src/cpu/x86/vm/c1_Runtime1_x86.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3607
bf7796b7367a
child 4542
db9981fd3124
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Defs.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "nativeInst_x86.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/jvmtiExport.hpp"
    35 #include "register_x86.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/signature.hpp"
    38 #include "runtime/vframeArray.hpp"
    39 #include "vmreg_x86.inline.hpp"
    42 // Implementation of StubAssembler
    44 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
    45   // setup registers
    46   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    47   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
    48   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
    49   assert(args_size >= 0, "illegal args_size");
    50   bool align_stack = false;
    51 #ifdef _LP64
    52   // At a method handle call, the stack may not be properly aligned
    53   // when returning with an exception.
    54   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
    55 #endif
    57 #ifdef _LP64
    58   mov(c_rarg0, thread);
    59   set_num_rt_args(0); // Nothing on stack
    60 #else
    61   set_num_rt_args(1 + args_size);
    63   // push java thread (becomes first argument of C function)
    64   get_thread(thread);
    65   push(thread);
    66 #endif // _LP64
    68   int call_offset;
    69   if (!align_stack) {
    70     set_last_Java_frame(thread, noreg, rbp, NULL);
    71   } else {
    72     address the_pc = pc();
    73     call_offset = offset();
    74     set_last_Java_frame(thread, noreg, rbp, the_pc);
    75     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
    76   }
    78   // do the call
    79   call(RuntimeAddress(entry));
    80   if (!align_stack) {
    81     call_offset = offset();
    82   }
    83   // verify callee-saved register
    84 #ifdef ASSERT
    85   guarantee(thread != rax, "change this code");
    86   push(rax);
    87   { Label L;
    88     get_thread(rax);
    89     cmpptr(thread, rax);
    90     jcc(Assembler::equal, L);
    91     int3();
    92     stop("StubAssembler::call_RT: rdi not callee saved?");
    93     bind(L);
    94   }
    95   pop(rax);
    96 #endif
    97   reset_last_Java_frame(thread, true, align_stack);
    99   // discard thread and arguments
   100   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
   102   // check for pending exceptions
   103   { Label L;
   104     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   105     jcc(Assembler::equal, L);
   106     // exception pending => remove activation and forward to exception handler
   107     movptr(rax, Address(thread, Thread::pending_exception_offset()));
   108     // make sure that the vm_results are cleared
   109     if (oop_result1->is_valid()) {
   110       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   111     }
   112     if (metadata_result->is_valid()) {
   113       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   114     }
   115     if (frame_size() == no_frame_size) {
   116       leave();
   117       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
   118     } else if (_stub_id == Runtime1::forward_exception_id) {
   119       should_not_reach_here();
   120     } else {
   121       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   122     }
   123     bind(L);
   124   }
   125   // get oop results if there are any and reset the values in the thread
   126   if (oop_result1->is_valid()) {
   127     get_vm_result(oop_result1, thread);
   128   }
   129   if (metadata_result->is_valid()) {
   130     get_vm_result_2(metadata_result, thread);
   131   }
   132   return call_offset;
   133 }
   136 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
   137 #ifdef _LP64
   138   mov(c_rarg1, arg1);
   139 #else
   140   push(arg1);
   141 #endif // _LP64
   142   return call_RT(oop_result1, metadata_result, entry, 1);
   143 }
   146 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
   147 #ifdef _LP64
   148   if (c_rarg1 == arg2) {
   149     if (c_rarg2 == arg1) {
   150       xchgq(arg1, arg2);
   151     } else {
   152       mov(c_rarg2, arg2);
   153       mov(c_rarg1, arg1);
   154     }
   155   } else {
   156     mov(c_rarg1, arg1);
   157     mov(c_rarg2, arg2);
   158   }
   159 #else
   160   push(arg2);
   161   push(arg1);
   162 #endif // _LP64
   163   return call_RT(oop_result1, metadata_result, entry, 2);
   164 }
   167 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
   168 #ifdef _LP64
   169   // if there is any conflict use the stack
   170   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   171       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   172       arg3 == c_rarg1 || arg1 == c_rarg2) {
   173     push(arg3);
   174     push(arg2);
   175     push(arg1);
   176     pop(c_rarg1);
   177     pop(c_rarg2);
   178     pop(c_rarg3);
   179   } else {
   180     mov(c_rarg1, arg1);
   181     mov(c_rarg2, arg2);
   182     mov(c_rarg3, arg3);
   183   }
   184 #else
   185   push(arg3);
   186   push(arg2);
   187   push(arg1);
   188 #endif // _LP64
   189   return call_RT(oop_result1, metadata_result, entry, 3);
   190 }
   193 // Implementation of StubFrame
   195 class StubFrame: public StackObj {
   196  private:
   197   StubAssembler* _sasm;
   199  public:
   200   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   201   void load_argument(int offset_in_words, Register reg);
   203   ~StubFrame();
   204 };
   207 #define __ _sasm->
   209 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   210   _sasm = sasm;
   211   __ set_info(name, must_gc_arguments);
   212   __ enter();
   213 }
   215 // load parameters that were stored with LIR_Assembler::store_parameter
   216 // Note: offsets for store_parameter and load_argument must match
   217 void StubFrame::load_argument(int offset_in_words, Register reg) {
   218   // rbp, + 0: link
   219   //     + 1: return address
   220   //     + 2: argument with offset 0
   221   //     + 3: argument with offset 1
   222   //     + 4: ...
   224   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   225 }
   228 StubFrame::~StubFrame() {
   229   __ leave();
   230   __ ret(0);
   231 }
   233 #undef __
   236 // Implementation of Runtime1
   238 #define __ sasm->
   240 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   241 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   243 // Stack layout for saving/restoring  all the registers needed during a runtime
   244 // call (this includes deoptimization)
   245 // Note: note that users of this frame may well have arguments to some runtime
   246 // while these values are on the stack. These positions neglect those arguments
   247 // but the code in save_live_registers will take the argument count into
   248 // account.
   249 //
   250 #ifdef _LP64
   251   #define SLOT2(x) x,
   252   #define SLOT_PER_WORD 2
   253 #else
   254   #define SLOT2(x)
   255   #define SLOT_PER_WORD 1
   256 #endif // _LP64
   258 enum reg_save_layout {
   259   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   260   // happen and will assert if the stack size we create is misaligned
   261 #ifdef _LP64
   262   align_dummy_0, align_dummy_1,
   263 #endif // _LP64
   264 #ifdef _WIN64
   265   // Windows always allocates space for it's argument registers (see
   266   // frame::arg_reg_save_area_bytes).
