src/share/vm/gc_implementation/g1/heapRegion.hpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3957
a2f7274eb6ef
child 4065
8fbf05030e24
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    59                 (_hr_)->startsHumongous() ? "HS" : \
    60                 (_hr_)->continuesHumongous() ? "HC" : \
    61                 !(_hr_)->is_empty() ? "O" : "F", \
    62                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    64 // sentinel value for hrs_index
    65 #define G1_NULL_HRS_INDEX ((uint) -1)
    67 // A dirty card to oop closure for heap regions. It
    68 // knows how to get the G1 heap and how to use the bitmap
    69 // in the concurrent marker used by G1 to filter remembered
    70 // sets.
    72 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    73 public:
    74   // Specification of possible DirtyCardToOopClosure filtering.
    75   enum FilterKind {
    76     NoFilterKind,
    77     IntoCSFilterKind,
    78     OutOfRegionFilterKind
    79   };
    81 protected:
    82   HeapRegion* _hr;
    83   FilterKind _fk;
    84   G1CollectedHeap* _g1;
    86   void walk_mem_region_with_cl(MemRegion mr,
    87                                HeapWord* bottom, HeapWord* top,
    88                                ExtendedOopClosure* cl);
    90   // We don't specialize this for FilteringClosure; filtering is handled by
    91   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    92   // warning.
    93   void walk_mem_region_with_cl(MemRegion mr,
    94                                HeapWord* bottom, HeapWord* top,
    95                                FilteringClosure* cl) {
    96     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    97                                              (ExtendedOopClosure*)cl);
    98   }
   100   // Get the actual top of the area on which the closure will
   101   // operate, given where the top is assumed to be (the end of the
   102   // memory region passed to do_MemRegion) and where the object
   103   // at the top is assumed to start. For example, an object may
   104   // start at the top but actually extend past the assumed top,
   105   // in which case the top becomes the end of the object.
   106   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   107     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   108   }
   110   // Walk the given memory region from bottom to (actual) top
   111   // looking for objects and applying the oop closure (_cl) to
   112   // them. The base implementation of this treats the area as
   113   // blocks, where a block may or may not be an object. Sub-
   114   // classes should override this to provide more accurate
   115   // or possibly more efficient walking.
   116   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   117     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   118   }
   120 public:
   121   HeapRegionDCTOC(G1CollectedHeap* g1,
   122                   HeapRegion* hr, ExtendedOopClosure* cl,
   123                   CardTableModRefBS::PrecisionStyle precision,
   124                   FilterKind fk);
   125 };
   127 // The complicating factor is that BlockOffsetTable diverged
   128 // significantly, and we need functionality that is only in the G1 version.
   129 // So I copied that code, which led to an alternate G1 version of
   130 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   131 // be reconciled, then G1OffsetTableContigSpace could go away.
   133 // The idea behind time stamps is the following. Doing a save_marks on
   134 // all regions at every GC pause is time consuming (if I remember
   135 // well, 10ms or so). So, we would like to do that only for regions
   136 // that are GC alloc regions. To achieve this, we use time
   137 // stamps. For every evacuation pause, G1CollectedHeap generates a
   138 // unique time stamp (essentially a counter that gets
   139 // incremented). Every time we want to call save_marks on a region,
   140 // we set the saved_mark_word to top and also copy the current GC
   141 // time stamp to the time stamp field of the space. Reading the
   142 // saved_mark_word involves checking the time stamp of the
   143 // region. If it is the same as the current GC time stamp, then we
   144 // can safely read the saved_mark_word field, as it is valid. If the
   145 // time stamp of the region is not the same as the current GC time
   146 // stamp, then we instead read top, as the saved_mark_word field is
   147 // invalid. Time stamps (on the regions and also on the
   148 // G1CollectedHeap) are reset at every cleanup (we iterate over
   149 // the regions anyway) and at the end of a Full GC. The current scheme
   150 // that uses sequential unsigned ints will fail only if we have 4b
   151 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   153 class G1OffsetTableContigSpace: public ContiguousSpace {
   154   friend class VMStructs;
   155  protected:
   156   G1BlockOffsetArrayContigSpace _offsets;
   157   Mutex _par_alloc_lock;
   158   volatile unsigned _gc_time_stamp;
   159   // When we need to retire an allocation region, while other threads
   160   // are also concurrently trying to allocate into it, we typically
   161   // allocate a dummy object at the end of the region to ensure that
   162   // no more allocations can take place in it. However, sometimes we
   163   // want to know where the end of the last "real" object we allocated
   164   // into the region was and this is what this keeps track.
