src/share/vm/runtime/objectMonitor.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 6453
75ef1a499665
child 6513
bbfbe9b06038
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/interfaceSupport.hpp"
    32 #include "runtime/mutexLocker.hpp"
    33 #include "runtime/objectMonitor.hpp"
    34 #include "runtime/objectMonitor.inline.hpp"
    35 #include "runtime/osThread.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/thread.inline.hpp"
    38 #include "services/threadService.hpp"
    39 #include "trace/tracing.hpp"
    40 #include "trace/traceMacros.hpp"
    41 #include "utilities/dtrace.hpp"
    42 #include "utilities/macros.hpp"
    43 #include "utilities/preserveException.hpp"
    44 #ifdef TARGET_OS_FAMILY_linux
    45 # include "os_linux.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_solaris
    48 # include "os_solaris.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_windows
    51 # include "os_windows.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_FAMILY_bsd
    54 # include "os_bsd.inline.hpp"
    55 #endif
    57 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
    58   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    59   #define ATTR __attribute__((noinline))
    60 #else
    61   #define ATTR
    62 #endif
    65 #ifdef DTRACE_ENABLED
    67 // Only bother with this argument setup if dtrace is available
    68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    72   char* bytes = NULL;                                                      \
    73   int len = 0;                                                             \
    74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    75   Symbol* klassname = ((oop)obj)->klass()->name();                         \
    76   if (klassname != NULL) {                                                 \
    77     bytes = (char*)klassname->bytes();                                     \
    78     len = klassname->utf8_length();                                        \
    79   }
    81 #ifndef USDT2
    83 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    84   jlong, uintptr_t, char*, int);
    85 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    86   jlong, uintptr_t, char*, int);
    87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    88   jlong, uintptr_t, char*, int);
    89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    90   jlong, uintptr_t, char*, int);
    91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    92   jlong, uintptr_t, char*, int);
    94 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
    95   {                                                                        \
    96     if (DTraceMonitorProbes) {                                            \
    97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
    98       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    99                        (monitor), bytes, len, (millis));                   \
   100     }                                                                      \
   101   }
   103 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
   104   {                                                                        \
   105     if (DTraceMonitorProbes) {                                            \
   106       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
   107       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   108                        (uintptr_t)(monitor), bytes, len);                  \
   109     }                                                                      \
   110   }
   112 #else /* USDT2 */
   114 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   115   {                                                                        \
   116     if (DTraceMonitorProbes) {                                            \
   117       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   118       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   119                        (monitor), bytes, len, (millis));                   \
   120     }                                                                      \
   121   }
   123 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
   124 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
   125 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
   126 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
   127 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
   129 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   130   {                                                                        \
   131     if (DTraceMonitorProbes) {                                            \
   132       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   133       HOTSPOT_MONITOR_##probe(jtid,                                               \
   134                        (uintptr_t)(monitor), bytes, len);                  \
   135     }                                                                      \
   136   }
   138 #endif /* USDT2 */
   139 #else //  ndef DTRACE_ENABLED
   141 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   142 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   144 #endif // ndef DTRACE_ENABLED
   146 // Tunables ...
   147 // The knob* variables are effectively final.  Once set they should
   148 // never be modified hence.  Consider using __read_mostly with GCC.
   150 int ObjectMonitor::Knob_Verbose    = 0 ;
   151 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   152 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   153 static int Knob_HandOff            = 0 ;
   154 static int Knob_ReportSettings     = 0 ;
   156 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   157 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   158 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   159 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   160 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   161 static int Knob_SpinEarly          = 1 ;
   162 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   163 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   164 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   165 static int Knob_Bonus              = 100 ;     // spin success bonus
   166 static int Knob_BonusB             = 100 ;     // spin success bonus
   167 static int Knob_Penalty            = 200 ;     // spin failure penalty
   168 static int Knob_Poverty            = 1000 ;
   169 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   170 static int Knob_FixedSpin          = 0 ;
   171 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   172 static int Knob_UsePause           = 1 ;
   173 static int Knob_ExitPolicy         = 0 ;
   174 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   175 static int Knob_ResetEvent         = 0 ;
   176 static int BackOffMask             = 0 ;
   178 static int Knob_FastHSSEC          = 0 ;
   179 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   180 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   181 static volatile int InitDone       = 0 ;
   183 #define TrySpin TrySpin_VaryDuration
   185 // -----------------------------------------------------------------------------
   186 // Theory of operations -- Monitors lists, thread residency, etc:
   187 //
   188 // * A thread acquires ownership of a monitor by successfully
   189 //   CAS()ing the _owner field from null to non-null.
   190 //
   191 // * Invariant: A thread appears on at most one monitor list --
   192 //   cxq, EntryList or WaitSet -- at any one time.
   193 //
   194 // * Contending threads "push" themselves onto the cxq with CAS
   195 //   and then spin/park.
   196 //
   197 // * After a contending thread eventually acquires the lock it must
   198 //   dequeue itself from either the EntryList or the cxq.
   199 //
   200 // * The exiting thread identifies and unparks an "heir presumptive"
   201 //   tentative successor thread on the EntryList.  Critically, the
   202 //   exiting thread doesn't unlink the successor thread from the EntryList.
   203 //   After having been unparked, the wakee will recontend for ownership of
   204 //   the monitor.   The successor (wakee) will either acquire the lock or
   205 //   re-park itself.
   206 //
   207 //   Succession is provided for by a policy of competitive handoff.
   208 //   The exiting thread does _not_ grant or pass ownership to the
   209 //   successor thread.  (This is also referred to as "handoff" succession").
   210 //   Instead the exiting thread releases ownership and possibly wakes
   211 //   a successor, so the successor can (re)compete for ownership of the lock.
   212 //   If the EntryList is empty but the cxq is populated the exiting
   213 //   thread will drain the cxq into the EntryList.  It does so by
   214 //   by detaching the cxq (installing null with CAS) and folding
   215 //   the threads from the cxq into the EntryList.  The EntryList is
   216 //   doubly linked, while the cxq is singly linked because of the
   217 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   218 //
   219 // * Concurrency invariants:
   220 //
   221 //   -- only the monitor owner may access or mutate the EntryList.
   222 //      The mutex property of the monitor itself protects the EntryList
   223 //      from concurrent interference.
   224 //   -- Only the monitor owner may detach the cxq.
   225 //
   226 // * The monitor entry list operations avoid locks, but strictly speaking
   227 //   they're not lock-free.  Enter is lock-free, exit is not.
   228 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
   229 //
   230 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   231 //   detaching thread.  This mechanism is immune from the ABA corruption.
   232 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   233 //
   234 // * Taken together, the cxq and the EntryList constitute or form a
   235 //   single logical queue of threads stalled trying to acquire the lock.
   236 //   We use two distinct lists to improve the odds of a constant-time
   237 //   dequeue operation after acquisition (in the ::enter() epilog) and
   238 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   239 //   A key desideratum is to minimize queue & monitor metadata manipulation
   240 //   that occurs while holding the monitor lock -- that is, we want to
   241 //   minimize monitor lock holds times.  Note that even a small amount of
   242 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   243 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   244 //   locks and monitor metadata.
   245 //
   246 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   247 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   248 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   249 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   250 //
   251 //   The EntryList is ordered by the prevailing queue discipline and
   252 //   can be organized in any convenient fashion, such as a doubly-linked list or
   253 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   254 //   to operate in constant-time.  If we need a priority queue then something akin
   255 //   to Solaris' sleepq would work nicely.  Viz.,
   256 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   257 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   258 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   259 //   EntryList accordingly.
   260 //
   261 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   262 //   somewhat similar to an elevator-scan.
   263 //
   264 // * The monitor synchronization subsystem avoids the use of native
   265 //   synchronization primitives except for the narrow platform-specific
   266 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   267 //   the semantics of park-unpark.  Put another way, this monitor implementation
   268 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   269 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   270 //   underlying OS manages the READY<->RUN transitions.
   271 //
   272 // * Waiting threads reside on the WaitSet list -- wait() puts
   273 //   the caller onto the WaitSet.
   274 //
   275 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   276 //   either the EntryList or cxq.  Subsequent exit() operations will
   277 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   278 //   it's likely the notifyee would simply impale itself on the lock held
   279 //   by the notifier.
   280 //
   281 // * An interesting alternative is to encode cxq as (List,LockByte) where
   282 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   283 //   variable, like _recursions, in the scheme.  The threads or Events that form
   284 //   the list would have to be aligned in 256-byte addresses.  A thread would
   285 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   286 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   287 //   Note that is is *not* word-tearing, but it does presume that full-word
   288 //   CAS operations are coherent with intermix with STB operations.  That's true
   289 //   on most common processors.
   290 //
   291 // * See also http://blogs.sun.com/dave
   294 // -----------------------------------------------------------------------------
   295 // Enter support
   297 bool ObjectMonitor::try_enter(Thread* THREAD) {
   298   if (THREAD != _owner) {
   299     if (THREAD->is_lock_owned ((address)_owner)) {
   300        assert(_recursions == 0, "internal state error");
   301        _owner = THREAD ;
   302        _recursions = 1 ;
   303        OwnerIsThread = 1 ;
   304        return true;
   305     }
   306     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   307       return false;
   308     }
   309     return true;
   310   } else {
   311     _recursions++;
   312     return true;
   313   }
   314 }
   316 void ATTR ObjectMonitor::enter(TRAPS) {
   317   // The following code is ordered to check the most common cases first
   318   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   319   Thread * const Self = THREAD ;
   320   void * cur ;
   322   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   323   if (cur == NULL) {
   324      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   325      assert (_recursions == 0   , "invariant") ;
   326      assert (_owner      == Self, "invariant") ;
   327      // CONSIDER: set or assert OwnerIsThread == 1
   328      return ;
   329   }
   331   if (cur == Self) {
   332      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   333      _recursions ++ ;
   334      return ;
   335   }
   337   if (Self->is_lock_owned ((address)cur)) {
   338     assert (_recursions == 0, "internal state error");
   339     _recursions = 1 ;
   340     // Commute owner from a thread-specific on-stack BasicLockObject address to
   341     // a full-fledged "Thread *".
   342     _owner = Self ;
   343     OwnerIsThread = 1 ;
   344     return ;
   345   }
   347   // We've encountered genuine contention.
   348   assert (Self->_Stalled == 0, "invariant") ;
   349   Self->_Stalled = intptr_t(this) ;
   351   // Try one round of spinning *before* enqueueing Self
   352   // and before going through the awkward and expensive state
   353   // transitions.  The following spin is strictly optional ...
   354   // Note that if we acquire the monitor from an initial spin
   355   // we forgo posting JVMTI events and firing DTRACE probes.
