src/share/vm/c1/c1_LIRGenerator.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 4003
7a302948f5a4
child 4043
044a77cd0c8b
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "ci/ciObjArray.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/heapRegion.hpp"
    40 #endif
    42 #ifdef ASSERT
    43 #define __ gen()->lir(__FILE__, __LINE__)->
    44 #else
    45 #define __ gen()->lir()->
    46 #endif
    48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    49 #ifdef ARM
    50 #define PATCHED_ADDR  (204)
    51 #else
    52 #define PATCHED_ADDR  (max_jint)
    53 #endif
    55 void PhiResolverState::reset(int max_vregs) {
    56   // Initialize array sizes
    57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    58   _virtual_operands.trunc_to(0);
    59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    60   _other_operands.trunc_to(0);
    61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    62   _vreg_table.trunc_to(0);
    63 }
    67 //--------------------------------------------------------------
    68 // PhiResolver
    70 // Resolves cycles:
    71 //
    72 //  r1 := r2  becomes  temp := r1
    73 //  r2 := r1           r1 := r2
    74 //                     r2 := temp
    75 // and orders moves:
    76 //
    77 //  r2 := r3  becomes  r1 := r2
    78 //  r1 := r2           r2 := r3
    80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    81  : _gen(gen)
    82  , _state(gen->resolver_state())
    83  , _temp(LIR_OprFact::illegalOpr)
    84 {
    85   // reinitialize the shared state arrays
    86   _state.reset(max_vregs);
    87 }
    90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    91   assert(src->is_valid(), "");
    92   assert(dest->is_valid(), "");
    93   __ move(src, dest);
    94 }
    97 void PhiResolver::move_temp_to(LIR_Opr dest) {
    98   assert(_temp->is_valid(), "");
    99   emit_move(_temp, dest);
   100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   101 }
   104 void PhiResolver::move_to_temp(LIR_Opr src) {
   105   assert(_temp->is_illegal(), "");
   106   _temp = _gen->new_register(src->type());
   107   emit_move(src, _temp);
   108 }
   111 // Traverse assignment graph in depth first order and generate moves in post order
   112 // ie. two assignments: b := c, a := b start with node c:
   113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   114 // Generates moves in this order: move b to a and move c to b
   115 // ie. cycle a := b, b := a start with node a
   116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   117 // Generates moves in this order: move b to temp, move a to b, move temp to a
   118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   119   if (!dest->visited()) {
   120     dest->set_visited();
   121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   122       move(dest, dest->destination_at(i));
   123     }
   124   } else if (!dest->start_node()) {
   125     // cylce in graph detected
   126     assert(_loop == NULL, "only one loop valid!");
   127     _loop = dest;
   128     move_to_temp(src->operand());
   129     return;
   130   } // else dest is a start node
   132   if (!dest->assigned()) {
   133     if (_loop == dest) {
   134       move_temp_to(dest->operand());
   135       dest->set_assigned();
   136     } else if (src != NULL) {
   137       emit_move(src->operand(), dest->operand());
   138       dest->set_assigned();
   139     }
   140   }
   141 }
   144 PhiResolver::~PhiResolver() {
   145   int i;
   146   // resolve any cycles in moves from and to virtual registers
   147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   148     ResolveNode* node = virtual_operands()[i];
   149     if (!node->visited()) {
   150       _loop = NULL;
   151       move(NULL, node);
   152       node->set_start_node();
   153       assert(_temp->is_illegal(), "move_temp_to() call missing");
   154     }
   155   }
   157   // generate move for move from non virtual register to abitrary destination
   158   for (i = other_operands().length() - 1; i >= 0; i --) {
   159     ResolveNode* node = other_operands()[i];
   160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   161       emit_move(node->operand(), node->destination_at(j)->operand());
   162     }
   163   }
   164 }
   167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   168   ResolveNode* node;
   169   if (opr->is_virtual()) {
   170     int vreg_num = opr->vreg_number();
   171     node = vreg_table().at_grow(vreg_num, NULL);
   172     assert(node == NULL || node->operand() == opr, "");
   173     if (node == NULL) {
   174       node = new ResolveNode(opr);
   175       vreg_table()[vreg_num] = node;
   176     }
   177     // Make sure that all virtual operands show up in the list when
   178     // they are used as the source of a move.
   179     if (source && !virtual_operands().contains(node)) {
   180       virtual_operands().append(node);
   181     }
   182   } else {
   183     assert(source, "");
   184     node = new ResolveNode(opr);
   185     other_operands().append(node);
   186   }
   187   return node;
   188 }
   191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   192   assert(dest->is_virtual(), "");
   193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   194   assert(src->is_valid(), "");
   195   assert(dest->is_valid(), "");
   196   ResolveNode* source = source_node(src);
   197   source->append(destination_node(dest));
   198 }
   201 //--------------------------------------------------------------
   202 // LIRItem
   204 void LIRItem::set_result(LIR_Opr opr) {
   205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   206   value()->set_operand(opr);
   208   if (opr->is_virtual()) {
   209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   210   }
   212   _result = opr;
   213 }
   215 void LIRItem::load_item() {
   216   if (result()->is_illegal()) {
   217     // update the items result
   218     _result = value()->operand();
   219   }
   220   if (!result()->is_register()) {
   221     LIR_Opr reg = _gen->new_register(value()->type());
   222     __ move(result(), reg);
   223     if (result()->is_constant()) {
   224       _result = reg;
   225     } else {
   226       set_result(reg);
   227     }
   228   }
   229 }
   232 void LIRItem::load_for_store(BasicType type) {
   233   if (_gen->can_store_as_constant(value(), type)) {
   234     _result = value()->operand();
   235     if (!_result->is_constant()) {
   236       _result = LIR_OprFact::value_type(value()->type());
   237     }
   238   } else if (type == T_BYTE || type == T_BOOLEAN) {
   239     load_byte_item();
   240   } else {
   241     load_item();
   242   }
   243 }
   245 void LIRItem::load_item_force(LIR_Opr reg) {
   246   LIR_Opr r = result();
   247   if (r != reg) {
   248 #if !defined(ARM) && !defined(E500V2)
   249     if (r->type() != reg->type()) {
   250       // moves between different types need an intervening spill slot
   251       r = _gen->force_to_spill(r, reg->type());
   252     }
   253 #endif
   254     __ move(r, reg);
   255     _result = reg;
   256   }
   257 }
   259 ciObject* LIRItem::get_jobject_constant() const {
   260   ObjectType* oc = type()->as_ObjectType();
   261   if (oc) {
   262     return oc->constant_value();
   263   }
   264   return NULL;
   265 }
   268 jint LIRItem::get_jint_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_IntConstant() != NULL, "type check");
   271   return type()->as_IntConstant()->value();
   272 }
   275 jint LIRItem::get_address_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_AddressConstant() != NULL, "type check");
   278   return type()->as_AddressConstant()->value();
   279 }
   282 jfloat LIRItem::get_jfloat_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_FloatConstant() != NULL, "type check");
   285   return type()->as_FloatConstant()->value();
   286 }
   289 jdouble LIRItem::get_jdouble_constant() const {
   290   assert(is_constant() && value() != NULL, "");
   291   assert(type()->as_DoubleConstant() != NULL, "type check");
   292   return type()->as_DoubleConstant()->value();
   293 }
   296 jlong LIRItem::get_jlong_constant() const {
   297   assert(is_constant() && value() != NULL, "");
   298   assert(type()->as_LongConstant() != NULL, "type check");
   299   return type()->as_LongConstant()->value();
   300 }
   304 //--------------------------------------------------------------
   307 void LIRGenerator::init() {
   308   _bs = Universe::heap()->barrier_set();
   309 }
   312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   313 #ifndef PRODUCT
   314   if (PrintIRWithLIR) {
   315     block->print();
   316   }
   317 #endif
   319   // set up the list of LIR instructions
   320   assert(block->lir() == NULL, "LIR list already computed for this block");
   321   _lir = new LIR_List(compilation(), block);
   322   block->set_lir(_lir);
   324   __ branch_destination(block->label());
   326   if (LIRTraceExecution &&
   327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   328       !block->is_set(BlockBegin::exception_entry_flag)) {
   329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   330     trace_block_entry(block);
   331   }
   332 }
   335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   336 #ifndef PRODUCT
   337   if (PrintIRWithLIR) {
   338     tty->cr();
   339   }
   340 #endif
   342   // LIR_Opr for unpinned constants shouldn't be referenced by other
   343   // blocks so clear them out after processing the block.
   344   for (int i = 0; i < _unpinned_constants.length(); i++) {
   345     _unpinned_constants.at(i)->clear_operand();
   346   }
   347   _unpinned_constants.trunc_to(0);
   349   // clear our any registers for other local constants
   350   _constants.trunc_to(0);
   351   _reg_for_constants.trunc_to(0);
   352 }
   355 void LIRGenerator::block_do(BlockBegin* block) {
   356   CHECK_BAILOUT();
   358   block_do_prolog(block);
   359   set_block(block);
   361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   362     if (instr->is_pinned()) do_root(instr);
   363   }
   365   set_block(NULL);
   366   block_do_epilog(block);
   367 }
   370 //-------------------------LIRGenerator-----------------------------
   372 // This is where the tree-walk starts; instr must be root;
   373 void LIRGenerator::do_root(Value instr) {
   374   CHECK_BAILOUT();
   376   InstructionMark im(compilation(), instr);
   378   assert(instr->is_pinned(), "use only with roots");
   379   assert(instr->subst() == instr, "shouldn't have missed substitution");
   381   instr->visit(this);
   383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   385 }
   388 // This is called for each node in tree; the walk stops if a root is reached
   389 void LIRGenerator::walk(Value instr) {
   390   InstructionMark im(compilation(), instr);
   391   //stop walk when encounter a root
   392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   394   } else {
   395     assert(instr->subst() == instr, "shouldn't have missed substitution");
   396     instr->visit(this);
   397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   398   }
   399 }
   402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   403   assert(state != NULL, "state must be defined");
   405   ValueStack* s = state;
   406   for_each_state(s) {
   407     if (s->kind() == ValueStack::EmptyExceptionState) {
   408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   409       continue;
   410     }
   412     int index;
   413     Value value;
   414     for_each_stack_value(s, index, value) {
   415       assert(value->subst() == value, "missed substitution");
   416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   417         walk(value);
   418         assert(value->operand()->is_valid(), "must be evaluated now");
   419       }
   420     }
   422     int bci = s->bci();
   423     IRScope* scope = s->scope();
   424     ciMethod* method = scope->method();
   426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   427     if (bci == SynchronizationEntryBCI) {
   428       if (x->as_ExceptionObject() || x->as_Throw()) {
   429         // all locals are dead on exit from the synthetic unlocker
   430         liveness.clear();
   431       } else {
   432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   433       }
   434     }
   435     if (!liveness.is_valid()) {
   436       // Degenerate or breakpointed method.