   165   HeapWord* _pre_dummy_top;
   167  public:
   168   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   169   // assumed to contain zeros.
   170   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   171                            MemRegion mr, bool is_zeroed = false);
   173   void set_bottom(HeapWord* value);
   174   void set_end(HeapWord* value);
   176   virtual HeapWord* saved_mark_word() const;
   177   virtual void set_saved_mark();
   178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   181   // See the comment above in the declaration of _pre_dummy_top for an
   182   // explanation of what it is.
   183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   185     _pre_dummy_top = pre_dummy_top;
   186   }
   187   HeapWord* pre_dummy_top() {
   188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   189   }
   190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   192   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   193   virtual void clear(bool mangle_space);
   195   HeapWord* block_start(const void* p);
   196   HeapWord* block_start_const(const void* p) const;
   198   // Add offset table update.
   199   virtual HeapWord* allocate(size_t word_size);
   200   HeapWord* par_allocate(size_t word_size);
   202   // MarkSweep support phase3
   203   virtual HeapWord* initialize_threshold();
   204   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   206   virtual void print() const;
   208   void reset_bot() {
   209     _offsets.zero_bottom_entry();
   210     _offsets.initialize_threshold();
   211   }
   213   void update_bot_for_object(HeapWord* start, size_t word_size) {
   214     _offsets.alloc_block(start, word_size);
   215   }
   217   void print_bot_on(outputStream* out) {
   218     _offsets.print_on(out);
   219   }
   220 };
   222 class HeapRegion: public G1OffsetTableContigSpace {
   223   friend class VMStructs;
   224  private:
   226   enum HumongousType {
   227     NotHumongous = 0,
   228     StartsHumongous,
   229     ContinuesHumongous
   230   };
   232   // Requires that the region "mr" be dense with objects, and begin and end
   233   // with an object.
   234   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   236   // The remembered set for this region.
   237   // (Might want to make this "inline" later, to avoid some alloc failure
   238   // issues.)
   239   HeapRegionRemSet* _rem_set;
   241   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   243  protected:
   244   // The index of this region in the heap region sequence.
   245   uint  _hrs_index;
   247   HumongousType _humongous_type;
   248   // For a humongous region, region in which it starts.
   249   HeapRegion* _humongous_start_region;
   250   // For the start region of a humongous sequence, it's original end().
   251   HeapWord* _orig_end;
   253   // True iff the region is in current collection_set.
   254   bool _in_collection_set;
   256   // True iff an attempt to evacuate an object in the region failed.
   257   bool _evacuation_failed;
   259   // A heap region may be a member one of a number of special subsets, each
   260   // represented as linked lists through the field below.  Currently, these
   261   // sets include:
   262   //   The collection set.
   263   //   The set of allocation regions used in a collection pause.
   264   //   Spaces that may contain gray objects.
   265   HeapRegion* _next_in_special_set;
   267   // next region in the young "generation" region set
   268   HeapRegion* _next_young_region;
   270   // Next region whose cards need cleaning
   271   HeapRegion* _next_dirty_cards_region;
   273   // Fields used by the HeapRegionSetBase class and subclasses.
   274   HeapRegion* _next;
   275 #ifdef ASSERT
   276   HeapRegionSetBase* _containing_set;
   277 #endif // ASSERT
   278   bool _pending_removal;
   280   // For parallel heapRegion traversal.
   281   jint _claimed;
   283   // We use concurrent marking to determine the amount of live data
   284   // in each heap region.