   267   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
   268   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
   269   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
   270   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
   271 #endif // _WIN64
   272   xmm_regs_as_doubles_off,                                                                  // 32
   273   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   274   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   275   // fpu_state_end_off is exclusive
   276   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   277   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   278   extra_space_offset,                                                                       // 360
   279 #ifdef _LP64
   280   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   281   r14_off, r14H_off,                                                                        // 368, 372
   282   r13_off, r13H_off,                                                                        // 376, 380
   283   r12_off, r12H_off,                                                                        // 384, 388
   284   r11_off, r11H_off,                                                                        // 392, 396
   285   r10_off, r10H_off,                                                                        // 400, 404
   286   r9_off, r9H_off,                                                                          // 408, 412
   287   r8_off, r8H_off,                                                                          // 416, 420
   288   rdi_off, rdiH_off,                                                                        // 424, 428
   289 #else
   290   rdi_off = extra_space_offset,
   291 #endif // _LP64
   292   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   293   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   294   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   295   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   296   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   297   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   298   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   299   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   300   return_off, SLOT2(returnH_off)                                                            // 496, 500
   301   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
   302 };
   306 // Save off registers which might be killed by calls into the runtime.
   307 // Tries to smart of about FP registers.  In particular we separate
   308 // saving and describing the FPU registers for deoptimization since we
   309 // have to save the FPU registers twice if we describe them and on P4
   310 // saving FPU registers which don't contain anything appears
   311 // expensive.  The deopt blob is the only thing which needs to
   312 // describe FPU registers.  In all other cases it should be sufficient
   313 // to simply save their current value.
   315 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   316                                 bool save_fpu_registers = true) {
   318   // In 64bit all the args are in regs so there are no additional stack slots
   319   LP64_ONLY(num_rt_args = 0);
   320   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   321   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   322   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   324   // record saved value locations in an OopMap
   325   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   326   OopMap* map = new OopMap(frame_size_in_slots, 0);
   327   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   328   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   329   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   330   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   331   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   332   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   333 #ifdef _LP64
   334   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   335   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   336   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   337   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   338   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   339   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   343   // This is stupid but needed.
   344   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   345   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   346   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   347   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   348   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   349   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   351   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   352   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   353   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   354   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   355   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   356   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   357   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   358   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   359 #endif // _LP64
   361   if (save_fpu_registers) {
   362     if (UseSSE < 2) {
   363       int fpu_off = float_regs_as_doubles_off;
   364       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   365         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   366         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   367         // %%% This is really a waste but we'll keep things as they were for now
   368         if (true) {
   369           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   370         }
   371         fpu_off += 2;
   372       }
   373       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   374     }
   376     if (UseSSE >= 2) {
   377       int xmm_off = xmm_regs_as_doubles_off;
   378       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   379         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   380         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   381         // %%% This is really a waste but we'll keep things as they were for now
   382         if (true) {
   383           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   384         }
   385         xmm_off += 2;
   386       }
   387       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   389     } else if (UseSSE == 1) {
   390       int xmm_off = xmm_regs_as_doubles_off;
   391       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   392         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   393         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   394         xmm_off += 2;
   395       }
   396       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   397     }
   398   }
   400   return map;
   401 }
   403 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   404                                    bool save_fpu_registers = true) {
   405   __ block_comment("save_live_registers");
   407   __ pusha();         // integer registers
   409   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   410   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   412   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   414 #ifdef ASSERT
   415   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   416 #endif
   418   if (save_fpu_registers) {
   419     if (UseSSE < 2) {
   420       // save FPU stack
   421       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   422       __ fwait();
   424 #ifdef ASSERT
   425       Label ok;
   426       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   427       __ jccb(Assembler::equal, ok);
   428       __ stop("corrupted control word detected");
   429       __ bind(ok);
   430 #endif
   432       // Reset the control word to guard against exceptions being unmasked
   433       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   434       // into the on stack copy and then reload that to make sure that the
   435       // current and future values are correct.
   436       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   437       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   439       // Save the FPU registers in de-opt-able form
   440       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   441       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   442       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   443       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   444       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   445       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   446       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   447       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   448     }
   450     if (UseSSE >= 2) {
   451       // save XMM registers
   452       // XMM registers can contain float or double values, but this is not known here,
   453       // so always save them as doubles.
   454       // note that float values are _not_ converted automatically, so for float values
   455       // the second word contains only garbage data.