   437       bailout("Degenerate or breakpointed method");
   438     } else {
   439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   440       for_each_local_value(s, index, value) {
   441         assert(value->subst() == value, "missed substition");
   442         if (liveness.at(index) && !value->type()->is_illegal()) {
   443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   444             walk(value);
   445             assert(value->operand()->is_valid(), "must be evaluated now");
   446           }
   447         } else {
   448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   449           s->invalidate_local(index);
   450         }
   451       }
   452     }
   453   }
   455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   456 }
   459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   460   return state_for(x, x->exception_state());
   461 }
   464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
   465   if (!obj->is_loaded() || PatchALot) {
   466     assert(info != NULL, "info must be set if class is not loaded");
   467     __ klass2reg_patch(NULL, r, info);
   468   } else {
   469     // no patching needed
   470     __ oop2reg(obj->constant_encoding(), r);
   471   }
   472 }
   475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   478   if (index->is_constant()) {
   479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   480                 index->as_jint(), null_check_info);
   481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   482   } else {
   483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   486   }
   487 }
   490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   491   CodeStub* stub = new RangeCheckStub(info, index, true);
   492   if (index->is_constant()) {
   493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   495   } else {
   496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   497                 java_nio_Buffer::limit_offset(), T_INT, info);
   498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   499   }
   500   __ move(index, result);
   501 }
   505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   506   LIR_Opr result_op = result;
   507   LIR_Opr left_op   = left;
   508   LIR_Opr right_op  = right;
   510   if (TwoOperandLIRForm && left_op != result_op) {
   511     assert(right_op != result_op, "malformed");
   512     __ move(left_op, result_op);
   513     left_op = result_op;
   514   }
   516   switch(code) {
   517     case Bytecodes::_dadd:
   518     case Bytecodes::_fadd:
   519     case Bytecodes::_ladd:
   520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   521     case Bytecodes::_fmul:
   522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   524     case Bytecodes::_dmul:
   525       {
   526         if (is_strictfp) {
   527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   528         } else {
   529           __ mul(left_op, right_op, result_op); break;
   530         }
   531       }
   532       break;
   534     case Bytecodes::_imul:
   535       {
   536         bool    did_strength_reduce = false;
   538         if (right->is_constant()) {
   539           int c = right->as_jint();
   540           if (is_power_of_2(c)) {
   541             // do not need tmp here
   542             __ shift_left(left_op, exact_log2(c), result_op);
   543             did_strength_reduce = true;
   544           } else {
   545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   546           }
   547         }
   548         // we couldn't strength reduce so just emit the multiply
   549         if (!did_strength_reduce) {
   550           __ mul(left_op, right_op, result_op);
   551         }
   552       }
   553       break;
   555     case Bytecodes::_dsub:
   556     case Bytecodes::_fsub:
   557     case Bytecodes::_lsub:
   558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   561     // ldiv and lrem are implemented with a direct runtime call
   563     case Bytecodes::_ddiv:
   564       {
   565         if (is_strictfp) {
   566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   567         } else {
   568           __ div (left_op, right_op, result_op); break;
   569         }
   570       }
   571       break;
   573     case Bytecodes::_drem:
   574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   576     default: ShouldNotReachHere();
   577   }
   578 }
   581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   582   arithmetic_op(code, result, left, right, false, tmp);
   583 }
   586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   588 }
   591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   593 }
   596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   597   if (TwoOperandLIRForm && value != result_op) {
   598     assert(count != result_op, "malformed");
   599     __ move(value, result_op);
   600     value = result_op;
   601   }
   603   assert(count->is_constant() || count->is_register(), "must be");
   604   switch(code) {
   605   case Bytecodes::_ishl:
   606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   607   case Bytecodes::_ishr:
   608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   609   case Bytecodes::_iushr:
   610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   611   default: ShouldNotReachHere();
   612   }
   613 }
   616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   617   if (TwoOperandLIRForm && left_op != result_op) {
   618     assert(right_op != result_op, "malformed");
   619     __ move(left_op, result_op);
   620     left_op = result_op;
   621   }
   623   switch(code) {
   624     case Bytecodes::_iand:
   625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   627     case Bytecodes::_ior:
   628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   630     case Bytecodes::_ixor:
   631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   633     default: ShouldNotReachHere();
   634   }
   635 }
   638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   639   if (!GenerateSynchronizationCode) return;
   640   // for slow path, use debug info for state after successful locking
   641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   642   __ load_stack_address_monitor(monitor_no, lock);
   643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   645 }
   648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   649   if (!GenerateSynchronizationCode) return;
   650   // setup registers
   651   LIR_Opr hdr = lock;
   652   lock = new_hdr;
   653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   654   __ load_stack_address_monitor(monitor_no, lock);
   655   __ unlock_object(hdr, object, lock, scratch, slow_path);
   656 }
   659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   660   klass2reg_with_patching(klass_reg, klass, info);
   661   // If klass is not loaded we do not know if the klass has finalizers:
   662   if (UseFastNewInstance && klass->is_loaded()
   663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   669     assert(klass->is_loaded(), "must be loaded");
   670     // allocate space for instance
   671     assert(klass->size_helper() >= 0, "illegal instance size");
   672     const int instance_size = align_object_size(klass->size_helper());
   673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   675   } else {
   676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   678     __ branch_destination(slow_path->continuation());
   679   }
   680 }
   683 static bool is_constant_zero(Instruction* inst) {
   684   IntConstant* c = inst->type()->as_IntConstant();
   685   if (c) {
   686     return (c->value() == 0);
   687   }
   688   return false;
   689 }
   692 static bool positive_constant(Instruction* inst) {
   693   IntConstant* c = inst->type()->as_IntConstant();
   694   if (c) {
   695     return (c->value() >= 0);
   696   }
   697   return false;
   698 }
   701 static ciArrayKlass* as_array_klass(ciType* type) {
   702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   703     return (ciArrayKlass*)type;
   704   } else {
   705     return NULL;
   706   }
   707 }
   709 static Value maxvalue(IfOp* ifop) {
   710   switch (ifop->cond()) {
   711     case If::eql: return NULL;
   712     case If::neq: return NULL;
   713     case If::lss: // x <  y ? x : y
   714     case If::leq: // x <= y ? x : y
   715       if (ifop->x() == ifop->tval() &&
   716           ifop->y() == ifop->fval()) return ifop->y();
   717       return NULL;
   719     case If::gtr: // x >  y ? y : x
   720     case If::geq: // x >= y ? y : x
   721       if (ifop->x() == ifop->tval() &&
   722           ifop->y() == ifop->fval()) return ifop->y();
   723       return NULL;
   725   }
   726 }
   728 static ciType* phi_declared_type(Phi* phi) {
   729   ciType* t = phi->operand_at(0)->declared_type();
   730   if (t == NULL) {
   731     return NULL;
   732   }
   733   for(int i = 1; i < phi->operand_count(); i++) {
   734     if (t != phi->operand_at(i)->declared_type()) {
   735       return NULL;
   736     }
   737   }
   738   return t;
   739 }
   741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   742   Instruction* src     = x->argument_at(0);
   743   Instruction* src_pos = x->argument_at(1);
   744   Instruction* dst     = x->argument_at(2);
   745   Instruction* dst_pos = x->argument_at(3);
   746   Instruction* length  = x->argument_at(4);
   748   // first try to identify the likely type of the arrays involved
   749   ciArrayKlass* expected_type = NULL;
   750   bool is_exact = false, src_objarray = false, dst_objarray = false;
   751   {
   752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   754     Phi* phi;
   755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   756       src_declared_type = as_array_klass(phi_declared_type(phi));
   757     }
   758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   761       dst_declared_type = as_array_klass(phi_declared_type(phi));
   762     }
   764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   765       // the types exactly match so the type is fully known
   766       is_exact = true;
   767       expected_type = src_exact_type;
   768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   770       ciArrayKlass* src_type = NULL;
   771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   772         src_type = (ciArrayKlass*) src_exact_type;
   773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   774         src_type = (ciArrayKlass*) src_declared_type;
   775       }
   776       if (src_type != NULL) {
   777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   778           is_exact = true;
   779           expected_type = dst_type;
   780         }
   781       }
   782     }
   783     // at least pass along a good guess
   784     if (expected_type == NULL) expected_type = dst_exact_type;
   785     if (expected_type == NULL) expected_type = src_declared_type;
   786     if (expected_type == NULL) expected_type = dst_declared_type;
   788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   790   }
   792   // if a probable array type has been identified, figure out if any
   793   // of the required checks for a fast case can be elided.
   794   int flags = LIR_OpArrayCopy::all_flags;
   796   if (!src_objarray)
   797     flags &= ~LIR_OpArrayCopy::src_objarray;
   798   if (!dst_objarray)
   799     flags &= ~LIR_OpArrayCopy::dst_objarray;
   801   if (!x->arg_needs_null_check(0))
   802     flags &= ~LIR_OpArrayCopy::src_null_check;
   803   if (!x->arg_needs_null_check(2))
   804     flags &= ~LIR_OpArrayCopy::dst_null_check;
   807   if (expected_type != NULL) {
   808     Value length_limit = NULL;
   810     IfOp* ifop = length->as_IfOp();
   811     if (ifop != NULL) {
   812       // look for expressions like min(v, a.length) which ends up as
   813       //   x > y ? y : x  or  x >= y ? y : x
   814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   815           ifop->x() == ifop->fval() &&
   816           ifop->y() == ifop->tval()) {
   817         length_limit = ifop->y();
   818       }
   819     }
   821     // try to skip null checks and range checks
   822     NewArray* src_array = src->as_NewArray();
   823     if (src_array != NULL) {
   824       flags &= ~LIR_OpArrayCopy::src_null_check;
   825       if (length_limit != NULL &&
   826           src_array->length() == length_limit &&
   827           is_constant_zero(src_pos)) {
   828         flags &= ~LIR_OpArrayCopy::src_range_check;
   829       }
   830     }
   832     NewArray* dst_array = dst->as_NewArray();
   833     if (dst_array != NULL) {
   834       flags &= ~LIR_OpArrayCopy::dst_null_check;
   835       if (length_limit != NULL &&
   836           dst_array->length() == length_limit &&
   837           is_constant_zero(dst_pos)) {
   838         flags &= ~LIR_OpArrayCopy::dst_range_check;
   839       }
   840     }
   842     // check from incoming constant values
   843     if (positive_constant(src_pos))
   844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   845     if (positive_constant(dst_pos))
   846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   847     if (positive_constant(length))
   848       flags &= ~LIR_OpArrayCopy::length_positive_check;
   850     // see if the range check can be elided, which might also imply
   851     // that src or dst is non-null.
   852     ArrayLength* al = length->as_ArrayLength();
   853     if (al != NULL) {
   854       if (al->array() == src) {
   855         // it's the length of the source array
   856         flags &= ~LIR_OpArrayCopy::length_positive_check;
   857         flags &= ~LIR_OpArrayCopy::src_null_check;
   858         if (is_constant_zero(src_pos))
   859           flags &= ~LIR_OpArrayCopy::src_range_check;
   860       }
   861       if (al->array() == dst) {
   862         // it's the length of the destination array
   863         flags &= ~LIR_OpArrayCopy::length_positive_check;
   864         flags &= ~LIR_OpArrayCopy::dst_null_check;
   865         if (is_constant_zero(dst_pos))
   866           flags &= ~LIR_OpArrayCopy::dst_range_check;
   867       }
   868     }
   869     if (is_exact) {
   870       flags &= ~LIR_OpArrayCopy::type_check;
   871     }
   872   }
   874   IntConstant* src_int = src_pos->type()->as_IntConstant();
   875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   876   if (src_int && dst_int) {
   877     int s_offs = src_int->value();
   878     int d_offs = dst_int->value();
   879     if (src_int->value() >= dst_int->value()) {
   880       flags &= ~LIR_OpArrayCopy::overlapping;
   881     }
   882     if (expected_type != NULL) {
   883       BasicType t = expected_type->element_type()->basic_type();
   884       int element_size = type2aelembytes(t);
   885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   887         flags &= ~LIR_OpArrayCopy::unaligned;
   888       }
   889     }
   890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   891     // src and dest positions are the same, or dst is zero so assume
   892     // nonoverlapping copy.