   285   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   286   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   288   // The calculated GC efficiency of the region.
   289   double _gc_efficiency;
   291   enum YoungType {
   292     NotYoung,                   // a region is not young
   293     Young,                      // a region is young
   294     Survivor                    // a region is young and it contains survivors
   295   };
   297   volatile YoungType _young_type;
   298   int  _young_index_in_cset;
   299   SurvRateGroup* _surv_rate_group;
   300   int  _age_index;
   302   // The start of the unmarked area. The unmarked area extends from this
   303   // word until the top and/or end of the region, and is the part
   304   // of the region for which no marking was done, i.e. objects may
   305   // have been allocated in this part since the last mark phase.
   306   // "prev" is the top at the start of the last completed marking.
   307   // "next" is the top at the start of the in-progress marking (if any.)
   308   HeapWord* _prev_top_at_mark_start;
   309   HeapWord* _next_top_at_mark_start;
   310   // If a collection pause is in progress, this is the top at the start
   311   // of that pause.
   313   void init_top_at_mark_start() {
   314     assert(_prev_marked_bytes == 0 &&
   315            _next_marked_bytes == 0,
   316            "Must be called after zero_marked_bytes.");
   317     HeapWord* bot = bottom();
   318     _prev_top_at_mark_start = bot;
   319     _next_top_at_mark_start = bot;
   320   }
   322   void set_young_type(YoungType new_type) {
   323     //assert(_young_type != new_type, "setting the same type" );
   324     // TODO: add more assertions here
   325     _young_type = new_type;
   326   }
   328   // Cached attributes used in the collection set policy information
   330   // The RSet length that was added to the total value
   331   // for the collection set.
   332   size_t _recorded_rs_length;
   334   // The predicted elapsed time that was added to total value
   335   // for the collection set.
   336   double _predicted_elapsed_time_ms;
   338   // The predicted number of bytes to copy that was added to
   339   // the total value for the collection set.
   340   size_t _predicted_bytes_to_copy;
   342  public:
   343   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   344   HeapRegion(uint hrs_index,
   345              G1BlockOffsetSharedArray* sharedOffsetArray,
   346              MemRegion mr, bool is_zeroed);
   348   static int    LogOfHRGrainBytes;
   349   static int    LogOfHRGrainWords;
   351   static size_t GrainBytes;
   352   static size_t GrainWords;
   353   static size_t CardsPerRegion;
   355   static size_t align_up_to_region_byte_size(size_t sz) {
   356     return (sz + (size_t) GrainBytes - 1) &
   357                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   358   }
   360   // It sets up the heap region size (GrainBytes / GrainWords), as
   361   // well as other related fields that are based on the heap region
   362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   363   // CardsPerRegion). All those fields are considered constant
   364   // throughout the JVM's execution, therefore they should only be set
   365   // up once during initialization time.
   366   static void setup_heap_region_size(uintx min_heap_size);
   368   enum ClaimValues {
   369     InitialClaimValue          = 0,
   370     FinalCountClaimValue       = 1,
   371     NoteEndClaimValue          = 2,
   372     ScrubRemSetClaimValue      = 3,
   373     ParVerifyClaimValue        = 4,
   374     RebuildRSClaimValue        = 5,
   375     ParEvacFailureClaimValue   = 6,
   376     AggregateCountClaimValue   = 7,
   377     VerifyCountClaimValue      = 8
   378   };
   380   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   381     assert(is_young(), "we can only skip BOT updates on young regions");
   382     return ContiguousSpace::par_allocate(word_size);
   383   }
   384   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   385     assert(is_young(), "we can only skip BOT updates on young regions");
   386     return ContiguousSpace::allocate(word_size);
   387   }
   389   // If this region is a member of a HeapRegionSeq, the index in that
   390   // sequence, otherwise -1.
   391   uint hrs_index() const { return _hrs_index; }
   393   // The number of bytes marked live in the region in the last marking phase.