   456       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   458       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   464 #ifdef _LP64
   465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   467       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   468       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   469       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   470       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   471       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   473 #endif // _LP64
   474     } else if (UseSSE == 1) {
   475       // save XMM registers as float because double not supported without SSE2
   476       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   477       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   478       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   479       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   480       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   481       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   482       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   483       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   484     }
   485   }
   487   // FPU stack must be empty now
   488   __ verify_FPU(0, "save_live_registers");
   490   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   491 }
   494 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   495   if (restore_fpu_registers) {
   496     if (UseSSE >= 2) {
   497       // restore XMM registers
   498       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   499       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   500       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   501       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   502       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   503       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   504       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   505       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   506 #ifdef _LP64
   507       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   508       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   509       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   510       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   511       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   512       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   513       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   514       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   515 #endif // _LP64
   516     } else if (UseSSE == 1) {
   517       // restore XMM registers
   518       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   519       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   520       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   521       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   522       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   523       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   524       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   525       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   526     }
   528     if (UseSSE < 2) {
   529       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   530     } else {
   531       // check that FPU stack is really empty
   532       __ verify_FPU(0, "restore_live_registers");
   533     }
   535   } else {
   536     // check that FPU stack is really empty
   537     __ verify_FPU(0, "restore_live_registers");
   538   }
   540 #ifdef ASSERT
   541   {
   542     Label ok;
   543     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   544     __ jcc(Assembler::equal, ok);
   545     __ stop("bad offsets in frame");
   546     __ bind(ok);
   547   }
   548 #endif // ASSERT
   550   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   551 }
   554 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   555   __ block_comment("restore_live_registers");
   557   restore_fpu(sasm, restore_fpu_registers);
   558   __ popa();
   559 }
   562 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   563   __ block_comment("restore_live_registers_except_rax");
   565   restore_fpu(sasm, restore_fpu_registers);
   567 #ifdef _LP64
   568   __ movptr(r15, Address(rsp, 0));
   569   __ movptr(r14, Address(rsp, wordSize));
   570   __ movptr(r13, Address(rsp, 2 * wordSize));
   571   __ movptr(r12, Address(rsp, 3 * wordSize));
   572   __ movptr(r11, Address(rsp, 4 * wordSize));
   573   __ movptr(r10, Address(rsp, 5 * wordSize));
   574   __ movptr(r9,  Address(rsp, 6 * wordSize));
   575   __ movptr(r8,  Address(rsp, 7 * wordSize));
   576   __ movptr(rdi, Address(rsp, 8 * wordSize));
   577   __ movptr(rsi, Address(rsp, 9 * wordSize));
   578   __ movptr(rbp, Address(rsp, 10 * wordSize));
   579   // skip rsp
   580   __ movptr(rbx, Address(rsp, 12 * wordSize));
   581   __ movptr(rdx, Address(rsp, 13 * wordSize));
   582   __ movptr(rcx, Address(rsp, 14 * wordSize));
   584   __ addptr(rsp, 16 * wordSize);
   585 #else
   587   __ pop(rdi);
   588   __ pop(rsi);
   589   __ pop(rbp);
   590   __ pop(rbx); // skip this value
   591   __ pop(rbx);
   592   __ pop(rdx);
   593   __ pop(rcx);
   594   __ addptr(rsp, BytesPerWord);
   595 #endif // _LP64
   596 }
   599 void Runtime1::initialize_pd() {
   600   // nothing to do
   601 }
   604 // target: the entry point of the method that creates and posts the exception oop
   605 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   607 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   608   // preserve all registers
   609   int num_rt_args = has_argument ? 2 : 1;
   610   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   612   // now all registers are saved and can be used freely
   613   // verify that no old value is used accidentally
   614   __ invalidate_registers(true, true, true, true, true, true);
   616   // registers used by this stub
   617   const Register temp_reg = rbx;
   619   // load argument for exception that is passed as an argument into the stub
   620   if (has_argument) {
   621 #ifdef _LP64
   622     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   623 #else
   624     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   625     __ push(temp_reg);
   626 #endif // _LP64
   627   }
   628   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   630   OopMapSet* oop_maps = new OopMapSet();
   631   oop_maps->add_gc_map(call_offset, oop_map);
   633   __ stop("should not reach here");
   635   return oop_maps;
   636 }
   639 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
   640   __ block_comment("generate_handle_exception");
   642   // incoming parameters
   643   const Register exception_oop = rax;
   644   const Register exception_pc  = rdx;
   645   // other registers used in this stub
   646   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   648   // Save registers, if required.
   649   OopMapSet* oop_maps = new OopMapSet();
   650   OopMap* oop_map = NULL;
   651   switch (id) {
   652   case forward_exception_id:
   653     // We're handling an exception in the context of a compiled frame.
   654     // The registers have been saved in the standard places.  Perform
   655     // an exception lookup in the caller and dispatch to the handler
   656     // if found.  Otherwise unwind and dispatch to the callers
   657     // exception handler.
   658     oop_map = generate_oop_map(sasm, 1 /*thread*/);
   660     // load and clear pending exception oop into RAX
   661     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   662     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   664     // load issuing PC (the return address for this stub) into rdx
   665     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   667     // make sure that the vm_results are cleared (may be unnecessary)
   668     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
   669     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   670     break;
   671   case handle_exception_nofpu_id:
   672   case handle_exception_id:
   673     // At this point all registers MAY be live.
   674     oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
   675     break;
   676   case handle_exception_from_callee_id: {
   677     // At this point all registers except exception oop (RAX) and
   678     // exception pc (RDX) are dead.
   679     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
   680     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
   681     sasm->set_frame_size(frame_size);
   682     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
   683     break;
   684   }
   685   default:  ShouldNotReachHere();
   686   }
   688 #ifdef TIERED
   689   // C2 can leave the fpu stack dirty
   690   if (UseSSE < 2) {
   691     __ empty_FPU_stack();
   692   }
   693 #endif // TIERED
   695   // verify that only rax, and rdx is valid at this time
   696   __ invalidate_registers(false, true, true, false, true, true);
   697   // verify that rax, contains a valid exception
   698   __ verify_not_null_oop(exception_oop);
   700   // load address of JavaThread object for thread-local data
   701   NOT_LP64(__ get_thread(thread);)
   703 #ifdef ASSERT
   704   // check that fields in JavaThread for exception oop and issuing pc are
   705   // empty before writing to them
   706   Label oop_empty;
   707   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   708   __ jcc(Assembler::equal, oop_empty);
   709   __ stop("exception oop already set");
   710   __ bind(oop_empty);
   712   Label pc_empty;
   713   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   714   __ jcc(Assembler::equal, pc_empty);
   715   __ stop("exception pc already set");
   716   __ bind(pc_empty);
   717 #endif
   719   // save exception oop and issuing pc into JavaThread
   720   // (exception handler will load it from here)
   721   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   722   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
   724   // patch throwing pc into return address (has bci & oop map)
   725   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   727   // compute the exception handler.
   728   // the exception oop and the throwing pc are read from the fields in JavaThread
   729   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   730   oop_maps->add_gc_map(call_offset, oop_map);
   732   // rax: handler address
   733   //      will be the deopt blob if nmethod was deoptimized while we looked up
   734   //      handler regardless of whether handler existed in the nmethod.
   736   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   737   __ invalidate_registers(false, true, true, true, true, true);
   739   // patch the return address, this stub will directly return to the exception handler
   740   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   742   switch (id) {
   743   case forward_exception_id:
   744   case handle_exception_nofpu_id:
   745   case handle_exception_id:
   746     // Restore the registers that were saved at the beginning.
   747     restore_live_registers(sasm, id == handle_exception_nofpu_id);
   748     break;
   749   case handle_exception_from_callee_id:
   750     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
   751     // since we do a leave anyway.
   753     // Pop the return address since we are possibly changing SP (restoring from BP).
   754     __ leave();
   755     __ pop(rcx);
   757     // Restore SP from BP if the exception PC is a method handle call site.
