src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3712
dde53abda3d6
child 4128
f81a7c0c618d
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "oops/oop.psgc.inline.hpp"
    34 // Checks an individual oop for missing precise marks. Mark
    35 // may be either dirty or newgen.
    36 class CheckForUnmarkedOops : public OopClosure {
    37  private:
    38   PSYoungGen*         _young_gen;
    39   CardTableExtension* _card_table;
    40   HeapWord*           _unmarked_addr;
    41   jbyte*              _unmarked_card;
    43  protected:
    44   template <class T> void do_oop_work(T* p) {
    45     oop obj = oopDesc::load_decode_heap_oop(p);
    46     if (_young_gen->is_in_reserved(obj) &&
    47         !_card_table->addr_is_marked_imprecise(p)) {
    48       // Don't overwrite the first missing card mark
    49       if (_unmarked_addr == NULL) {
    50         _unmarked_addr = (HeapWord*)p;
    51         _unmarked_card = _card_table->byte_for(p);
    52       }
    53     }
    54   }
    56  public:
    57   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    58     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    60   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    61   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    63   bool has_unmarked_oop() {
    64     return _unmarked_addr != NULL;
    65   }
    66 };
    68 // Checks all objects for the existance of some type of mark,
    69 // precise or imprecise, dirty or newgen.
    70 class CheckForUnmarkedObjects : public ObjectClosure {
    71  private:
    72   PSYoungGen*         _young_gen;
    73   CardTableExtension* _card_table;
    75  public:
    76   CheckForUnmarkedObjects() {
    77     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    78     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    80     _young_gen = heap->young_gen();
    81     _card_table = (CardTableExtension*)heap->barrier_set();
    82     // No point in asserting barrier set type here. Need to make CardTableExtension
    83     // a unique barrier set type.
    84   }
    86   // Card marks are not precise. The current system can leave us with
    87   // a mismash of precise marks and beginning of object marks. This means
    88   // we test for missing precise marks first. If any are found, we don't
    89   // fail unless the object head is also unmarked.
    90   virtual void do_object(oop obj) {
    91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    92     obj->oop_iterate_no_header(&object_check);
    93     if (object_check.has_unmarked_oop()) {
    94       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    95     }
    96   }
    97 };
    99 // Checks for precise marking of oops as newgen.
   100 class CheckForPreciseMarks : public OopClosure {
   101  private:
   102   PSYoungGen*         _young_gen;
   103   CardTableExtension* _card_table;
   105  protected:
   106   template <class T> void do_oop_work(T* p) {
   107     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   108     if (_young_gen->is_in_reserved(obj)) {
   109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   110       _card_table->set_card_newgen(p);
   111     }
   112   }
   114  public:
   115   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   116     _young_gen(young_gen), _card_table(card_table) { }
   118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   120 };
   122 // We get passed the space_top value to prevent us from traversing into
   123 // the old_gen promotion labs, which cannot be safely parsed.
   124 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   125                                            MutableSpace* sp,
   126                                            HeapWord* space_top,
   127                                            PSPromotionManager* pm)
   128 {
   129   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   130   assert(start_array->covered_region().contains(sp->used_region()),
   131          "ObjectStartArray does not cover space");
   133   if (sp->not_empty()) {
   134     oop* sp_top = (oop*)space_top;
   135     oop* prev_top = NULL;
   136     jbyte* current_card = byte_for(sp->bottom());
   137     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   138     // scan card marking array
   139     while (current_card <= end_card) {
   140       jbyte value = *current_card;
   141       // skip clean cards
   142       if (card_is_clean(value)) {
   143         current_card++;
   144       } else {
   145         // we found a non-clean card
   146         jbyte* first_nonclean_card = current_card++;
   147         oop* bottom = (oop*)addr_for(first_nonclean_card);
   148         // find object starting on card
   149         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   150         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   151         assert(bottom_obj <= bottom, "just checking");
   152         // make sure we don't scan oops we already looked at
   153         if (bottom < prev_top) bottom = prev_top;
   154         // figure out when to stop scanning
   155         jbyte* first_clean_card;
   156         oop* top;
   157         bool restart_scanning;
   158         do {
   159           restart_scanning = false;
   160           // find a clean card
   161           while (current_card <= end_card) {
   162             value = *current_card;
   163             if (card_is_clean(value)) break;
   164             current_card++;
   165           }
   166           // check if we reached the end, if so we are done
   167           if (current_card >= end_card) {
   168             first_clean_card = end_card + 1;
   169             current_card++;
   170             top = sp_top;
   171           } else {
   172             // we have a clean card, find object starting on that card
   173             first_clean_card = current_card++;
   174             top = (oop*)addr_for(first_clean_card);
   175             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   176             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   177             assert(top_obj <= top, "just checking");
   178             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   179               // an arrayOop is starting on the clean card - since we do exact store
   180               // checks for objArrays we are done
   181             } else {
   182               // otherwise, it is possible that the object starting on the clean card
   183               // spans the entire card, and that the store happened on a later card.