   394   size_t marked_bytes()    { return _prev_marked_bytes; }
   395   size_t live_bytes() {
   396     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   397   }
   399   // The number of bytes counted in the next marking.
   400   size_t next_marked_bytes() { return _next_marked_bytes; }
   401   // The number of bytes live wrt the next marking.
   402   size_t next_live_bytes() {
   403     return
   404       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   405   }
   407   // A lower bound on the amount of garbage bytes in the region.
   408   size_t garbage_bytes() {
   409     size_t used_at_mark_start_bytes =
   410       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   411     assert(used_at_mark_start_bytes >= marked_bytes(),
   412            "Can't mark more than we have.");
   413     return used_at_mark_start_bytes - marked_bytes();
   414   }
   416   // Return the amount of bytes we'll reclaim if we collect this
   417   // region. This includes not only the known garbage bytes in the
   418   // region but also any unallocated space in it, i.e., [top, end),
   419   // since it will also be reclaimed if we collect the region.
   420   size_t reclaimable_bytes() {
   421     size_t known_live_bytes = live_bytes();
   422     assert(known_live_bytes <= capacity(), "sanity");
   423     return capacity() - known_live_bytes;
   424   }
   426   // An upper bound on the number of live bytes in the region.
   427   size_t max_live_bytes() { return used() - garbage_bytes(); }
   429   void add_to_marked_bytes(size_t incr_bytes) {
   430     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   431     assert(_next_marked_bytes <= used(), "invariant" );
   432   }
   434   void zero_marked_bytes()      {
   435     _prev_marked_bytes = _next_marked_bytes = 0;
   436   }
   438   bool isHumongous() const { return _humongous_type != NotHumongous; }
   439   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   440   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   441   // For a humongous region, region in which it starts.
   442   HeapRegion* humongous_start_region() const {
   443     return _humongous_start_region;
   444   }
   446   // Return the number of distinct regions that are covered by this region:
   447   // 1 if the region is not humongous, >= 1 if the region is humongous.
   448   uint region_num() const {
   449     if (!isHumongous()) {
   450       return 1U;
   451     } else {
   452       assert(startsHumongous(), "doesn't make sense on HC regions");
   453       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   454       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   455     }
   456   }
   458   // Return the index + 1 of the last HC regions that's associated
   459   // with this HS region.
   460   uint last_hc_index() const {
   461     assert(startsHumongous(), "don't call this otherwise");
   462     return hrs_index() + region_num();
   463   }
   465   // Same as Space::is_in_reserved, but will use the original size of the region.
   466   // The original size is different only for start humongous regions. They get
   467   // their _end set up to be the end of the last continues region of the
   468   // corresponding humongous object.
   469   bool is_in_reserved_raw(const void* p) const {
   470     return _bottom <= p && p < _orig_end;
   471   }
   473   // Makes the current region be a "starts humongous" region, i.e.,
   474   // the first region in a series of one or more contiguous regions
   475   // that will contain a single "humongous" object. The two parameters
   476   // are as follows:
   477   //
   478   // new_top : The new value of the top field of this region which
   479   // points to the end of the humongous object that's being
   480   // allocated. If there is more than one region in the series, top
   481   // will lie beyond this region's original end field and on the last
   482   // region in the series.
   483   //
   484   // new_end : The new value of the end field of this region which
   485   // points to the end of the last region in the series. If there is
   486   // one region in the series (namely: this one) end will be the same
   487   // as the original end of this region.
   488   //
   489   // Updating top and end as described above makes this region look as
   490   // if it spans the entire space taken up by all the regions in the
   491   // series and an single allocation moved its top to new_top. This
   492   // ensures that the space (capacity / allocated) taken up by all
   493   // humongous regions can be calculated by just looking at the
   494   // "starts humongous" regions and by ignoring the "continues
   495   // humongous" regions.
   496   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   498   // Makes the current region be a "continues humongous'
   499   // region. first_hr is the "start humongous" region of the series
   500   // which this region will be part of.
   501   void set_continuesHumongous(HeapRegion* first_hr);
   503   // Unsets the humongous-related fields on the region.