   758     NOT_LP64(__ get_thread(thread);)
   759     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   760     __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   761     __ jmp(rcx);  // jump to exception handler
   762     break;
   763   default:  ShouldNotReachHere();
   764   }
   766   return oop_maps;
   767 }
   770 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   771   // incoming parameters
   772   const Register exception_oop = rax;
   773   // callee-saved copy of exception_oop during runtime call
   774   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
   775   // other registers used in this stub
   776   const Register exception_pc = rdx;
   777   const Register handler_addr = rbx;
   778   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   780   // verify that only rax, is valid at this time
   781   __ invalidate_registers(false, true, true, true, true, true);
   783 #ifdef ASSERT
   784   // check that fields in JavaThread for exception oop and issuing pc are empty
   785   NOT_LP64(__ get_thread(thread);)
   786   Label oop_empty;
   787   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   788   __ jcc(Assembler::equal, oop_empty);
   789   __ stop("exception oop must be empty");
   790   __ bind(oop_empty);
   792   Label pc_empty;
   793   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   794   __ jcc(Assembler::equal, pc_empty);
   795   __ stop("exception pc must be empty");
   796   __ bind(pc_empty);
   797 #endif
   799   // clear the FPU stack in case any FPU results are left behind
   800   __ empty_FPU_stack();
   802   // save exception_oop in callee-saved register to preserve it during runtime calls
   803   __ verify_not_null_oop(exception_oop);
   804   __ movptr(exception_oop_callee_saved, exception_oop);
   806   NOT_LP64(__ get_thread(thread);)
   807   // Get return address (is on top of stack after leave).
   808   __ movptr(exception_pc, Address(rsp, 0));
   810   // search the exception handler address of the caller (using the return address)
   811   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   812   // rax: exception handler address of the caller
   814   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
   815   __ invalidate_registers(false, true, true, true, false, true);
   817   // move result of call into correct register
   818   __ movptr(handler_addr, rax);
   820   // Restore exception oop to RAX (required convention of exception handler).
   821   __ movptr(exception_oop, exception_oop_callee_saved);
   823   // verify that there is really a valid exception in rax
   824   __ verify_not_null_oop(exception_oop);
   826   // get throwing pc (= return address).
   827   // rdx has been destroyed by the call, so it must be set again
   828   // the pop is also necessary to simulate the effect of a ret(0)
   829   __ pop(exception_pc);
   831   // Restore SP from BP if the exception PC is a method handle call site.
   832   NOT_LP64(__ get_thread(thread);)
   833   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   834   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   836   // continue at exception handler (return address removed)
   837   // note: do *not* remove arguments when unwinding the
   838   //       activation since the caller assumes having
   839   //       all arguments on the stack when entering the
   840   //       runtime to determine the exception handler
   841   //       (GC happens at call site with arguments!)
   842   // rax: exception oop
   843   // rdx: throwing pc
   844   // rbx: exception handler
   845   __ jmp(handler_addr);
   846 }
   849 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   850   // use the maximum number of runtime-arguments here because it is difficult to
   851   // distinguish each RT-Call.
   852   // Note: This number affects also the RT-Call in generate_handle_exception because
   853   //       the oop-map is shared for all calls.
   854   const int num_rt_args = 2;  // thread + dummy
   856   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   857   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   859   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   861 #ifdef _LP64
   862   const Register thread = r15_thread;
   863   // No need to worry about dummy
   864   __ mov(c_rarg0, thread);
   865 #else
   866   __ push(rax); // push dummy
   868   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   869   // push java thread (becomes first argument of C function)
   870   __ get_thread(thread);
   871   __ push(thread);
   872 #endif // _LP64
   873   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   874   // do the call
   875   __ call(RuntimeAddress(target));
   876   OopMapSet* oop_maps = new OopMapSet();
   877   oop_maps->add_gc_map(__ offset(), oop_map);
   878   // verify callee-saved register
   879 #ifdef ASSERT
   880   guarantee(thread != rax, "change this code");
   881   __ push(rax);
   882   { Label L;
   883     __ get_thread(rax);
   884     __ cmpptr(thread, rax);
   885     __ jcc(Assembler::equal, L);
   886     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   887     __ bind(L);
   888   }
   889   __ pop(rax);
   890 #endif
   891   __ reset_last_Java_frame(thread, true, false);
   892 #ifndef _LP64
   893   __ pop(rcx); // discard thread arg
   894   __ pop(rcx); // discard dummy
   895 #endif // _LP64
   897   // check for pending exceptions
   898   { Label L;
   899     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   900     __ jcc(Assembler::equal, L);
   901     // exception pending => remove activation and forward to exception handler
   903     __ testptr(rax, rax);                                   // have we deoptimized?
   904     __ jump_cc(Assembler::equal,
   905                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   907     // the deopt blob expects exceptions in the special fields of
   908     // JavaThread, so copy and clear pending exception.
   910     // load and clear pending exception
   911     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   912     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   914     // check that there is really a valid exception
   915     __ verify_not_null_oop(rax);
   917     // load throwing pc: this is the return address of the stub
   918     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   920 #ifdef ASSERT
   921     // check that fields in JavaThread for exception oop and issuing pc are empty
   922     Label oop_empty;
   923     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   924     __ jcc(Assembler::equal, oop_empty);
   925     __ stop("exception oop must be empty");
   926     __ bind(oop_empty);
   928     Label pc_empty;
   929     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   930     __ jcc(Assembler::equal, pc_empty);
   931     __ stop("exception pc must be empty");
   932     __ bind(pc_empty);
   933 #endif
   935     // store exception oop and throwing pc to JavaThread
   936     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   937     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   939     restore_live_registers(sasm);
   941     __ leave();
   942     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   944     // Forward the exception directly to deopt blob. We can blow no
   945     // registers and must leave throwing pc on the stack.  A patch may
   946     // have values live in registers so the entry point with the
   947     // exception in tls.
   948     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   950     __ bind(L);
   951   }
   954   // Runtime will return true if the nmethod has been deoptimized during
   955   // the patching process. In that case we must do a deopt reexecute instead.
   957   Label reexecuteEntry, cont;
   959   __ testptr(rax, rax);                                 // have we deoptimized?