   356   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   357      assert (_owner == Self      , "invariant") ;
   358      assert (_recursions == 0    , "invariant") ;
   359      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   360      Self->_Stalled = 0 ;
   361      return ;
   362   }
   364   assert (_owner != Self          , "invariant") ;
   365   assert (_succ  != Self          , "invariant") ;
   366   assert (Self->is_Java_thread()  , "invariant") ;
   367   JavaThread * jt = (JavaThread *) Self ;
   368   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   369   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   370   assert (this->object() != NULL  , "invariant") ;
   371   assert (_count >= 0, "invariant") ;
   373   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   374   // Ensure the object-monitor relationship remains stable while there's contention.
   375   Atomic::inc_ptr(&_count);
   377   EventJavaMonitorEnter event;
   379   { // Change java thread status to indicate blocked on monitor enter.
   380     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   382     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   383     if (JvmtiExport::should_post_monitor_contended_enter()) {
   384       JvmtiExport::post_monitor_contended_enter(jt, this);
   385     }
   387     OSThreadContendState osts(Self->osthread());
   388     ThreadBlockInVM tbivm(jt);
   390     Self->set_current_pending_monitor(this);
   392     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   393     for (;;) {
   394       jt->set_suspend_equivalent();
   395       // cleared by handle_special_suspend_equivalent_condition()
   396       // or java_suspend_self()
   398       EnterI (THREAD) ;
   400       if (!ExitSuspendEquivalent(jt)) break ;
   402       //
   403       // We have acquired the contended monitor, but while we were
   404       // waiting another thread suspended us. We don't want to enter
   405       // the monitor while suspended because that would surprise the
   406       // thread that suspended us.
   407       //
   408           _recursions = 0 ;
   409       _succ = NULL ;
   410       exit (false, Self) ;
   412       jt->java_suspend_self();
   413     }
   414     Self->set_current_pending_monitor(NULL);
   415   }
   417   Atomic::dec_ptr(&_count);
   418   assert (_count >= 0, "invariant") ;
   419   Self->_Stalled = 0 ;
   421   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   422   assert (_recursions == 0     , "invariant") ;
   423   assert (_owner == Self       , "invariant") ;
   424   assert (_succ  != Self       , "invariant") ;
   425   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   427   // The thread -- now the owner -- is back in vm mode.
   428   // Report the glorious news via TI,DTrace and jvmstat.
   429   // The probe effect is non-trivial.  All the reportage occurs
   430   // while we hold the monitor, increasing the length of the critical
   431   // section.  Amdahl's parallel speedup law comes vividly into play.
   432   //
   433   // Another option might be to aggregate the events (thread local or
   434   // per-monitor aggregation) and defer reporting until a more opportune
   435   // time -- such as next time some thread encounters contention but has
   436   // yet to acquire the lock.  While spinning that thread could
   437   // spinning we could increment JVMStat counters, etc.
   439   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   440   if (JvmtiExport::should_post_monitor_contended_entered()) {
   441     JvmtiExport::post_monitor_contended_entered(jt, this);
   442   }
   444   if (event.should_commit()) {
   445     event.set_klass(((oop)this->object())->klass());
   446     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
   447     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
   448     event.commit();
   449   }
   451   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   452      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   453   }
   454 }
   457 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   458 // Callers must compensate as needed.
   460 int ObjectMonitor::TryLock (Thread * Self) {
   461    for (;;) {
   462       void * own = _owner ;
   463       if (own != NULL) return 0 ;
   464       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   465          // Either guarantee _recursions == 0 or set _recursions = 0.
   466          assert (_recursions == 0, "invariant") ;
   467          assert (_owner == Self, "invariant") ;
   468          // CONSIDER: set or assert that OwnerIsThread == 1
   469          return 1 ;
   470       }
   471       // The lock had been free momentarily, but we lost the race to the lock.
   472       // Interference -- the CAS failed.
   473       // We can either return -1 or retry.
   474       // Retry doesn't make as much sense because the lock was just acquired.
   475       if (true) return -1 ;
   476    }
   477 }
   479 void ATTR ObjectMonitor::EnterI (TRAPS) {
   480     Thread * Self = THREAD ;
   481     assert (Self->is_Java_thread(), "invariant") ;
   482     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   484     // Try the lock - TATAS
   485     if (TryLock (Self) > 0) {
   486         assert (_succ != Self              , "invariant") ;
   487         assert (_owner == Self             , "invariant") ;
   488         assert (_Responsible != Self       , "invariant") ;
   489         return ;
   490     }
   492     DeferredInitialize () ;
   494     // We try one round of spinning *before* enqueueing Self.
   495     //
   496     // If the _owner is ready but OFFPROC we could use a YieldTo()
   497     // operation to donate the remainder of this thread's quantum
   498     // to the owner.  This has subtle but beneficial affinity
   499     // effects.
   501     if (TrySpin (Self) > 0) {
   502         assert (_owner == Self        , "invariant") ;
   503         assert (_succ != Self         , "invariant") ;
   504         assert (_Responsible != Self  , "invariant") ;
   505         return ;
   506     }
   508     // The Spin failed -- Enqueue and park the thread ...
   509     assert (_succ  != Self            , "invariant") ;
   510     assert (_owner != Self            , "invariant") ;
   511     assert (_Responsible != Self      , "invariant") ;
   513     // Enqueue "Self" on ObjectMonitor's _cxq.
   514     //
   515     // Node acts as a proxy for Self.
   516     // As an aside, if were to ever rewrite the synchronization code mostly
   517     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   518     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   519     // as well as eliminate a subset of ABA issues.
   520     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   521     //
   523     ObjectWaiter node(Self) ;
   524     Self->_ParkEvent->reset() ;
   525     node._prev   = (ObjectWaiter *) 0xBAD ;
   526     node.TState  = ObjectWaiter::TS_CXQ ;
   528     // Push "Self" onto the front of the _cxq.
   529     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   530     // Note that spinning tends to reduce the rate at which threads
   531     // enqueue and dequeue on EntryList|cxq.
   532     ObjectWaiter * nxt ;
   533     for (;;) {
   534         node._next = nxt = _cxq ;
   535         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   537         // Interference - the CAS failed because _cxq changed.  Just retry.
   538         // As an optional optimization we retry the lock.
   539         if (TryLock (Self) > 0) {
   540             assert (_succ != Self         , "invariant") ;
   541             assert (_owner == Self        , "invariant") ;
   542             assert (_Responsible != Self  , "invariant") ;
   543             return ;
   544         }
   545     }
   547     // Check for cxq|EntryList edge transition to non-null.  This indicates
   548     // the onset of contention.  While contention persists exiting threads
   549     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   550     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   551     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   552     // arrange for one of the contending thread to use a timed park() operations
   553     // to detect and recover from the race.  (Stranding is form of progress failure
   554     // where the monitor is unlocked but all the contending threads remain parked).
   555     // That is, at least one of the contended threads will periodically poll _owner.
   556     // One of the contending threads will become the designated "Responsible" thread.
   557     // The Responsible thread uses a timed park instead of a normal indefinite park
   558     // operation -- it periodically wakes and checks for and recovers from potential
   559     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   560     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   561     // be responsible for a monitor.
   562     //
   563     // Currently, one of the contended threads takes on the added role of "Responsible".
   564     // A viable alternative would be to use a dedicated "stranding checker" thread
   565     // that periodically iterated over all the threads (or active monitors) and unparked
   566     // successors where there was risk of stranding.  This would help eliminate the
   567     // timer scalability issues we see on some platforms as we'd only have one thread
   568     // -- the checker -- parked on a timer.
   570     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   571         // Try to assume the role of responsible thread for the monitor.
   572         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   573         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   574     }
   576     // The lock have been released while this thread was occupied queueing
   577     // itself onto _cxq.  To close the race and avoid "stranding" and
   578     // progress-liveness failure we must resample-retry _owner before parking.
   579     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   580     // In this case the ST-MEMBAR is accomplished with CAS().
   581     //
   582     // TODO: Defer all thread state transitions until park-time.
   583     // Since state transitions are heavy and inefficient we'd like
   584     // to defer the state transitions until absolutely necessary,
   585     // and in doing so avoid some transitions ...
   587     TEVENT (Inflated enter - Contention) ;
   588     int nWakeups = 0 ;
   589     int RecheckInterval = 1 ;
   591     for (;;) {
   593         if (TryLock (Self) > 0) break ;
   594         assert (_owner != Self, "invariant") ;
   596         if ((SyncFlags & 2) && _Responsible == NULL) {
   597            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   598         }
   600         // park self
   601         if (_Responsible == Self || (SyncFlags & 1)) {
   602             TEVENT (Inflated enter - park TIMED) ;
   603             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   604             // Increase the RecheckInterval, but clamp the value.
   605             RecheckInterval *= 8 ;
   606             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   607         } else {
   608             TEVENT (Inflated enter - park UNTIMED) ;
   609             Self->_ParkEvent->park() ;
   610         }
   612         if (TryLock(Self) > 0) break ;
   614         // The lock is still contested.
   615         // Keep a tally of the # of futile wakeups.
   616         // Note that the counter is not protected by a lock or updated by atomics.
   617         // That is by design - we trade "lossy" counters which are exposed to
   618         // races during updates for a lower probe effect.
   619         TEVENT (Inflated enter - Futile wakeup) ;
   620         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   621            ObjectMonitor::_sync_FutileWakeups->inc() ;
   622         }
   623         ++ nWakeups ;
   625         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   626         // We can defer clearing _succ until after the spin completes
   627         // TrySpin() must tolerate being called with _succ == Self.
   628         // Try yet another round of adaptive spinning.
   629         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   631         // We can find that we were unpark()ed and redesignated _succ while
   632         // we were spinning.  That's harmless.  If we iterate and call park(),
   633         // park() will consume the event and return immediately and we'll
   634         // just spin again.  This pattern can repeat, leaving _succ to simply
   635         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   636         // Alternately, we can sample fired() here, and if set, forgo spinning
   637         // in the next iteration.
   639         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   640            Self->_ParkEvent->reset() ;
   641            OrderAccess::fence() ;
   642         }
   643         if (_succ == Self) _succ = NULL ;
   645         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   646         OrderAccess::fence() ;
   647     }
   649     // Egress :
   650     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   651     // Normally we'll find Self on the EntryList .
   652     // From the perspective of the lock owner (this thread), the
   653     // EntryList is stable and cxq is prepend-only.
   654     // The head of cxq is volatile but the interior is stable.
   655     // In addition, Self.TState is stable.
   657     assert (_owner == Self      , "invariant") ;
   658     assert (object() != NULL    , "invariant") ;
   659     // I'd like to write:
   660     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   661     // but as we're at a safepoint that's not safe.