   504   void set_notHumongous();
   506   // If the region has a remembered set, return a pointer to it.
   507   HeapRegionRemSet* rem_set() const {
   508     return _rem_set;
   509   }
   511   // True iff the region is in current collection_set.
   512   bool in_collection_set() const {
   513     return _in_collection_set;
   514   }
   515   void set_in_collection_set(bool b) {
   516     _in_collection_set = b;
   517   }
   518   HeapRegion* next_in_collection_set() {
   519     assert(in_collection_set(), "should only invoke on member of CS.");
   520     assert(_next_in_special_set == NULL ||
   521            _next_in_special_set->in_collection_set(),
   522            "Malformed CS.");
   523     return _next_in_special_set;
   524   }
   525   void set_next_in_collection_set(HeapRegion* r) {
   526     assert(in_collection_set(), "should only invoke on member of CS.");
   527     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   528     _next_in_special_set = r;
   529   }
   531   // Methods used by the HeapRegionSetBase class and subclasses.
   533   // Getter and setter for the next field used to link regions into
   534   // linked lists.
   535   HeapRegion* next()              { return _next; }
   537   void set_next(HeapRegion* next) { _next = next; }
   539   // Every region added to a set is tagged with a reference to that
   540   // set. This is used for doing consistency checking to make sure that
   541   // the contents of a set are as they should be and it's only
   542   // available in non-product builds.
   543 #ifdef ASSERT
   544   void set_containing_set(HeapRegionSetBase* containing_set) {
   545     assert((containing_set == NULL && _containing_set != NULL) ||
   546            (containing_set != NULL && _containing_set == NULL),
   547            err_msg("containing_set: "PTR_FORMAT" "
   548                    "_containing_set: "PTR_FORMAT,
   549                    containing_set, _containing_set));
   551     _containing_set = containing_set;
   552   }
   554   HeapRegionSetBase* containing_set() { return _containing_set; }
   555 #else // ASSERT
   556   void set_containing_set(HeapRegionSetBase* containing_set) { }
   558   // containing_set() is only used in asserts so there's no reason
   559   // to provide a dummy version of it.
   560 #endif // ASSERT
   562   // If we want to remove regions from a list in bulk we can simply tag
   563   // them with the pending_removal tag and call the
   564   // remove_all_pending() method on the list.
   566   bool pending_removal() { return _pending_removal; }
   568   void set_pending_removal(bool pending_removal) {
   569     if (pending_removal) {
   570       assert(!_pending_removal && containing_set() != NULL,
   571              "can only set pending removal to true if it's false and "
   572              "the region belongs to a region set");
   573     } else {
   574       assert( _pending_removal && containing_set() == NULL,
   575               "can only set pending removal to false if it's true and "
   576               "the region does not belong to a region set");
   577     }
   579     _pending_removal = pending_removal;
   580   }
   582   HeapRegion* get_next_young_region() { return _next_young_region; }
   583   void set_next_young_region(HeapRegion* hr) {
   584     _next_young_region = hr;
   585   }
   587   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   588   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   589   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   590   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   592   HeapWord* orig_end() { return _orig_end; }
   594   // Allows logical separation between objects allocated before and after.
   595   void save_marks();
   597   // Reset HR stuff to default values.
   598   void hr_clear(bool par, bool clear_space);
   599   void par_clear();
   601   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   603   // Get the start of the unmarked area in this region.
   604   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   605   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   607   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   608   // allocated in the current region before the last call to "save_mark".
   609   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   611   // Note the start or end of marking. This tells the heap region
   612   // that the collector is about to start or has finished (concurrently)
   613   // marking the heap.
   615   // Notify the region that concurrent marking is starting. Initialize
   616   // all fields related to the next marking info.
   617   inline void note_start_of_marking();
   619   // Notify the region that concurrent marking has finished. Copy the
   620   // (now finalized) next marking info fields into the prev marking
   621   // info fields.