   893     flags &= ~LIR_OpArrayCopy::overlapping;
   894   }
   896   if (src == dst) {
   897     // moving within a single array so no type checks are needed
   898     if (flags & LIR_OpArrayCopy::type_check) {
   899       flags &= ~LIR_OpArrayCopy::type_check;
   900     }
   901   }
   902   *flagsp = flags;
   903   *expected_typep = (ciArrayKlass*)expected_type;
   904 }
   907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   908   assert(opr->is_register(), "why spill if item is not register?");
   910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   911     LIR_Opr result = new_register(T_FLOAT);
   912     set_vreg_flag(result, must_start_in_memory);
   913     assert(opr->is_register(), "only a register can be spilled");
   914     assert(opr->value_type()->is_float(), "rounding only for floats available");
   915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   916     return result;
   917   }
   918   return opr;
   919 }
   922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   923   assert(type2size[t] == type2size[value->type()],
   924          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   925   if (!value->is_register()) {
   926     // force into a register
   927     LIR_Opr r = new_register(value->type());
   928     __ move(value, r);
   929     value = r;
   930   }
   932   // create a spill location
   933   LIR_Opr tmp = new_register(t);
   934   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   936   // move from register to spill
   937   __ move(value, tmp);
   938   return tmp;
   939 }
   941 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   942   if (if_instr->should_profile()) {
   943     ciMethod* method = if_instr->profiled_method();
   944     assert(method != NULL, "method should be set if branch is profiled");
   945     ciMethodData* md = method->method_data_or_null();
   946     assert(md != NULL, "Sanity");
   947     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   948     assert(data != NULL, "must have profiling data");
   949     assert(data->is_BranchData(), "need BranchData for two-way branches");
   950     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   951     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   952     if (if_instr->is_swapped()) {
   953       int t = taken_count_offset;
   954       taken_count_offset = not_taken_count_offset;
   955       not_taken_count_offset = t;
   956     }
   958     LIR_Opr md_reg = new_register(T_OBJECT);
   959     __ oop2reg(md->constant_encoding(), md_reg);
   961     LIR_Opr data_offset_reg = new_pointer_register();
   962     __ cmove(lir_cond(cond),
   963              LIR_OprFact::intptrConst(taken_count_offset),
   964              LIR_OprFact::intptrConst(not_taken_count_offset),
   965              data_offset_reg, as_BasicType(if_instr->x()->type()));
   967     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   968     LIR_Opr data_reg = new_pointer_register();
   969     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   970     __ move(data_addr, data_reg);
   971     // Use leal instead of add to avoid destroying condition codes on x86
   972     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   973     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   974     __ move(data_reg, data_addr);
   975   }
   976 }
   978 // Phi technique:
   979 // This is about passing live values from one basic block to the other.
   980 // In code generated with Java it is rather rare that more than one
   981 // value is on the stack from one basic block to the other.
   982 // We optimize our technique for efficient passing of one value
   983 // (of type long, int, double..) but it can be extended.
   984 // When entering or leaving a basic block, all registers and all spill
   985 // slots are release and empty. We use the released registers
   986 // and spill slots to pass the live values from one block
   987 // to the other. The topmost value, i.e., the value on TOS of expression
   988 // stack is passed in registers. All other values are stored in spilling
   989 // area. Every Phi has an index which designates its spill slot
   990 // At exit of a basic block, we fill the register(s) and spill slots.
   991 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   992 // and locks necessary registers and spilling slots.
   995 // move current value to referenced phi function
   996 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   997   Phi* phi = sux_val->as_Phi();
   998   // cur_val can be null without phi being null in conjunction with inlining
   999   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
  1000     LIR_Opr operand = cur_val->operand();
  1001     if (cur_val->operand()->is_illegal()) {
  1002       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1003              "these can be produced lazily");
  1004       operand = operand_for_instruction(cur_val);
  1006     resolver->move(operand, operand_for_instruction(phi));
  1011 // Moves all stack values into their PHI position
  1012 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1013   BlockBegin* bb = block();
  1014   if (bb->number_of_sux() == 1) {
  1015     BlockBegin* sux = bb->sux_at(0);
  1016     assert(sux->number_of_preds() > 0, "invalid CFG");
  1018     // a block with only one predecessor never has phi functions
  1019     if (sux->number_of_preds() > 1) {
  1020       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1021       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1023       ValueStack* sux_state = sux->state();
  1024       Value sux_value;
  1025       int index;
  1027       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1028       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1029       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1031       for_each_stack_value(sux_state, index, sux_value) {
  1032         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1035       for_each_local_value(sux_state, index, sux_value) {
  1036         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1039       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1045 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1046   int vreg = _virtual_register_number;
  1047   // add a little fudge factor for the bailout, since the bailout is
  1048   // only checked periodically.  This gives a few extra registers to
  1049   // hand out before we really run out, which helps us keep from
  1050   // tripping over assertions.
  1051   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1052     bailout("out of virtual registers");
  1053     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1054       // wrap it around
  1055       _virtual_register_number = LIR_OprDesc::vreg_base;
  1058   _virtual_register_number += 1;
  1059   return LIR_OprFact::virtual_register(vreg, type);
  1063 // Try to lock using register in hint
  1064 LIR_Opr LIRGenerator::rlock(Value instr) {
  1065   return new_register(instr->type());
  1069 // does an rlock and sets result
  1070 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1071   LIR_Opr reg = rlock(x);
  1072   set_result(x, reg);
  1073   return reg;
  1077 // does an rlock and sets result
  1078 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1079   LIR_Opr reg;
  1080   switch (type) {
  1081   case T_BYTE:
  1082   case T_BOOLEAN:
  1083     reg = rlock_byte(type);
  1084     break;
  1085   default:
  1086     reg = rlock(x);
  1087     break;
  1090   set_result(x, reg);
  1091   return reg;
  1095 //---------------------------------------------------------------------
  1096 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1097   ObjectType* oc = value->type()->as_ObjectType();
  1098   if (oc) {
  1099     return oc->constant_value();
  1101   return NULL;
  1105 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1106   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1107   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1109   // no moves are created for phi functions at the begin of exception
  1110   // handlers, so assign operands manually here
  1111   for_each_phi_fun(block(), phi,
  1112                    operand_for_instruction(phi));
  1114   LIR_Opr thread_reg = getThreadPointer();
  1115   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1116                exceptionOopOpr());
  1117   __ move_wide(LIR_OprFact::oopConst(NULL),
  1118                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1119   __ move_wide(LIR_OprFact::oopConst(NULL),
  1120                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1122   LIR_Opr result = new_register(T_OBJECT);
  1123   __ move(exceptionOopOpr(), result);
  1124   set_result(x, result);
  1128 //----------------------------------------------------------------------
  1129 //----------------------------------------------------------------------
  1130 //----------------------------------------------------------------------
  1131 //----------------------------------------------------------------------
  1132 //                        visitor functions
  1133 //----------------------------------------------------------------------
  1134 //----------------------------------------------------------------------
  1135 //----------------------------------------------------------------------
  1136 //----------------------------------------------------------------------
  1138 void LIRGenerator::do_Phi(Phi* x) {
  1139   // phi functions are never visited directly
  1140   ShouldNotReachHere();
  1144 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1145 void LIRGenerator::do_Constant(Constant* x) {
  1146   if (x->state_before() != NULL) {
  1147     // Any constant with a ValueStack requires patching so emit the patch here
  1148     LIR_Opr reg = rlock_result(x);
  1149     CodeEmitInfo* info = state_for(x, x->state_before());
  1150     __ oop2reg_patch(NULL, reg, info);
  1151   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1152     if (!x->is_pinned()) {
  1153       // unpinned constants are handled specially so that they can be
  1154       // put into registers when they are used multiple times within a
  1155       // block.  After the block completes their operand will be
  1156       // cleared so that other blocks can't refer to that register.
  1157       set_result(x, load_constant(x));
  1158     } else {
  1159       LIR_Opr res = x->operand();
  1160       if (!res->is_valid()) {
  1161         res = LIR_OprFact::value_type(x->type());
  1163       if (res->is_constant()) {
  1164         LIR_Opr reg = rlock_result(x);
  1165         __ move(res, reg);
  1166       } else {
  1167         set_result(x, res);
  1170   } else {
  1171     set_result(x, LIR_OprFact::value_type(x->type()));
  1176 void LIRGenerator::do_Local(Local* x) {
  1177   // operand_for_instruction has the side effect of setting the result
  1178   // so there's no need to do it here.
  1179   operand_for_instruction(x);
  1183 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1184   Unimplemented();
  1188 void LIRGenerator::do_Return(Return* x) {
  1189   if (compilation()->env()->dtrace_method_probes()) {
  1190     BasicTypeList signature;
  1191     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1192     signature.append(T_OBJECT); // Method*
  1193     LIR_OprList* args = new LIR_OprList();
  1194     args->append(getThreadPointer());
  1195     LIR_Opr meth = new_register(T_OBJECT);
  1196     __ oop2reg(method()->constant_encoding(), meth);
  1197     args->append(meth);
  1198     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1201   if (x->type()->is_void()) {
  1202     __ return_op(LIR_OprFact::illegalOpr);
  1203   } else {
  1204     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1205     LIRItem result(x->result(), this);
  1207     result.load_item_force(reg);
  1208     __ return_op(result.result());
  1210   set_no_result(x);
  1213 // Examble: ref.get()
  1214 // Combination of LoadField and g1 pre-write barrier
  1215 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1217   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1218   guarantee(referent_offset > 0, "referent offset not initialized");
  1220   assert(x->number_of_arguments() == 1, "wrong type");
  1222   LIRItem reference(x->argument_at(0), this);
  1223   reference.load_item();
  1225   // need to perform the null check on the reference objecy
  1226   CodeEmitInfo* info = NULL;
  1227   if (x->needs_null_check()) {
  1228     info = state_for(x);
  1231   LIR_Address* referent_field_adr =
  1232     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1234   LIR_Opr result = rlock_result(x);
  1236   __ load(referent_field_adr, result, info);
  1238   // Register the value in the referent field with the pre-barrier
  1239   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1240               result /* pre_val */,
  1241               false  /* do_load */,
  1242               false  /* patch */,
  1243               NULL   /* info */);
  1246 // Example: clazz.isInstance(object)
  1247 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1248   assert(x->number_of_arguments() == 2, "wrong type");
  1250   // TODO could try to substitute this node with an equivalent InstanceOf
  1251   // if clazz is known to be a constant Class. This will pick up newly found
  1252   // constants after HIR construction. I'll leave this to a future change.
  1254   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1255   // could follow the aastore example in a future change.