   663     UnlinkAfterAcquire (Self, &node) ;
   664     if (_succ == Self) _succ = NULL ;
   666     assert (_succ != Self, "invariant") ;
   667     if (_Responsible == Self) {
   668         _Responsible = NULL ;
   669         OrderAccess::fence(); // Dekker pivot-point
   671         // We may leave threads on cxq|EntryList without a designated
   672         // "Responsible" thread.  This is benign.  When this thread subsequently
   673         // exits the monitor it can "see" such preexisting "old" threads --
   674         // threads that arrived on the cxq|EntryList before the fence, above --
   675         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   676         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   677         // non-null and elect a new "Responsible" timer thread.
   678         //
   679         // This thread executes:
   680         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   681         //    LD cxq|EntryList               (in subsequent exit)
   682         //
   683         // Entering threads in the slow/contended path execute:
   684         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   685         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   686         //
   687         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   688         // exit operation from floating above the ST Responsible=null.
   689     }
   691     // We've acquired ownership with CAS().
   692     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   693     // But since the CAS() this thread may have also stored into _succ,
   694     // EntryList, cxq or Responsible.  These meta-data updates must be
   695     // visible __before this thread subsequently drops the lock.
   696     // Consider what could occur if we didn't enforce this constraint --
   697     // STs to monitor meta-data and user-data could reorder with (become
   698     // visible after) the ST in exit that drops ownership of the lock.
   699     // Some other thread could then acquire the lock, but observe inconsistent
   700     // or old monitor meta-data and heap data.  That violates the JMM.
   701     // To that end, the 1-0 exit() operation must have at least STST|LDST
   702     // "release" barrier semantics.  Specifically, there must be at least a
   703     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   704     // the lock.   The barrier ensures that changes to monitor meta-data and data
   705     // protected by the lock will be visible before we release the lock, and
   706     // therefore before some other thread (CPU) has a chance to acquire the lock.
   707     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   708     //
   709     // Critically, any prior STs to _succ or EntryList must be visible before
   710     // the ST of null into _owner in the *subsequent* (following) corresponding
   711     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   712     // execute a serializing instruction.
   714     if (SyncFlags & 8) {
   715        OrderAccess::fence() ;
   716     }
   717     return ;
   718 }
   720 // ReenterI() is a specialized inline form of the latter half of the
   721 // contended slow-path from EnterI().  We use ReenterI() only for
   722 // monitor reentry in wait().
   723 //
   724 // In the future we should reconcile EnterI() and ReenterI(), adding
   725 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   726 // loop accordingly.
   728 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   729     assert (Self != NULL                , "invariant") ;
   730     assert (SelfNode != NULL            , "invariant") ;
   731     assert (SelfNode->_thread == Self   , "invariant") ;
   732     assert (_waiters > 0                , "invariant") ;
   733     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   734     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   735     JavaThread * jt = (JavaThread *) Self ;
   737     int nWakeups = 0 ;
   738     for (;;) {
   739         ObjectWaiter::TStates v = SelfNode->TState ;
   740         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   741         assert    (_owner != Self, "invariant") ;
   743         if (TryLock (Self) > 0) break ;
   744         if (TrySpin (Self) > 0) break ;
   746         TEVENT (Wait Reentry - parking) ;
   748         // State transition wrappers around park() ...
   749         // ReenterI() wisely defers state transitions until
   750         // it's clear we must park the thread.
   751         {
   752            OSThreadContendState osts(Self->osthread());
   753            ThreadBlockInVM tbivm(jt);
   755            // cleared by handle_special_suspend_equivalent_condition()
   756            // or java_suspend_self()
   757            jt->set_suspend_equivalent();
   758            if (SyncFlags & 1) {
   759               Self->_ParkEvent->park ((jlong)1000) ;
   760            } else {
   761               Self->_ParkEvent->park () ;
   762            }
   764            // were we externally suspended while we were waiting?
   765            for (;;) {
   766               if (!ExitSuspendEquivalent (jt)) break ;
   767               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   768               jt->java_suspend_self();
   769               jt->set_suspend_equivalent();
   770            }
   771         }
   773         // Try again, but just so we distinguish between futile wakeups and
   774         // successful wakeups.  The following test isn't algorithmically
   775         // necessary, but it helps us maintain sensible statistics.
   776         if (TryLock(Self) > 0) break ;
   778         // The lock is still contested.
   779         // Keep a tally of the # of futile wakeups.
   780         // Note that the counter is not protected by a lock or updated by atomics.
   781         // That is by design - we trade "lossy" counters which are exposed to
   782         // races during updates for a lower probe effect.
   783         TEVENT (Wait Reentry - futile wakeup) ;
   784         ++ nWakeups ;
   786         // Assuming this is not a spurious wakeup we'll normally
   787         // find that _succ == Self.
   788         if (_succ == Self) _succ = NULL ;
   790         // Invariant: after clearing _succ a contending thread
   791         // *must* retry  _owner before parking.
   792         OrderAccess::fence() ;
   794         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   795           ObjectMonitor::_sync_FutileWakeups->inc() ;
   796         }
   797     }
   799     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   800     // Normally we'll find Self on the EntryList.
   801     // Unlinking from the EntryList is constant-time and atomic-free.
   802     // From the perspective of the lock owner (this thread), the
   803     // EntryList is stable and cxq is prepend-only.
   804     // The head of cxq is volatile but the interior is stable.
   805     // In addition, Self.TState is stable.
   807     assert (_owner == Self, "invariant") ;
   808     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   809     UnlinkAfterAcquire (Self, SelfNode) ;
   810     if (_succ == Self) _succ = NULL ;
   811     assert (_succ != Self, "invariant") ;
   812     SelfNode->TState = ObjectWaiter::TS_RUN ;
   813     OrderAccess::fence() ;      // see comments at the end of EnterI()
   814 }
   816 // after the thread acquires the lock in ::enter().  Equally, we could defer
   817 // unlinking the thread until ::exit()-time.
   819 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   820 {
   821     assert (_owner == Self, "invariant") ;
   822     assert (SelfNode->_thread == Self, "invariant") ;
   824     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   825         // Normal case: remove Self from the DLL EntryList .
   826         // This is a constant-time operation.
   827         ObjectWaiter * nxt = SelfNode->_next ;
   828         ObjectWaiter * prv = SelfNode->_prev ;
   829         if (nxt != NULL) nxt->_prev = prv ;
   830         if (prv != NULL) prv->_next = nxt ;
   831         if (SelfNode == _EntryList ) _EntryList = nxt ;
   832         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   833         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   834         TEVENT (Unlink from EntryList) ;
   835     } else {
   836         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   837         // Inopportune interleaving -- Self is still on the cxq.
   838         // This usually means the enqueue of self raced an exiting thread.
   839         // Normally we'll find Self near the front of the cxq, so
   840         // dequeueing is typically fast.  If needbe we can accelerate
   841         // this with some MCS/CHL-like bidirectional list hints and advisory
   842         // back-links so dequeueing from the interior will normally operate
   843         // in constant-time.
   844         // Dequeue Self from either the head (with CAS) or from the interior
   845         // with a linear-time scan and normal non-atomic memory operations.
   846         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   847         // and then unlink Self from EntryList.  We have to drain eventually,
   848         // so it might as well be now.
   850         ObjectWaiter * v = _cxq ;
   851         assert (v != NULL, "invariant") ;
   852         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   853             // The CAS above can fail from interference IFF a "RAT" arrived.
   854             // In that case Self must be in the interior and can no longer be
   855             // at the head of cxq.
   856             if (v == SelfNode) {
   857                 assert (_cxq != v, "invariant") ;
   858                 v = _cxq ;          // CAS above failed - start scan at head of list
   859             }
   860             ObjectWaiter * p ;
   861             ObjectWaiter * q = NULL ;
   862             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   863                 q = p ;
   864                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   865             }
   866             assert (v != SelfNode,  "invariant") ;
   867             assert (p == SelfNode,  "Node not found on cxq") ;
   868             assert (p != _cxq,      "invariant") ;
   869             assert (q != NULL,      "invariant") ;
   870             assert (q->_next == p,  "invariant") ;
   871             q->_next = p->_next ;
   872         }
   873         TEVENT (Unlink from cxq) ;
   874     }
   876     // Diagnostic hygiene ...
   877     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   878     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   879     SelfNode->TState = ObjectWaiter::TS_RUN ;
   880 }
   882 // -----------------------------------------------------------------------------
   883 // Exit support
   884 //
   885 // exit()
   886 // ~~~~~~
   887 // Note that the collector can't reclaim the objectMonitor or deflate
   888 // the object out from underneath the thread calling ::exit() as the
   889 // thread calling ::exit() never transitions to a stable state.
   890 // This inhibits GC, which in turn inhibits asynchronous (and
   891 // inopportune) reclamation of "this".
   892 //
   893 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   894 // There's one exception to the claim above, however.  EnterI() can call
   895 // exit() to drop a lock if the acquirer has been externally suspended.
   896 // In that case exit() is called with _thread_state as _thread_blocked,
   897 // but the monitor's _count field is > 0, which inhibits reclamation.
   898 //
   899 // 1-0 exit
   900 // ~~~~~~~~
   901 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   902 // the fast-path operators have been optimized so the common ::exit()
   903 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   904 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   905 // greatly improves latency -- MEMBAR and CAS having considerable local
   906 // latency on modern processors -- but at the cost of "stranding".  Absent the
   907 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   908 // ::enter() path, resulting in the entering thread being stranding
   909 // and a progress-liveness failure.   Stranding is extremely rare.
   910 // We use timers (timed park operations) & periodic polling to detect
   911 // and recover from stranding.  Potentially stranded threads periodically
   912 // wake up and poll the lock.  See the usage of the _Responsible variable.
   913 //
   914 // The CAS() in enter provides for safety and exclusion, while the CAS or
   915 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   916 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   917 // We detect and recover from stranding with timers.
   918 //
   919 // If a thread transiently strands it'll park until (a) another
   920 // thread acquires the lock and then drops the lock, at which time the
   921 // exiting thread will notice and unpark the stranded thread, or, (b)
   922 // the timer expires.  If the lock is high traffic then the stranding latency
   923 // will be low due to (a).  If the lock is low traffic then the odds of
   924 // stranding are lower, although the worst-case stranding latency
   925 // is longer.  Critically, we don't want to put excessive load in the
   926 // platform's timer subsystem.  We want to minimize both the timer injection
   927 // rate (timers created/sec) as well as the number of timers active at
   928 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   929 // the integral of the # of active timers at any instant over time).
   930 // Both impinge on OS scalability.  Given that, at most one thread parked on
   931 // a monitor will use a timer.
   933 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
   934    Thread * Self = THREAD ;
   935    if (THREAD != _owner) {
   936      if (THREAD->is_lock_owned((address) _owner)) {
   937        // Transmute _owner from a BasicLock pointer to a Thread address.
   938        // We don't need to hold _mutex for this transition.
   939        // Non-null to Non-null is safe as long as all readers can
   940        // tolerate either flavor.