   960   __ jcc(Assembler::equal, cont);                       // no
   962   // Will reexecute. Proper return address is already on the stack we just restore
   963   // registers, pop all of our frame but the return address and jump to the deopt blob
   964   restore_live_registers(sasm);
   965   __ leave();
   966   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   968   __ bind(cont);
   969   restore_live_registers(sasm);
   970   __ leave();
   971   __ ret(0);
   973   return oop_maps;
   974 }
   977 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   979   // for better readability
   980   const bool must_gc_arguments = true;
   981   const bool dont_gc_arguments = false;
   983   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   984   bool save_fpu_registers = true;
   986   // stub code & info for the different stubs
   987   OopMapSet* oop_maps = NULL;
   988   switch (id) {
   989     case forward_exception_id:
   990       {
   991         oop_maps = generate_handle_exception(id, sasm);
   992         __ leave();
   993         __ ret(0);
   994       }
   995       break;
   997     case new_instance_id:
   998     case fast_new_instance_id:
   999     case fast_new_instance_init_check_id:
  1001         Register klass = rdx; // Incoming
  1002         Register obj   = rax; // Result
  1004         if (id == new_instance_id) {
  1005           __ set_info("new_instance", dont_gc_arguments);
  1006         } else if (id == fast_new_instance_id) {
  1007           __ set_info("fast new_instance", dont_gc_arguments);
  1008         } else {
  1009           assert(id == fast_new_instance_init_check_id, "bad StubID");
  1010           __ set_info("fast new_instance init check", dont_gc_arguments);
  1013         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
  1014             UseTLAB && FastTLABRefill) {
  1015           Label slow_path;
  1016           Register obj_size = rcx;
  1017           Register t1       = rbx;
  1018           Register t2       = rsi;
  1019           assert_different_registers(klass, obj, obj_size, t1, t2);
  1021           __ push(rdi);
  1022           __ push(rbx);
  1024           if (id == fast_new_instance_init_check_id) {
  1025             // make sure the klass is initialized
  1026             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  1027             __ jcc(Assembler::notEqual, slow_path);
  1030 #ifdef ASSERT
  1031           // assert object can be fast path allocated
  1033             Label ok, not_ok;
  1034             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1035             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1036             __ jcc(Assembler::lessEqual, not_ok);
  1037             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1038             __ jcc(Assembler::zero, ok);
  1039             __ bind(not_ok);
  1040             __ stop("assert(can be fast path allocated)");
  1041             __ should_not_reach_here();
  1042             __ bind(ok);
  1044 #endif // ASSERT
  1046           // if we got here then the TLAB allocation failed, so try
  1047           // refilling the TLAB or allocating directly from eden.
  1048           Label retry_tlab, try_eden;
  1049           const Register thread =
  1050             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
  1052           __ bind(retry_tlab);
  1054           // get the instance size (size is postive so movl is fine for 64bit)
  1055           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1057           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1059           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1060           __ verify_oop(obj);
  1061           __ pop(rbx);
  1062           __ pop(rdi);
  1063           __ ret(0);
  1065           __ bind(try_eden);
  1066           // get the instance size (size is postive so movl is fine for 64bit)
  1067           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
  1069           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1070           __ incr_allocated_bytes(thread, obj_size, 0);
  1072           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1073           __ verify_oop(obj);
  1074           __ pop(rbx);
  1075           __ pop(rdi);
  1076           __ ret(0);
  1078           __ bind(slow_path);
  1079           __ pop(rbx);
  1080           __ pop(rdi);
  1083         __ enter();
  1084         OopMap* map = save_live_registers(sasm, 2);
  1085         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1086         oop_maps = new OopMapSet();
  1087         oop_maps->add_gc_map(call_offset, map);
  1088         restore_live_registers_except_rax(sasm);
  1089         __ verify_oop(obj);
  1090         __ leave();
  1091         __ ret(0);
  1093         // rax,: new instance
  1096       break;
  1098     case counter_overflow_id:
  1100         Register bci = rax, method = rbx;
  1101         __ enter();
  1102         OopMap* map = save_live_registers(sasm, 3);
  1103         // Retrieve bci
  1104         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1105         // And a pointer to the Method*
  1106         __ movptr(method, Address(rbp, 3*BytesPerWord));
  1107         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
  1108         oop_maps = new OopMapSet();
  1109         oop_maps->add_gc_map(call_offset, map);
  1110         restore_live_registers(sasm);
  1111         __ leave();
  1112         __ ret(0);
  1114       break;
  1116     case new_type_array_id:
  1117     case new_object_array_id:
  1119         Register length   = rbx; // Incoming
  1120         Register klass    = rdx; // Incoming
  1121         Register obj      = rax; // Result
  1123         if (id == new_type_array_id) {
  1124           __ set_info("new_type_array", dont_gc_arguments);
  1125         } else {
  1126           __ set_info("new_object_array", dont_gc_arguments);
  1129 #ifdef ASSERT
  1130         // assert object type is really an array of the proper kind
  1132           Label ok;
  1133           Register t0 = obj;
  1134           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
  1135           __ sarl(t0, Klass::_lh_array_tag_shift);
  1136           int tag = ((id == new_type_array_id)
  1137                      ? Klass::_lh_array_tag_type_value
  1138                      : Klass::_lh_array_tag_obj_value);
  1139           __ cmpl(t0, tag);
  1140           __ jcc(Assembler::equal, ok);
  1141           __ stop("assert(is an array klass)");
  1142           __ should_not_reach_here();
  1143           __ bind(ok);
  1145 #endif // ASSERT
  1147         if (UseTLAB && FastTLABRefill) {
  1148           Register arr_size = rsi;
  1149           Register t1       = rcx;  // must be rcx for use as shift count
  1150           Register t2       = rdi;
  1151           Label slow_path;
  1152           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1154           // check that array length is small enough for fast path.
  1155           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1156           __ jcc(Assembler::above, slow_path);
  1158           // if we got here then the TLAB allocation failed, so try
  1159           // refilling the TLAB or allocating directly from eden.