   184               // figure out where the object ends
   185               top = top_obj + oop(top_obj)->size();
   186               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   187               if (top_card > first_clean_card) {
   188                 // object ends a different card
   189                 current_card = top_card + 1;
   190                 if (card_is_clean(*top_card)) {
   191                   // the ending card is clean, we are done
   192                   first_clean_card = top_card;
   193                 } else {
   194                   // the ending card is not clean, continue scanning at start of do-while
   195                   restart_scanning = true;
   196                 }
   197               } else {
   198                 // object ends on the clean card, we are done.
   199                 assert(first_clean_card == top_card, "just checking");
   200               }
   201             }
   202           }
   203         } while (restart_scanning);
   204         // we know which cards to scan, now clear them
   205         while (first_nonclean_card < first_clean_card) {
   206           *first_nonclean_card++ = clean_card;
   207         }
   208         // scan oops in objects
   209         do {
   210           oop(bottom_obj)->push_contents(pm);
   211           bottom_obj += oop(bottom_obj)->size();
   212           assert(bottom_obj <= sp_top, "just checking");
   213         } while (bottom_obj < top);
   214         pm->drain_stacks_cond_depth();
   215         // remember top oop* scanned
   216         prev_top = top;
   217       }
   218     }
   219   }
   220 }
   222 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   223                                                     MutableSpace* sp,
   224                                                     HeapWord* space_top,
   225                                                     PSPromotionManager* pm,
   226                                                     uint stripe_number,
   227                                                     uint stripe_total) {
   228   int ssize = 128; // Naked constant!  Work unit = 64k.
   229   int dirty_card_count = 0;
   231   oop* sp_top = (oop*)space_top;
   232   oop* sp_last = sp->bottom() == space_top ? sp_top : sp_top - 1;
   233   jbyte* start_card = byte_for(sp->bottom());
   234   jbyte* end_card   = byte_for(sp_last) + 1;
   235   oop* last_scanned = NULL; // Prevent scanning objects more than once
   236   // The width of the stripe ssize*stripe_total must be
   237   // consistent with the number of stripes so that the complete slice
   238   // is covered.
   239   size_t slice_width = ssize * stripe_total;
   240   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
   241     jbyte* worker_start_card = slice + stripe_number * ssize;
   242     if (worker_start_card >= end_card)
   243       return; // We're done.
   245     jbyte* worker_end_card = worker_start_card + ssize;
   246     if (worker_end_card > end_card)
   247       worker_end_card = end_card;
   249     // We do not want to scan objects more than once. In order to accomplish
   250     // this, we assert that any object with an object head inside our 'slice'
   251     // belongs to us. We may need to extend the range of scanned cards if the
   252     // last object continues into the next 'slice'.
   253     //
   254     // Note! ending cards are exclusive!
   255     HeapWord* slice_start = addr_for(worker_start_card);
   256     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   258     // If there are not objects starting within the chunk, skip it.
   259     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   260       continue;
   261     }
   262     // Update our beginning addr
   263     HeapWord* first_object = start_array->object_start(slice_start);
   264     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   265     if (first_object < slice_start) {
   266       last_scanned = (oop*)(first_object + oop(first_object)->size());
   267       debug_only(first_object_within_slice = last_scanned;)
   268       worker_start_card = byte_for(last_scanned);
   269     }
   271     // Update the ending addr
   272     if (slice_end < (HeapWord*)sp_top) {
   273       // The subtraction is important! An object may start precisely at slice_end.
   274       HeapWord* last_object = start_array->object_start(slice_end - 1);
   275       slice_end = last_object + oop(last_object)->size();
   276       // worker_end_card is exclusive, so bump it one past the end of last_object's
   277       // covered span.