   941        assert (_recursions == 0, "invariant") ;
   942        _owner = THREAD ;
   943        _recursions = 0 ;
   944        OwnerIsThread = 1 ;
   945      } else {
   946        // NOTE: we need to handle unbalanced monitor enter/exit
   947        // in native code by throwing an exception.
   948        // TODO: Throw an IllegalMonitorStateException ?
   949        TEVENT (Exit - Throw IMSX) ;
   950        assert(false, "Non-balanced monitor enter/exit!");
   951        if (false) {
   952           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   953        }
   954        return;
   955      }
   956    }
   958    if (_recursions != 0) {
   959      _recursions--;        // this is simple recursive enter
   960      TEVENT (Inflated exit - recursive) ;
   961      return ;
   962    }
   964    // Invariant: after setting Responsible=null an thread must execute
   965    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   966    if ((SyncFlags & 4) == 0) {
   967       _Responsible = NULL ;
   968    }
   970 #if INCLUDE_TRACE
   971    // get the owner's thread id for the MonitorEnter event
   972    // if it is enabled and the thread isn't suspended
   973    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
   974      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
   975    }
   976 #endif
   978    for (;;) {
   979       assert (THREAD == _owner, "invariant") ;
   982       if (Knob_ExitPolicy == 0) {
   983          // release semantics: prior loads and stores from within the critical section
   984          // must not float (reorder) past the following store that drops the lock.
   985          // On SPARC that requires MEMBAR #loadstore|#storestore.
   986          // But of course in TSO #loadstore|#storestore is not required.
   987          // I'd like to write one of the following:
   988          // A.  OrderAccess::release() ; _owner = NULL
   989          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
   990          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
   991          // store into a _dummy variable.  That store is not needed, but can result
   992          // in massive wasteful coherency traffic on classic SMP systems.
   993          // Instead, I use release_store(), which is implemented as just a simple
   994          // ST on x64, x86 and SPARC.
   995          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
   996          OrderAccess::storeload() ;                         // See if we need to wake a successor
   997          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
   998             TEVENT (Inflated exit - simple egress) ;
   999             return ;
  1001          TEVENT (Inflated exit - complex egress) ;
  1003          // Normally the exiting thread is responsible for ensuring succession,
  1004          // but if other successors are ready or other entering threads are spinning
  1005          // then this thread can simply store NULL into _owner and exit without
  1006          // waking a successor.  The existence of spinners or ready successors
  1007          // guarantees proper succession (liveness).  Responsibility passes to the
  1008          // ready or running successors.  The exiting thread delegates the duty.
  1009          // More precisely, if a successor already exists this thread is absolved
  1010          // of the responsibility of waking (unparking) one.
  1011          //
  1012          // The _succ variable is critical to reducing futile wakeup frequency.
  1013          // _succ identifies the "heir presumptive" thread that has been made
  1014          // ready (unparked) but that has not yet run.  We need only one such
  1015          // successor thread to guarantee progress.
  1016          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1017          // section 3.3 "Futile Wakeup Throttling" for details.
  1018          //
  1019          // Note that spinners in Enter() also set _succ non-null.
  1020          // In the current implementation spinners opportunistically set
  1021          // _succ so that exiting threads might avoid waking a successor.
  1022          // Another less appealing alternative would be for the exiting thread
  1023          // to drop the lock and then spin briefly to see if a spinner managed
  1024          // to acquire the lock.  If so, the exiting thread could exit
  1025          // immediately without waking a successor, otherwise the exiting
  1026          // thread would need to dequeue and wake a successor.
  1027          // (Note that we'd need to make the post-drop spin short, but no
  1028          // shorter than the worst-case round-trip cache-line migration time.
  1029          // The dropped lock needs to become visible to the spinner, and then
  1030          // the acquisition of the lock by the spinner must become visible to
  1031          // the exiting thread).
  1032          //
  1034          // It appears that an heir-presumptive (successor) must be made ready.
  1035          // Only the current lock owner can manipulate the EntryList or
  1036          // drain _cxq, so we need to reacquire the lock.  If we fail
  1037          // to reacquire the lock the responsibility for ensuring succession
  1038          // falls to the new owner.
  1039          //
  1040          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1041             return ;
  1043          TEVENT (Exit - Reacquired) ;
  1044       } else {
  1045          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1046             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1047             OrderAccess::storeload() ;
  1048             // Ratify the previously observed values.
  1049             if (_cxq == NULL || _succ != NULL) {
  1050                 TEVENT (Inflated exit - simple egress) ;
  1051                 return ;
  1054             // inopportune interleaving -- the exiting thread (this thread)
  1055             // in the fast-exit path raced an entering thread in the slow-enter
  1056             // path.
  1057             // We have two choices:
  1058             // A.  Try to reacquire the lock.
  1059             //     If the CAS() fails return immediately, otherwise
  1060             //     we either restart/rerun the exit operation, or simply
  1061             //     fall-through into the code below which wakes a successor.
  1062             // B.  If the elements forming the EntryList|cxq are TSM
  1063             //     we could simply unpark() the lead thread and return
  1064             //     without having set _succ.
  1065             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1066                TEVENT (Inflated exit - reacquired succeeded) ;
  1067                return ;
  1069             TEVENT (Inflated exit - reacquired failed) ;
  1070          } else {
  1071             TEVENT (Inflated exit - complex egress) ;
  1075       guarantee (_owner == THREAD, "invariant") ;
  1077       ObjectWaiter * w = NULL ;
  1078       int QMode = Knob_QMode ;
  1080       if (QMode == 2 && _cxq != NULL) {
  1081           // QMode == 2 : cxq has precedence over EntryList.
  1082           // Try to directly wake a successor from the cxq.
  1083           // If successful, the successor will need to unlink itself from cxq.
  1084           w = _cxq ;
  1085           assert (w != NULL, "invariant") ;
  1086           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1087           ExitEpilog (Self, w) ;
  1088           return ;
  1091       if (QMode == 3 && _cxq != NULL) {
  1092           // Aggressively drain cxq into EntryList at the first opportunity.
  1093           // This policy ensure that recently-run threads live at the head of EntryList.
  1094           // Drain _cxq into EntryList - bulk transfer.
  1095           // First, detach _cxq.
  1096           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1097           w = _cxq ;
  1098           for (;;) {
  1099              assert (w != NULL, "Invariant") ;
  1100              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1101              if (u == w) break ;
  1102              w = u ;
  1104           assert (w != NULL              , "invariant") ;
  1106           ObjectWaiter * q = NULL ;
  1107           ObjectWaiter * p ;
  1108           for (p = w ; p != NULL ; p = p->_next) {
  1109               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1110               p->TState = ObjectWaiter::TS_ENTER ;
  1111               p->_prev = q ;
  1112               q = p ;
  1115           // Append the RATs to the EntryList
  1116           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1117           ObjectWaiter * Tail ;
  1118           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1119           if (Tail == NULL) {
  1120               _EntryList = w ;
  1121           } else {
  1122               Tail->_next = w ;
  1123               w->_prev = Tail ;
  1126           // Fall thru into code that tries to wake a successor from EntryList
  1129       if (QMode == 4 && _cxq != NULL) {
  1130           // Aggressively drain cxq into EntryList at the first opportunity.
  1131           // This policy ensure that recently-run threads live at the head of EntryList.
  1133           // Drain _cxq into EntryList - bulk transfer.
  1134           // First, detach _cxq.
  1135           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1136           w = _cxq ;
  1137           for (;;) {
  1138              assert (w != NULL, "Invariant") ;
  1139              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1140              if (u == w) break ;
  1141              w = u ;
  1143           assert (w != NULL              , "invariant") ;
  1145           ObjectWaiter * q = NULL ;
  1146           ObjectWaiter * p ;
  1147           for (p = w ; p != NULL ; p = p->_next) {
  1148               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1149               p->TState = ObjectWaiter::TS_ENTER ;
  1150               p->_prev = q ;
  1151               q = p ;
  1154           // Prepend the RATs to the EntryList
  1155           if (_EntryList != NULL) {
  1156               q->_next = _EntryList ;
  1157               _EntryList->_prev = q ;
  1159           _EntryList = w ;
  1161           // Fall thru into code that tries to wake a successor from EntryList
  1164       w = _EntryList  ;
  1165       if (w != NULL) {
  1166           // I'd like to write: guarantee (w->_thread != Self).
  1167           // But in practice an exiting thread may find itself on the EntryList.
  1168           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1169           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1170           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1171           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1172           // release the lock "O".  T2 resumes immediately after the ST of null into
  1173           // _owner, above.  T2 notices that the EntryList is populated, so it
  1174           // reacquires the lock and then finds itself on the EntryList.
  1175           // Given all that, we have to tolerate the circumstance where "w" is
  1176           // associated with Self.
  1177           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1178           ExitEpilog (Self, w) ;
  1179           return ;
  1182       // If we find that both _cxq and EntryList are null then just
  1183       // re-run the exit protocol from the top.
  1184       w = _cxq ;
  1185       if (w == NULL) continue ;
  1187       // Drain _cxq into EntryList - bulk transfer.
  1188       // First, detach _cxq.
  1189       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1190       for (;;) {
  1191           assert (w != NULL, "Invariant") ;
  1192           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1193           if (u == w) break ;
  1194           w = u ;
  1196       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1198       assert (w != NULL              , "invariant") ;
  1199       assert (_EntryList  == NULL    , "invariant") ;
  1201       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1202       // The list reorganization step operates in O(LENGTH(w)) time.
  1203       // It's critical that this step operate quickly as
  1204       // "Self" still holds the outer-lock, restricting parallelism
  1205       // and effectively lengthening the critical section.
  1206       // Invariant: s chases t chases u.
  1207       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1208       // we have faster access to the tail.
  1210       if (QMode == 1) {
  1211          // QMode == 1 : drain cxq to EntryList, reversing order
  1212          // We also reverse the order of the list.
  1213          ObjectWaiter * s = NULL ;
  1214          ObjectWaiter * t = w ;
  1215          ObjectWaiter * u = NULL ;
  1216          while (t != NULL) {
  1217              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1218              t->TState = ObjectWaiter::TS_ENTER ;
  1219              u = t->_next ;
  1220              t->_prev = u ;
  1221              t->_next = s ;
  1222              s = t;
  1223              t = u ;
  1225          _EntryList  = s ;
  1226          assert (s != NULL, "invariant") ;
  1227       } else {
  1228          // QMode == 0 or QMode == 2
  1229          _EntryList = w ;
  1230          ObjectWaiter * q = NULL ;
  1231          ObjectWaiter * p ;
  1232          for (p = w ; p != NULL ; p = p->_next) {
  1233              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1234              p->TState = ObjectWaiter::TS_ENTER ;
  1235              p->_prev = q ;
  1236              q = p ;
  1240       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1241       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1243       // See if we can abdicate to a spinner instead of waking a thread.
  1244       // A primary goal of the implementation is to reduce the
  1245       // context-switch rate.