  1160           Label retry_tlab, try_eden;
  1161           const Register thread =
  1162             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
  1164           __ bind(retry_tlab);
  1166           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1167           // since size is positive movl does right thing on 64bit
  1168           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
  1169           // since size is postive movl does right thing on 64bit
  1170           __ movl(arr_size, length);
  1171           assert(t1 == rcx, "fixed register usage");
  1172           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1173           __ shrptr(t1, Klass::_lh_header_size_shift);
  1174           __ andptr(t1, Klass::_lh_header_size_mask);
  1175           __ addptr(arr_size, t1);
  1176           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1177           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1179           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1181           __ initialize_header(obj, klass, length, t1, t2);
  1182           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
  1183           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1184           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1185           __ andptr(t1, Klass::_lh_header_size_mask);
  1186           __ subptr(arr_size, t1);  // body length
  1187           __ addptr(t1, obj);       // body start
  1188           __ initialize_body(t1, arr_size, 0, t2);
  1189           __ verify_oop(obj);
  1190           __ ret(0);
  1192           __ bind(try_eden);
  1193           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1194           // since size is positive movl does right thing on 64bit
  1195           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
  1196           // since size is postive movl does right thing on 64bit
  1197           __ movl(arr_size, length);
  1198           assert(t1 == rcx, "fixed register usage");
  1199           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1200           __ shrptr(t1, Klass::_lh_header_size_shift);
  1201           __ andptr(t1, Klass::_lh_header_size_mask);
  1202           __ addptr(arr_size, t1);
  1203           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1204           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1206           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1207           __ incr_allocated_bytes(thread, arr_size, 0);
  1209           __ initialize_header(obj, klass, length, t1, t2);
  1210           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
  1211           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1212           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1213           __ andptr(t1, Klass::_lh_header_size_mask);
  1214           __ subptr(arr_size, t1);  // body length
  1215           __ addptr(t1, obj);       // body start
  1216           __ initialize_body(t1, arr_size, 0, t2);
  1217           __ verify_oop(obj);
  1218           __ ret(0);
  1220           __ bind(slow_path);
  1223         __ enter();
  1224         OopMap* map = save_live_registers(sasm, 3);
  1225         int call_offset;
  1226         if (id == new_type_array_id) {
  1227           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1228         } else {
  1229           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1232         oop_maps = new OopMapSet();
  1233         oop_maps->add_gc_map(call_offset, map);
  1234         restore_live_registers_except_rax(sasm);
  1236         __ verify_oop(obj);
  1237         __ leave();
  1238         __ ret(0);
  1240         // rax,: new array
  1242       break;
  1244     case new_multi_array_id:
  1245       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1246         // rax,: klass
  1247         // rbx,: rank
  1248         // rcx: address of 1st dimension
  1249         OopMap* map = save_live_registers(sasm, 4);
  1250         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1252         oop_maps = new OopMapSet();
  1253         oop_maps->add_gc_map(call_offset, map);
  1254         restore_live_registers_except_rax(sasm);
  1256         // rax,: new multi array
  1257         __ verify_oop(rax);
  1259       break;
  1261     case register_finalizer_id:
  1263         __ set_info("register_finalizer", dont_gc_arguments);
  1265         // This is called via call_runtime so the arguments
  1266         // will be place in C abi locations
  1268 #ifdef _LP64
  1269         __ verify_oop(c_rarg0);
  1270         __ mov(rax, c_rarg0);
  1271 #else
  1272         // The object is passed on the stack and we haven't pushed a
  1273         // frame yet so it's one work away from top of stack.
  1274         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1275         __ verify_oop(rax);
  1276 #endif // _LP64
  1278         // load the klass and check the has finalizer flag
  1279         Label register_finalizer;
  1280         Register t = rsi;
  1281         __ load_klass(t, rax);
  1282         __ movl(t, Address(t, Klass::access_flags_offset()));
  1283         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1284         __ jcc(Assembler::notZero, register_finalizer);
  1285         __ ret(0);
  1287         __ bind(register_finalizer);
  1288         __ enter();
  1289         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1290         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1291         oop_maps = new OopMapSet();
  1292         oop_maps->add_gc_map(call_offset, oop_map);
  1294         // Now restore all the live registers
  1295         restore_live_registers(sasm);
  1297         __ leave();
  1298         __ ret(0);
  1300       break;
  1302     case throw_range_check_failed_id:
  1303       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1304         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1306       break;
  1308     case throw_index_exception_id:
  1309       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1310         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1312       break;
  1314     case throw_div0_exception_id:
  1315       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1316         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1318       break;
  1320     case throw_null_pointer_exception_id:
  1321       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1322         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1324       break;
  1326     case handle_exception_nofpu_id:
  1327     case handle_exception_id:
  1328       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1329         oop_maps = generate_handle_exception(id, sasm);
  1331       break;
  1333     case handle_exception_from_callee_id:
  1334       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
  1335         oop_maps = generate_handle_exception(id, sasm);
  1337       break;
  1339     case unwind_exception_id:
  1340       { __ set_info("unwind_exception", dont_gc_arguments);
  1341         // note: no stubframe since we are about to leave the current
  1342         //       activation and we are calling a leaf VM function only.
  1343         generate_unwind_exception(sasm);
  1345       break;
  1347     case throw_array_store_exception_id:
  1348       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1349         // tos + 0: link
  1350         //     + 1: return address
  1351         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
  1353       break;
  1355     case throw_class_cast_exception_id:
  1356       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1357         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1359       break;
  1361     case throw_incompatible_class_change_error_id:
  1362       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1363         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1365       break;
  1367     case slow_subtype_check_id:
  1369         // Typical calling sequence:
  1370         // __ push(klass_RInfo);  // object klass or other subclass
  1371         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1372         // __ call(slow_subtype_check);
  1373         // Note that the subclass is pushed first, and is therefore deepest.
  1374         // Previous versions of this code reversed the names 'sub' and 'super'.
  1375         // This was operationally harmless but made the code unreadable.