   278       worker_end_card = byte_for(slice_end) + 1;
   280       if (worker_end_card > end_card)
   281         worker_end_card = end_card;
   282     }
   284     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   285     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   286     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   287     // Note that worker_start_card >= worker_end_card is legal, and happens when
   288     // an object spans an entire slice.
   289     assert(worker_start_card <= end_card, "worker start card beyond end card");
   290     assert(worker_end_card <= end_card, "worker end card beyond end card");
   292     jbyte* current_card = worker_start_card;
   293     while (current_card < worker_end_card) {
   294       // Find an unclean card.
   295       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   296         current_card++;
   297       }
   298       jbyte* first_unclean_card = current_card;
   300       // Find the end of a run of contiguous unclean cards
   301       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   302         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   303           current_card++;
   304         }
   306         if (current_card < worker_end_card) {
   307           // Some objects may be large enough to span several cards. If such
   308           // an object has more than one dirty card, separated by a clean card,
   309           // we will attempt to scan it twice. The test against "last_scanned"
   310           // prevents the redundant object scan, but it does not prevent newly
   311           // marked cards from being cleaned.
   312           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   313           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   314           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   315           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   316           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   317           if (ending_card_of_last_object > current_card) {
   318             // This means the object spans the next complete card.
   319             // We need to bump the current_card to ending_card_of_last_object
   320             current_card = ending_card_of_last_object;
   321           }
   322         }
   323       }
   324       jbyte* following_clean_card = current_card;
   326       if (first_unclean_card < worker_end_card) {
   327         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   328         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   329         // "p" should always be >= "last_scanned" because newly GC dirtied
   330         // cards are no longer scanned again (see comment at end
   331         // of loop on the increment of "current_card").  Test that
   332         // hypothesis before removing this code.
   333         // If this code is removed, deal with the first time through
   334         // the loop when the last_scanned is the object starting in
   335         // the previous slice.
   336         assert((p >= last_scanned) ||
   337                (last_scanned == first_object_within_slice),
   338                "Should no longer be possible");
   339         if (p < last_scanned) {
   340           // Avoid scanning more than once; this can happen because
   341           // newgen cards set by GC may a different set than the
   342           // originally dirty set
   343           p = last_scanned;
   344         }
   345         oop* to = (oop*)addr_for(following_clean_card);
   347         // Test slice_end first!
   348         if ((HeapWord*)to > slice_end) {
   349           to = (oop*)slice_end;
   350         } else if (to > sp_top) {
   351           to = sp_top;
   352         }
   354         // we know which cards to scan, now clear them
   355         if (first_unclean_card <= worker_start_card+1)
   356           first_unclean_card = worker_start_card+1;
   357         if (following_clean_card >= worker_end_card-1)
   358           following_clean_card = worker_end_card-1;
   360         while (first_unclean_card < following_clean_card) {
   361           *first_unclean_card++ = clean_card;
   362         }
   364         const int interval = PrefetchScanIntervalInBytes;
   365         // scan all objects in the range
   366         if (interval != 0) {
   367           while (p < to) {
   368             Prefetch::write(p, interval);
   369             oop m = oop(p);
   370             assert(m->is_oop_or_null(), "check for header");
   371             m->push_contents(pm);
   372             p += m->size();
   373           }
   374           pm->drain_stacks_cond_depth();
   375         } else {
   376           while (p < to) {
   377             oop m = oop(p);
   378             assert(m->is_oop_or_null(), "check for header");
   379             m->push_contents(pm);
   380             p += m->size();
   381           }
   382           pm->drain_stacks_cond_depth();
   383         }
   384         last_scanned = p;
   385       }
   386       // "current_card" is still the "following_clean_card" or
   387       // the current_card is >= the worker_end_card so the
   388       // loop will not execute again.
   389       assert((current_card == following_clean_card) ||
   390              (current_card >= worker_end_card),
   391         "current_card should only be incremented if it still equals "
   392         "following_clean_card");
   393       // Increment current_card so that it is not processed again.
   394       // It may now be dirty because a old-to-young pointer was
   395       // found on it an updated.  If it is now dirty, it cannot be
   396       // be safely cleaned in the next iteration.
   397       current_card++;
   398     }
   399   }
   400 }
   402 // This should be called before a scavenge.
   403 void CardTableExtension::verify_all_young_refs_imprecise() {
   404   CheckForUnmarkedObjects check;
   406   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   407   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   409   PSOldGen* old_gen = heap->old_gen();
   411   old_gen->object_iterate(&check);
   412 }
   414 // This should be called immediately after a scavenge, before mutators resume.
   415 void CardTableExtension::verify_all_young_refs_precise() {
   416   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   417   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   419   PSOldGen* old_gen = heap->old_gen();
   421   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   423   old_gen->oop_iterate_no_header(&check);
   425   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   426 }
   428 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   429   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   430   // FIX ME ASSERT HERE
   432   jbyte* bot = card_table->byte_for(mr.start());
   433   jbyte* top = card_table->byte_for(mr.end());
   434   while(bot <= top) {
   435     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   436     if (*bot == verify_card)
   437       *bot = youngergen_card;
   438     bot++;
   439   }
   440 }
   442 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   443   jbyte* p = byte_for(addr);
   444   jbyte val = *p;
   446   if (card_is_dirty(val))
   447     return true;
   449   if (card_is_newgen(val))
   450     return true;
   452   if (card_is_clean(val))
   453     return false;
   455   assert(false, "Found unhandled card mark type");
   457   return false;
   458 }
   460 // Also includes verify_card
   461 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   462   jbyte* p = byte_for(addr);
   463   jbyte val = *p;
   465   if (card_is_newgen(val))
   466     return true;
   468   if (card_is_verify(val))
   469     return true;
   471   if (card_is_clean(val))
   472     return false;
   474   if (card_is_dirty(val))
   475     return false;
   477   assert(false, "Found unhandled card mark type");
   479   return false;
   480 }
   482 // Assumes that only the base or the end changes.  This allows indentification
   483 // of the region that is being resized.  The
   484 // CardTableModRefBS::resize_covered_region() is used for the normal case
   485 // where the covered regions are growing or shrinking at the high end.
   486 // The method resize_covered_region_by_end() is analogous to
   487 // CardTableModRefBS::resize_covered_region() but
   488 // for regions that grow or shrink at the low end.
   489 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   491   for (int i = 0; i < _cur_covered_regions; i++) {
   492     if (_covered[i].start() == new_region.start()) {
   493       // Found a covered region with the same start as the
   494       // new region.  The region is growing or shrinking
   495       // from the start of the region.
   496       resize_covered_region_by_start(new_region);
   497       return;
   498     }
   499     if (_covered[i].start() > new_region.start()) {
   500       break;
   501     }
   502   }
   504   int changed_region = -1;
   505   for (int j = 0; j < _cur_covered_regions; j++) {
   506     if (_covered[j].end() == new_region.end()) {
   507       changed_region = j;
   508       // This is a case where the covered region is growing or shrinking
   509       // at the start of the region.
   510       assert(changed_region != -1, "Don't expect to add a covered region");
   511       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   512         "The sizes should be different here");
   513       resize_covered_region_by_end(changed_region, new_region);
   514       return;
   515     }
   516   }
   517   // This should only be a new covered region (where no existing
   518   // covered region matches at the start or the end).
   519   assert(_cur_covered_regions < _max_covered_regions,
   520     "An existing region should have been found");
   521   resize_covered_region_by_start(new_region);
   522 }
   524 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   525   CardTableModRefBS::resize_covered_region(new_region);
   526   debug_only(verify_guard();)
   527 }
   529 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   530                                                       MemRegion new_region) {
   531   assert(SafepointSynchronize::is_at_safepoint(),
   532     "Only expect an expansion at the low end at a GC");
   533   debug_only(verify_guard();)
   534 #ifdef ASSERT
   535   for (int k = 0; k < _cur_covered_regions; k++) {
   536     if (_covered[k].end() == new_region.end()) {
   537       assert(changed_region == k, "Changed region is incorrect");
   538       break;
   539     }
   540   }
   541 #endif
   543   // Commit new or uncommit old pages, if necessary.