  1246       if (_succ != NULL) continue;
  1248       w = _EntryList  ;
  1249       if (w != NULL) {
  1250           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1251           ExitEpilog (Self, w) ;
  1252           return ;
  1257 // ExitSuspendEquivalent:
  1258 // A faster alternate to handle_special_suspend_equivalent_condition()
  1259 //
  1260 // handle_special_suspend_equivalent_condition() unconditionally
  1261 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1262 // operations have high latency.  Note that in ::enter() we call HSSEC
  1263 // while holding the monitor, so we effectively lengthen the critical sections.
  1264 //
  1265 // There are a number of possible solutions:
  1266 //
  1267 // A.  To ameliorate the problem we might also defer state transitions
  1268 //     to as late as possible -- just prior to parking.
  1269 //     Given that, we'd call HSSEC after having returned from park(),
  1270 //     but before attempting to acquire the monitor.  This is only a
  1271 //     partial solution.  It avoids calling HSSEC while holding the
  1272 //     monitor (good), but it still increases successor reacquisition latency --
  1273 //     the interval between unparking a successor and the time the successor
  1274 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1275 //     If we use this technique we can also avoid EnterI()-exit() loop
  1276 //     in ::enter() where we iteratively drop the lock and then attempt
  1277 //     to reacquire it after suspending.
  1278 //
  1279 // B.  In the future we might fold all the suspend bits into a
  1280 //     composite per-thread suspend flag and then update it with CAS().
  1281 //     Alternately, a Dekker-like mechanism with multiple variables
  1282 //     would suffice:
  1283 //       ST Self->_suspend_equivalent = false
  1284 //       MEMBAR
  1285 //       LD Self_>_suspend_flags
  1286 //
  1289 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1290    int Mode = Knob_FastHSSEC ;
  1291    if (Mode && !jSelf->is_external_suspend()) {
  1292       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1293       jSelf->clear_suspend_equivalent() ;
  1294       if (2 == Mode) OrderAccess::storeload() ;
  1295       if (!jSelf->is_external_suspend()) return false ;
  1296       // We raced a suspension -- fall thru into the slow path
  1297       TEVENT (ExitSuspendEquivalent - raced) ;
  1298       jSelf->set_suspend_equivalent() ;
  1300    return jSelf->handle_special_suspend_equivalent_condition() ;
  1304 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1305    assert (_owner == Self, "invariant") ;
  1307    // Exit protocol:
  1308    // 1. ST _succ = wakee
  1309    // 2. membar #loadstore|#storestore;
  1310    // 2. ST _owner = NULL
  1311    // 3. unpark(wakee)
  1313    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1314    ParkEvent * Trigger = Wakee->_event ;
  1316    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1317    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1318    // out-of-scope (non-extant).
  1319    Wakee  = NULL ;
  1321    // Drop the lock
  1322    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1323    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1325    if (SafepointSynchronize::do_call_back()) {
  1326       TEVENT (unpark before SAFEPOINT) ;
  1329    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1330    Trigger->unpark() ;
  1332    // Maintain stats and report events to JVMTI
  1333    if (ObjectMonitor::_sync_Parks != NULL) {
  1334       ObjectMonitor::_sync_Parks->inc() ;
  1339 // -----------------------------------------------------------------------------
  1340 // Class Loader deadlock handling.
  1341 //
  1342 // complete_exit exits a lock returning recursion count
  1343 // complete_exit/reenter operate as a wait without waiting
  1344 // complete_exit requires an inflated monitor
  1345 // The _owner field is not always the Thread addr even with an
  1346 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1347 // thread due to contention.
  1348 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1349    Thread * const Self = THREAD;
  1350    assert(Self->is_Java_thread(), "Must be Java thread!");
  1351    JavaThread *jt = (JavaThread *)THREAD;
  1353    DeferredInitialize();
  1355    if (THREAD != _owner) {
  1356     if (THREAD->is_lock_owned ((address)_owner)) {
  1357        assert(_recursions == 0, "internal state error");
  1358        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1359        _recursions = 0 ;
  1360        OwnerIsThread = 1 ;
  1364    guarantee(Self == _owner, "complete_exit not owner");
  1365    intptr_t save = _recursions; // record the old recursion count
  1366    _recursions = 0;        // set the recursion level to be 0
  1367    exit (true, Self) ;           // exit the monitor
  1368    guarantee (_owner != Self, "invariant");
  1369    return save;
  1372 // reenter() enters a lock and sets recursion count
  1373 // complete_exit/reenter operate as a wait without waiting
  1374 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1375    Thread * const Self = THREAD;
  1376    assert(Self->is_Java_thread(), "Must be Java thread!");
  1377    JavaThread *jt = (JavaThread *)THREAD;
  1379    guarantee(_owner != Self, "reenter already owner");
  1380    enter (THREAD);       // enter the monitor
  1381    guarantee (_recursions == 0, "reenter recursion");
  1382    _recursions = recursions;
  1383    return;
  1387 // -----------------------------------------------------------------------------
  1388 // A macro is used below because there may already be a pending
  1389 // exception which should not abort the execution of the routines
  1390 // which use this (which is why we don't put this into check_slow and
  1391 // call it with a CHECK argument).
  1393 #define CHECK_OWNER()                                                             \
  1394   do {                                                                            \
  1395     if (THREAD != _owner) {                                                       \
  1396       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1397         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1398         _recursions = 0;                                                          \
  1399         OwnerIsThread = 1 ;                                                       \
  1400       } else {                                                                    \
  1401         TEVENT (Throw IMSX) ;                                                     \
  1402         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1403       }                                                                           \
  1404     }                                                                             \
  1405   } while (false)
  1407 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1408 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1410 void ObjectMonitor::check_slow(TRAPS) {
  1411   TEVENT (check_slow - throw IMSX) ;
  1412   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1413   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1416 static int Adjust (volatile int * adr, int dx) {
  1417   int v ;
  1418   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1419   return v ;
  1422 // helper method for posting a monitor wait event
  1423 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
  1424                                                            jlong notifier_tid,
  1425                                                            jlong timeout,
  1426                                                            bool timedout) {
  1427   event->set_klass(((oop)this->object())->klass());
  1428   event->set_timeout((TYPE_ULONG)timeout);
  1429   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
  1430   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
  1431   event->set_timedOut((TYPE_BOOLEAN)timedout);
  1432   event->commit();
  1435 // -----------------------------------------------------------------------------
  1436 // Wait/Notify/NotifyAll
  1437 //
  1438 // Note: a subset of changes to ObjectMonitor::wait()
  1439 // will need to be replicated in complete_exit above
  1440 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1441    Thread * const Self = THREAD ;
  1442    assert(Self->is_Java_thread(), "Must be Java thread!");
  1443    JavaThread *jt = (JavaThread *)THREAD;
  1445    DeferredInitialize () ;
  1447    // Throw IMSX or IEX.
  1448    CHECK_OWNER();
  1450    EventJavaMonitorWait event;
  1452    // check for a pending interrupt
  1453    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1454      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1455      if (JvmtiExport::should_post_monitor_waited()) {
  1456         // Note: 'false' parameter is passed here because the
  1457         // wait was not timed out due to thread interrupt.
  1458         JvmtiExport::post_monitor_waited(jt, this, false);
  1460      if (event.should_commit()) {
  1461        post_monitor_wait_event(&event, 0, millis, false);
  1463      TEVENT (Wait - Throw IEX) ;
  1464      THROW(vmSymbols::java_lang_InterruptedException());
  1465      return ;
  1468    TEVENT (Wait) ;
  1470    assert (Self->_Stalled == 0, "invariant") ;
  1471    Self->_Stalled = intptr_t(this) ;
  1472    jt->set_current_waiting_monitor(this);
  1474    // create a node to be put into the queue
  1475    // Critically, after we reset() the event but prior to park(), we must check
  1476    // for a pending interrupt.
  1477    ObjectWaiter node(Self);
  1478    node.TState = ObjectWaiter::TS_WAIT ;
  1479    Self->_ParkEvent->reset() ;
  1480    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1482    // Enter the waiting queue, which is a circular doubly linked list in this case
  1483    // but it could be a priority queue or any data structure.
  1484    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1485    // by the the owner of the monitor *except* in the case where park()
  1486    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1487    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1489    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1490    AddWaiter (&node) ;
  1491    Thread::SpinRelease (&_WaitSetLock) ;
  1493    if ((SyncFlags & 4) == 0) {
  1494       _Responsible = NULL ;
  1496    intptr_t save = _recursions; // record the old recursion count
  1497    _waiters++;                  // increment the number of waiters
  1498    _recursions = 0;             // set the recursion level to be 1
  1499    exit (true, Self) ;                    // exit the monitor
  1500    guarantee (_owner != Self, "invariant") ;
  1502    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  1503    // call above, another thread can enter() the ObjectMonitor, do the
  1504    // notify(), and exit() the ObjectMonitor. If the other thread's
  1505    // exit() call chooses this thread as the successor and the unpark()
  1506    // call happens to occur while this thread is posting a
  1507    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  1508    // handler using RawMonitors and consuming the unpark().
  1509    //
  1510    // To avoid the problem, we re-post the event. This does no harm
  1511    // even if the original unpark() was not consumed because we are the
  1512    // chosen successor for this monitor.
  1513    if (node._notified != 0 && _succ == Self) {
  1514       node._event->unpark();
  1517    // The thread is on the WaitSet list - now park() it.
  1518    // On MP systems it's conceivable that a brief spin before we park
  1519    // could be profitable.
  1520    //
  1521    // TODO-FIXME: change the following logic to a loop of the form
  1522    //   while (!timeout && !interrupted && _notified == 0) park()
  1524    int ret = OS_OK ;
  1525    int WasNotified = 0 ;
  1526    { // State transition wrappers
  1527      OSThread* osthread = Self->osthread();
  1528      OSThreadWaitState osts(osthread, true);
  1530        ThreadBlockInVM tbivm(jt);
  1531        // Thread is in thread_blocked state and oop access is unsafe.
  1532        jt->set_suspend_equivalent();
  1534        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1535            // Intentionally empty
  1536        } else
  1537        if (node._notified == 0) {
  1538          if (millis <= 0) {
  1539             Self->_ParkEvent->park () ;
  1540          } else {
  1541             ret = Self->_ParkEvent->park (millis) ;
  1545        // were we externally suspended while we were waiting?
  1546        if (ExitSuspendEquivalent (jt)) {
  1547           // TODO-FIXME: add -- if succ == Self then succ = null.
  1548           jt->java_suspend_self();
  1551      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1554      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1555      // from the WaitSet to the EntryList.
  1556      // See if we need to remove Node from the WaitSet.
  1557      // We use double-checked locking to avoid grabbing _WaitSetLock
  1558      // if the thread is not on the wait queue.
  1559      //
  1560      // Note that we don't need a fence before the fetch of TState.