   622   inline void note_end_of_marking();
   624   // Notify the region that it will be used as to-space during a GC
   625   // and we are about to start copying objects into it.
   626   inline void note_start_of_copying(bool during_initial_mark);
   628   // Notify the region that it ceases being to-space during a GC and
   629   // we will not copy objects into it any more.
   630   inline void note_end_of_copying(bool during_initial_mark);
   632   // Notify the region that we are about to start processing
   633   // self-forwarded objects during evac failure handling.
   634   void note_self_forwarding_removal_start(bool during_initial_mark,
   635                                           bool during_conc_mark);
   637   // Notify the region that we have finished processing self-forwarded
   638   // objects during evac failure handling.
   639   void note_self_forwarding_removal_end(bool during_initial_mark,
   640                                         bool during_conc_mark,
   641                                         size_t marked_bytes);
   643   // Returns "false" iff no object in the region was allocated when the
   644   // last mark phase ended.
   645   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   647   void reset_during_compaction() {
   648     assert(isHumongous() && startsHumongous(),
   649            "should only be called for starts humongous regions");
   651     zero_marked_bytes();
   652     init_top_at_mark_start();
   653   }
   655   void calc_gc_efficiency(void);
   656   double gc_efficiency() { return _gc_efficiency;}
   658   bool is_young() const     { return _young_type != NotYoung; }
   659   bool is_survivor() const  { return _young_type == Survivor; }
   661   int  young_index_in_cset() const { return _young_index_in_cset; }
   662   void set_young_index_in_cset(int index) {
   663     assert( (index == -1) || is_young(), "pre-condition" );
   664     _young_index_in_cset = index;
   665   }
   667   int age_in_surv_rate_group() {
   668     assert( _surv_rate_group != NULL, "pre-condition" );
   669     assert( _age_index > -1, "pre-condition" );
   670     return _surv_rate_group->age_in_group(_age_index);
   671   }
   673   void record_surv_words_in_group(size_t words_survived) {
   674     assert( _surv_rate_group != NULL, "pre-condition" );
   675     assert( _age_index > -1, "pre-condition" );
   676     int age_in_group = age_in_surv_rate_group();
   677     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   678   }
   680   int age_in_surv_rate_group_cond() {
   681     if (_surv_rate_group != NULL)
   682       return age_in_surv_rate_group();
   683     else
   684       return -1;
   685   }
   687   SurvRateGroup* surv_rate_group() {
   688     return _surv_rate_group;
   689   }
   691   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   692     assert( surv_rate_group != NULL, "pre-condition" );
   693     assert( _surv_rate_group == NULL, "pre-condition" );
   694     assert( is_young(), "pre-condition" );
   696     _surv_rate_group = surv_rate_group;
   697     _age_index = surv_rate_group->next_age_index();
   698   }
   700   void uninstall_surv_rate_group() {
   701     if (_surv_rate_group != NULL) {
   702       assert( _age_index > -1, "pre-condition" );
   703       assert( is_young(), "pre-condition" );
   705       _surv_rate_group = NULL;
   706       _age_index = -1;
   707     } else {
   708       assert( _age_index == -1, "pre-condition" );
   709     }
   710   }
   712   void set_young() { set_young_type(Young); }
   714   void set_survivor() { set_young_type(Survivor); }
   716   void set_not_young() { set_young_type(NotYoung); }
   718   // Determine if an object has been allocated since the last
   719   // mark performed by the collector. This returns true iff the object
   720   // is within the unmarked area of the region.
   721   bool obj_allocated_since_prev_marking(oop obj) const {
   722     return (HeapWord *) obj >= prev_top_at_mark_start();
   723   }
   724   bool obj_allocated_since_next_marking(oop obj) const {
   725     return (HeapWord *) obj >= next_top_at_mark_start();
   726   }
   728   // For parallel heapRegion traversal.
   729   bool claimHeapRegion(int claimValue);
   730   jint claim_value() { return _claimed; }
   731   // Use this carefully: only when you're sure no one is claiming...