  1376         enum layout {
  1377           rax_off, SLOT2(raxH_off)
  1378           rcx_off, SLOT2(rcxH_off)
  1379           rsi_off, SLOT2(rsiH_off)
  1380           rdi_off, SLOT2(rdiH_off)
  1381           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1382           return_off, SLOT2(returnH_off)
  1383           sup_k_off, SLOT2(sup_kH_off)
  1384           klass_off, SLOT2(superH_off)
  1385           framesize,
  1386           result_off = klass_off  // deepest argument is also the return value
  1387         };
  1389         __ set_info("slow_subtype_check", dont_gc_arguments);
  1390         __ push(rdi);
  1391         __ push(rsi);
  1392         __ push(rcx);
  1393         __ push(rax);
  1395         // This is called by pushing args and not with C abi
  1396         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1397         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1399         Label miss;
  1400         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1402         // fallthrough on success:
  1403         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1404         __ pop(rax);
  1405         __ pop(rcx);
  1406         __ pop(rsi);
  1407         __ pop(rdi);
  1408         __ ret(0);
  1410         __ bind(miss);
  1411         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1412         __ pop(rax);
  1413         __ pop(rcx);
  1414         __ pop(rsi);
  1415         __ pop(rdi);
  1416         __ ret(0);
  1418       break;
  1420     case monitorenter_nofpu_id:
  1421       save_fpu_registers = false;
  1422       // fall through
  1423     case monitorenter_id:
  1425         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1426         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1428         // Called with store_parameter and not C abi
  1430         f.load_argument(1, rax); // rax,: object
  1431         f.load_argument(0, rbx); // rbx,: lock address
  1433         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1435         oop_maps = new OopMapSet();
  1436         oop_maps->add_gc_map(call_offset, map);
  1437         restore_live_registers(sasm, save_fpu_registers);
  1439       break;
  1441     case monitorexit_nofpu_id:
  1442       save_fpu_registers = false;
  1443       // fall through
  1444     case monitorexit_id:
  1446         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1447         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1449         // Called with store_parameter and not C abi
  1451         f.load_argument(0, rax); // rax,: lock address
  1453         // note: really a leaf routine but must setup last java sp
  1454         //       => use call_RT for now (speed can be improved by
  1455         //       doing last java sp setup manually)
  1456         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1458         oop_maps = new OopMapSet();
  1459         oop_maps->add_gc_map(call_offset, map);
  1460         restore_live_registers(sasm, save_fpu_registers);
  1462       break;
  1464     case deoptimize_id:
  1466         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
  1467         const int num_rt_args = 1;  // thread
  1468         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
  1469         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
  1470         oop_maps = new OopMapSet();
  1471         oop_maps->add_gc_map(call_offset, oop_map);
  1472         restore_live_registers(sasm);
  1473         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
  1474         assert(deopt_blob != NULL, "deoptimization blob must have been created");
  1475         __ leave();
  1476         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
  1478       break;
  1480     case access_field_patching_id:
  1481       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1482         // we should set up register map
  1483         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1485       break;
  1487     case load_klass_patching_id:
  1488       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1489         // we should set up register map
  1490         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1492       break;
  1494     case load_mirror_patching_id:
  1495       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
  1496         // we should set up register map
  1497         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
  1499       break;
  1501     case dtrace_object_alloc_id:
  1502       { // rax,: object
  1503         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1504         // we can't gc here so skip the oopmap but make sure that all
  1505         // the live registers get saved.
  1506         save_live_registers(sasm, 1);
  1508         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1509         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1510         NOT_LP64(__ pop(rax));
  1512         restore_live_registers(sasm);
  1514       break;
  1516     case fpu2long_stub_id:
  1518         // rax, and rdx are destroyed, but should be free since the result is returned there
  1519         // preserve rsi,ecx
  1520         __ push(rsi);
  1521         __ push(rcx);
  1522         LP64_ONLY(__ push(rdx);)
  1524         // check for NaN
  1525         Label return0, do_return, return_min_jlong, do_convert;
  1527         Address value_high_word(rsp, wordSize + 4);
  1528         Address value_low_word(rsp, wordSize);
  1529         Address result_high_word(rsp, 3*wordSize + 4);
  1530         Address result_low_word(rsp, 3*wordSize);
  1532         __ subptr(rsp, 32);                    // more than enough on 32bit
  1533         __ fst_d(value_low_word);
  1534         __ movl(rax, value_high_word);
  1535         __ andl(rax, 0x7ff00000);
  1536         __ cmpl(rax, 0x7ff00000);
  1537         __ jcc(Assembler::notEqual, do_convert);
  1538         __ movl(rax, value_high_word);
  1539         __ andl(rax, 0xfffff);
  1540         __ orl(rax, value_low_word);
  1541         __ jcc(Assembler::notZero, return0);
  1543         __ bind(do_convert);
  1544         __ fnstcw(Address(rsp, 0));
  1545         __ movzwl(rax, Address(rsp, 0));
  1546         __ orl(rax, 0xc00);
  1547         __ movw(Address(rsp, 2), rax);
  1548         __ fldcw(Address(rsp, 2));
  1549         __ fwait();
  1550         __ fistp_d(result_low_word);
  1551         __ fldcw(Address(rsp, 0));
  1552         __ fwait();
  1553         // This gets the entire long in rax on 64bit
  1554         __ movptr(rax, result_low_word);
  1555         // testing of high bits
  1556         __ movl(rdx, result_high_word);
  1557         __ mov(rcx, rax);
  1558         // What the heck is the point of the next instruction???
  1559         __ xorl(rcx, 0x0);
  1560         __ movl(rsi, 0x80000000);
  1561         __ xorl(rsi, rdx);
  1562         __ orl(rcx, rsi);
  1563         __ jcc(Assembler::notEqual, do_return);
  1564         __ fldz();
  1565         __ fcomp_d(value_low_word);
  1566         __ fnstsw_ax();
  1567 #ifdef _LP64
  1568         __ testl(rax, 0x4100);  // ZF & CF == 0
  1569         __ jcc(Assembler::equal, return_min_jlong);
  1570 #else
  1571         __ sahf();
  1572         __ jcc(Assembler::above, return_min_jlong);
  1573 #endif // _LP64
  1574         // return max_jlong
  1575 #ifndef _LP64
  1576         __ movl(rdx, 0x7fffffff);
  1577         __ movl(rax, 0xffffffff);
  1578 #else
  1579         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1580 #endif // _LP64
  1581         __ jmp(do_return);
  1583         __ bind(return_min_jlong);
  1584 #ifndef _LP64
  1585         __ movl(rdx, 0x80000000);
  1586         __ xorl(rax, rax);
  1587 #else
  1588         __ mov64(rax, CONST64(0x8000000000000000));
  1589 #endif // _LP64
  1590         __ jmp(do_return);
  1592         __ bind(return0);
  1593         __ fpop();
  1594 #ifndef _LP64
  1595         __ xorptr(rdx,rdx);
  1596         __ xorptr(rax,rax);
  1597 #else
  1598         __ xorptr(rax, rax);
  1599 #endif // _LP64
  1601         __ bind(do_return);
  1602         __ addptr(rsp, 32);
  1603         LP64_ONLY(__ pop(rdx);)
  1604         __ pop(rcx);
  1605         __ pop(rsi);
  1606         __ ret(0);
  1608       break;
  1610 #ifndef SERIALGC
  1611     case g1_pre_barrier_slow_id:
  1613         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1614         // arg0 : previous value of memory
  1616         BarrierSet* bs = Universe::heap()->barrier_set();
  1617         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1618           __ movptr(rax, (int)id);
  1619           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1620           __ should_not_reach_here();
  1621           break;
  1623         __ push(rax);
  1624         __ push(rdx);
  1626         const Register pre_val = rax;
  1627         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1628         const Register tmp = rdx;
  1630         NOT_LP64(__ get_thread(thread);)
  1632         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1633                                              PtrQueue::byte_offset_of_active()));
  1635         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1636                                              PtrQueue::byte_offset_of_index()));
  1637         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1638                                         PtrQueue::byte_offset_of_buf()));
  1641         Label done;
  1642         Label runtime;
  1644         // Can we store original value in the thread's buffer?