  1561      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1562      // written by the is thread. (perhaps the fetch might even be satisfied
  1563      // by a look-aside into the processor's own store buffer, although given
  1564      // the length of the code path between the prior ST and this load that's
  1565      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1566      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1567      // That is, we fail toward safety.
  1569      if (node.TState == ObjectWaiter::TS_WAIT) {
  1570          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1571          if (node.TState == ObjectWaiter::TS_WAIT) {
  1572             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1573             assert(node._notified == 0, "invariant");
  1574             node.TState = ObjectWaiter::TS_RUN ;
  1576          Thread::SpinRelease (&_WaitSetLock) ;
  1579      // The thread is now either on off-list (TS_RUN),
  1580      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1581      // The Node's TState variable is stable from the perspective of this thread.
  1582      // No other threads will asynchronously modify TState.
  1583      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1584      OrderAccess::loadload() ;
  1585      if (_succ == Self) _succ = NULL ;
  1586      WasNotified = node._notified ;
  1588      // Reentry phase -- reacquire the monitor.
  1589      // re-enter contended monitor after object.wait().
  1590      // retain OBJECT_WAIT state until re-enter successfully completes
  1591      // Thread state is thread_in_vm and oop access is again safe,
  1592      // although the raw address of the object may have changed.
  1593      // (Don't cache naked oops over safepoints, of course).
  1595      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1596      if (JvmtiExport::should_post_monitor_waited()) {
  1597        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1600      if (event.should_commit()) {
  1601        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
  1604      OrderAccess::fence() ;
  1606      assert (Self->_Stalled != 0, "invariant") ;
  1607      Self->_Stalled = 0 ;
  1609      assert (_owner != Self, "invariant") ;
  1610      ObjectWaiter::TStates v = node.TState ;
  1611      if (v == ObjectWaiter::TS_RUN) {
  1612          enter (Self) ;
  1613      } else {
  1614          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1615          ReenterI (Self, &node) ;
  1616          node.wait_reenter_end(this);
  1619      // Self has reacquired the lock.
  1620      // Lifecycle - the node representing Self must not appear on any queues.
  1621      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1622      // want residual elements associated with this thread left on any lists.
  1623      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1624      assert    (_owner == Self, "invariant") ;
  1625      assert    (_succ != Self , "invariant") ;
  1626    } // OSThreadWaitState()
  1628    jt->set_current_waiting_monitor(NULL);
  1630    guarantee (_recursions == 0, "invariant") ;
  1631    _recursions = save;     // restore the old recursion count
  1632    _waiters--;             // decrement the number of waiters
  1634    // Verify a few postconditions
  1635    assert (_owner == Self       , "invariant") ;
  1636    assert (_succ  != Self       , "invariant") ;
  1637    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1639    if (SyncFlags & 32) {
  1640       OrderAccess::fence() ;
  1643    // check if the notification happened
  1644    if (!WasNotified) {
  1645      // no, it could be timeout or Thread.interrupt() or both
  1646      // check for interrupt event, otherwise it is timeout
  1647      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1648        TEVENT (Wait - throw IEX from epilog) ;
  1649        THROW(vmSymbols::java_lang_InterruptedException());
  1653    // NOTE: Spurious wake up will be consider as timeout.
  1654    // Monitor notify has precedence over thread interrupt.
  1658 // Consider:
  1659 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1660 // then instead of transferring a thread from the WaitSet to the EntryList
  1661 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1663 void ObjectMonitor::notify(TRAPS) {
  1664   CHECK_OWNER();
  1665   if (_WaitSet == NULL) {
  1666      TEVENT (Empty-Notify) ;
  1667      return ;
  1669   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1671   int Policy = Knob_MoveNotifyee ;
  1673   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1674   ObjectWaiter * iterator = DequeueWaiter() ;
  1675   if (iterator != NULL) {
  1676      TEVENT (Notify1 - Transfer) ;
  1677      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1678      guarantee (iterator->_notified == 0, "invariant") ;
  1679      if (Policy != 4) {
  1680         iterator->TState = ObjectWaiter::TS_ENTER ;
  1682      iterator->_notified = 1 ;
  1683      Thread * Self = THREAD;
  1684      iterator->_notifier_tid = Self->osthread()->thread_id();
  1686      ObjectWaiter * List = _EntryList ;
  1687      if (List != NULL) {
  1688         assert (List->_prev == NULL, "invariant") ;
  1689         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1690         assert (List != iterator, "invariant") ;
  1693      if (Policy == 0) {       // prepend to EntryList
  1694          if (List == NULL) {
  1695              iterator->_next = iterator->_prev = NULL ;
  1696              _EntryList = iterator ;
  1697          } else {
  1698              List->_prev = iterator ;
  1699              iterator->_next = List ;
  1700              iterator->_prev = NULL ;
  1701              _EntryList = iterator ;
  1703      } else
  1704      if (Policy == 1) {      // append to EntryList
  1705          if (List == NULL) {
  1706              iterator->_next = iterator->_prev = NULL ;
  1707              _EntryList = iterator ;
  1708          } else {
  1709             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1710             // the EntryList.  We can make tail access constant-time by converting to
  1711             // a CDLL instead of using our current DLL.
  1712             ObjectWaiter * Tail ;
  1713             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1714             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1715             Tail->_next = iterator ;
  1716             iterator->_prev = Tail ;
  1717             iterator->_next = NULL ;
  1719      } else
  1720      if (Policy == 2) {      // prepend to cxq
  1721          // prepend to cxq
  1722          if (List == NULL) {
  1723              iterator->_next = iterator->_prev = NULL ;
  1724              _EntryList = iterator ;
  1725          } else {
  1726             iterator->TState = ObjectWaiter::TS_CXQ ;
  1727             for (;;) {
  1728                 ObjectWaiter * Front = _cxq ;
  1729                 iterator->_next = Front ;
  1730                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1731                     break ;
  1735      } else
  1736      if (Policy == 3) {      // append to cxq
  1737         iterator->TState = ObjectWaiter::TS_CXQ ;
  1738         for (;;) {
  1739             ObjectWaiter * Tail ;
  1740             Tail = _cxq ;
  1741             if (Tail == NULL) {
  1742                 iterator->_next = NULL ;
  1743                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1744                    break ;
  1746             } else {
  1747                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1748                 Tail->_next = iterator ;
  1749                 iterator->_prev = Tail ;
  1750                 iterator->_next = NULL ;
  1751                 break ;
  1754      } else {
  1755         ParkEvent * ev = iterator->_event ;
  1756         iterator->TState = ObjectWaiter::TS_RUN ;
  1757         OrderAccess::fence() ;
  1758         ev->unpark() ;
  1761      if (Policy < 4) {
  1762        iterator->wait_reenter_begin(this);
  1765      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1766      // move the add-to-EntryList operation, above, outside the critical section
  1767      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1768      // exception of  wait() timeouts and interrupts the monitor owner
  1769      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1770      // on _WaitSetLock so it's not profitable to reduce the length of the
  1771      // critical section.
  1774   Thread::SpinRelease (&_WaitSetLock) ;
  1776   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1777      ObjectMonitor::_sync_Notifications->inc() ;
  1782 void ObjectMonitor::notifyAll(TRAPS) {
  1783   CHECK_OWNER();
  1784   ObjectWaiter* iterator;
  1785   if (_WaitSet == NULL) {
  1786       TEVENT (Empty-NotifyAll) ;
  1787       return ;
  1789   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1791   int Policy = Knob_MoveNotifyee ;
  1792   int Tally = 0 ;
  1793   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1795   for (;;) {
  1796      iterator = DequeueWaiter () ;
  1797      if (iterator == NULL) break ;
  1798      TEVENT (NotifyAll - Transfer1) ;
  1799      ++Tally ;
  1801      // Disposition - what might we do with iterator ?
  1802      // a.  add it directly to the EntryList - either tail or head.
  1803      // b.  push it onto the front of the _cxq.
  1804      // For now we use (a).
  1806      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1807      guarantee (iterator->_notified == 0, "invariant") ;
  1808      iterator->_notified = 1 ;
  1809      Thread * Self = THREAD;
  1810      iterator->_notifier_tid = Self->osthread()->thread_id();
  1811      if (Policy != 4) {
  1812         iterator->TState = ObjectWaiter::TS_ENTER ;
  1815      ObjectWaiter * List = _EntryList ;
  1816      if (List != NULL) {
  1817         assert (List->_prev == NULL, "invariant") ;
  1818         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1819         assert (List != iterator, "invariant") ;
  1822      if (Policy == 0) {       // prepend to EntryList
  1823          if (List == NULL) {
  1824              iterator->_next = iterator->_prev = NULL ;
  1825              _EntryList = iterator ;
  1826          } else {
  1827              List->_prev = iterator ;
  1828              iterator->_next = List ;
  1829              iterator->_prev = NULL ;
  1830              _EntryList = iterator ;
  1832      } else
  1833      if (Policy == 1) {      // append to EntryList
  1834          if (List == NULL) {
  1835              iterator->_next = iterator->_prev = NULL ;
  1836              _EntryList = iterator ;
  1837          } else {
  1838             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1839             // the EntryList.  We can make tail access constant-time by converting to
  1840             // a CDLL instead of using our current DLL.
  1841             ObjectWaiter * Tail ;
  1842             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1843             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1844             Tail->_next = iterator ;
  1845             iterator->_prev = Tail ;
  1846             iterator->_next = NULL ;
  1848      } else
  1849      if (Policy == 2) {      // prepend to cxq
  1850          // prepend to cxq
  1851          iterator->TState = ObjectWaiter::TS_CXQ ;
  1852          for (;;) {
  1853              ObjectWaiter * Front = _cxq ;
  1854              iterator->_next = Front ;
  1855              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1856                  break ;
  1859      } else
  1860      if (Policy == 3) {      // append to cxq
  1861         iterator->TState = ObjectWaiter::TS_CXQ ;
  1862         for (;;) {
  1863             ObjectWaiter * Tail ;
  1864             Tail = _cxq ;
  1865             if (Tail == NULL) {
  1866                 iterator->_next = NULL ;
  1867                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1868                    break ;
  1870             } else {
  1871                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1872                 Tail->_next = iterator ;
  1873                 iterator->_prev = Tail ;
  1874                 iterator->_next = NULL ;
  1875                 break ;
  1878      } else {
  1879         ParkEvent * ev = iterator->_event ;
  1880         iterator->TState = ObjectWaiter::TS_RUN ;
  1881         OrderAccess::fence() ;
  1882         ev->unpark() ;
  1885      if (Policy < 4) {
  1886        iterator->wait_reenter_begin(this);
  1889      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1890      // move the add-to-EntryList operation, above, outside the critical section
  1891      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1892      // exception of  wait() timeouts and interrupts the monitor owner
  1893      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1894      // on _WaitSetLock so it's not profitable to reduce the length of the
  1895      // critical section.
