.has_next(); i.next()) {
  1443     PointsToNode* base = i.get();
  1444     if (base->is_JavaObject()) {
  1445       // Skip Allocate's fields which will be processed later.
  1446       if (base->ideal_node()->is_Allocate())
  1447         return 0;
  1448       assert(base == null_obj, "only NULL ptr base expected here");
  1451   if (add_edge(field, phantom_obj)) {
  1452     // New edge was added
  1453     new_edges++;
  1454     add_field_uses_to_worklist(field);
  1456   return new_edges;
  1459 // Find fields initializing values for allocations.
  1460 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1461   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1462   int new_edges = 0;
  1463   Node* alloc = pta->ideal_node();
  1464   if (init_val == phantom_obj) {
  1465     // Do nothing for Allocate nodes since its fields values are "known".
  1466     if (alloc->is_Allocate())
  1467       return 0;
  1468     assert(alloc->as_CallStaticJava(), "sanity");
  1469 #ifdef ASSERT
  1470     if (alloc->as_CallStaticJava()->method() == NULL) {
  1471       const char* name = alloc->as_CallStaticJava()->_name;
  1472       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1474 #endif
  1475     // Non-escaped allocation returned from Java or runtime call have
  1476     // unknown values in fields.
  1477     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1478       PointsToNode* field = i.get();
  1479       if (field->is_Field() && field->as_Field()->is_oop()) {
  1480         if (add_edge(field, phantom_obj)) {
  1481           // New edge was added
  1482           new_edges++;
  1483           add_field_uses_to_worklist(field->as_Field());
  1487     return new_edges;
  1489   assert(init_val == null_obj, "sanity");
  1490   // Do nothing for Call nodes since its fields values are unknown.
  1491   if (!alloc->is_Allocate())
  1492     return 0;
  1494   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1495   Compile* C = _compile;
  1496   bool visited_bottom_offset = false;
  1497   GrowableArray<int> offsets_worklist;
  1499   // Check if an oop field's initializing value is recorded and add
  1500   // a corresponding NULL if field's value if it is not recorded.
  1501   // Connection Graph does not record a default initialization by NULL
  1502   // captured by Initialize node.
  1503   //
  1504   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1505     PointsToNode* field = i.get(); // Field (AddP)
  1506     if (!field->is_Field() || !field->as_Field()->is_oop())
  1507       continue; // Not oop field
  1508     int offset = field->as_Field()->offset();
  1509     if (offset == Type::OffsetBot) {
  1510       if (!visited_bottom_offset) {
  1511         // OffsetBot is used to reference array's element,
  1512         // always add reference to NULL to all Field nodes since we don't
  1513         // known which element is referenced.
  1514         if (add_edge(field, null_obj)) {
  1515           // New edge was added
  1516           new_edges++;
  1517           add_field_uses_to_worklist(field->as_Field());
  1518           visited_bottom_offset = true;
  1521     } else {
  1522       // Check only oop fields.
  1523       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1524       if (adr_type->isa_rawptr()) {
  1525 #ifdef ASSERT
  1526         // Raw pointers are used for initializing stores so skip it
  1527         // since it should be recorded already
  1528         Node* base = get_addp_base(field->ideal_node());
  1529         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1530                (base->in(0) == alloc),"unexpected pointer type");
  1531 #endif
  1532         continue;
  1534       if (!offsets_worklist.contains(offset)) {
  1535         offsets_worklist.append(offset);
  1536         Node* value = NULL;
  1537         if (ini != NULL) {
  1538           // StoreP::memory_type() == T_ADDRESS
  1539           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1540           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1541           // Make sure initializing store has the same type as this AddP.
  1542           // This AddP may reference non existing field because it is on a
  1543           // dead branch of bimorphic call which is not eliminated yet.
  1544           if (store != NULL && store->is_Store() &&
  1545               store->as_Store()->memory_type() == ft) {
  1546             value = store->in(MemNode::ValueIn);
  1547 #ifdef ASSERT
  1548             if (VerifyConnectionGraph) {
  1549               // Verify that AddP already points to all objects the value points to.
  1550               PointsToNode* val = ptnode_adr(value->_idx);
  1551               assert((val != NULL), "should be processed already");
  1552               PointsToNode* missed_obj = NULL;
  1553               if (val->is_JavaObject()) {
  1554                 if (!field->points_to(val->as_JavaObject())) {
  1555                   missed_obj = val;
  1557               } else {
  1558                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1559                   tty->print_cr("----------init store has invalid value -----");
  1560                   store->dump();
  1561                   val->dump();
  1562                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1564                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1565                   PointsToNode* obj = j.get();
  1566                   if (obj->is_JavaObject()) {
  1567                     if (!field->points_to(obj->as_JavaObject())) {
  1568                       missed_obj = obj;
  1569                       break;
  1574               if (missed_obj != NULL) {
  1575                 tty->print_cr("----------field---------------------------------");
  1576                 field->dump();
  1577                 tty->print_cr("----------missed referernce to object-----------");
  1578                 missed_obj->dump();
  1579                 tty->print_cr("----------object referernced by init store -----");
  1580                 store->dump();
  1581                 val->dump();
  1582                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1585 #endif
  1586           } else {
  1587             // There could be initializing stores which follow allocation.
  1588             // For example, a volatile field store is not collected
  1589             // by Initialize node.
  1590             //
  1591             // Need to check for dependent loads to separate such stores from
  1592             // stores which follow loads. For now, add initial value NULL so
  1593             // that compare pointers optimization works correctly.
  1596         if (value == NULL) {
  1597           // A field's initializing value was not recorded. Add NULL.
  1598           if (add_edge(field, null_obj)) {
  1599             // New edge was added
  1600             new_edges++;
  1601             add_field_uses_to_worklist(field->as_Field());
  1607   return new_edges;
  1610 // Adjust scalar_replaceable state after Connection Graph is built.
  1611 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1612   // Search for non-escaping objects which are not scalar replaceable
  1613   // and mark them to propagate the state to referenced objects.
  1615   // 1. An object is not scalar replaceable if the field into which it is
  1616   // stored has unknown offset (stored into unknown element of an array).
  1617   //
  1618   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1619     PointsToNode* use = i.get();
  1620     assert(!use->is_Arraycopy(), "sanity");
  1621     if (use->is_Field()) {
  1622       FieldNode* field = use->as_Field();
  1623       assert(field->is_oop() && field->scalar_replaceable() &&
  1624              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1625       if (field->offset() == Type::OffsetBot) {
  1626         jobj->set_scalar_replaceable(false);
  1627         return;
  1629       // 2. An object is not scalar replaceable if the field into which it is
  1630       // stored has multiple bases one of which is null.
  1631       if (field->base_count() > 1) {
  1632         for (BaseIterator i(field); i.has_next(); i.next()) {
  1633           PointsToNode* base = i.get();
  1634           if (base == null_obj) {
  1635             jobj->set_scalar_replaceable(false);
  1636             return;
  1641     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1642     // 3. An object is not scalar replaceable if it is merged with other objects.
  1643     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1644       PointsToNode* ptn = j.get();
  1645       if (ptn->is_JavaObject() && ptn != jobj) {
  1646         // Mark all objects.
  1647         jobj->set_scalar_replaceable(false);
  1648          ptn->set_scalar_replaceable(false);
  1651     if (!jobj->scalar_replaceable()) {
  1652       return;
  1656   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1657     // Non-escaping object node should point only to field nodes.
  1658     FieldNode* field = j.get()->as_Field();
  1659     int offset = field->as_Field()->offset();
  1661     // 4. An object is not scalar replaceable if it has a field with unknown
  1662     // offset (array's element is accessed in loop).
  1663     if (offset == Type::OffsetBot) {
  1664       jobj->set_scalar_replaceable(false);
  1665       return;
  1667     // 5. Currently an object is not scalar replaceable if a LoadStore node
  1668     // access its field since the field value is unknown after it.
  1669     //
  1670     Node* n = field->ideal_node();
  1671     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1672       if (n->fast_out(i)->is_LoadStore()) {
  1673         jobj->set_scalar_replaceable(false);
  1674         return;
  1678     // 6. Or the address may point to more then one object. This may produce
  1679     // the false positive result (set not scalar replaceable)
  1680     // since the flow-insensitive escape analysis can't separate
  1681     // the case when stores overwrite the field's value from the case
  1682     // when stores happened on different control branches.