   544   if (resize_commit_uncommit(changed_region, new_region)) {
   545     // Set the new start of the committed region
   546     resize_update_committed_table(changed_region, new_region);
   547   }
   549   // Update card table entries
   550   resize_update_card_table_entries(changed_region, new_region);
   552   // Update the covered region
   553   resize_update_covered_table(changed_region, new_region);
   555   if (TraceCardTableModRefBS) {
   556     int ind = changed_region;
   557     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   558     gclog_or_tty->print_cr("  "
   559                   "  _covered[%d].start(): " INTPTR_FORMAT
   560                   "  _covered[%d].last(): " INTPTR_FORMAT,
   561                   ind, _covered[ind].start(),
   562                   ind, _covered[ind].last());
   563     gclog_or_tty->print_cr("  "
   564                   "  _committed[%d].start(): " INTPTR_FORMAT
   565                   "  _committed[%d].last(): " INTPTR_FORMAT,
   566                   ind, _committed[ind].start(),
   567                   ind, _committed[ind].last());
   568     gclog_or_tty->print_cr("  "
   569                   "  byte_for(start): " INTPTR_FORMAT
   570                   "  byte_for(last): " INTPTR_FORMAT,
   571                   byte_for(_covered[ind].start()),
   572                   byte_for(_covered[ind].last()));
   573     gclog_or_tty->print_cr("  "
   574                   "  addr_for(start): " INTPTR_FORMAT
   575                   "  addr_for(last): " INTPTR_FORMAT,
   576                   addr_for((jbyte*) _committed[ind].start()),
   577                   addr_for((jbyte*) _committed[ind].last()));
   578   }
   579   debug_only(verify_guard();)
   580 }
   582 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   583                                                 MemRegion new_region) {
   584   bool result = false;
   585   // Commit new or uncommit old pages, if necessary.
   586   MemRegion cur_committed = _committed[changed_region];
   587   assert(_covered[changed_region].end() == new_region.end(),
   588     "The ends of the regions are expected to match");
   589   // Extend the start of this _committed region to
   590   // to cover the start of any previous _committed region.
   591   // This forms overlapping regions, but never interior regions.
   592   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   593   if (min_prev_start < cur_committed.start()) {
   594     // Only really need to set start of "cur_committed" to
   595     // the new start (min_prev_start) but assertion checking code
   596     // below use cur_committed.end() so make it correct.
   597     MemRegion new_committed =
   598         MemRegion(min_prev_start, cur_committed.end());
   599     cur_committed = new_committed;
   600   }
   601 #ifdef ASSERT
   602   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   603   assert(cur_committed.start() ==
   604     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   605                               os::vm_page_size()),
   606     "Starts should have proper alignment");
   607 #endif
   609   jbyte* new_start = byte_for(new_region.start());
   610   // Round down because this is for the start address
   611   HeapWord* new_start_aligned =
   612     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   613   // The guard page is always committed and should not be committed over.
   614   // This method is used in cases where the generation is growing toward
   615   // lower addresses but the guard region is still at the end of the
   616   // card table.  That still makes sense when looking for writes
   617   // off the end of the card table.
   618   if (new_start_aligned < cur_committed.start()) {
   619     // Expand the committed region
   620     //
   621     // Case A
   622     //                                          |+ guard +|
   623     //                          |+ cur committed +++++++++|
   624     //                  |+ new committed +++++++++++++++++|
   625     //
   626     // Case B
   627     //                                          |+ guard +|
   628     //                        |+ cur committed +|
   629     //                  |+ new committed +++++++|
   630     //
   631     // These are not expected because the calculation of the
   632     // cur committed region and the new committed region
   633     // share the same end for the covered region.
   634     // Case C
   635     //                                          |+ guard +|
   636     //                        |+ cur committed +|
   637     //                  |+ new committed +++++++++++++++++|
   638     // Case D
   639     //                                          |+ guard +|
   640     //                        |+ cur committed +++++++++++|
   641     //                  |+ new committed +++++++|
   643     HeapWord* new_end_for_commit =
   644       MIN2(cur_committed.end(), _guard_region.start());
   645     if(new_start_aligned < new_end_for_commit) {
   646       MemRegion new_committed =
   647         MemRegion(new_start_aligned, new_end_for_commit);
   648       if (!os::commit_memory((char*)new_committed.start(),
   649                              new_committed.byte_size())) {
   650         vm_exit_out_of_memory(new_committed.byte_size(),
   651                               "card table expansion");
   652       }
   653     }
   654     result = true;
   655   } else if (new_start_aligned > cur_committed.start()) {
   656     // Shrink the committed region
   657 #if 0 // uncommitting space is currently unsafe because of the interactions
   658       // of growing and shrinking regions.  One region A can uncommit space
   659       // that it owns but which is being used by another region B (maybe).
   660       // Region B has not committed the space because it was already
   661       // committed by region A.
   662     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   663       MemRegion(cur_committed.start(), new_start_aligned));
   664     if (!uncommit_region.is_empty()) {
   665       if (!os::uncommit_memory((char*)uncommit_region.start(),
   666                                uncommit_region.byte_size())) {
   667         // If the uncommit fails, ignore it.  Let the
   668         // committed table resizing go even though the committed
   669         // table will over state the committed space.
   670       }
   671     }
   672 #else
   673     assert(!result, "Should be false with current workaround");
   674 #endif
   675   }
   676   assert(_committed[changed_region].end() == cur_committed.end(),
   677     "end should not change");
   678   return result;
   679 }
   681 void CardTableExtension::resize_update_committed_table(int changed_region,
   682                                                        MemRegion new_region) {
   684   jbyte* new_start = byte_for(new_region.start());
   685   // Set the new start of the committed region
   686   HeapWord* new_start_aligned =
   687     (HeapWord*)align_size_down((uintptr_t)new_start,
   688                              os::vm_page_size());
   689   MemRegion new_committed = MemRegion(new_start_aligned,
   690     _committed[changed_region].end());
   691   _committed[changed_region] = new_committed;
   692   _committed[changed_region].set_start(new_start_aligned);
   693 }
   695 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   696                                                           MemRegion new_region) {
   697   debug_only(verify_guard();)
   698   MemRegion original_covered = _covered[changed_region];
   699   // Initialize the card entries.  Only consider the
   700   // region covered by the card table (_whole_heap)
   701   jbyte* entry;
   702   if (new_region.start() < _whole_heap.start()) {
   703     entry = byte_for(_whole_heap.start());
   704   } else {
   705     entry = byte_for(new_region.start());
   706   }
   707   jbyte* end = byte_for(original_covered.start());
   708   // If _whole_heap starts at the original covered regions start,
   709   // this loop will not execute.
   710   while (entry < end) { *entry++ = clean_card; }
   711 }
   713 void CardTableExtension::resize_update_covered_table(int changed_region,
   714                                                      MemRegion new_region) {
   715   // Update the covered region
   716   _covered[changed_region].set_start(new_region.start());
   717   _covered[changed_region].set_word_size(new_region.word_size());
   719   // reorder regions.  There should only be at most 1 out
   720   // of order.
   721   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   722     if (_covered[i].start() < _covered[i-1].start()) {
   723         MemRegion covered_mr = _covered[i-1];
   724         _covered[i-1] = _covered[i];
   725         _covered[i] = covered_mr;
   726         MemRegion committed_mr = _committed[i-1];
   727       _committed[i-1] = _committed[i];
   728       _committed[i] = committed_mr;
   729       break;
   730     }
   731   }
   732 #ifdef ASSERT
   733   for (int m = 0; m < _cur_covered_regions-1; m++) {
   734     assert(_covered[m].start() <= _covered[m+1].start(),
   735       "Covered regions out of order");
   736     assert(_committed[m].start() <= _committed[m+1].start(),
   737       "Committed regions out of order");
   738   }
   739 #endif
   740 }
   742 // Returns the start of any committed region that is lower than
   743 // the target committed region (index ind) and that intersects the
   744 // target region.  If none, return start of target region.
   745 //
   746 //      -------------
   747 //      |           |
   748 //      -------------
   749 //              ------------
   750 //              | target   |
   751 //              ------------
   752 //                               -------------
   753 //                               |           |
   754 //                               -------------
   755 //      ^ returns this
   756 //
   757 //      -------------
   758 //      |           |
   759 //      -------------
   760 //                      ------------
   761 //                      | target   |
   762 //                      ------------
   763 //                               -------------
   764 //                               |           |
   765 //                               -------------
   766 //                      ^ returns this
   768 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   769   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   770   HeapWord* min_start = _committed[ind].start();
   771   for (int j = 0; j < ind; j++) {
   772     HeapWord* this_start = _committed[j].start();
   773     if ((this_start < min_start) &&
   774         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   775        min_start = this_start;
   776     }
   777   }
   778   return min_start;
   779 }

mercurial