  1898   Thread::SpinRelease (&_WaitSetLock) ;
  1900   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1901      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1905 // -----------------------------------------------------------------------------
  1906 // Adaptive Spinning Support
  1907 //
  1908 // Adaptive spin-then-block - rational spinning
  1909 //
  1910 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1911 // algorithm.  On high order SMP systems it would be better to start with
  1912 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1913 // a contending thread could enqueue itself on the cxq and then spin locally
  1914 // on a thread-specific variable such as its ParkEvent._Event flag.
  1915 // That's left as an exercise for the reader.  Note that global spinning is
  1916 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1917 // low latency and massive bandwidth.
  1918 //
  1919 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1920 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1921 // (duration) or we can fix the count at approximately the duration of
  1922 // a context switch and vary the frequency.   Of course we could also
  1923 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1924 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1925 //
  1926 // This implementation varies the duration "D", where D varies with
  1927 // the success rate of recent spin attempts. (D is capped at approximately
  1928 // length of a round-trip context switch).  The success rate for recent
  1929 // spin attempts is a good predictor of the success rate of future spin
  1930 // attempts.  The mechanism adapts automatically to varying critical
  1931 // section length (lock modality), system load and degree of parallelism.
  1932 // D is maintained per-monitor in _SpinDuration and is initialized
  1933 // optimistically.  Spin frequency is fixed at 100%.
  1934 //
  1935 // Note that _SpinDuration is volatile, but we update it without locks
  1936 // or atomics.  The code is designed so that _SpinDuration stays within
  1937 // a reasonable range even in the presence of races.  The arithmetic
  1938 // operations on _SpinDuration are closed over the domain of legal values,
  1939 // so at worst a race will install and older but still legal value.
  1940 // At the very worst this introduces some apparent non-determinism.
  1941 // We might spin when we shouldn't or vice-versa, but since the spin
  1942 // count are relatively short, even in the worst case, the effect is harmless.
  1943 //
  1944 // Care must be taken that a low "D" value does not become an
  1945 // an absorbing state.  Transient spinning failures -- when spinning
  1946 // is overall profitable -- should not cause the system to converge
  1947 // on low "D" values.  We want spinning to be stable and predictable
  1948 // and fairly responsive to change and at the same time we don't want
  1949 // it to oscillate, become metastable, be "too" non-deterministic,
  1950 // or converge on or enter undesirable stable absorbing states.
  1951 //
  1952 // We implement a feedback-based control system -- using past behavior
  1953 // to predict future behavior.  We face two issues: (a) if the
  1954 // input signal is random then the spin predictor won't provide optimal
  1955 // results, and (b) if the signal frequency is too high then the control
  1956 // system, which has some natural response lag, will "chase" the signal.
  1957 // (b) can arise from multimodal lock hold times.  Transient preemption
  1958 // can also result in apparent bimodal lock hold times.
  1959 // Although sub-optimal, neither condition is particularly harmful, as
  1960 // in the worst-case we'll spin when we shouldn't or vice-versa.
  1961 // The maximum spin duration is rather short so the failure modes aren't bad.
  1962 // To be conservative, I've tuned the gain in system to bias toward
  1963 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1964 // "rings" or oscillates between spinning and not spinning.  This happens
  1965 // when spinning is just on the cusp of profitability, however, so the
  1966 // situation is not dire.  The state is benign -- there's no need to add
  1967 // hysteresis control to damp the transition rate between spinning and
  1968 // not spinning.
  1969 //
  1971 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1972 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1974 // Spinning: Fixed frequency (100%), vary duration
  1977 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  1979     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  1980     int ctr = Knob_FixedSpin ;
  1981     if (ctr != 0) {
  1982         while (--ctr >= 0) {
  1983             if (TryLock (Self) > 0) return 1 ;
  1984             SpinPause () ;
  1986         return 0 ;
  1989     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  1990       if (TryLock(Self) > 0) {
  1991         // Increase _SpinDuration ...
  1992         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1993         // Raising _SpurDuration to the poverty line is key.
  1994         int x = _SpinDuration ;
  1995         if (x < Knob_SpinLimit) {
  1996            if (x < Knob_Poverty) x = Knob_Poverty ;
  1997            _SpinDuration = x + Knob_BonusB ;
  1999         return 1 ;
  2001       SpinPause () ;
  2004     // Admission control - verify preconditions for spinning
  2005     //
  2006     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  2007     // becoming an absorbing state.  Put another way, we spin briefly to
  2008     // sample, just in case the system load, parallelism, contention, or lock
  2009     // modality changed.
  2010     //
  2011     // Consider the following alternative:
  2012     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  2013     // spin attempt.  "Periodically" might mean after a tally of
  2014     // the # of failed spin attempts (or iterations) reaches some threshold.
  2015     // This takes us into the realm of 1-out-of-N spinning, where we
  2016     // hold the duration constant but vary the frequency.
  2018     ctr = _SpinDuration  ;
  2019     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  2020     if (ctr <= 0) return 0 ;
  2022     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  2023     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  2024        TEVENT (Spin abort - notrunnable [TOP]);
  2025        return 0 ;
  2028     int MaxSpin = Knob_MaxSpinners ;
  2029     if (MaxSpin >= 0) {
  2030        if (_Spinner > MaxSpin) {
  2031           TEVENT (Spin abort -- too many spinners) ;
  2032           return 0 ;
  2034        // Slighty racy, but benign ...
  2035        Adjust (&_Spinner, 1) ;
  2038     // We're good to spin ... spin ingress.
  2039     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  2040     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2041     // to succeed.
  2042     int hits    = 0 ;
  2043     int msk     = 0 ;
  2044     int caspty  = Knob_CASPenalty ;
  2045     int oxpty   = Knob_OXPenalty ;
  2046     int sss     = Knob_SpinSetSucc ;
  2047     if (sss && _succ == NULL ) _succ = Self ;
  2048     Thread * prv = NULL ;
  2050     // There are three ways to exit the following loop:
  2051     // 1.  A successful spin where this thread has acquired the lock.
  2052     // 2.  Spin failure with prejudice
  2053     // 3.  Spin failure without prejudice
  2055     while (--ctr >= 0) {
  2057       // Periodic polling -- Check for pending GC
  2058       // Threads may spin while they're unsafe.
  2059       // We don't want spinning threads to delay the JVM from reaching
  2060       // a stop-the-world safepoint or to steal cycles from GC.
  2061       // If we detect a pending safepoint we abort in order that
  2062       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2063       // this thread, if safe, doesn't steal cycles from GC.
  2064       // This is in keeping with the "no loitering in runtime" rule.
  2065       // We periodically check to see if there's a safepoint pending.
  2066       if ((ctr & 0xFF) == 0) {
  2067          if (SafepointSynchronize::do_call_back()) {
  2068             TEVENT (Spin: safepoint) ;
  2069             goto Abort ;           // abrupt spin egress
  2071          if (Knob_UsePause & 1) SpinPause () ;
  2073          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2074          if (hits > 50 && scb != NULL) {
  2075             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2079       if (Knob_UsePause & 2) SpinPause() ;
  2081       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2082       // This is useful on classic SMP systems, but is of less utility on
  2083       // N1-style CMT platforms.
  2084       //
  2085       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2086       // Lock hold times are typically short.  A histogram
  2087       // of successful spin attempts shows that we usually acquire
  2088       // the lock early in the spin.  That suggests we want to
  2089       // sample _owner frequently in the early phase of the spin,
  2090       // but then back-off and sample less frequently as the spin
  2091       // progresses.  The back-off makes a good citizen on SMP big
  2092       // SMP systems.  Oversampling _owner can consume excessive
  2093       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2094       // can inadvertently interfere with the the ST m->owner=null.
  2095       // executed by the lock owner.
  2096       if (ctr & msk) continue ;
  2097       ++hits ;
  2098       if ((hits & 0xF) == 0) {
  2099         // The 0xF, above, corresponds to the exponent.
  2100         // Consider: (msk+1)|msk
  2101         msk = ((msk << 2)|3) & BackOffMask ;
  2104       // Probe _owner with TATAS
  2105       // If this thread observes the monitor transition or flicker
  2106       // from locked to unlocked to locked, then the odds that this
  2107       // thread will acquire the lock in this spin attempt go down
  2108       // considerably.  The same argument applies if the CAS fails
  2109       // or if we observe _owner change from one non-null value to
  2110       // another non-null value.   In such cases we might abort
  2111       // the spin without prejudice or apply a "penalty" to the
  2112       // spin count-down variable "ctr", reducing it by 100, say.
  2114       Thread * ox = (Thread *) _owner ;
  2115       if (ox == NULL) {
  2116          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2117          if (ox == NULL) {
  2118             // The CAS succeeded -- this thread acquired ownership
  2119             // Take care of some bookkeeping to exit spin state.
  2120             if (sss && _succ == Self) {
  2121                _succ = NULL ;
  2123             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2125             // Increase _SpinDuration :
  2126             // The spin was successful (profitable) so we tend toward
  2127             // longer spin attempts in the future.
  2128             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2129             // If we acquired the lock early in the spin cycle it
  2130             // makes sense to increase _SpinDuration proportionally.
  2131             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2132             int x = _SpinDuration ;
  2133             if (x < Knob_SpinLimit) {
  2134                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2135                 _SpinDuration = x + Knob_Bonus ;
  2137             return 1 ;
  2140          // The CAS failed ... we can take any of the following actions:
  2141          // * penalize: ctr -= Knob_CASPenalty
  2142          // * exit spin with prejudice -- goto Abort;
  2143          // * exit spin without prejudice.
  2144          // * Since CAS is high-latency, retry again immediately.
  2145          prv = ox ;
  2146          TEVENT (Spin: cas failed) ;
  2147          if (caspty == -2) break ;
  2148          if (caspty == -1) goto Abort ;
  2149          ctr -= caspty ;
  2150          continue ;
  2153       // Did lock ownership change hands ?
  2154       if (ox != prv && prv != NULL ) {
  2155           TEVENT (spin: Owner changed)
  2156           if (oxpty == -2) break ;
  2157           if (oxpty == -1) goto Abort ;
  2158           ctr -= oxpty ;
  2160       prv = ox ;
  2162       // Abort the spin if the owner is not executing.
  2163       // The owner must be executing in order to drop the lock.
  2164       // Spinning while the owner is OFFPROC is idiocy.
  2165       // Consider: ctr -= RunnablePenalty ;
  2166       if (Knob_OState && NotRunnable (Self, ox)) {
  2167          TEVENT (Spin abort - notrunnable);
  2168          goto Abort ;
  2170       if (sss && _succ == NULL ) _succ = Self ;
  2173    // Spin failed with prejudice -- reduce _SpinDuration.
  2174    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2175    // AIMD is globally stable.