  1683     //
  1684     // Note: it will disable scalar replacement in some cases:
  1685     //
  1686     //    Point p[] = new Point[1];
  1687     //    p[0] = new Point(); // Will be not scalar replaced
  1688     //
  1689     // but it will save us from incorrect optimizations in next cases:
  1690     //
  1691     //    Point p[] = new Point[1];
  1692     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1693     //
  1694     if (field->base_count() > 1) {
  1695       for (BaseIterator i(field); i.has_next(); i.next()) {
  1696         PointsToNode* base = i.get();
  1697         // Don't take into account LocalVar nodes which
  1698         // may point to only one object which should be also
  1699         // this field's base by now.
  1700         if (base->is_JavaObject() && base != jobj) {
  1701           // Mark all bases.
  1702           jobj->set_scalar_replaceable(false);
  1703           base->set_scalar_replaceable(false);
  1710 #ifdef ASSERT
  1711 void ConnectionGraph::verify_connection_graph(
  1712                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1713                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1714                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1715                          GrowableArray<Node*>& addp_worklist) {
  1716   // Verify that graph is complete - no new edges could be added.
  1717   int java_objects_length = java_objects_worklist.length();
  1718   int non_escaped_length  = non_escaped_worklist.length();
  1719   int new_edges = 0;
  1720   for (int next = 0; next < java_objects_length; ++next) {
  1721     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1722     new_edges += add_java_object_edges(ptn, true);
  1724   assert(new_edges == 0, "graph was not complete");
  1725   // Verify that escape state is final.
  1726   int length = non_escaped_worklist.length();
  1727   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1728   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1729          (non_escaped_length == length) &&
  1730          (_worklist.length() == 0), "escape state was not final");
  1732   // Verify fields information.
  1733   int addp_length = addp_worklist.length();
  1734   for (int next = 0; next < addp_length; ++next ) {
  1735     Node* n = addp_worklist.at(next);
  1736     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1737     if (field->is_oop()) {
  1738       // Verify that field has all bases
  1739       Node* base = get_addp_base(n);
  1740       PointsToNode* ptn = ptnode_adr(base->_idx);
  1741       if (ptn->is_JavaObject()) {
  1742         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1743       } else {
  1744         assert(ptn->is_LocalVar(), "sanity");
  1745         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1746           PointsToNode* e = i.get();
  1747           if (e->is_JavaObject()) {
  1748             assert(field->has_base(e->as_JavaObject()), "sanity");
  1752       // Verify that all fields have initializing values.
  1753       if (field->edge_count() == 0) {
  1754         tty->print_cr("----------field does not have references----------");
  1755         field->dump();
  1756         for (BaseIterator i(field); i.has_next(); i.next()) {
  1757           PointsToNode* base = i.get();
  1758           tty->print_cr("----------field has next base---------------------");
  1759           base->dump();
  1760           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1761             tty->print_cr("----------base has fields-------------------------");
  1762             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1763               j.get()->dump();
  1765             tty->print_cr("----------base has references---------------------");
  1766             for (UseIterator j(base); j.has_next(); j.next()) {
  1767               j.get()->dump();
  1771         for (UseIterator i(field); i.has_next(); i.next()) {
  1772           i.get()->dump();
  1774         assert(field->edge_count() > 0, "sanity");
  1779 #endif
  1781 // Optimize ideal graph.
  1782 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1783                                            GrowableArray<Node*>& storestore_worklist) {
  1784   Compile* C = _compile;
  1785   PhaseIterGVN* igvn = _igvn;
  1786   if (EliminateLocks) {
  1787     // Mark locks before changing ideal graph.
  1788     int cnt = C->macro_count();
  1789     for( int i=0; i < cnt; i++ ) {
  1790       Node *n = C->macro_node(i);
  1791       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1792         AbstractLockNode* alock = n->as_AbstractLock();
  1793         if (!alock->is_non_esc_obj()) {
  1794           if (not_global_escape(alock->obj_node())) {
  1795             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1796             // The lock could be marked eliminated by lock coarsening
  1797             // code during first IGVN before EA. Replace coarsened flag
  1798             // to eliminate all associated locks/unlocks.
  1799 #ifdef ASSERT
  1800             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
  1801 #endif
  1802             alock->set_non_esc_obj();
  1809   if (OptimizePtrCompare) {
  1810     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1811     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1812     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1813     // Optimize objects compare.
  1814     while (ptr_cmp_worklist.length() != 0) {
  1815       Node *n = ptr_cmp_worklist.pop();
  1816       Node *res = optimize_ptr_compare(n);
  1817       if (res != NULL) {
  1818 #ifndef PRODUCT
  1819         if (PrintOptimizePtrCompare) {
  1820           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1821           if (Verbose) {
  1822             n->dump(1);
  1825 #endif
  1826         igvn->replace_node(n, res);
  1829     // cleanup
  1830     if (_pcmp_neq->outcnt() == 0)
  1831       igvn->hash_delete(_pcmp_neq);
  1832     if (_pcmp_eq->outcnt()  == 0)
  1833       igvn->hash_delete(_pcmp_eq);
  1836   // For MemBarStoreStore nodes added in library_call.cpp, check
  1837   // escape status of associated AllocateNode and optimize out
  1838   // MemBarStoreStore node if the allocated object never escapes.
  1839   while (storestore_worklist.length() != 0) {
  1840     Node *n = storestore_worklist.pop();
  1841     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1842     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1843     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1844     if (not_global_escape(alloc)) {
  1845       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1846       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1847       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1848       igvn->register_new_node_with_optimizer(mb);
  1849       igvn->replace_node(storestore, mb);
  1854 // Optimize objects compare.
  1855 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1856   assert(OptimizePtrCompare, "sanity");
  1857   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1858   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1859   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1860   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1861   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1862   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1864   // Check simple cases first.
  1865   if (jobj1 != NULL) {
  1866     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1867       if (jobj1 == jobj2) {
  1868         // Comparing the same not escaping object.
  1869         return _pcmp_eq;
  1871       Node* obj = jobj1->ideal_node();
  1872       // Comparing not escaping allocation.
  1873       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1874           !ptn2->points_to(jobj1)) {
  1875         return _pcmp_neq; // This includes nullness check.
  1879   if (jobj2 != NULL) {
  1880     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1881       Node* obj = jobj2->ideal_node();
  1882       // Comparing not escaping allocation.
  1883       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1884           !ptn1->points_to(jobj2)) {
  1885         return _pcmp_neq; // This includes nullness check.
  1889   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1890       jobj2 != NULL && jobj2 != phantom_obj &&
  1891       jobj1->ideal_node()->is_Con() &&
  1892       jobj2->ideal_node()->is_Con()) {
  1893     // Klass or String constants compare. Need to be careful with
  1894     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1895     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1896     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1897     if (t1->make_ptr() == t2->make_ptr()) {
  1898       return _pcmp_eq;
  1899     } else {
  1900       return _pcmp_neq;
  1903   if (ptn1->meet(ptn2)) {
  1904     return NULL; // Sets are not disjoint
  1907   // Sets are disjoint.
  1908   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1909   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1910   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1911   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1912   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1913       set2_has_unknown_ptr && set1_has_null_ptr) {
  1914     // Check nullness of unknown object.
  1915     return NULL;
  1918   // Disjointness by itself is not sufficient since
  1919   // alias analysis is not complete for escaped objects.
  1920   // Disjoint sets are definitely unrelated only when
  1921   // at least one set has only not escaping allocations.
  1922   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1923     if (ptn1->non_escaping_allocation()) {
  1924       return _pcmp_neq;
  1927   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1928     if (ptn2->non_escaping_allocation()) {
  1929       return _pcmp_neq;
  1932   return NULL;
  1935 // Connection Graph constuction functions.