  1257   LIRItem clazz(x->argument_at(0), this);
  1258   LIRItem object(x->argument_at(1), this);
  1259   clazz.load_item();
  1260   object.load_item();
  1261   LIR_Opr result = rlock_result(x);
  1263   // need to perform null check on clazz
  1264   if (x->needs_null_check()) {
  1265     CodeEmitInfo* info = state_for(x);
  1266     __ null_check(clazz.result(), info);
  1269   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1270                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1271                                      x->type(),
  1272                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1273   __ move(call_result, result);
  1276 // Example: object.getClass ()
  1277 void LIRGenerator::do_getClass(Intrinsic* x) {
  1278   assert(x->number_of_arguments() == 1, "wrong type");
  1280   LIRItem rcvr(x->argument_at(0), this);
  1281   rcvr.load_item();
  1282   LIR_Opr result = rlock_result(x);
  1284   // need to perform the null check on the rcvr
  1285   CodeEmitInfo* info = NULL;
  1286   if (x->needs_null_check()) {
  1287     info = state_for(x);
  1289   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), result, info);
  1290   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1294 // Example: Thread.currentThread()
  1295 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1296   assert(x->number_of_arguments() == 0, "wrong type");
  1297   LIR_Opr reg = rlock_result(x);
  1298   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1302 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1303   assert(x->number_of_arguments() == 1, "wrong type");
  1304   LIRItem receiver(x->argument_at(0), this);
  1306   receiver.load_item();
  1307   BasicTypeList signature;
  1308   signature.append(T_OBJECT); // receiver
  1309   LIR_OprList* args = new LIR_OprList();
  1310   args->append(receiver.result());
  1311   CodeEmitInfo* info = state_for(x, x->state());
  1312   call_runtime(&signature, args,
  1313                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1314                voidType, info);
  1316   set_no_result(x);
  1320 //------------------------local access--------------------------------------
  1322 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1323   if (x->operand()->is_illegal()) {
  1324     Constant* c = x->as_Constant();
  1325     if (c != NULL) {
  1326       x->set_operand(LIR_OprFact::value_type(c->type()));
  1327     } else {
  1328       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1329       // allocate a virtual register for this local or phi
  1330       x->set_operand(rlock(x));
  1331       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1334   return x->operand();
  1338 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1339   if (opr->is_virtual()) {
  1340     return instruction_for_vreg(opr->vreg_number());
  1342   return NULL;
  1346 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1347   if (reg_num < _instruction_for_operand.length()) {
  1348     return _instruction_for_operand.at(reg_num);
  1350   return NULL;
  1354 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1355   if (_vreg_flags.size_in_bits() == 0) {
  1356     BitMap2D temp(100, num_vreg_flags);
  1357     temp.clear();
  1358     _vreg_flags = temp;
  1360   _vreg_flags.at_put_grow(vreg_num, f, true);
  1363 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1364   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1365     return false;
  1367   return _vreg_flags.at(vreg_num, f);
  1371 // Block local constant handling.  This code is useful for keeping
  1372 // unpinned constants and constants which aren't exposed in the IR in
  1373 // registers.  Unpinned Constant instructions have their operands
  1374 // cleared when the block is finished so that other blocks can't end
  1375 // up referring to their registers.
  1377 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1378   assert(!x->is_pinned(), "only for unpinned constants");
  1379   _unpinned_constants.append(x);
  1380   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1384 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1385   BasicType t = c->type();
  1386   for (int i = 0; i < _constants.length(); i++) {
  1387     LIR_Const* other = _constants.at(i);
  1388     if (t == other->type()) {
  1389       switch (t) {
  1390       case T_INT:
  1391       case T_FLOAT:
  1392         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1393         break;
  1394       case T_LONG:
  1395       case T_DOUBLE:
  1396         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1397         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1398         break;
  1399       case T_OBJECT:
  1400         if (c->as_jobject() != other->as_jobject()) continue;
  1401         break;
  1403       return _reg_for_constants.at(i);
  1407   LIR_Opr result = new_register(t);
  1408   __ move((LIR_Opr)c, result);
  1409   _constants.append(c);
  1410   _reg_for_constants.append(result);
  1411   return result;
  1414 // Various barriers
  1416 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1417                                bool do_load, bool patch, CodeEmitInfo* info) {
  1418   // Do the pre-write barrier, if any.
  1419   switch (_bs->kind()) {
  1420 #ifndef SERIALGC
  1421     case BarrierSet::G1SATBCT:
  1422     case BarrierSet::G1SATBCTLogging:
  1423       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1424       break;
  1425 #endif // SERIALGC
  1426     case BarrierSet::CardTableModRef:
  1427     case BarrierSet::CardTableExtension:
  1428       // No pre barriers
  1429       break;
  1430     case BarrierSet::ModRef:
  1431     case BarrierSet::Other:
  1432       // No pre barriers
  1433       break;
  1434     default      :
  1435       ShouldNotReachHere();
  1440 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1441   switch (_bs->kind()) {
  1442 #ifndef SERIALGC
  1443     case BarrierSet::G1SATBCT:
  1444     case BarrierSet::G1SATBCTLogging:
  1445       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1446       break;
  1447 #endif // SERIALGC
  1448     case BarrierSet::CardTableModRef:
  1449     case BarrierSet::CardTableExtension:
  1450       CardTableModRef_post_barrier(addr,  new_val);
  1451       break;
  1452     case BarrierSet::ModRef:
  1453     case BarrierSet::Other:
  1454       // No post barriers
  1455       break;
  1456     default      :
  1457       ShouldNotReachHere();
  1461 ////////////////////////////////////////////////////////////////////////
  1462 #ifndef SERIALGC
  1464 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1465                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1466   // First we test whether marking is in progress.
  1467   BasicType flag_type;
  1468   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1469     flag_type = T_INT;
  1470   } else {
  1471     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1472               "Assumption");
  1473     flag_type = T_BYTE;
  1475   LIR_Opr thrd = getThreadPointer();
  1476   LIR_Address* mark_active_flag_addr =
  1477     new LIR_Address(thrd,
  1478                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1479                              PtrQueue::byte_offset_of_active()),
  1480                     flag_type);
  1481   // Read the marking-in-progress flag.
  1482   LIR_Opr flag_val = new_register(T_INT);
  1483   __ load(mark_active_flag_addr, flag_val);
  1484   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1486   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1488   CodeStub* slow;
  1490   if (do_load) {
  1491     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1492     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1494     if (patch)
  1495       pre_val_patch_code = lir_patch_normal;
  1497     pre_val = new_register(T_OBJECT);
  1499     if (!addr_opr->is_address()) {
  1500       assert(addr_opr->is_register(), "must be");
  1501       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1503     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1504   } else {
  1505     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1506     assert(pre_val->is_register(), "must be");
  1507     assert(pre_val->type() == T_OBJECT, "must be an object");
  1508     assert(info == NULL, "sanity");
  1510     slow = new G1PreBarrierStub(pre_val);
  1513   __ branch(lir_cond_notEqual, T_INT, slow);
  1514   __ branch_destination(slow->continuation());
  1517 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1518   // If the "new_val" is a constant NULL, no barrier is necessary.
  1519   if (new_val->is_constant() &&
  1520       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1522   if (!new_val->is_register()) {
  1523     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1524     if (new_val->is_constant()) {
  1525       __ move(new_val, new_val_reg);
  1526     } else {
  1527       __ leal(new_val, new_val_reg);
  1529     new_val = new_val_reg;
  1531   assert(new_val->is_register(), "must be a register at this point");
  1533   if (addr->is_address()) {
  1534     LIR_Address* address = addr->as_address_ptr();
  1535     LIR_Opr ptr = new_pointer_register();
  1536     if (!address->index()->is_valid() && address->disp() == 0) {
  1537       __ move(address->base(), ptr);
  1538     } else {
  1539       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1540       __ leal(addr, ptr);
  1542     addr = ptr;
  1544   assert(addr->is_register(), "must be a register at this point");
  1546   LIR_Opr xor_res = new_pointer_register();
  1547   LIR_Opr xor_shift_res = new_pointer_register();
  1548   if (TwoOperandLIRForm ) {
  1549     __ move(addr, xor_res);
  1550     __ logical_xor(xor_res, new_val, xor_res);
  1551     __ move(xor_res, xor_shift_res);
  1552     __ unsigned_shift_right(xor_shift_res,
  1553                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1554                             xor_shift_res,
  1555                             LIR_OprDesc::illegalOpr());
  1556   } else {
  1557     __ logical_xor(addr, new_val, xor_res);
  1558     __ unsigned_shift_right(xor_res,
  1559                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1560                             xor_shift_res,
  1561                             LIR_OprDesc::illegalOpr());
  1564   if (!new_val->is_register()) {
  1565     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1566     __ leal(new_val, new_val_reg);
  1567     new_val = new_val_reg;
  1569   assert(new_val->is_register(), "must be a register at this point");
  1571   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1573   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1574   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1575   __ branch_destination(slow->continuation());
  1578 #endif // SERIALGC
  1579 ////////////////////////////////////////////////////////////////////////
  1581 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1583   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1584   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1585   if (addr->is_address()) {
  1586     LIR_Address* address = addr->as_address_ptr();
  1587     // ptr cannot be an object because we use this barrier for array card marks
  1588     // and addr can point in the middle of an array.
  1589     LIR_Opr ptr = new_pointer_register();
  1590     if (!address->index()->is_valid() && address->disp() == 0) {
  1591       __ move(address->base(), ptr);
  1592     } else {
  1593       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1594       __ leal(addr, ptr);
  1596     addr = ptr;
  1598   assert(addr->is_register(), "must be a register at this point");
  1600 #ifdef ARM
  1601   // TODO: ARM - move to platform-dependent code
  1602   LIR_Opr tmp = FrameMap::R14_opr;
  1603   if (VM_Version::supports_movw()) {
  1604     __ move((LIR_Opr)card_table_base, tmp);
  1605   } else {
  1606     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1609   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1610   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1611   if(((int)ct->byte_map_base & 0xff) == 0) {
  1612     __ move(tmp, card_addr);
  1613   } else {
  1614     LIR_Opr tmp_zero = new_register(T_INT);
  1615     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1616     __ move(tmp_zero, card_addr);
  1618 #else // ARM
  1619   LIR_Opr tmp = new_pointer_register();
  1620   if (TwoOperandLIRForm) {
  1621     __ move(addr, tmp);
  1622     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1623   } else {
  1624     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1626   if (can_inline_as_constant(card_table_base)) {
  1627     __ move(LIR_OprFact::intConst(0),
  1628               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1629   } else {
  1630     __ move(LIR_OprFact::intConst(0),
  1631               new LIR_Address(tmp, load_constant(card_table_base),
  1632                               T_BYTE));
  1634 #endif // ARM
  1638 //------------------------field access--------------------------------------
  1640 // Comment copied form templateTable_i486.cpp
  1641 // ----------------------------------------------------------------------------
  1642 // Volatile variables demand their effects be made known to all CPU's in
  1643 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1644 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1645 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1646 // reorder volatile references, the hardware also must not reorder them).
  1647 //
  1648 // According to the new Java Memory Model (JMM):
  1649 // (1) All volatiles are serialized wrt to each other.
  1650 // ALSO reads & writes act as aquire & release, so:
  1651 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1652 // the read float up to before the read.  It's OK for non-volatile memory refs
  1653 // that happen before the volatile read to float down below it.
  1654 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1655 // that happen BEFORE the write float down to after the write.  It's OK for
  1656 // non-volatile memory refs that happen after the volatile write to float up
  1657 // before it.
  1658 //
  1659 // We only put in barriers around volatile refs (they are expensive), not
  1660 // _between_ memory refs (that would require us to track the flavor of the
  1661 // previous memory refs).  Requirements (2) and (3) require some barriers
  1662 // before volatile stores and after volatile loads.  These nearly cover
  1663 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1664 // case is placed after volatile-stores although it could just as well go
  1665 // before volatile-loads.
  1668 void LIRGenerator::do_StoreField(StoreField* x) {
  1669   bool needs_patching = x->needs_patching();
  1670   bool is_volatile = x->field()->is_volatile();
  1671   BasicType field_type = x->field_type();
  1672   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1674   CodeEmitInfo* info = NULL;
  1675   if (needs_patching) {
  1676     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1677     info = state_for(x, x->state_before());
  1678   } else if (x->needs_null_check()) {
  1679     NullCheck* nc = x->explicit_null_check();
  1680     if (nc == NULL) {
  1681       info = state_for(x);
  1682     } else {
  1683       info = state_for(nc);
  1688   LIRItem object(x->obj(), this);
  1689   LIRItem value(x->value(),  this);
  1691   object.load_item();
  1693   if (is_volatile || needs_patching) {
  1694     // load item if field is volatile (fewer special cases for volatiles)
  1695     // load item if field not initialized
  1696     // load item if field not constant
  1697     // because of code patching we cannot inline constants
  1698     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1699       value.load_byte_item();
  1700     } else  {
  1701       value.load_item();
  1703   } else {
  1704     value.load_for_store(field_type);
  1707   set_no_result(x);
  1709 #ifndef PRODUCT
  1710   if (PrintNotLoaded && needs_patching) {
  1711     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1712                   x->is_static() ?  "static" : "field", x->printable_bci());
  1714 #endif
  1716   if (x->needs_null_check() &&
  1717       (needs_patching ||
  1718        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1719     // emit an explicit null check because the offset is too large
  1720     __ null_check(object.result(), new CodeEmitInfo(info));
  1723   LIR_Address* address;
  1724   if (needs_patching) {
  1725     // we need to patch the offset in the instruction so don't allow
  1726     // generate_address to try to be smart about emitting the -1.
  1727     // Otherwise the patching code won't know how to find the
  1728     // instruction to patch.
  1729     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1730   } else {
  1731     address = generate_address(object.result(), x->offset(), field_type);
  1734   if (is_volatile && os::is_MP()) {
  1735     __ membar_release();
  1738   if (is_oop) {
  1739     // Do the pre-write barrier, if any.
  1740     pre_barrier(LIR_OprFact::address(address),
  1741                 LIR_OprFact::illegalOpr /* pre_val */,
  1742                 true /* do_load*/,
  1743                 needs_patching,
  1744                 (info ? new CodeEmitInfo(info) : NULL));
  1747   if (is_volatile && !needs_patching) {
  1748     volatile_field_store(value.result(), address, info);
  1749   } else {
  1750     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1751     __ store(value.result(), address, info, patch_code);
  1754   if (is_oop) {
  1755     // Store to object so mark the card of the header
  1756     post_barrier(object.result(), value.result());
  1759   if (is_volatile && os::is_MP()) {
  1760     __ membar();
  1765 void LIRGenerator::do_LoadField(LoadField* x) {
  1766   bool needs_patching = x->needs_patching();
  1767   bool is_volatile = x->field()->is_volatile();
  1768   BasicType field_type = x->field_type();
  1770   CodeEmitInfo* info = NULL;
  1771   if (needs_patching) {
  1772     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1773     info = state_for(x, x->state_before());
  1774   } else if (x->needs_null_check()) {
  1775     NullCheck* nc = x->explicit_null_check();
  1776     if (nc == NULL) {
  1777       info = state_for(x);
  1778     } else {
  1779       info = state_for(nc);
  1783   LIRItem object(x->obj(), this);
  1785   object.load_item();
  1787 #ifndef PRODUCT
  1788   if (PrintNotLoaded && needs_patching) {
  1789     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1790                   x->is_static() ?  "static" : "field", x->printable_bci());
  1792 #endif
  1794   if (x->needs_null_check() &&
  1795       (needs_patching ||
  1796        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1797     // emit an explicit null check because the offset is too large
  1798     __ null_check(object.result(), new CodeEmitInfo(info));
  1801   LIR_Opr reg = rlock_result(x, field_type);
  1802   LIR_Address* address;
  1803   if (needs_patching) {
  1804     // we need to patch the offset in the instruction so don't allow
  1805     // generate_address to try to be smart about emitting the -1.
  1806     // Otherwise the patching code won't know how to find the
  1807     // instruction to patch.
  1808     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1809   } else {
  1810     address = generate_address(object.result(), x->offset(), field_type);
  1813   if (is_volatile && !needs_patching) {
  1814     volatile_field_load(address, reg, info);
  1815   } else {
  1816     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1817     __ load(address, reg, info, patch_code);
  1820   if (is_volatile && os::is_MP()) {
  1821     __ membar_acquire();
  1826 //------------------------java.nio.Buffer.checkIndex------------------------
  1828 // int java.nio.Buffer.checkIndex(int)
  1829 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1830   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1831   // the buffer is non-null (because checkIndex is package-private and
  1832   // only called from within other methods in the buffer).
  1833   assert(x->number_of_arguments() == 2, "wrong type");
  1834   LIRItem buf  (x->argument_at(0), this);
  1835   LIRItem index(x->argument_at(1), this);
  1836   buf.load_item();
  1837   index.load_item();
  1839   LIR_Opr result = rlock_result(x);
  1840   if (GenerateRangeChecks) {
  1841     CodeEmitInfo* info = state_for(x);
  1842     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1843     if (index.result()->is_constant()) {
  1844       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1845       __ branch(lir_cond_belowEqual, T_INT, stub);
  1846     } else {
  1847       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1848                   java_nio_Buffer::limit_offset(), T_INT, info);
  1849       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1851     __ move(index.result(), result);
  1852   } else {
  1853     // Just load the index into the result register
  1854     __ move(index.result(), result);
  1859 //------------------------array access--------------------------------------
  1862 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1863   LIRItem array(x->array(), this);
  1864   array.load_item();
  1865   LIR_Opr reg = rlock_result(x);
  1867   CodeEmitInfo* info = NULL;
  1868   if (x->needs_null_check()) {
  1869     NullCheck* nc = x->explicit_null_check();
  1870     if (nc == NULL) {
  1871       info = state_for(x);
  1872     } else {
  1873       info = state_for(nc);
  1876   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1880 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1881   bool use_length = x->length() != NULL;
  1882   LIRItem array(x->array(), this);
  1883   LIRItem index(x->index(), this);
  1884   LIRItem length(this);
  1885   bool needs_range_check = true;
  1887   if (use_length) {
  1888     needs_range_check = x->compute_needs_range_check();
  1889     if (needs_range_check) {
  1890       length.set_instruction(x->length());
  1891       length.load_item();
  1895   array.load_item();
  1896   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1897     // let it be a constant
  1898     index.dont_load_item();
  1899   } else {
  1900     index.load_item();
  1903   CodeEmitInfo* range_check_info = state_for(x);
  1904   CodeEmitInfo* null_check_info = NULL;
  1905   if (x->needs_null_check()) {
  1906     NullCheck* nc = x->explicit_null_check();
  1907     if (nc != NULL) {
  1908       null_check_info = state_for(nc);
  1909     } else {
  1910       null_check_info = range_check_info;
  1914   // emit array address setup early so it schedules better
  1915   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1917   if (GenerateRangeChecks && needs_range_check) {
  1918     if (use_length) {
  1919       // TODO: use a (modified) version of array_range_check that does not require a
  1920       //       constant length to be loaded to a register
  1921       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1922       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1923     } else {
  1924       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1925       // The range check performs the null check, so clear it out for the load
  1926       null_check_info = NULL;
  1930   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1934 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1935   if (x->can_trap()) {
  1936     LIRItem value(x->obj(), this);
  1937     value.load_item();
  1938     CodeEmitInfo* info = state_for(x);
  1939     __ null_check(value.result(), info);
  1944 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1945   LIRItem value(x->obj(), this);
  1946   value.load_item();
  1947   // the result is the same as from the node we are casting
  1948   set_result(x, value.result());
  1952 void LIRGenerator::do_Throw(Throw* x) {
  1953   LIRItem exception(x->exception(), this);
  1954   exception.load_item();
  1955   set_no_result(x);
  1956   LIR_Opr exception_opr = exception.result();
  1957   CodeEmitInfo* info = state_for(x, x->state());
  1959 #ifndef PRODUCT
  1960   if (PrintC1Statistics) {
  1961     increment_counter(Runtime1::throw_count_address(), T_INT);
  1963 #endif
  1965   // check if the instruction has an xhandler in any of the nested scopes
  1966   bool unwind = false;
  1967   if (info->exception_handlers()->length() == 0) {
  1968     // this throw is not inside an xhandler
  1969     unwind = true;
  1970   } else {
  1971     // get some idea of the throw type
  1972     bool type_is_exact = true;
  1973     ciType* throw_type = x->exception()->exact_type();
  1974     if (throw_type == NULL) {
  1975       type_is_exact = false;
  1976       throw_type = x->exception()->declared_type();
  1978     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1979       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1980       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1984   // do null check before moving exception oop into fixed register
  1985   // to avoid a fixed interval with an oop during the null check.
  1986   // Use a copy of the CodeEmitInfo because debug information is
  1987   // different for null_check and throw.
  1988   if (GenerateCompilerNullChecks &&
  1989       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1990     // if the exception object wasn't created using new then it might be null.
  1991     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1994   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1995     // we need to go through the exception lookup path to get JVMTI
  1996     // notification done
  1997     unwind = false;
  2000   // move exception oop into fixed register
  2001   __ move(exception_opr, exceptionOopOpr());
  2003   if (unwind) {
  2004     __ unwind_exception(exceptionOopOpr());
  2005   } else {
  2006     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2011 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2012   LIRItem input(x->input(), this);
  2013   input.load_item();
  2014   LIR_Opr input_opr = input.result();
  2015   assert(input_opr->is_register(), "why round if value is not in a register?");
  2016   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2017   if (input_opr->is_single_fpu()) {
  2018     set_result(x, round_item(input_opr)); // This code path not currently taken
  2019   } else {
  2020     LIR_Opr result = new_register(T_DOUBLE);
  2021     set_vreg_flag(result, must_start_in_memory);
  2022     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2023     set_result(x, result);
  2027 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2028   LIRItem base(x->base(), this);
  2029   LIRItem idx(this);
  2031   base.load_item();
  2032   if (x->has_index()) {
  2033     idx.set_instruction(x->index());
  2034     idx.load_nonconstant();
  2037   LIR_Opr reg = rlock_result(x, x->basic_type());
  2039   int   log2_scale = 0;
  2040   if (x->has_index()) {
  2041     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2042     log2_scale = x->log2_scale();
  2045   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2047   LIR_Opr base_op = base.result();
  2048 #ifndef _LP64
  2049   if (x->base()->type()->tag() == longTag) {
  2050     base_op = new_register(T_INT);
  2051     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2052   } else {
  2053     assert(x->base()->type()->tag() == intTag, "must be");
  2055 #endif
  2057   BasicType dst_type = x->basic_type();
  2058   LIR_Opr index_op = idx.result();
  2060   LIR_Address* addr;
  2061   if (index_op->is_constant()) {
  2062     assert(log2_scale == 0, "must not have a scale");
  2063     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2064   } else {
  2065 #ifdef X86
  2066 #ifdef _LP64
  2067     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2068       LIR_Opr tmp = new_pointer_register();
  2069       __ convert(Bytecodes::_i2l, index_op, tmp);
  2070       index_op = tmp;
  2072 #endif
  2073     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2074 #elif defined(ARM)
  2075     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2076 #else
  2077     if (index_op->is_illegal() || log2_scale == 0) {
  2078 #ifdef _LP64
  2079       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2080         LIR_Opr tmp = new_pointer_register();
  2081         __ convert(Bytecodes::_i2l, index_op, tmp);
  2082         index_op = tmp;
  2084 #endif
  2085       addr = new LIR_Address(base_op, index_op, dst_type);
  2086     } else {
  2087       LIR_Opr tmp = new_pointer_register();
  2088       __ shift_left(index_op, log2_scale, tmp);
  2089       addr = new LIR_Address(base_op, tmp, dst_type);
  2091 #endif
  2094   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2095     __ unaligned_move(addr, reg);
  2096   } else {
  2097     if (dst_type == T_OBJECT && x->is_wide()) {
  2098       __ move_wide(addr, reg);
  2099     } else {
  2100       __ move(addr, reg);
  2106 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2107   int  log2_scale = 0;
  2108   BasicType type = x->basic_type();
  2110   if (x->has_index()) {
  2111     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2112     log2_scale = x->log2_scale();
  2115   LIRItem base(x->base(), this);
  2116   LIRItem value(x->value(), this);
  2117   LIRItem idx(this);
  2119   base.load_item();
  2120   if (x->has_index()) {
  2121     idx.set_instruction(x->index());
  2122     idx.load_item();
  2125   if (type == T_BYTE || type == T_BOOLEAN) {
  2126     value.load_byte_item();
  2127   } else {
  2128     value.load_item();
  2131   set_no_result(x);
  2133   LIR_Opr base_op = base.result();
  2134 #ifndef _LP64
  2135   if (x->base()->type()->tag() == longTag) {
  2136     base_op = new_register(T_INT);
  2137     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2138   } else {
  2139     assert(x->base()->type()->tag() == intTag, "must be");
  2141 #endif
  2143   LIR_Opr index_op = idx.result();
  2144   if (log2_scale != 0) {
  2145     // temporary fix (platform dependent code without shift on Intel would be better)
  2146     index_op = new_pointer_register();
  2147 #ifdef _LP64
  2148     if(idx.result()->type() == T_INT) {
  2149       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2150     } else {
  2151 #endif
  2152       // TODO: ARM also allows embedded shift in the address
  2153       __ move(idx.result(), index_op);
  2154 #ifdef _LP64
  2156 #endif
  2157     __ shift_left(index_op, log2_scale, index_op);
  2159 #ifdef _LP64
  2160   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2161     LIR_Opr tmp = new_pointer_register();
  2162     __ convert(Bytecodes::_i2l, index_op, tmp);
  2163     index_op = tmp;
  2165 #endif
  2167   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2168   __ move(value.result(), addr);
  2172 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2173   BasicType type = x->basic_type();
  2174   LIRItem src(x->object(), this);
  2175   LIRItem off(x->offset(), this);
  2177   off.load_item();
  2178   src.load_item();
  2180   LIR_Opr value = rlock_result(x, x->basic_type());
  2182   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2184 #ifndef SERIALGC
  2185   // We might be reading the value of the referent field of a
  2186   // Reference object in order to attach it back to the live
  2187   // object graph. If G1 is enabled then we need to record
  2188   // the value that is being returned in an SATB log buffer.
  2189   //
  2190   // We need to generate code similar to the following...
  2191   //
  2192   // if (offset == java_lang_ref_Reference::referent_offset) {
  2193   //   if (src != NULL) {
  2194   //     if (klass(src)->reference_type() != REF_NONE) {
  2195   //       pre_barrier(..., value, ...);
  2196   //     }
  2197   //   }
  2198   // }
  2200   if (UseG1GC && type == T_OBJECT) {
  2201     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2202     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2203     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2204     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2206     if (off.is_constant()) {
  2207       jlong off_con = (off.type()->is_int() ?
  2208                         (jlong) off.get_jint_constant() :
  2209                         off.get_jlong_constant());
  2212       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2213         // The constant offset is something other than referent_offset.
  2214         // We can skip generating/checking the remaining guards and
  2215         // skip generation of the code stub.
  2216         gen_pre_barrier = false;
  2217       } else {
  2218         // The constant offset is the same as referent_offset -
  2219         // we do not need to generate a runtime offset check.
  2220         gen_offset_check = false;
  2224     // We don't need to generate stub if the source object is an array
  2225     if (gen_pre_barrier && src.type()->is_array()) {
  2226       gen_pre_barrier = false;
  2229     if (gen_pre_barrier) {
  2230       // We still need to continue with the checks.
  2231       if (src.is_constant()) {
  2232         ciObject* src_con = src.get_jobject_constant();
  2234         if (src_con->is_null_object()) {
  2235           // The constant src object is null - We can skip
  2236           // generating the code stub.
  2237           gen_pre_barrier = false;
  2238         } else {
  2239           // Non-null constant source object. We still have to generate
  2240           // the slow stub - but we don't need to generate the runtime
  2241           // null object check.
  2242           gen_source_check = false;
  2246     if (gen_pre_barrier && !PatchALot) {
  2247       // Can the klass of object be statically determined to be
  2248       // a sub-class of Reference?
  2249       ciType* type = src.value()->declared_type();
  2250       if ((type != NULL) && type->is_loaded()) {
  2251         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2252           gen_type_check = false;
  2253         } else if (type->is_klass() &&
  2254                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2255           // Not Reference and not Object klass.
  2256           gen_pre_barrier = false;
  2261     if (gen_pre_barrier) {
  2262       LabelObj* Lcont = new LabelObj();
  2264       // We can have generate one runtime check here. Let's start with
  2265       // the offset check.
  2266       if (gen_offset_check) {
  2267         // if (offset != referent_offset) -> continue
  2268         // If offset is an int then we can do the comparison with the
  2269         // referent_offset constant; otherwise we need to move
  2270         // referent_offset into a temporary register and generate
  2271         // a reg-reg compare.
  2273         LIR_Opr referent_off;
  2275         if (off.type()->is_int()) {
  2276           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2277         } else {
  2278           assert(off.type()->is_long(), "what else?");
  2279           referent_off = new_register(T_LONG);
  2280           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2282         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2283         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2285       if (gen_source_check) {
  2286         // offset is a const and equals referent offset
  2287         // if (source == null) -> continue
  2288         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2289         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2291       LIR_Opr src_klass = new_register(T_OBJECT);
  2292       if (gen_type_check) {
  2293         // We have determined that offset == referent_offset && src != null.
  2294         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2295         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), src_klass);
  2296         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2297         LIR_Opr reference_type = new_register(T_INT);
  2298         __ move(reference_type_addr, reference_type);
  2299         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2300         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2303         // We have determined that src->_klass->_reference_type != REF_NONE
  2304         // so register the value in the referent field with the pre-barrier.
  2305         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2306                     value  /* pre_val */,
  2307                     false  /* do_load */,
  2308                     false  /* patch */,
  2309                     NULL   /* info */);
  2311       __ branch_destination(Lcont->label());
  2314 #endif // SERIALGC
  2316   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2320 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2321   BasicType type = x->basic_type();
  2322   LIRItem src(x->object(), this);
  2323   LIRItem off(x->offset(), this);
  2324   LIRItem data(x->value(), this);
  2326   src.load_item();
  2327   if (type == T_BOOLEAN || type == T_BYTE) {
  2328     data.load_byte_item();
  2329   } else {
  2330     data.load_item();
  2332   off.load_item();
  2334   set_no_result(x);
  2336   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2337   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2338   if (x->is_volatile() && os::is_MP()) __ membar();
  2342 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2343   LIRItem src(x->object(), this);
  2344   LIRItem off(x->offset(), this);
  2346   src.load_item();
  2347   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2348     // let it be a constant
  2349     off.dont_load_item();
  2350   } else {
  2351     off.load_item();
  2354   set_no_result(x);
  2356   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2357   __ prefetch(addr, is_store);
  2361 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2362   do_UnsafePrefetch(x, false);
  2366 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2367   do_UnsafePrefetch(x, true);
  2371 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2372   int lng = x->length();
  2374   for (int i = 0; i < lng; i++) {
  2375     SwitchRange* one_range = x->at(i);
  2376     int low_key = one_range->low_key();
  2377     int high_key = one_range->high_key();
  2378     BlockBegin* dest = one_range->sux();
  2379     if (low_key == high_key) {
  2380       __ cmp(lir_cond_equal, value, low_key);
  2381       __ branch(lir_cond_equal, T_INT, dest);
  2382     } else if (high_key - low_key == 1) {
  2383       __ cmp(lir_cond_equal, value, low_key);
  2384       __ branch(lir_cond_equal, T_INT, dest);
  2385       __ cmp(lir_cond_equal, value, high_key);
  2386       __ branch(lir_cond_equal, T_INT, dest);
  2387     } else {
  2388       LabelObj* L = new LabelObj();
  2389       __ cmp(lir_cond_less, value, low_key);
  2390       __ branch(lir_cond_less, T_INT, L->label());
  2391       __ cmp(lir_cond_lessEqual, value, high_key);
  2392       __ branch(lir_cond_lessEqual, T_INT, dest);
  2393       __ branch_destination(L->label());
  2396   __ jump(default_sux);
  2400 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2401   SwitchRangeList* res = new SwitchRangeList();
  2402   int len = x->length();
  2403   if (len > 0) {
  2404     BlockBegin* sux = x->sux_at(0);
  2405     int key = x->lo_key();
  2406     BlockBegin* default_sux = x->default_sux();
  2407     SwitchRange* range = new SwitchRange(key, sux);
  2408     for (int i = 0; i < len; i++, key++) {
  2409       BlockBegin* new_sux = x->sux_at(i);
  2410       if (sux == new_sux) {
  2411         // still in same range
  2412         range->set_high_key(key);
  2413       } else {
  2414         // skip tests which explicitly dispatch to the default
  2415         if (sux != default_sux) {
  2416           res->append(range);
  2418         range = new SwitchRange(key, new_sux);
  2420       sux = new_sux;
  2422     if (res->length() == 0 || res->last() != range)  res->append(range);
  2424   return res;
  2428 // we expect the keys to be sorted by increasing value
  2429 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2430   SwitchRangeList* res = new SwitchRangeList();
  2431   int len = x->length();
  2432   if (len > 0) {
  2433     BlockBegin* default_sux = x->default_sux();
  2434     int key = x->key_at(0);
  2435     BlockBegin* sux = x->sux_at(0);
  2436     SwitchRange* range = new SwitchRange(key, sux);
  2437     for (int i = 1; i < len; i++) {
  2438       int new_key = x->key_at(i);
  2439       BlockBegin* new_sux = x->sux_at(i);
  2440       if (key+1 == new_key && sux == new_sux) {
  2441         // still in same range
  2442         range->set_high_key(new_key);
  2443       } else {
  2444         // skip tests which explicitly dispatch to the default
  2445         if (range->sux() != default_sux) {
  2446           res->append(range);
  2448         range = new SwitchRange(new_key, new_sux);
  2450       key = new_key;
  2451       sux = new_sux;
  2453     if (res->length() == 0 || res->last() != range)  res->append(range);
  2455   return res;
  2459 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2460   LIRItem tag(x->tag(), this);
  2461   tag.load_item();
  2462   set_no_result(x);
  2464   if (x->is_safepoint()) {
  2465     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2468   // move values into phi locations
  2469   move_to_phi(x->state());
  2471   int lo_key = x->lo_key();
  2472   int hi_key = x->hi_key();
  2473   int len = x->length();
  2474   LIR_Opr value = tag.result();
  2475   if (UseTableRanges) {
  2476     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2477   } else {
  2478     for (int i = 0; i < len; i++) {
  2479       __ cmp(lir_cond_equal, value, i + lo_key);
  2480       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2482     __ jump(x->default_sux());
  2487 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2488   LIRItem tag(x->tag(), this);
  2489   tag.load_item();
  2490   set_no_result(x);
  2492   if (x->is_safepoint()) {
  2493     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2496   // move values into phi locations
  2497   move_to_phi(x->state());
  2499   LIR_Opr value = tag.result();
  2500   if (UseTableRanges) {
  2501     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2502   } else {
  2503     int len = x->length();
  2504     for (int i = 0; i < len; i++) {
  2505       __ cmp(lir_cond_equal, value, x->key_at(i));
  2506       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2508     __ jump(x->default_sux());
  2513 void LIRGenerator::do_Goto(Goto* x) {
  2514   set_no_result(x);
  2516   if (block()->next()->as_OsrEntry()) {
  2517     // need to free up storage used for OSR entry point
  2518     LIR_Opr osrBuffer = block()->next()->operand();
  2519     BasicTypeList signature;
  2520     signature.append(T_INT);
  2521     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2522     __ move(osrBuffer, cc->args()->at(0));
  2523     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2524                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2527   if (x->is_safepoint()) {
  2528     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2530     // increment backedge counter if needed
  2531     CodeEmitInfo* info = state_for(x, state);
  2532     increment_backedge_counter(info, x->profiled_bci());
  2533     CodeEmitInfo* safepoint_info = state_for(x, state);
  2534     __ safepoint(safepoint_poll_register(), safepoint_info);
  2537   // Gotos can be folded Ifs, handle this case.
  2538   if (x->should_profile()) {
  2539     ciMethod* method = x->profiled_method();
  2540     assert(method != NULL, "method should be set if branch is profiled");
  2541     ciMethodData* md = method->method_data_or_null();
  2542     assert(md != NULL, "Sanity");
  2543     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2544     assert(data != NULL, "must have profiling data");
  2545     int offset;
  2546     if (x->direction() == Goto::taken) {
  2547       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2548       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2549     } else if (x->direction() == Goto::not_taken) {
  2550       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2551       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2552     } else {
  2553       assert(data->is_JumpData(), "need JumpData for branches");
  2554       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2556     LIR_Opr md_reg = new_register(T_OBJECT);
  2557     __ oop2reg(md->constant_encoding(), md_reg);
  2559     increment_counter(new LIR_Address(md_reg, offset,
  2560                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2563   // emit phi-instruction move after safepoint since this simplifies
  2564   // describing the state as the safepoint.
  2565   move_to_phi(x->state());
  2567   __ jump(x->default_sux());
  2571 void LIRGenerator::do_Base(Base* x) {
  2572   __ std_entry(LIR_OprFact::illegalOpr);
  2573   // Emit moves from physical registers / stack slots to virtual registers
  2574   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2575   IRScope* irScope = compilation()->hir()->top_scope();
  2576   int java_index = 0;
  2577   for (int i = 0; i < args->length(); i++) {
  2578     LIR_Opr src = args->at(i);
  2579     assert(!src->is_illegal(), "check");
  2580     BasicType t = src->type();
  2582     // Types which are smaller than int are passed as int, so
  2583     // correct the type which passed.
  2584     switch (t) {
  2585     case T_BYTE:
  2586     case T_BOOLEAN:
  2587     case T_SHORT:
  2588     case T_CHAR:
  2589       t = T_INT;
  2590       break;
  2593     LIR_Opr dest = new_register(t);
  2594     __ move(src, dest);
  2596     // Assign new location to Local instruction for this local
  2597     Local* local = x->state()->local_at(java_index)->as_Local();
  2598     assert(local != NULL, "Locals for incoming arguments must have been created");
  2599 #ifndef __SOFTFP__
  2600     // The java calling convention passes double as long and float as int.
  2601     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2602 #endif // __SOFTFP__
  2603     local->set_operand(dest);
  2604     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2605     java_index += type2size[t];
  2608   if (compilation()->env()->dtrace_method_probes()) {
  2609     BasicTypeList signature;
  2610     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2611     signature.append(T_OBJECT); // Method*
  2612     LIR_OprList* args = new LIR_OprList();
  2613     args->append(getThreadPointer());
  2614     LIR_Opr meth = new_register(T_OBJECT);
  2615     __ oop2reg(method()->constant_encoding(), meth);
  2616     args->append(meth);
  2617     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2620   if (method()->is_synchronized()) {
  2621     LIR_Opr obj;
  2622     if (method()->is_static()) {
  2623       obj = new_register(T_OBJECT);
  2624       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2625     } else {
  2626       Local* receiver = x->state()->local_at(0)->as_Local();
  2627       assert(receiver != NULL, "must already exist");
  2628       obj = receiver->operand();
  2630     assert(obj->is_valid(), "must be valid");
  2632     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2633       LIR_Opr lock = new_register(T_INT);
  2634       __ load_stack_address_monitor(0, lock);
  2636       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2637       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2639       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2640       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2644   // increment invocation counters if needed
  2645   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2646     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2647     increment_invocation_counter(info);
  2650   // all blocks with a successor must end with an unconditional jump
  2651   // to the successor even if they are consecutive
  2652   __ jump(x->default_sux());
  2656 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2657   // construct our frame and model the production of incoming pointer
  2658   // to the OSR buffer.
  2659   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2660   LIR_Opr result = rlock_result(x);
  2661   __ move(LIR_Assembler::osrBufferPointer(), result);
  2665 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2666   assert(args->length() == arg_list->length(),
  2667          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  2668   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  2669     LIRItem* param = args->at(i);
  2670     LIR_Opr loc = arg_list->at(i);
  2671     if (loc->is_register()) {
  2672       param->load_item_force(loc);
  2673     } else {
  2674       LIR_Address* addr = loc->as_address_ptr();
  2675       param->load_for_store(addr->type());
  2676       if (addr->type() == T_OBJECT) {
  2677         __ move_wide(param->result(), addr);
  2678       } else
  2679         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2680           __ unaligned_move(param->result(), addr);
  2681         } else {
  2682           __ move(param->result(), addr);
  2687   if (x->has_receiver()) {
  2688     LIRItem* receiver = args->at(0);
  2689     LIR_Opr loc = arg_list->at(0);
  2690     if (loc->is_register()) {
  2691       receiver->load_item_force(loc);
  2692     } else {
  2693       assert(loc->is_address(), "just checking");
  2694       receiver->load_for_store(T_OBJECT);
  2695       __ move_wide(receiver->result(), loc->as_address_ptr());
  2701 // Visits all arguments, returns appropriate items without loading them
  2702 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2703   LIRItemList* argument_items = new LIRItemList();
  2704   if (x->has_receiver()) {
  2705     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2706     argument_items->append(receiver);
  2708   for (int i = 0; i < x->number_of_arguments(); i++) {
  2709     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2710     argument_items->append(param);
  2712   return argument_items;
  2716 // The invoke with receiver has following phases:
  2717 //   a) traverse and load/lock receiver;
  2718 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2719 //   c) push receiver on stack
  2720 //   d) load each of the items and push on stack
  2721 //   e) unlock receiver
  2722 //   f) move receiver into receiver-register %o0
  2723 //   g) lock result registers and emit call operation
  2724 //
  2725 // Before issuing a call, we must spill-save all values on stack
  2726 // that are in caller-save register. "spill-save" moves thos registers
  2727 // either in a free callee-save register or spills them if no free
  2728 // callee save register is available.
  2729 //
  2730 // The problem is where to invoke spill-save.
  2731 // - if invoked between e) and f), we may lock callee save
  2732 //   register in "spill-save" that destroys the receiver register
  2733 //   before f) is executed
  2734 // - if we rearange the f) to be earlier, by loading %o0, it
  2735 //   may destroy a value on the stack that is currently in %o0
  2736 //   and is waiting to be spilled
  2737 // - if we keep the receiver locked while doing spill-save,
  2738 //   we cannot spill it as it is spill-locked
  2739 //
  2740 void LIRGenerator::do_Invoke(Invoke* x) {
  2741   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2743   LIR_OprList* arg_list = cc->args();
  2744   LIRItemList* args = invoke_visit_arguments(x);
  2745   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2747   // setup result register
  2748   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2749   if (x->type() != voidType) {
  2750     result_register = result_register_for(x->type());
  2753   CodeEmitInfo* info = state_for(x, x->state());
  2755   invoke_load_arguments(x, args, arg_list);
  2757   if (x->has_receiver()) {
  2758     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2759     receiver = args->at(0)->result();
  2762   // emit invoke code
  2763   bool optimized = x->target_is_loaded() && x->target_is_final();
  2764   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2766   // JSR 292
  2767   // Preserve the SP over MethodHandle call sites.
  2768   ciMethod* target = x->target();
  2769   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2770                                   target->is_method_handle_intrinsic() ||
  2771                                   target->is_compiled_lambda_form());
  2772   if (is_method_handle_invoke) {
  2773     info->set_is_method_handle_invoke(true);
  2774     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2777   switch (x->code()) {
  2778     case Bytecodes::_invokestatic:
  2779       __ call_static(target, result_register,
  2780                      SharedRuntime::get_resolve_static_call_stub(),
  2781                      arg_list, info);
  2782       break;
  2783     case Bytecodes::_invokespecial:
  2784     case Bytecodes::_invokevirtual:
  2785     case Bytecodes::_invokeinterface:
  2786       // for final target we still produce an inline cache, in order
  2787       // to be able to call mixed mode
  2788       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2789         __ call_opt_virtual(target, receiver, result_register,
  2790                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2791                             arg_list, info);
  2792       } else if (x->vtable_index() < 0) {
  2793         __ call_icvirtual(target, receiver, result_register,
  2794                           SharedRuntime::get_resolve_virtual_call_stub(),
  2795                           arg_list, info);
  2796       } else {
  2797         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2798         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2799         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2801       break;
  2802     case Bytecodes::_invokedynamic: {
  2803       __ call_dynamic(target, receiver, result_register,
  2804                       SharedRuntime::get_resolve_static_call_stub(),
  2805                       arg_list, info);
  2806       break;
  2808     default:
  2809       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2810       break;
  2813   // JSR 292
  2814   // Restore the SP after MethodHandle call sites.
  2815   if (is_method_handle_invoke) {
  2816     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2819   if (x->type()->is_float() || x->type()->is_double()) {
  2820     // Force rounding of results from non-strictfp when in strictfp
  2821     // scope (or when we don't know the strictness of the callee, to
  2822     // be safe.)
  2823     if (method()->is_strict()) {
  2824       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2825         result_register = round_item(result_register);
  2830   if (result_register->is_valid()) {
  2831     LIR_Opr result = rlock_result(x);
  2832     __ move(result_register, result);
  2837 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2838   assert(x->number_of_arguments() == 1, "wrong type");
  2839   LIRItem value       (x->argument_at(0), this);
  2840   LIR_Opr reg = rlock_result(x);
  2841   value.load_item();
  2842   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2843   __ move(tmp, reg);
  2848 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2849 void LIRGenerator::do_IfOp(IfOp* x) {
  2850 #ifdef ASSERT
  2852     ValueTag xtag = x->x()->type()->tag();
  2853     ValueTag ttag = x->tval()->type()->tag();
  2854     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2855     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2856     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2858 #endif
  2860   LIRItem left(x->x(), this);
  2861   LIRItem right(x->y(), this);
  2862   left.load_item();
  2863   if (can_inline_as_constant(right.value())) {
  2864     right.dont_load_item();
  2865   } else {
  2866     right.load_item();
  2869   LIRItem t_val(x->tval(), this);
  2870   LIRItem f_val(x->fval(), this);
  2871   t_val.dont_load_item();
  2872   f_val.dont_load_item();
  2873   LIR_Opr reg = rlock_result(x);
  2875   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2876   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2879 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  2880     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  2881     LIR_Opr reg = result_register_for(x->type());
  2882     __ call_runtime_leaf(routine, getThreadTemp(),
  2883                          reg, new LIR_OprList());
  2884     LIR_Opr result = rlock_result(x);
  2885     __ move(reg, result);
  2888 #ifdef TRACE_HAVE_INTRINSICS
  2889 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  2890     LIR_Opr thread = getThreadPointer();
  2891     LIR_Opr osthread = new_pointer_register();
  2892     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  2893     size_t thread_id_size = OSThread::thread_id_size();
  2894     if (thread_id_size == (size_t) BytesPerLong) {
  2895       LIR_Opr id = new_register(T_LONG);
  2896       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  2897       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  2898     } else if (thread_id_size == (size_t) BytesPerInt) {
  2899       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  2900     } else {
  2901       ShouldNotReachHere();
  2905 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  2906     CodeEmitInfo* info = state_for(x);
  2907     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  2908     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  2909     assert(info != NULL, "must have info");
  2910     LIRItem arg(x->argument_at(1), this);
  2911     arg.load_item();
  2912     LIR_Opr klass = new_pointer_register();
  2913     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  2914     LIR_Opr id = new_register(T_LONG);
  2915     ByteSize offset = TRACE_ID_OFFSET;
  2916     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  2917     __ move(trace_id_addr, id);
  2918     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  2919     __ store(id, trace_id_addr);
  2920     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  2921     __ move(id, rlock_result(x));
  2923 #endif
  2925 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2926   switch (x->id()) {
  2927   case vmIntrinsics::_intBitsToFloat      :
  2928   case vmIntrinsics::_doubleToRawLongBits :
  2929   case vmIntrinsics::_longBitsToDouble    :
  2930   case vmIntrinsics::_floatToRawIntBits   : {
  2931     do_FPIntrinsics(x);
  2932     break;
  2935 #ifdef TRACE_HAVE_INTRINSICS
  2936   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  2937   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  2938   case vmIntrinsics::_counterTime:
  2939     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  2940     break;
  2941 #endif
  2943   case vmIntrinsics::_currentTimeMillis:
  2944     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  2945     break;
  2947   case vmIntrinsics::_nanoTime:
  2948     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  2949     break;
  2951   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2952   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  2953   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2954   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2956   case vmIntrinsics::_dlog:           // fall through
  2957   case vmIntrinsics::_dlog10:         // fall through
  2958   case vmIntrinsics::_dabs:           // fall through
  2959   case vmIntrinsics::_dsqrt:          // fall through
  2960   case vmIntrinsics::_dtan:           // fall through
  2961   case vmIntrinsics::_dsin :          // fall through
  2962   case vmIntrinsics::_dcos :          // fall through
  2963   case vmIntrinsics::_dexp :          // fall through
  2964   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  2965   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2967   // java.nio.Buffer.checkIndex
  2968   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2970   case vmIntrinsics::_compareAndSwapObject:
  2971     do_CompareAndSwap(x, objectType);
  2972     break;
  2973   case vmIntrinsics::_compareAndSwapInt:
  2974     do_CompareAndSwap(x, intType);
  2975     break;
  2976   case vmIntrinsics::_compareAndSwapLong:
  2977     do_CompareAndSwap(x, longType);
  2978     break;
  2980   case vmIntrinsics::_Reference_get:
  2981     do_Reference_get(x);
  2982     break;
  2984   default: ShouldNotReachHere(); break;
  2988 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2989   // Need recv in a temporary register so it interferes with the other temporaries
  2990   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2991   LIR_Opr mdo = new_register(T_OBJECT);
  2992   // tmp is used to hold the counters on SPARC
  2993   LIR_Opr tmp = new_pointer_register();
  2994   if (x->recv() != NULL) {
  2995     LIRItem value(x->recv(), this);
  2996     value.load_item();
  2997     recv = new_register(T_OBJECT);
  2998     __ move(value.result(), recv);
  3000   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3003 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3004   // We can safely ignore accessors here, since c2 will inline them anyway,
  3005   // accessors are also always mature.
  3006   if (!x->inlinee()->is_accessor()) {
  3007     CodeEmitInfo* info = state_for(x, x->state(), true);
  3008     // Notify the runtime very infrequently only to take care of counter overflows
  3009     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3013 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3014   int freq_log;
  3015   int level = compilation()->env()->comp_level();
  3016   if (level == CompLevel_limited_profile) {
  3017     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3018   } else if (level == CompLevel_full_profile) {
  3019     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3020   } else {
  3021     ShouldNotReachHere();
  3023   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3024   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3027 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3028                                                 ciMethod *method, int frequency,
  3029                                                 int bci, bool backedge, bool notify) {
  3030   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3031   int level = _compilation->env()->comp_level();
  3032   assert(level > CompLevel_simple, "Shouldn't be here");
  3034   int offset = -1;
  3035   LIR_Opr counter_holder = new_register(T_OBJECT);
  3036   LIR_Opr meth;
  3037   if (level == CompLevel_limited_profile) {
  3038     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
  3039                                  Method::invocation_counter_offset());
  3040     __ oop2reg(method->constant_encoding(), counter_holder);
  3041     meth = counter_holder;
  3042   } else if (level == CompLevel_full_profile) {
  3043     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3044                                  MethodData::invocation_counter_offset());
  3045     ciMethodData* md = method->method_data_or_null();
  3046     assert(md != NULL, "Sanity");
  3047     __ oop2reg(md->constant_encoding(), counter_holder);
  3048     meth = new_register(T_OBJECT);
  3049     __ oop2reg(method->constant_encoding(), meth);
  3050   } else {
  3051     ShouldNotReachHere();
  3053   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3054   LIR_Opr result = new_register(T_INT);
  3055   __ load(counter, result);
  3056   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3057   __ store(result, counter);
  3058   if (notify) {
  3059     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3060     __ logical_and(result, mask, result);
  3061     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3062     // The bci for info can point to cmp for if's we want the if bci
  3063     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3064     __ branch(lir_cond_equal, T_INT, overflow);
  3065     __ branch_destination(overflow->continuation());
  3069 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3070   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3071   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3073   if (x->pass_thread()) {
  3074     signature->append(T_ADDRESS);
  3075     args->append(getThreadPointer());
  3078   for (int i = 0; i < x->number_of_arguments(); i++) {
  3079     Value a = x->argument_at(i);
  3080     LIRItem* item = new LIRItem(a, this);
  3081     item->load_item();
  3082     args->append(item->result());
  3083     signature->append(as_BasicType(a->type()));
  3086   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3087   if (x->type() == voidType) {
  3088     set_no_result(x);
  3089   } else {
  3090     __ move(result, rlock_result(x));
  3094 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3095   LIRItemList args(1);
  3096   LIRItem value(arg1, this);
  3097   args.append(&value);
  3098   BasicTypeList signature;
  3099   signature.append(as_BasicType(arg1->type()));
  3101   return call_runtime(&signature, &args, entry, result_type, info);
  3105 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3106   LIRItemList args(2);
  3107   LIRItem value1(arg1, this);
  3108   LIRItem value2(arg2, this);
  3109   args.append(&value1);
  3110   args.append(&value2);
  3111   BasicTypeList signature;
  3112   signature.append(as_BasicType(arg1->type()));
  3113   signature.append(as_BasicType(arg2->type()));
  3115   return call_runtime(&signature, &args, entry, result_type, info);
  3119 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3120                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3121   // get a result register
  3122   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3123   LIR_Opr result = LIR_OprFact::illegalOpr;
  3124   if (result_type->tag() != voidTag) {
  3125     result = new_register(result_type);
  3126     phys_reg = result_register_for(result_type);
  3129   // move the arguments into the correct location
  3130   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3131   assert(cc->length() == args->length(), "argument mismatch");
  3132   for (int i = 0; i < args->length(); i++) {
  3133     LIR_Opr arg = args->at(i);
  3134     LIR_Opr loc = cc->at(i);
  3135     if (loc->is_register()) {
  3136       __ move(arg, loc);
  3137     } else {
  3138       LIR_Address* addr = loc->as_address_ptr();
  3139 //           if (!can_store_as_constant(arg)) {
  3140 //             LIR_Opr tmp = new_register(arg->type());
  3141 //             __ move(arg, tmp);
  3142 //             arg = tmp;
  3143 //           }
  3144       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3145         __ unaligned_move(arg, addr);
  3146       } else {
  3147         __ move(arg, addr);
  3152   if (info) {
  3153     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3154   } else {
  3155     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3157   if (result->is_valid()) {
  3158     __ move(phys_reg, result);
  3160   return result;
  3164 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3165                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3166   // get a result register
  3167   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3168   LIR_Opr result = LIR_OprFact::illegalOpr;
  3169   if (result_type->tag() != voidTag) {
  3170     result = new_register(result_type);
  3171     phys_reg = result_register_for(result_type);
  3174   // move the arguments into the correct location
  3175   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3177   assert(cc->length() == args->length(), "argument mismatch");
  3178   for (int i = 0; i < args->length(); i++) {
  3179     LIRItem* arg = args->at(i);
  3180     LIR_Opr loc = cc->at(i);
  3181     if (loc->is_register()) {
  3182       arg->load_item_force(loc);
  3183     } else {
  3184       LIR_Address* addr = loc->as_address_ptr();
  3185       arg->load_for_store(addr->type());
  3186       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3187         __ unaligned_move(arg->result(), addr);
  3188       } else {
  3189         __ move(arg->result(), addr);
  3194   if (info) {
  3195     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3196   } else {
  3197     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3199   if (result->is_valid()) {
  3200     __ move(phys_reg, result);
  3202   return result;
  3205 void LIRGenerator::do_MemBar(MemBar* x) {
  3206   if (os::is_MP()) {
  3207     LIR_Code code = x->code();
  3208     switch(code) {
  3209       case lir_membar_acquire   : __ membar_acquire(); break;
  3210       case lir_membar_release   : __ membar_release(); break;
  3211       case lir_membar           : __ membar(); break;
  3212       case lir_membar_loadload  : __ membar_loadload(); break;
  3213       case lir_membar_storestore: __ membar_storestore(); break;
  3214       case lir_membar_loadstore : __ membar_loadstore(); break;
  3215       case lir_membar_storeload : __ membar_storeload(); break;
  3216       default                   : ShouldNotReachHere(); break;

mercurial