  2176    TEVENT (Spin failure) ;
  2178      int x = _SpinDuration ;
  2179      if (x > 0) {
  2180         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2181         // This is globally sample and tends to damp the response.
  2182         x -= Knob_Penalty ;
  2183         if (x < 0) x = 0 ;
  2184         _SpinDuration = x ;
  2188  Abort:
  2189    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2190    if (sss && _succ == Self) {
  2191       _succ = NULL ;
  2192       // Invariant: after setting succ=null a contending thread
  2193       // must recheck-retry _owner before parking.  This usually happens
  2194       // in the normal usage of TrySpin(), but it's safest
  2195       // to make TrySpin() as foolproof as possible.
  2196       OrderAccess::fence() ;
  2197       if (TryLock(Self) > 0) return 1 ;
  2199    return 0 ;
  2202 // NotRunnable() -- informed spinning
  2203 //
  2204 // Don't bother spinning if the owner is not eligible to drop the lock.
  2205 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2206 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2207 // The thread must be runnable in order to drop the lock in timely fashion.
  2208 // If the _owner is not runnable then spinning will not likely be
  2209 // successful (profitable).
  2210 //
  2211 // Beware -- the thread referenced by _owner could have died
  2212 // so a simply fetch from _owner->_thread_state might trap.
  2213 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2214 // Because of the lifecycle issues the schedctl and _thread_state values
  2215 // observed by NotRunnable() might be garbage.  NotRunnable must
  2216 // tolerate this and consider the observed _thread_state value
  2217 // as advisory.
  2218 //
  2219 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2220 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2221 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2222 // with the LSB of _owner.  Another option would be to probablistically probe
  2223 // the putative _owner->TypeTag value.
  2224 //
  2225 // Checking _thread_state isn't perfect.  Even if the thread is
  2226 // in_java it might be blocked on a page-fault or have been preempted
  2227 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2228 // with schedctl.sc_state gives us a good picture of what the
  2229 // thread is doing, however.
  2230 //
  2231 // TODO: check schedctl.sc_state.
  2232 // We'll need to use SafeFetch32() to read from the schedctl block.
  2233 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2234 //
  2235 // The return value from NotRunnable() is *advisory* -- the
  2236 // result is based on sampling and is not necessarily coherent.
  2237 // The caller must tolerate false-negative and false-positive errors.
  2238 // Spinning, in general, is probabilistic anyway.
  2241 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2242     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2243     if (!OwnerIsThread) return 0 ;
  2245     if (ox == NULL) return 0 ;
  2247     // Avoid transitive spinning ...
  2248     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2249     // Immediately after T1 acquires L it's possible that T2, also
  2250     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2251     // This occurs transiently after T1 acquired L but before
  2252     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2253     // its spin in this circumstance.
  2254     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2256     if (BlockedOn == 1) return 1 ;
  2257     if (BlockedOn != 0) {
  2258       return BlockedOn != intptr_t(this) && _owner == ox ;
  2261     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2262     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2263     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2264     return jst == _thread_blocked || jst == _thread_in_native ;
  2268 // -----------------------------------------------------------------------------
  2269 // WaitSet management ...
  2271 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2272   _next     = NULL;
  2273   _prev     = NULL;
  2274   _notified = 0;
  2275   TState    = TS_RUN ;
  2276   _thread   = thread;
  2277   _event    = thread->_ParkEvent ;
  2278   _active   = false;
  2279   assert (_event != NULL, "invariant") ;
  2282 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2283   JavaThread *jt = (JavaThread *)this->_thread;
  2284   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2287 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2288   JavaThread *jt = (JavaThread *)this->_thread;
  2289   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2292 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2293   assert(node != NULL, "should not dequeue NULL node");
  2294   assert(node->_prev == NULL, "node already in list");
  2295   assert(node->_next == NULL, "node already in list");
  2296   // put node at end of queue (circular doubly linked list)
  2297   if (_WaitSet == NULL) {
  2298     _WaitSet = node;
  2299     node->_prev = node;
  2300     node->_next = node;
  2301   } else {
  2302     ObjectWaiter* head = _WaitSet ;
  2303     ObjectWaiter* tail = head->_prev;
  2304     assert(tail->_next == head, "invariant check");
  2305     tail->_next = node;
  2306     head->_prev = node;
  2307     node->_next = head;
  2308     node->_prev = tail;
  2312 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2313   // dequeue the very first waiter
  2314   ObjectWaiter* waiter = _WaitSet;
  2315   if (waiter) {
  2316     DequeueSpecificWaiter(waiter);
  2318   return waiter;
  2321 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2322   assert(node != NULL, "should not dequeue NULL node");
  2323   assert(node->_prev != NULL, "node already removed from list");
  2324   assert(node->_next != NULL, "node already removed from list");
  2325   // when the waiter has woken up because of interrupt,
  2326   // timeout or other spurious wake-up, dequeue the
  2327   // waiter from waiting list
  2328   ObjectWaiter* next = node->_next;
  2329   if (next == node) {
  2330     assert(node->_prev == node, "invariant check");
  2331     _WaitSet = NULL;
  2332   } else {
  2333     ObjectWaiter* prev = node->_prev;
  2334     assert(prev->_next == node, "invariant check");
  2335     assert(next->_prev == node, "invariant check");
  2336     next->_prev = prev;
  2337     prev->_next = next;
  2338     if (_WaitSet == node) {
  2339       _WaitSet = next;
  2342   node->_next = NULL;
  2343   node->_prev = NULL;
  2346 // -----------------------------------------------------------------------------
  2347 // PerfData support
  2348 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2349 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2350 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2351 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2352 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2353 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2354 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2355 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2356 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2357 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2358 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2359 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2360 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2361 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2362 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2363 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2364 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2365 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2367 // One-shot global initialization for the sync subsystem.
  2368 // We could also defer initialization and initialize on-demand
  2369 // the first time we call inflate().  Initialization would
  2370 // be protected - like so many things - by the MonitorCache_lock.
  2372 void ObjectMonitor::Initialize () {
  2373   static int InitializationCompleted = 0 ;
  2374   assert (InitializationCompleted == 0, "invariant") ;
  2375   InitializationCompleted = 1 ;
  2376   if (UsePerfData) {
  2377       EXCEPTION_MARK ;
  2378       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2379       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2380       NEWPERFCOUNTER(_sync_Inflations) ;
  2381       NEWPERFCOUNTER(_sync_Deflations) ;
  2382       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2383       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2384       NEWPERFCOUNTER(_sync_Parks) ;
  2385       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2386       NEWPERFCOUNTER(_sync_Notifications) ;
  2387       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2388       NEWPERFCOUNTER(_sync_SlowExit) ;
  2389       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2390       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2391       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2392       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2393       NEWPERFCOUNTER(_sync_PrivateA) ;
  2394       NEWPERFCOUNTER(_sync_PrivateB) ;
  2395       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2396       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2397       NEWPERFVARIABLE(_sync_MonExtant) ;
  2398       #undef NEWPERFCOUNTER
  2403 // Compile-time asserts
  2404 // When possible, it's better to catch errors deterministically at
  2405 // compile-time than at runtime.  The down-side to using compile-time
  2406 // asserts is that error message -- often something about negative array
  2407 // indices -- is opaque.
  2409 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2411 void ObjectMonitor::ctAsserts() {
  2412   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2416 static char * kvGet (char * kvList, const char * Key) {
  2417     if (kvList == NULL) return NULL ;
  2418     size_t n = strlen (Key) ;
  2419     char * Search ;
  2420     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2421         if (strncmp (Search, Key, n) == 0) {
  2422             if (Search[n] == '=') return Search + n + 1 ;
  2423             if (Search[n] == 0)   return (char *) "1" ;
  2426     return NULL ;
  2429 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2430     char * v = kvGet (kvList, Key) ;
  2431     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2432     if (Knob_ReportSettings && v != NULL) {
  2433         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2434         ::fflush (stdout) ;
  2436     return rslt ;
  2439 void ObjectMonitor::DeferredInitialize () {
  2440   if (InitDone > 0) return ;
  2441   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2442       while (InitDone != 1) ;
  2443       return ;
  2446   // One-shot global initialization ...
  2447   // The initialization is idempotent, so we don't need locks.
  2448   // In the future consider doing this via os::init_2().
  2449   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2450   // of environment variables.  Start by converting ':' to NUL.
  2452   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2454   size_t sz = strlen (SyncKnobs) ;
  2455   char * knobs = (char *) malloc (sz + 2) ;
  2456   if (knobs == NULL) {
  2457      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
  2458      guarantee (0, "invariant") ;
  2460   strcpy (knobs, SyncKnobs) ;
  2461   knobs[sz+1] = 0 ;
  2462   for (char * p = knobs ; *p ; p++) {
  2463      if (*p == ':') *p = 0 ;
  2466   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2467   SETKNOB(ReportSettings) ;
  2468   SETKNOB(Verbose) ;
  2469   SETKNOB(FixedSpin) ;
  2470   SETKNOB(SpinLimit) ;
  2471   SETKNOB(SpinBase) ;
  2472   SETKNOB(SpinBackOff);
  2473   SETKNOB(CASPenalty) ;
  2474   SETKNOB(OXPenalty) ;
  2475   SETKNOB(LogSpins) ;
  2476   SETKNOB(SpinSetSucc) ;
  2477   SETKNOB(SuccEnabled) ;
  2478   SETKNOB(SuccRestrict) ;
  2479   SETKNOB(Penalty) ;
  2480   SETKNOB(Bonus) ;
  2481   SETKNOB(BonusB) ;
  2482   SETKNOB(Poverty) ;
  2483   SETKNOB(SpinAfterFutile) ;
  2484   SETKNOB(UsePause) ;
  2485   SETKNOB(SpinEarly) ;
  2486   SETKNOB(OState) ;
  2487   SETKNOB(MaxSpinners) ;
  2488   SETKNOB(PreSpin) ;
  2489   SETKNOB(ExitPolicy) ;
  2490   SETKNOB(QMode);
  2491   SETKNOB(ResetEvent) ;
  2492   SETKNOB(MoveNotifyee) ;
  2493   SETKNOB(FastHSSEC) ;
  2494   #undef SETKNOB
  2496   if (os::is_MP()) {
  2497      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2498      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2499      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2500   } else {
  2501      Knob_SpinLimit = 0 ;
  2502      Knob_SpinBase  = 0 ;
  2503      Knob_PreSpin   = 0 ;
  2504      Knob_FixedSpin = -1 ;
  2507   if (Knob_LogSpins == 0) {
  2508      ObjectMonitor::_sync_FailedSpins = NULL ;
  2511   free (knobs) ;
  2512   OrderAccess::fence() ;
  2513   InitDone = 1 ;
  2516 #ifndef PRODUCT
  2517 void ObjectMonitor::verify() {
  2520 void ObjectMonitor::print() {
  2522 #endif

mercurial