  1646 #ifdef _LP64
  1647         __ movslq(tmp, queue_index);
  1648         __ cmpq(tmp, 0);
  1649 #else
  1650         __ cmpl(queue_index, 0);
  1651 #endif
  1652         __ jcc(Assembler::equal, runtime);
  1653 #ifdef _LP64
  1654         __ subq(tmp, wordSize);
  1655         __ movl(queue_index, tmp);
  1656         __ addq(tmp, buffer);
  1657 #else
  1658         __ subl(queue_index, wordSize);
  1659         __ movl(tmp, buffer);
  1660         __ addl(tmp, queue_index);
  1661 #endif
  1663         // prev_val (rax)
  1664         f.load_argument(0, pre_val);
  1665         __ movptr(Address(tmp, 0), pre_val);
  1666         __ jmp(done);
  1668         __ bind(runtime);
  1669         __ push(rcx);
  1670 #ifdef _LP64
  1671         __ push(r8);
  1672         __ push(r9);
  1673         __ push(r10);
  1674         __ push(r11);
  1675 #  ifndef _WIN64
  1676         __ push(rdi);
  1677         __ push(rsi);
  1678 #  endif
  1679 #endif
  1680         // load the pre-value
  1681         f.load_argument(0, rcx);
  1682         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1683 #ifdef _LP64
  1684 #  ifndef _WIN64
  1685         __ pop(rsi);
  1686         __ pop(rdi);
  1687 #  endif
  1688         __ pop(r11);
  1689         __ pop(r10);
  1690         __ pop(r9);
  1691         __ pop(r8);
  1692 #endif
  1693         __ pop(rcx);
  1694         __ bind(done);
  1696         __ pop(rdx);
  1697         __ pop(rax);
  1699       break;
  1701     case g1_post_barrier_slow_id:
  1703         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1706         // arg0: store_address
  1707         Address store_addr(rbp, 2*BytesPerWord);
  1709         BarrierSet* bs = Universe::heap()->barrier_set();
  1710         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1711         Label done;
  1712         Label runtime;
  1714         // At this point we know new_value is non-NULL and the new_value crosses regsion.
  1715         // Must check to see if card is already dirty
  1717         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1719         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1720                                              PtrQueue::byte_offset_of_index()));
  1721         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1722                                         PtrQueue::byte_offset_of_buf()));
  1724         __ push(rax);
  1725         __ push(rcx);
  1727         NOT_LP64(__ get_thread(thread);)
  1728         ExternalAddress cardtable((address)ct->byte_map_base);
  1729         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1731         const Register card_addr = rcx;
  1732 #ifdef _LP64
  1733         const Register tmp = rscratch1;
  1734         f.load_argument(0, card_addr);
  1735         __ shrq(card_addr, CardTableModRefBS::card_shift);
  1736         __ lea(tmp, cardtable);
  1737         // get the address of the card
  1738         __ addq(card_addr, tmp);
  1739 #else
  1740         const Register card_index = rcx;
  1741         f.load_argument(0, card_index);
  1742         __ shrl(card_index, CardTableModRefBS::card_shift);
  1744         Address index(noreg, card_index, Address::times_1);
  1745         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
  1746 #endif
  1748         __ cmpb(Address(card_addr, 0), 0);
  1749         __ jcc(Assembler::equal, done);
  1751         // storing region crossing non-NULL, card is clean.
  1752         // dirty card and log.
  1754         __ movb(Address(card_addr, 0), 0);
  1756         __ cmpl(queue_index, 0);
  1757         __ jcc(Assembler::equal, runtime);
  1758         __ subl(queue_index, wordSize);
  1760         const Register buffer_addr = rbx;
  1761         __ push(rbx);
  1763         __ movptr(buffer_addr, buffer);
  1765 #ifdef _LP64
  1766         __ movslq(rscratch1, queue_index);
  1767         __ addptr(buffer_addr, rscratch1);
  1768 #else
  1769         __ addptr(buffer_addr, queue_index);
  1770 #endif
  1771         __ movptr(Address(buffer_addr, 0), card_addr);
  1773         __ pop(rbx);
  1774         __ jmp(done);
  1776         __ bind(runtime);
  1777         __ push(rdx);
  1778 #ifdef _LP64
  1779         __ push(r8);
  1780         __ push(r9);
  1781         __ push(r10);
  1782         __ push(r11);
  1783 #  ifndef _WIN64
  1784         __ push(rdi);
  1785         __ push(rsi);
  1786 #  endif
  1787 #endif
  1788         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1789 #ifdef _LP64
  1790 #  ifndef _WIN64
  1791         __ pop(rsi);
  1792         __ pop(rdi);
  1793 #  endif
  1794         __ pop(r11);
  1795         __ pop(r10);
  1796         __ pop(r9);
  1797         __ pop(r8);
  1798 #endif
  1799         __ pop(rdx);
  1800         __ bind(done);
  1802         __ pop(rcx);
  1803         __ pop(rax);
  1806       break;
  1807 #endif // !SERIALGC
  1809     default:
  1810       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1811         __ movptr(rax, (int)id);
  1812         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1813         __ should_not_reach_here();
  1815       break;
  1817   return oop_maps;
  1820 #undef __
  1822 const char *Runtime1::pd_name_for_address(address entry) {
  1823   return "<unknown function>";

mercurial