  1937 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1938   PointsToNode* ptadr = _nodes.at(n->_idx);
  1939   if (ptadr != NULL) {
  1940     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1941     return;
  1943   Compile* C = _compile;
  1944   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
  1945   _nodes.at_put(n->_idx, ptadr);
  1948 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1949   PointsToNode* ptadr = _nodes.at(n->_idx);
  1950   if (ptadr != NULL) {
  1951     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1952     return;
  1954   Compile* C = _compile;
  1955   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
  1956   _nodes.at_put(n->_idx, ptadr);
  1959 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1960   PointsToNode* ptadr = _nodes.at(n->_idx);
  1961   if (ptadr != NULL) {
  1962     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1963     return;
  1965   bool unsafe = false;
  1966   bool is_oop = is_oop_field(n, offset, &unsafe);
  1967   if (unsafe) {
  1968     es = PointsToNode::GlobalEscape;
  1970   Compile* C = _compile;
  1971   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
  1972   _nodes.at_put(n->_idx, field);
  1975 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1976                                     PointsToNode* src, PointsToNode* dst) {
  1977   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1978   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1979   PointsToNode* ptadr = _nodes.at(n->_idx);
  1980   if (ptadr != NULL) {
  1981     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1982     return;
  1984   Compile* C = _compile;
  1985   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
  1986   _nodes.at_put(n->_idx, ptadr);
  1987   // Add edge from arraycopy node to source object.
  1988   (void)add_edge(ptadr, src);
  1989   src->set_arraycopy_src();
  1990   // Add edge from destination object to arraycopy node.
  1991   (void)add_edge(dst, ptadr);
  1992   dst->set_arraycopy_dst();
  1995 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1996   const Type* adr_type = n->as_AddP()->bottom_type();
  1997   BasicType bt = T_INT;
  1998   if (offset == Type::OffsetBot) {
  1999     // Check only oop fields.
  2000     if (!adr_type->isa_aryptr() ||
  2001         (adr_type->isa_aryptr()->klass() == NULL) ||
  2002          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  2003       // OffsetBot is used to reference array's element. Ignore first AddP.
  2004       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  2005         bt = T_OBJECT;
  2008   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  2009     if (adr_type->isa_instptr()) {
  2010       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  2011       if (field != NULL) {
  2012         bt = field->layout_type();
  2013       } else {
  2014         // Check for unsafe oop field access
  2015         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2016           int opcode = n->fast_out(i)->Opcode();
  2017           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2018               opcode == Op_StoreN || opcode == Op_LoadN) {
  2019             bt = T_OBJECT;
  2020             (*unsafe) = true;
  2021             break;
  2025     } else if (adr_type->isa_aryptr()) {
  2026       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2027         // Ignore array length load.
  2028       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  2029         // Ignore first AddP.
  2030       } else {
  2031         const Type* elemtype = adr_type->isa_aryptr()->elem();
  2032         bt = elemtype->array_element_basic_type();
  2034     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  2035       // Allocation initialization, ThreadLocal field access, unsafe access
  2036       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2037         int opcode = n->fast_out(i)->Opcode();
  2038         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2039             opcode == Op_StoreN || opcode == Op_LoadN) {
  2040           bt = T_OBJECT;
  2041           break;
  2046   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  2049 // Returns unique pointed java object or NULL.
  2050 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  2051   assert(!_collecting, "should not call when contructed graph");
  2052   // If the node was created after the escape computation we can't answer.
  2053   uint idx = n->_idx;
  2054   if (idx >= nodes_size()) {
  2055     return NULL;
  2057   PointsToNode* ptn = ptnode_adr(idx);
  2058   if (ptn->is_JavaObject()) {
  2059     return ptn->as_JavaObject();
  2061   assert(ptn->is_LocalVar(), "sanity");
  2062   // Check all java objects it points to.
  2063   JavaObjectNode* jobj = NULL;
  2064   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2065     PointsToNode* e = i.get();
  2066     if (e->is_JavaObject()) {
  2067       if (jobj == NULL) {
  2068         jobj = e->as_JavaObject();
  2069       } else if (jobj != e) {
  2070         return NULL;
  2074   return jobj;
  2077 // Return true if this node points only to non-escaping allocations.
  2078 bool PointsToNode::non_escaping_allocation() {
  2079   if (is_JavaObject()) {
  2080     Node* n = ideal_node();
  2081     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2082       return (escape_state() == PointsToNode::NoEscape);
  2083     } else {
  2084       return false;
  2087   assert(is_LocalVar(), "sanity");
  2088   // Check all java objects it points to.
  2089   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2090     PointsToNode* e = i.get();
  2091     if (e->is_JavaObject()) {
  2092       Node* n = e->ideal_node();
  2093       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2094           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2095         return false;
  2099   return true;
  2102 // Return true if we know the node does not escape globally.
  2103 bool ConnectionGraph::not_global_escape(Node *n) {
  2104   assert(!_collecting, "should not call during graph construction");
  2105   // If the node was created after the escape computation we can't answer.
  2106   uint idx = n->_idx;
  2107   if (idx >= nodes_size()) {
  2108     return false;
  2110   PointsToNode* ptn = ptnode_adr(idx);
  2111   PointsToNode::EscapeState es = ptn->escape_state();
  2112   // If we have already computed a value, return it.
  2113   if (es >= PointsToNode::GlobalEscape)
  2114     return false;
  2115   if (ptn->is_JavaObject()) {
  2116     return true; // (es < PointsToNode::GlobalEscape);
  2118   assert(ptn->is_LocalVar(), "sanity");
  2119   // Check all java objects it points to.
  2120   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2121     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2122       return false;
  2124   return true;
  2128 // Helper functions
  2130 // Return true if this node points to specified node or nodes it points to.
  2131 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2132   if (is_JavaObject()) {
  2133     return (this == ptn);
  2135   assert(is_LocalVar() || is_Field(), "sanity");
  2136   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2137     if (i.get() == ptn)
  2138       return true;
  2140   return false;
  2143 // Return true if one node points to an other.
  2144 bool PointsToNode::meet(PointsToNode* ptn) {
  2145   if (this == ptn) {
  2146     return true;
  2147   } else if (ptn->is_JavaObject()) {
  2148     return this->points_to(ptn->as_JavaObject());
  2149   } else if (this->is_JavaObject()) {
  2150     return ptn->points_to(this->as_JavaObject());
  2152   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2153   int ptn_count =  ptn->edge_count();
  2154   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2155     PointsToNode* this_e = i.get();
  2156     for (int j = 0; j < ptn_count; j++) {
  2157       if (this_e == ptn->edge(j))
  2158         return true;
  2161   return false;
  2164 #ifdef ASSERT
  2165 // Return true if bases point to this java object.
  2166 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2167   for (BaseIterator i(this); i.has_next(); i.next()) {
  2168     if (i.get() == jobj)
  2169       return true;
  2171   return false;
  2173 #endif
  2175 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2176   const Type *adr_type = phase->type(adr);
  2177   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2178       adr->in(AddPNode::Address)->is_Proj() &&
  2179       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2180     // We are computing a raw address for a store captured by an Initialize
  2181     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2182     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2183     assert(offs != Type::OffsetBot ||
  2184            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2185            "offset must be a constant or it is initialization of array");
  2186     return offs;
  2188   const TypePtr *t_ptr = adr_type->isa_ptr();
  2189   assert(t_ptr != NULL, "must be a pointer type");
  2190   return t_ptr->offset();
  2193 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2194   assert(addp->is_AddP(), "must be AddP");
  2195   //
  2196   // AddP cases for Base and Address inputs:
  2197   // case #1. Direct object's field reference:
  2198   //     Allocate
  2199   //       |
  2200   //     Proj #5 ( oop result )
  2201   //       |
  2202   //     CheckCastPP (cast to instance type)
  2203   //      | |
  2204   //     AddP  ( base == address )
  2205   //
  2206   // case #2. Indirect object's field reference:
  2207   //      Phi
  2208   //       |
  2209   //     CastPP (cast to instance type)
  2210   //      | |
  2211   //     AddP  ( base == address )
  2212   //
  2213   // case #3. Raw object's field reference for Initialize node:
  2214   //      Allocate
  2215   //        |
  2216   //      Proj #5 ( oop result )
  2217   //  top   |
  2218   //     \  |
  2219   //     AddP  ( base == top )
  2220   //
  2221   // case #4. Array's element reference:
  2222   //   {CheckCastPP | CastPP}
  2223   //     |  | |
  2224   //     |  AddP ( array's element offset )
  2225   //     |  |
  2226   //     AddP ( array's offset )
  2227   //
  2228   // case #5. Raw object's field reference for arraycopy stub call:
  2229   //          The inline_native_clone() case when the arraycopy stub is called
  2230   //          after the allocation before Initialize and CheckCastPP nodes.
  2231   //      Allocate
  2232   //        |
  2233   //      Proj #5 ( oop result )
  2234   //       | |
  2235   //       AddP  ( base == address )
  2236   //
  2237   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2238   //          Raw object's field reference:
  2239   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2240   //  top   |
  2241   //     \  |
  2242   //     AddP  ( base == top )
  2243   //
  2244   // case #7. Klass's field reference.
  2245   //      LoadKlass
  2246   //       | |
  2247   //       AddP  ( base == address )
  2248   //
  2249   // case #8. narrow Klass's field reference.
  2250   //      LoadNKlass
  2251   //       |
  2252   //      DecodeN
  2253   //       | |
  2254   //       AddP  ( base == address )
  2255   //
  2256   Node *base = addp->in(AddPNode::Base);
  2257   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2258     base = addp->in(AddPNode::Address);
  2259     while (base->is_AddP()) {
  2260       // Case #6 (unsafe access) may have several chained AddP nodes.
  2261       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2262       base = base->in(AddPNode::Address);
  2264     Node* uncast_base = base->uncast();
  2265     int opcode = uncast_base->Opcode();
  2266     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2267            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2268            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2269            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2271   return base;
  2274 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2275   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2276   Node* addp2 = addp->raw_out(0);
  2277   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2278       addp2->in(AddPNode::Base) == n &&
  2279       addp2->in(AddPNode::Address) == addp) {
  2280     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2281     //
  2282     // Find array's offset to push it on worklist first and
  2283     // as result process an array's element offset first (pushed second)
  2284     // to avoid CastPP for the array's offset.
  2285     // Otherwise the inserted CastPP (LocalVar) will point to what
  2286     // the AddP (Field) points to. Which would be wrong since
  2287     // the algorithm expects the CastPP has the same point as
  2288     // as AddP's base CheckCastPP (LocalVar).
  2289     //
  2290     //    ArrayAllocation
  2291     //     |
  2292     //    CheckCastPP
  2293     //     |
  2294     //    memProj (from ArrayAllocation CheckCastPP)
  2295     //     |  ||
  2296     //     |  ||   Int (element index)
  2297     //     |  ||    |   ConI (log(element size))
  2298     //     |  ||    |   /
  2299     //     |  ||   LShift
  2300     //     |  ||  /
  2301     //     |  AddP (array's element offset)
  2302     //     |  |
  2303     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2304     //     | / /
  2305     //     AddP (array's offset)
  2306     //      |
  2307     //     Load/Store (memory operation on array's element)
  2308     //
  2309     return addp2;
  2311   return NULL;
  2314 //
  2315 // Adjust the type and inputs of an AddP which computes the
  2316 // address of a field of an instance
  2317 //
  2318 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2319   PhaseGVN* igvn = _igvn;
  2320   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2321   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2322   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2323   if (t == NULL) {
  2324     // We are computing a raw address for a store captured by an Initialize
  2325     // compute an appropriate address type (cases #3 and #5).
  2326     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2327     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2328     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2329     assert(offs != Type::OffsetBot, "offset must be a constant");
  2330     t = base_t->add_offset(offs)->is_oopptr();
  2332   int inst_id =  base_t->instance_id();
  2333   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2334                              "old type must be non-instance or match new type");
  2336   // The type 't' could be subclass of 'base_t'.
  2337   // As result t->offset() could be large then base_t's size and it will
  2338   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2339   // constructor verifies correctness of the offset.
  2340   //
  2341   // It could happened on subclass's branch (from the type profiling
  2342   // inlining) which was not eliminated during parsing since the exactness
  2343   // of the allocation type was not propagated to the subclass type check.
  2344   //
  2345   // Or the type 't' could be not related to 'base_t' at all.
  2346   // It could happened when CHA type is different from MDO type on a dead path
  2347   // (for example, from instanceof check) which is not collapsed during parsing.
  2348   //
  2349   // Do nothing for such AddP node and don't process its users since
  2350   // this code branch will go away.
  2351   //
  2352   if (!t->is_known_instance() &&
  2353       !base_t->klass()->is_subtype_of(t->klass())) {
  2354      return false; // bail out
  2356   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2357   // Do NOT remove the next line: ensure a new alias index is allocated
  2358   // for the instance type. Note: C++ will not remove it since the call
  2359   // has side effect.
  2360   int alias_idx = _compile->get_alias_index(tinst);
  2361   igvn->set_type(addp, tinst);
  2362   // record the allocation in the node map
  2363   set_map(addp, get_map(base->_idx));
  2364   // Set addp's Base and Address to 'base'.
  2365   Node *abase = addp->in(AddPNode::Base);
  2366   Node *adr   = addp->in(AddPNode::Address);
  2367   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2368       adr->in(0)->_idx == (uint)inst_id) {
  2369     // Skip AddP cases #3 and #5.
  2370   } else {
  2371     assert(!abase->is_top(), "sanity"); // AddP case #3
  2372     if (abase != base) {
  2373       igvn->hash_delete(addp);
  2374       addp->set_req(AddPNode::Base, base);
  2375       if (abase == adr) {
  2376         addp->set_req(AddPNode::Address, base);
  2377       } else {
  2378         // AddP case #4 (adr is array's element offset AddP node)
  2379 #ifdef ASSERT
  2380         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2381         assert(adr->is_AddP() && atype != NULL &&
  2382                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2383 #endif
  2385       igvn->hash_insert(addp);
  2388   // Put on IGVN worklist since at least addp's type was changed above.
  2389   record_for_optimizer(addp);
  2390   return true;
  2393 //
  2394 // Create a new version of orig_phi if necessary. Returns either the newly
  2395 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2396 // phi was created.  Cache the last newly created phi in the node map.
  2397 //
  2398 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2399   Compile *C = _compile;
  2400   PhaseGVN* igvn = _igvn;
  2401   new_created = false;
  2402   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2403   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2404   if (phi_alias_idx == alias_idx) {
  2405     return orig_phi;
  2407   // Have we recently created a Phi for this alias index?
  2408   PhiNode *result = get_map_phi(orig_phi->_idx);
  2409   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2410     return result;
  2412   // Previous check may fail when the same wide memory Phi was split into Phis
  2413   // for different memory slices. Search all Phis for this region.
  2414   if (result != NULL) {
  2415     Node* region = orig_phi->in(0);
  2416     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2417       Node* phi = region->fast_out(i);
  2418       if (phi->is_Phi() &&
  2419           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2420         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2421         return phi->as_Phi();
  2425   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
  2426     if (C->do_escape_analysis() == true && !C->failing()) {
  2427       // Retry compilation without escape analysis.
  2428       // If this is the first failure, the sentinel string will "stick"
  2429       // to the Compile object, and the C2Compiler will see it and retry.
  2430       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2432     return NULL;
  2434   orig_phi_worklist.append_if_missing(orig_phi);
  2435   const TypePtr *atype = C->get_adr_type(alias_idx);
  2436   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2437   C->copy_node_notes_to(result, orig_phi);
  2438   igvn->set_type(result, result->bottom_type());
  2439   record_for_optimizer(result);
  2440   set_map(orig_phi, result);
  2441   new_created = true;
  2442   return result;
  2445 //
  2446 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2447 // specified alias index.
  2448 //
  2449 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2450   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2451   Compile *C = _compile;
  2452   PhaseGVN* igvn = _igvn;
  2453   bool new_phi_created;
  2454   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2455   if (!new_phi_created) {
  2456     return result;
  2458   GrowableArray<PhiNode *>  phi_list;
  2459   GrowableArray<uint>  cur_input;
  2460   PhiNode *phi = orig_phi;
  2461   uint idx = 1;
  2462   bool finished = false;
  2463   while(!finished) {
  2464     while (idx < phi->req()) {
  2465       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2466       if (mem != NULL && mem->is_Phi()) {
  2467         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2468         if (new_phi_created) {
  2469           // found an phi for which we created a new split, push current one on worklist and begin
  2470           // processing new one
  2471           phi_list.push(phi);
  2472           cur_input.push(idx);
  2473           phi = mem->as_Phi();
  2474           result = newphi;
  2475           idx = 1;
  2476           continue;
  2477         } else {
  2478           mem = newphi;
  2481       if (C->failing()) {
  2482         return NULL;
  2484       result->set_req(idx++, mem);
  2486 #ifdef ASSERT
  2487     // verify that the new Phi has an input for each input of the original
  2488     assert( phi->req() == result->req(), "must have same number of inputs.");
  2489     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2490 #endif
  2491     // Check if all new phi's inputs have specified alias index.
  2492     // Otherwise use old phi.
  2493     for (uint i = 1; i < phi->req(); i++) {
  2494       Node* in = result->in(i);
  2495       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2497     // we have finished processing a Phi, see if there are any more to do
  2498     finished = (phi_list.length() == 0 );
  2499     if (!finished) {
  2500       phi = phi_list.pop();
  2501       idx = cur_input.pop();
  2502       PhiNode *prev_result = get_map_phi(phi->_idx);
  2503       prev_result->set_req(idx++, result);
  2504       result = prev_result;
  2507   return result;
  2510 //
  2511 // The next methods are derived from methods in MemNode.
  2512 //
  2513 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2514   Node *mem = mmem;
  2515   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2516   // means an array I have not precisely typed yet.  Do not do any
  2517   // alias stuff with it any time soon.
  2518   if (toop->base() != Type::AnyPtr &&
  2519       !(toop->klass() != NULL &&
  2520         toop->klass()->is_java_lang_Object() &&
  2521         toop->offset() == Type::OffsetBot)) {
  2522     mem = mmem->memory_at(alias_idx);
  2523     // Update input if it is progress over what we have now
  2525   return mem;
  2528 //
  2529 // Move memory users to their memory slices.
  2530 //
  2531 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2532   Compile* C = _compile;
  2533   PhaseGVN* igvn = _igvn;
  2534   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2535   assert(tp != NULL, "ptr type");
  2536   int alias_idx = C->get_alias_index(tp);
  2537   int general_idx = C->get_general_index(alias_idx);
  2539   // Move users first
  2540   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2541     Node* use = n->fast_out(i);
  2542     if (use->is_MergeMem()) {
  2543       MergeMemNode* mmem = use->as_MergeMem();
  2544       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2545       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2546         continue; // Nothing to do
  2548       // Replace previous general reference to mem node.
  2549       uint orig_uniq = C->unique();
  2550       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2551       assert(orig_uniq == C->unique(), "no new nodes");
  2552       mmem->set_memory_at(general_idx, m);
  2553       --imax;
  2554       --i;
  2555     } else if (use->is_MemBar()) {
  2556       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2557       if (use->req() > MemBarNode::Precedent &&
  2558           use->in(MemBarNode::Precedent) == n) {
  2559         // Don't move related membars.
  2560         record_for_optimizer(use);
  2561         continue;
  2563       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2564       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2565           alias_idx == general_idx) {
  2566         continue; // Nothing to do
  2568       // Move to general memory slice.
  2569       uint orig_uniq = C->unique();
  2570       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2571       assert(orig_uniq == C->unique(), "no new nodes");
  2572       igvn->hash_delete(use);
  2573       imax -= use->replace_edge(n, m);
  2574       igvn->hash_insert(use);
  2575       record_for_optimizer(use);
  2576       --i;
  2577 #ifdef ASSERT
  2578     } else if (use->is_Mem()) {
  2579       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2580         // Don't move related cardmark.
  2581         continue;
  2583       // Memory nodes should have new memory input.
  2584       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2585       assert(tp != NULL, "ptr type");
  2586       int idx = C->get_alias_index(tp);
  2587       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2588              "Following memory nodes should have new memory input or be on the same memory slice");
  2589     } else if (use->is_Phi()) {
  2590       // Phi nodes should be split and moved already.
  2591       tp = use->as_Phi()->adr_type()->isa_ptr();
  2592       assert(tp != NULL, "ptr type");
  2593       int idx = C->get_alias_index(tp);
  2594       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2595     } else {
  2596       use->dump();
  2597       assert(false, "should not be here");
  2598 #endif
  2603 //
  2604 // Search memory chain of "mem" to find a MemNode whose address
  2605 // is the specified alias index.
  2606 //
  2607 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2608   if (orig_mem == NULL)
  2609     return orig_mem;
  2610   Compile* C = _compile;
  2611   PhaseGVN* igvn = _igvn;
  2612   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2613   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2614   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2615   Node *prev = NULL;
  2616   Node *result = orig_mem;
  2617   while (prev != result) {
  2618     prev = result;
  2619     if (result == start_mem)
  2620       break;  // hit one of our sentinels
  2621     if (result->is_Mem()) {
  2622       const Type *at = igvn->type(result->in(MemNode::Address));
  2623       if (at == Type::TOP)
  2624         break; // Dead
  2625       assert (at->isa_ptr() != NULL, "pointer type required.");
  2626       int idx = C->get_alias_index(at->is_ptr());
  2627       if (idx == alias_idx)
  2628         break; // Found
  2629       if (!is_instance && (at->isa_oopptr() == NULL ||
  2630                            !at->is_oopptr()->is_known_instance())) {
  2631         break; // Do not skip store to general memory slice.
  2633       result = result->in(MemNode::Memory);
  2635     if (!is_instance)
  2636       continue;  // don't search further for non-instance types
  2637     // skip over a call which does not affect this memory slice
  2638     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2639       Node *proj_in = result->in(0);
  2640       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2641         break;  // hit one of our sentinels
  2642       } else if (proj_in->is_Call()) {
  2643         CallNode *call = proj_in->as_Call();
  2644         if (!call->may_modify(toop, igvn)) {
  2645           result = call->in(TypeFunc::Memory);
  2647       } else if (proj_in->is_Initialize()) {
  2648         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2649         // Stop if this is the initialization for the object instance which
  2650         // which contains this memory slice, otherwise skip over it.
  2651         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2652           result = proj_in->in(TypeFunc::Memory);
  2654       } else if (proj_in->is_MemBar()) {
  2655         result = proj_in->in(TypeFunc::Memory);
  2657     } else if (result->is_MergeMem()) {
  2658       MergeMemNode *mmem = result->as_MergeMem();
  2659       result = step_through_mergemem(mmem, alias_idx, toop);
  2660       if (result == mmem->base_memory()) {
  2661         // Didn't find instance memory, search through general slice recursively.
  2662         result = mmem->memory_at(C->get_general_index(alias_idx));
  2663         result = find_inst_mem(result, alias_idx, orig_phis);
  2664         if (C->failing()) {
  2665           return NULL;
  2667         mmem->set_memory_at(alias_idx, result);
  2669     } else if (result->is_Phi() &&
  2670                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2671       Node *un = result->as_Phi()->unique_input(igvn);
  2672       if (un != NULL) {
  2673         orig_phis.append_if_missing(result->as_Phi());
  2674         result = un;
  2675       } else {
  2676         break;
  2678     } else if (result->is_ClearArray()) {
  2679       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2680         // Can not bypass initialization of the instance
  2681         // we are looking for.
  2682         break;
  2684       // Otherwise skip it (the call updated 'result' value).
  2685     } else if (result->Opcode() == Op_SCMemProj) {
  2686       Node* mem = result->in(0);
  2687       Node* adr = NULL;
  2688       if (mem->is_LoadStore()) {
  2689         adr = mem->in(MemNode::Address);
  2690       } else {
  2691         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2692         adr = mem->in(3); // Memory edge corresponds to destination array
  2694       const Type *at = igvn->type(adr);
  2695       if (at != Type::TOP) {
  2696         assert (at->isa_ptr() != NULL, "pointer type required.");
  2697         int idx = C->get_alias_index(at->is_ptr());
  2698         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2699         break;
  2701       result = mem->in(MemNode::Memory);
  2704   if (result->is_Phi()) {
  2705     PhiNode *mphi = result->as_Phi();
  2706     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2707     const TypePtr *t = mphi->adr_type();
  2708     if (!is_instance) {
  2709       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2710       // during Phase 4 if needed.
  2711       orig_phis.append_if_missing(mphi);
  2712     } else if (C->get_alias_index(t) != alias_idx) {
  2713       // Create a new Phi with the specified alias index type.
  2714       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2717   // the result is either MemNode, PhiNode, InitializeNode.
  2718   return result;
  2721 //
  2722 //  Convert the types of unescaped object to instance types where possible,
  2723 //  propagate the new type information through the graph, and update memory
  2724 //  edges and MergeMem inputs to reflect the new type.
  2725 //
  2726 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2727 //  The processing is done in 4 phases:
  2728 //
  2729 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2730 //            types for the CheckCastPP for allocations where possible.
  2731 //            Propagate the the new types through users as follows:
  2732 //               casts and Phi:  push users on alloc_worklist
  2733 //               AddP:  cast Base and Address inputs to the instance type
  2734 //                      push any AddP users on alloc_worklist and push any memnode
  2735 //                      users onto memnode_worklist.
  2736 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2737 //            search the Memory chain for a store with the appropriate type
  2738 //            address type.  If a Phi is found, create a new version with
  2739 //            the appropriate memory slices from each of the Phi inputs.
  2740 //            For stores, process the users as follows:
  2741 //               MemNode:  push on memnode_worklist
  2742 //               MergeMem: push on mergemem_worklist
  2743 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2744 //            moving the first node encountered of each  instance type to the
  2745 //            the input corresponding to its alias index.
  2746 //            appropriate memory slice.
  2747 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2748 //
  2749 // In the following example, the CheckCastPP nodes are the cast of allocation
  2750 // results and the allocation of node 29 is unescaped and eligible to be an
  2751 // instance type.
  2752 //
  2753 // We start with:
  2754 //
  2755 //     7 Parm #memory
  2756 //    10  ConI  "12"
  2757 //    19  CheckCastPP   "Foo"
  2758 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2759 //    29  CheckCastPP   "Foo"
  2760 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2761 //
  2762 //    40  StoreP  25   7  20   ... alias_index=4
  2763 //    50  StoreP  35  40  30   ... alias_index=4
  2764 //    60  StoreP  45  50  20   ... alias_index=4
  2765 //    70  LoadP    _  60  30   ... alias_index=4
  2766 //    80  Phi     75  50  60   Memory alias_index=4
  2767 //    90  LoadP    _  80  30   ... alias_index=4
  2768 //   100  LoadP    _  80  20   ... alias_index=4
  2769 //
  2770 //
  2771 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2772 // and creating a new alias index for node 30.  This gives:
  2773 //
  2774 //     7 Parm #memory
  2775 //    10  ConI  "12"
  2776 //    19  CheckCastPP   "Foo"
  2777 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2778 //    29  CheckCastPP   "Foo"  iid=24
  2779 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2780 //
  2781 //    40  StoreP  25   7  20   ... alias_index=4
  2782 //    50  StoreP  35  40  30   ... alias_index=6
  2783 //    60  StoreP  45  50  20   ... alias_index=4
  2784 //    70  LoadP    _  60  30   ... alias_index=6
  2785 //    80  Phi     75  50  60   Memory alias_index=4
  2786 //    90  LoadP    _  80  30   ... alias_index=6
  2787 //   100  LoadP    _  80  20   ... alias_index=4
  2788 //
  2789 // In phase 2, new memory inputs are computed for the loads and stores,
  2790 // And a new version of the phi is created.  In phase 4, the inputs to
  2791 // node 80 are updated and then the memory nodes are updated with the
  2792 // values computed in phase 2.  This results in:
  2793 //
  2794 //     7 Parm #memory
  2795 //    10  ConI  "12"
  2796 //    19  CheckCastPP   "Foo"
  2797 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2798 //    29  CheckCastPP   "Foo"  iid=24
  2799 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2800 //
  2801 //    40  StoreP  25  7   20   ... alias_index=4
  2802 //    50  StoreP  35  7   30   ... alias_index=6
  2803 //    60  StoreP  45  40  20   ... alias_index=4
  2804 //    70  LoadP    _  50  30   ... alias_index=6
  2805 //    80  Phi     75  40  60   Memory alias_index=4
  2806 //   120  Phi     75  50  50   Memory alias_index=6
  2807 //    90  LoadP    _ 120  30   ... alias_index=6
  2808 //   100  LoadP    _  80  20   ... alias_index=4
  2809 //
  2810 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2811   GrowableArray<Node *>  memnode_worklist;
  2812   GrowableArray<PhiNode *>  orig_phis;
  2813   PhaseIterGVN  *igvn = _igvn;
  2814   uint new_index_start = (uint) _compile->num_alias_types();
  2815   Arena* arena = Thread::current()->resource_area();
  2816   VectorSet visited(arena);
  2817   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2818   uint unique_old = _compile->unique();
  2820   //  Phase 1:  Process possible allocations from alloc_worklist.
  2821   //  Create instance types for the CheckCastPP for allocations where possible.
  2822   //
  2823   // (Note: don't forget to change the order of the second AddP node on
  2824   //  the alloc_worklist if the order of the worklist processing is changed,
  2825   //  see the comment in find_second_addp().)
  2826   //
  2827   while (alloc_worklist.length() != 0) {
  2828     Node *n = alloc_worklist.pop();
  2829     uint ni = n->_idx;
  2830     if (n->is_Call()) {
  2831       CallNode *alloc = n->as_Call();
  2832       // copy escape information to call node
  2833       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2834       PointsToNode::EscapeState es = ptn->escape_state();
  2835       // We have an allocation or call which returns a Java object,
  2836       // see if it is unescaped.
  2837       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2838         continue;
  2839       // Find CheckCastPP for the allocate or for the return value of a call
  2840       n = alloc->result_cast();
  2841       if (n == NULL) {            // No uses except Initialize node
  2842         if (alloc->is_Allocate()) {
  2843           // Set the scalar_replaceable flag for allocation
  2844           // so it could be eliminated if it has no uses.
  2845           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2847         if (alloc->is_CallStaticJava()) {
  2848           // Set the scalar_replaceable flag for boxing method
  2849           // so it could be eliminated if it has no uses.
  2850           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2852         continue;
  2854       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2855         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2856         continue;
  2859       // The inline code for Object.clone() casts the allocation result to
  2860       // java.lang.Object and then to the actual type of the allocated
  2861       // object. Detect this case and use the second cast.
  2862       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2863       // the allocation result is cast to java.lang.Object and then
  2864       // to the actual Array type.
  2865       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2866           && (alloc->is_AllocateArray() ||
  2867               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2868         Node *cast2 = NULL;
  2869         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2870           Node *use = n->fast_out(i);
  2871           if (use->is_CheckCastPP()) {
  2872             cast2 = use;
  2873             break;
  2876         if (cast2 != NULL) {
  2877           n = cast2;
  2878         } else {
  2879           // Non-scalar replaceable if the allocation type is unknown statically
  2880           // (reflection allocation), the object can't be restored during
  2881           // deoptimization without precise type.
  2882           continue;
  2886       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2887       if (t == NULL)
  2888         continue;  // not a TypeOopPtr
  2889       if (!t->klass_is_exact())
  2890         continue; // not an unique type
  2892       if (alloc->is_Allocate()) {
  2893         // Set the scalar_replaceable flag for allocation
  2894         // so it could be eliminated.
  2895         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2897       if (alloc->is_CallStaticJava()) {
  2898         // Set the scalar_replaceable flag for boxing method
  2899         // so it could be eliminated.
  2900         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2902       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2903       // in order for an object to be scalar-replaceable, it must be:
  2904       //   - a direct allocation (not a call returning an object)
  2905       //   - non-escaping
  2906       //   - eligible to be a unique type
  2907       //   - not determined to be ineligible by escape analysis
  2908       set_map(alloc, n);
  2909       set_map(n, alloc);
  2910       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
  2911       igvn->hash_delete(n);
  2912       igvn->set_type(n,  tinst);
  2913       n->raise_bottom_type(tinst);
  2914       igvn->hash_insert(n);
  2915       record_for_optimizer(n);
  2916       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2918         // First, put on the worklist all Field edges from Connection Graph
  2919         // which is more accurate then putting immediate users from Ideal Graph.
  2920         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2921           PointsToNode* tgt = e.get();
  2922           Node* use = tgt->ideal_node();
  2923           assert(tgt->is_Field() && use->is_AddP(),
  2924                  "only AddP nodes are Field edges in CG");
  2925           if (use->outcnt() > 0) { // Don't process dead nodes
  2926             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2927             if (addp2 != NULL) {
  2928               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2929               alloc_worklist.append_if_missing(addp2);
  2931             alloc_worklist.append_if_missing(use);
  2935         // An allocation may have an Initialize which has raw stores. Scan
  2936         // the users of the raw allocation result and push AddP users
  2937         // on alloc_worklist.
  2938         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2939         assert (raw_result != NULL, "must have an allocation result");
  2940         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2941           Node *use = raw_result->fast_out(i);
  2942           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2943             Node* addp2 = find_second_addp(use, raw_result);
  2944             if (addp2 != NULL) {
  2945               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2946               alloc_worklist.append_if_missing(addp2);
  2948             alloc_worklist.append_if_missing(use);
  2949           } else if (use->is_MemBar()) {
  2950             memnode_worklist.append_if_missing(use);
  2954     } else if (n->is_AddP()) {
  2955       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2956       if (jobj == NULL || jobj == phantom_obj) {
  2957 #ifdef ASSERT
  2958         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2959         ptnode_adr(n->_idx)->dump();
  2960         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2961 #endif
  2962         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2963         return;
  2965       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2966       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2967     } else if (n->is_Phi() ||
  2968                n->is_CheckCastPP() ||
  2969                n->is_EncodeP() ||
  2970                n->is_DecodeN() ||
  2971                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2972       if (visited.test_set(n->_idx)) {
  2973         assert(n->is_Phi(), "loops only through Phi's");
  2974         continue;  // already processed
  2976       JavaObjectNode* jobj = unique_java_object(n);
  2977       if (jobj == NULL || jobj == phantom_obj) {
  2978 #ifdef ASSERT
  2979         ptnode_adr(n->_idx)->dump();
  2980         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2981 #endif
  2982         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2983         return;
  2984       } else {
  2985         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2986         TypeNode *tn = n->as_Type();
  2987         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2988         assert(tinst != NULL && tinst->is_known_instance() &&
  2989                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2991         const Type *tn_type = igvn->type(tn);
  2992         const TypeOopPtr *tn_t;
  2993         if (tn_type->isa_narrowoop()) {
  2994           tn_t = tn_type->make_ptr()->isa_oopptr();
  2995         } else {
  2996           tn_t = tn_type->isa_oopptr();
  2998         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2999           if (tn_type->isa_narrowoop()) {
  3000             tn_type = tinst->make_narrowoop();
  3001           } else {
  3002             tn_type = tinst;
  3004           igvn->hash_delete(tn);
  3005           igvn->set_type(tn, tn_type);
  3006           tn->set_type(tn_type);
  3007           igvn->hash_insert(tn);
  3008           record_for_optimizer(n);
  3009         } else {
  3010           assert(tn_type == TypePtr::NULL_PTR ||
  3011                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  3012                  "unexpected type");
  3013           continue; // Skip dead path with different type
  3016     } else {
  3017       debug_only(n->dump();)
  3018       assert(false, "EA: unexpected node");
  3019       continue;
  3021     // push allocation's users on appropriate worklist
  3022     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3023       Node *use = n->fast_out(i);
  3024       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  3025         // Load/store to instance's field
  3026         memnode_worklist.append_if_missing(use);
  3027       } else if (use->is_MemBar()) {
  3028         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3029           memnode_worklist.append_if_missing(use);
  3031       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  3032         Node* addp2 = find_second_addp(use, n);
  3033         if (addp2 != NULL) {
  3034           alloc_worklist.append_if_missing(addp2);
  3036         alloc_worklist.append_if_missing(use);
  3037       } else if (use->is_Phi() ||
  3038                  use->is_CheckCastPP() ||
  3039                  use->is_EncodeNarrowPtr() ||
  3040                  use->is_DecodeNarrowPtr() ||
  3041                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  3042         alloc_worklist.append_if_missing(use);
  3043 #ifdef ASSERT
  3044       } else if (use->is_Mem()) {
  3045         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  3046       } else if (use->is_MergeMem()) {
  3047         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3048       } else if (use->is_SafePoint()) {
  3049         // Look for MergeMem nodes for calls which reference unique allocation
  3050         // (through CheckCastPP nodes) even for debug info.
  3051         Node* m = use->in(TypeFunc::Memory);
  3052         if (m->is_MergeMem()) {
  3053           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3055       } else if (use->Opcode() == Op_EncodeISOArray) {
  3056         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3057           // EncodeISOArray overwrites destination array
  3058           memnode_worklist.append_if_missing(use);
  3060       } else {
  3061         uint op = use->Opcode();
  3062         if (!(op == Op_CmpP || op == Op_Conv2B ||
  3063               op == Op_CastP2X || op == Op_StoreCM ||
  3064               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  3065               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3066           n->dump();
  3067           use->dump();
  3068           assert(false, "EA: missing allocation reference path");
  3070 #endif
  3075   // New alias types were created in split_AddP().
  3076   uint new_index_end = (uint) _compile->num_alias_types();
  3077   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3079   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3080   //            compute new values for Memory inputs  (the Memory inputs are not
  3081   //            actually updated until phase 4.)
  3082   if (memnode_worklist.length() == 0)
  3083     return;  // nothing to do
  3084   while (memnode_worklist.length() != 0) {
  3085     Node *n = memnode_worklist.pop();
  3086     if (visited.test_set(n->_idx))
  3087       continue;
  3088     if (n->is_Phi() || n->is_ClearArray()) {
  3089       // we don't need to do anything, but the users must be pushed
  3090     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3091       // we don't need to do anything, but the users must be pushed
  3092       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3093       if (n == NULL)
  3094         continue;
  3095     } else if (n->Opcode() == Op_EncodeISOArray) {
  3096       // get the memory projection
  3097       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3098         Node *use = n->fast_out(i);
  3099         if (use->Opcode() == Op_SCMemProj) {
  3100           n = use;
  3101           break;
  3104       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3105     } else {
  3106       assert(n->is_Mem(), "memory node required.");
  3107       Node *addr = n->in(MemNode::Address);
  3108       const Type *addr_t = igvn->type(addr);
  3109       if (addr_t == Type::TOP)
  3110         continue;
  3111       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3112       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3113       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3114       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3115       if (_compile->failing()) {
  3116         return;
  3118       if (mem != n->in(MemNode::Memory)) {
  3119         // We delay the memory edge update since we need old one in
  3120         // MergeMem code below when instances memory slices are separated.
  3121         set_map(n, mem);
  3123       if (n->is_Load()) {
  3124         continue;  // don't push users
  3125       } else if (n->is_LoadStore()) {
  3126         // get the memory projection
  3127         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3128           Node *use = n->fast_out(i);
  3129           if (use->Opcode() == Op_SCMemProj) {
  3130             n = use;
  3131             break;
  3134         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3137     // push user on appropriate worklist
  3138     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3139       Node *use = n->fast_out(i);
  3140       if (use->is_Phi() || use->is_ClearArray()) {
  3141         memnode_worklist.append_if_missing(use);
  3142       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3143         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3144           continue;
  3145         memnode_worklist.append_if_missing(use);
  3146       } else if (use->is_MemBar()) {
  3147         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3148           memnode_worklist.append_if_missing(use);
  3150 #ifdef ASSERT
  3151       } else if(use->is_Mem()) {
  3152         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3153       } else if (use->is_MergeMem()) {
  3154         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3155       } else if (use->Opcode() == Op_EncodeISOArray) {
  3156         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3157           // EncodeISOArray overwrites destination array
  3158           memnode_worklist.append_if_missing(use);
  3160       } else {
  3161         uint op = use->Opcode();
  3162         if (!(op == Op_StoreCM ||
  3163               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3164                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3165               op == Op_AryEq || op == Op_StrComp ||
  3166               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3167           n->dump();
  3168           use->dump();
  3169           assert(false, "EA: missing memory path");
  3171 #endif
  3176   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3177   //            Walk each memory slice moving the first node encountered of each
  3178   //            instance type to the the input corresponding to its alias index.
  3179   uint length = _mergemem_worklist.length();
  3180   for( uint next = 0; next < length; ++next ) {
  3181     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3182     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3183     // Note: we don't want to use MergeMemStream here because we only want to
  3184     // scan inputs which exist at the start, not ones we add during processing.
  3185     // Note 2: MergeMem may already contains instance memory slices added
  3186     // during find_inst_mem() call when memory nodes were processed above.
  3187     igvn->hash_delete(nmm);
  3188     uint nslices = MIN2(nmm->req(), new_index_start);
  3189     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3190       Node* mem = nmm->in(i);
  3191       Node* cur = NULL;
  3192       if (mem == NULL || mem->is_top())
  3193         continue;
  3194       // First, update mergemem by moving memory nodes to corresponding slices
  3195       // if their type became more precise since this mergemem was created.
  3196       while (mem->is_Mem()) {
  3197         const Type *at = igvn->type(mem->in(MemNode::Address));
  3198         if (at != Type::TOP) {
  3199           assert (at->isa_ptr() != NULL, "pointer type required.");
  3200           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3201           if (idx == i) {
  3202             if (cur == NULL)
  3203               cur = mem;
  3204           } else {
  3205             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3206               nmm->set_memory_at(idx, mem);
  3210         mem = mem->in(MemNode::Memory);
  3212       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3213       // Find any instance of the current type if we haven't encountered
  3214       // already a memory slice of the instance along the memory chain.
  3215       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3216         if((uint)_compile->get_general_index(ni) == i) {
  3217           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3218           if (nmm->is_empty_memory(m)) {
  3219             Node* result = find_inst_mem(mem, ni, orig_phis);
  3220             if (_compile->failing()) {
  3221               return;
  3223             nmm->set_memory_at(ni, result);
  3228     // Find the rest of instances values
  3229     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3230       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3231       Node* result = step_through_mergemem(nmm, ni, tinst);
  3232       if (result == nmm->base_memory()) {
  3233         // Didn't find instance memory, search through general slice recursively.
  3234         result = nmm->memory_at(_compile->get_general_index(ni));
  3235         result = find_inst_mem(result, ni, orig_phis);
  3236         if (_compile->failing()) {
  3237           return;
  3239         nmm->set_memory_at(ni, result);
  3242     igvn->hash_insert(nmm);
  3243     record_for_optimizer(nmm);
  3246   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3247   //            the Memory input of memnodes
  3248   // First update the inputs of any non-instance Phi's from
  3249   // which we split out an instance Phi.  Note we don't have
  3250   // to recursively process Phi's encounted on the input memory
  3251   // chains as is done in split_memory_phi() since they  will
  3252   // also be processed here.
  3253   for (int j = 0; j < orig_phis.length(); j++) {
  3254     PhiNode *phi = orig_phis.at(j);
  3255     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3256     igvn->hash_delete(phi);
  3257     for (uint i = 1; i < phi->req(); i++) {
  3258       Node *mem = phi->in(i);
  3259       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3260       if (_compile->failing()) {
  3261         return;
  3263       if (mem != new_mem) {
  3264         phi->set_req(i, new_mem);
  3267     igvn->hash_insert(phi);
  3268     record_for_optimizer(phi);
  3271   // Update the memory inputs of MemNodes with the value we computed
  3272   // in Phase 2 and move stores memory users to corresponding memory slices.
  3273   // Disable memory split verification code until the fix for 6984348.
  3274   // Currently it produces false negative results since it does not cover all cases.
  3275 #if 0 // ifdef ASSERT
  3276   visited.Reset();
  3277   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3278 #endif
  3279   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3280     Node*    n = ideal_nodes.at(i);
  3281     Node* nmem = get_map(n->_idx);
  3282     assert(nmem != NULL, "sanity");
  3283     if (n->is_Mem()) {
  3284 #if 0 // ifdef ASSERT
  3285       Node* old_mem = n->in(MemNode::Memory);
  3286       if (!visited.test_set(old_mem->_idx)) {
  3287         old_mems.push(old_mem, old_mem->outcnt());
  3289 #endif
  3290       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3291       if (!n->is_Load()) {
  3292         // Move memory users of a store first.
  3293         move_inst_mem(n, orig_phis);
  3295       // Now update memory input
  3296       igvn->hash_delete(n);
  3297       n->set_req(MemNode::Memory, nmem);
  3298       igvn->hash_insert(n);
  3299       record_for_optimizer(n);
  3300     } else {
  3301       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3302              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3305 #if 0 // ifdef ASSERT
  3306   // Verify that memory was split correctly
  3307   while (old_mems.is_nonempty()) {
  3308     Node* old_mem = old_mems.node();
  3309     uint  old_cnt = old_mems.index();
  3310     old_mems.pop();
  3311     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3313 #endif
  3316 #ifndef PRODUCT
  3317 static const char *node_type_names[] = {
  3318   "UnknownType",
  3319   "JavaObject",
  3320   "LocalVar",
  3321   "Field",
  3322   "Arraycopy"
  3323 };
  3325 static const char *esc_names[] = {
  3326   "UnknownEscape",
  3327   "NoEscape",
  3328   "ArgEscape",
  3329   "GlobalEscape"
  3330 };
  3332 void PointsToNode::dump(bool print_state) const {
  3333   NodeType nt = node_type();
  3334   tty->print("%s ", node_type_names[(int) nt]);
  3335   if (print_state) {
  3336     EscapeState es = escape_state();
  3337     EscapeState fields_es = fields_escape_state();
  3338     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3339     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3340       tty->print("NSR ");
  3342   if (is_Field()) {
  3343     FieldNode* f = (FieldNode*)this;
  3344     if (f->is_oop())
  3345       tty->print("oop ");
  3346     if (f->offset() > 0)
  3347       tty->print("+%d ", f->offset());
  3348     tty->print("(");
  3349     for (BaseIterator i(f); i.has_next(); i.next()) {
  3350       PointsToNode* b = i.get();
  3351       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3353     tty->print(" )");
  3355   tty->print("[");
  3356   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3357     PointsToNode* e = i.get();
  3358     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3360   tty->print(" [");
  3361   for (UseIterator i(this); i.has_next(); i.next()) {
  3362     PointsToNode* u = i.get();
  3363     bool is_base = false;
  3364     if (PointsToNode::is_base_use(u)) {
  3365       is_base = true;
  3366       u = PointsToNode::get_use_node(u)->as_Field();
  3368     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3370   tty->print(" ]]  ");
  3371   if (_node == NULL)
  3372     tty->print_cr("<null>");
  3373   else
  3374     _node->dump();
  3377 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3378   bool first = true;
  3379   int ptnodes_length = ptnodes_worklist.length();
  3380   for (int i = 0; i < ptnodes_length; i++) {
  3381     PointsToNode *ptn = ptnodes_worklist.at(i);
  3382     if (ptn == NULL || !ptn->is_JavaObject())
  3383       continue;
  3384     PointsToNode::EscapeState es = ptn->escape_state();
  3385     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3386       continue;
  3388     Node* n = ptn->ideal_node();
  3389     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3390                              n->as_CallStaticJava()->is_boxing_method())) {
  3391       if (first) {
  3392         tty->cr();
  3393         tty->print("======== Connection graph for ");
  3394         _compile->method()->print_short_name();
  3395         tty->cr();
  3396         first = false;
  3398       ptn->dump();
  3399       // Print all locals and fields which reference this allocation
  3400       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3401         PointsToNode* use = j.get();
  3402         if (use->is_LocalVar()) {
  3403           use->dump(Verbose);
  3404         } else if (Verbose) {
  3405           use->dump();
  3408       tty->cr();
  3412 #endif

mercurial