   732   void set_claim_value(int claimValue) { _claimed = claimValue; }
   734   // Returns the "evacuation_failed" property of the region.
   735   bool evacuation_failed() { return _evacuation_failed; }
   737   // Sets the "evacuation_failed" property of the region.
   738   void set_evacuation_failed(bool b) {
   739     _evacuation_failed = b;
   741     if (b) {
   742       _next_marked_bytes = 0;
   743     }
   744   }
   746   // Requires that "mr" be entirely within the region.
   747   // Apply "cl->do_object" to all objects that intersect with "mr".
   748   // If the iteration encounters an unparseable portion of the region,
   749   // or if "cl->abort()" is true after a closure application,
   750   // terminate the iteration and return the address of the start of the
   751   // subregion that isn't done.  (The two can be distinguished by querying
   752   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   753   // completed.
   754   HeapWord*
   755   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   757   // filter_young: if true and the region is a young region then we
   758   // skip the iteration.
   759   // card_ptr: if not NULL, and we decide that the card is not young
   760   // and we iterate over it, we'll clean the card before we start the
   761   // iteration.
   762   HeapWord*
   763   oops_on_card_seq_iterate_careful(MemRegion mr,
   764                                    FilterOutOfRegionClosure* cl,
   765                                    bool filter_young,
   766                                    jbyte* card_ptr);
   768   // A version of block start that is guaranteed to find *some* block
   769   // boundary at or before "p", but does not object iteration, and may
   770   // therefore be used safely when the heap is unparseable.
   771   HeapWord* block_start_careful(const void* p) const {
   772     return _offsets.block_start_careful(p);
   773   }
   775   // Requires that "addr" is within the region.  Returns the start of the
   776   // first ("careful") block that starts at or after "addr", or else the
   777   // "end" of the region if there is no such block.
   778   HeapWord* next_block_start_careful(HeapWord* addr);
   780   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   781   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   782   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   784   void set_recorded_rs_length(size_t rs_length) {
   785     _recorded_rs_length = rs_length;
   786   }
   788   void set_predicted_elapsed_time_ms(double ms) {
   789     _predicted_elapsed_time_ms = ms;
   790   }
   792   void set_predicted_bytes_to_copy(size_t bytes) {
   793     _predicted_bytes_to_copy = bytes;
   794   }
   796 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   797   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   798   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   800   virtual CompactibleSpace* next_compaction_space() const;
   802   virtual void reset_after_compaction();
   804   void print() const;
   805   void print_on(outputStream* st) const;
   807   // vo == UsePrevMarking  -> use "prev" marking information,
   808   // vo == UseNextMarking -> use "next" marking information
   809   // vo == UseMarkWord    -> use the mark word in the object header
   810   //
   811   // NOTE: Only the "prev" marking information is guaranteed to be
   812   // consistent most of the time, so most calls to this should use
   813   // vo == UsePrevMarking.
   814   // Currently, there is only one case where this is called with
   815   // vo == UseNextMarking, which is to verify the "next" marking
   816   // information at the end of remark.
   817   // Currently there is only one place where this is called with
   818   // vo == UseMarkWord, which is to verify the marking during a
   819   // full GC.
   820   void verify(VerifyOption vo, bool *failures) const;
   822   // Override; it uses the "prev" marking information
   823   virtual void verify() const;
   824 };
   826 // HeapRegionClosure is used for iterating over regions.
   827 // Terminates the iteration when the "doHeapRegion" method returns "true".
   828 class HeapRegionClosure : public StackObj {
   829   friend class HeapRegionSeq;
   830   friend class G1CollectedHeap;
   832   bool _complete;
   833   void incomplete() { _complete = false; }
   835  public:
   836   HeapRegionClosure(): _complete(true) {}
   838   // Typically called on each region until it returns true.
   839   virtual bool doHeapRegion(HeapRegion* r) = 0;
   841   // True after iteration if the closure was applied to all heap regions
   842   // and returned "false" in all cases.
   843   bool complete() { return _complete; }
   844 };
   846 #endif // SERIALGC
   848 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial