src/share/vm/opto/superword.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 4620
ad736b4683b4
child 6198
55fb97c4c58d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(UseSuperWord, "should be");
    71   // Do vectors exist on this architecture?
    72   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
    74   assert(lpt->_head->is_CountedLoop(), "must be");
    75   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    77   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
    79   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    81   // Check for no control flow in body (other than exit)
    82   Node *cl_exit = cl->loopexit();
    83   if (cl_exit->in(0) != lpt->_head) return;
    85   // Make sure the are no extra control users of the loop backedge
    86   if (cl->back_control()->outcnt() != 1) {
    87     return;
    88   }
    90   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    91   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    92   if (pre_end == NULL) return;
    93   Node *pre_opaq1 = pre_end->limit();
    94   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    96   init(); // initialize data structures
    98   set_lpt(lpt);
    99   set_lp(cl);
   101   // For now, define one block which is the entire loop body
   102   set_bb(cl);
   104   assert(_packset.length() == 0, "packset must be empty");
   105   SLP_extract();
   106 }
   108 //------------------------------SLP_extract---------------------------
   109 // Extract the superword level parallelism
   110 //
   111 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   112 //    this list from first to last, all definitions are visited before their uses.
   113 //
   114 // 2) A point-to-point dependence graph is constructed between memory references.
   115 //    This simplies the upcoming "independence" checker.
   116 //
   117 // 3) The maximum depth in the node graph from the beginning of the block
   118 //    to each node is computed.  This is used to prune the graph search
   119 //    in the independence checker.
   120 //
   121 // 4) For integer types, the necessary bit width is propagated backwards
   122 //    from stores to allow packed operations on byte, char, and short
   123 //    integers.  This reverses the promotion to type "int" that javac
   124 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   125 //
   126 // 5) One of the memory references is picked to be an aligned vector reference.
   127 //    The pre-loop trip count is adjusted to align this reference in the
   128 //    unrolled body.
   129 //
   130 // 6) The initial set of pack pairs is seeded with memory references.
   131 //
   132 // 7) The set of pack pairs is extended by following use->def and def->use links.
   133 //
   134 // 8) The pairs are combined into vector sized packs.
   135 //
   136 // 9) Reorder the memory slices to co-locate members of the memory packs.
   137 //
   138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   139 //    inserting scalar promotion, vector creation from multiple scalars, and
   140 //    extraction of scalar values from vectors.
   141 //
   142 void SuperWord::SLP_extract() {
   144   // Ready the block
   146   if (!construct_bb())
   147     return; // Exit if no interesting nodes or complex graph.
   149   dependence_graph();
   151   compute_max_depth();
   153   compute_vector_element_type();
   155   // Attempt vectorization
   157   find_adjacent_refs();
   159   extend_packlist();
   161   combine_packs();
   163   construct_my_pack_map();
   165   filter_packs();
   167   schedule();
   169   output();
   170 }
   172 //------------------------------find_adjacent_refs---------------------------
   173 // Find the adjacent memory references and create pack pairs for them.
   174 // This is the initial set of packs that will then be extended by
   175 // following use->def and def->use links.  The align positions are
   176 // assigned relative to the reference "align_to_ref"
   177 void SuperWord::find_adjacent_refs() {
   178   // Get list of memory operations
   179   Node_List memops;
   180   for (int i = 0; i < _block.length(); i++) {
   181     Node* n = _block.at(i);
   182     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
   183         is_java_primitive(n->as_Mem()->memory_type())) {
   184       int align = memory_alignment(n->as_Mem(), 0);
   185       if (align != bottom_align) {
   186         memops.push(n);
   187       }
   188     }
   189   }
   191   Node_List align_to_refs;
   192   int best_iv_adjustment = 0;
   193   MemNode* best_align_to_mem_ref = NULL;
   195   while (memops.size() != 0) {
   196     // Find a memory reference to align to.
   197     MemNode* mem_ref = find_align_to_ref(memops);
   198     if (mem_ref == NULL) break;
   199     align_to_refs.push(mem_ref);
   200     int iv_adjustment = get_iv_adjustment(mem_ref);
   202     if (best_align_to_mem_ref == NULL) {
   203       // Set memory reference which is the best from all memory operations
   204       // to be used for alignment. The pre-loop trip count is modified to align
   205       // this reference to a vector-aligned address.
   206       best_align_to_mem_ref = mem_ref;
   207       best_iv_adjustment = iv_adjustment;
   208     }
   210     SWPointer align_to_ref_p(mem_ref, this);
   211     // Set alignment relative to "align_to_ref" for all related memory operations.
   212     for (int i = memops.size() - 1; i >= 0; i--) {
   213       MemNode* s = memops.at(i)->as_Mem();
   214       if (isomorphic(s, mem_ref)) {
   215         SWPointer p2(s, this);
   216         if (p2.comparable(align_to_ref_p)) {
   217           int align = memory_alignment(s, iv_adjustment);
   218           set_alignment(s, align);
   219         }
   220       }
   221     }
   223     // Create initial pack pairs of memory operations for which
   224     // alignment is set and vectors will be aligned.
   225     bool create_pack = true;
   226     if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
   227       if (!Matcher::misaligned_vectors_ok()) {
   228         int vw = vector_width(mem_ref);
   229         int vw_best = vector_width(best_align_to_mem_ref);
   230         if (vw > vw_best) {
   231           // Do not vectorize a memory access with more elements per vector
   232           // if unaligned memory access is not allowed because number of
   233           // iterations in pre-loop will be not enough to align it.
   234           create_pack = false;
   235         }
   236       }
   237     } else {
   238       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   239         // Can't allow vectorization of unaligned memory accesses with the
   240         // same type since it could be overlapped accesses to the same array.
   241         create_pack = false;
   242       } else {
   243         // Allow independent (different type) unaligned memory operations
   244         // if HW supports them.
   245         if (!Matcher::misaligned_vectors_ok()) {
   246           create_pack = false;
   247         } else {
   248           // Check if packs of the same memory type but
   249           // with a different alignment were created before.
   250           for (uint i = 0; i < align_to_refs.size(); i++) {
   251             MemNode* mr = align_to_refs.at(i)->as_Mem();
   252             if (same_velt_type(mr, mem_ref) &&
   253                 memory_alignment(mr, iv_adjustment) != 0)
   254               create_pack = false;
   255           }
   256         }
   257       }
   258     }
   259     if (create_pack) {
   260       for (uint i = 0; i < memops.size(); i++) {
   261         Node* s1 = memops.at(i);
   262         int align = alignment(s1);
   263         if (align == top_align) continue;
   264         for (uint j = 0; j < memops.size(); j++) {
   265           Node* s2 = memops.at(j);
   266           if (alignment(s2) == top_align) continue;
   267           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   268             if (stmts_can_pack(s1, s2, align)) {
   269               Node_List* pair = new Node_List();
   270               pair->push(s1);
   271               pair->push(s2);
   272               _packset.append(pair);
   273             }
   274           }
   275         }
   276       }
   277     } else { // Don't create unaligned pack
   278       // First, remove remaining memory ops of the same type from the list.
   279       for (int i = memops.size() - 1; i >= 0; i--) {
   280         MemNode* s = memops.at(i)->as_Mem();
   281         if (same_velt_type(s, mem_ref)) {
   282           memops.remove(i);
   283         }
   284       }
   286       // Second, remove already constructed packs of the same type.
   287       for (int i = _packset.length() - 1; i >= 0; i--) {
   288         Node_List* p = _packset.at(i);
   289         MemNode* s = p->at(0)->as_Mem();
   290         if (same_velt_type(s, mem_ref)) {
   291           remove_pack_at(i);
   292         }
   293       }
   295       // If needed find the best memory reference for loop alignment again.
   296       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   297         // Put memory ops from remaining packs back on memops list for
   298         // the best alignment search.
   299         uint orig_msize = memops.size();
   300         for (int i = 0; i < _packset.length(); i++) {
   301           Node_List* p = _packset.at(i);
   302           MemNode* s = p->at(0)->as_Mem();
   303           assert(!same_velt_type(s, mem_ref), "sanity");
   304           memops.push(s);
   305         }
   306         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
   307         if (best_align_to_mem_ref == NULL) break;
   308         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
   309         // Restore list.
   310         while (memops.size() > orig_msize)
   311           (void)memops.pop();
   312       }
   313     } // unaligned memory accesses
   315     // Remove used mem nodes.
   316     for (int i = memops.size() - 1; i >= 0; i--) {
   317       MemNode* m = memops.at(i)->as_Mem();
   318       if (alignment(m) != top_align) {
   319         memops.remove(i);
   320       }
   321     }
   323   } // while (memops.size() != 0
   324   set_align_to_ref(best_align_to_mem_ref);
   326 #ifndef PRODUCT
   327   if (TraceSuperWord) {
   328     tty->print_cr("\nAfter find_adjacent_refs");
   329     print_packset();
   330   }
   331 #endif
   332 }
   334 //------------------------------find_align_to_ref---------------------------
   335 // Find a memory reference to align the loop induction variable to.
   336 // Looks first at stores then at loads, looking for a memory reference
   337 // with the largest number of references similar to it.
   338 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
   339   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   341   // Count number of comparable memory ops
   342   for (uint i = 0; i < memops.size(); i++) {
   343     MemNode* s1 = memops.at(i)->as_Mem();
   344     SWPointer p1(s1, this);
   345     // Discard if pre loop can't align this reference
   346     if (!ref_is_alignable(p1)) {
   347       *cmp_ct.adr_at(i) = 0;
   348       continue;
   349     }
   350     for (uint j = i+1; j < memops.size(); j++) {
   351       MemNode* s2 = memops.at(j)->as_Mem();
   352       if (isomorphic(s1, s2)) {
   353         SWPointer p2(s2, this);
   354         if (p1.comparable(p2)) {
   355           (*cmp_ct.adr_at(i))++;
   356           (*cmp_ct.adr_at(j))++;
   357         }
   358       }
   359     }
   360   }
   362   // Find Store (or Load) with the greatest number of "comparable" references,
   363   // biggest vector size, smallest data size and smallest iv offset.
   364   int max_ct        = 0;
   365   int max_vw        = 0;
   366   int max_idx       = -1;
   367   int min_size      = max_jint;
   368   int min_iv_offset = max_jint;
   369   for (uint j = 0; j < memops.size(); j++) {
   370     MemNode* s = memops.at(j)->as_Mem();
   371     if (s->is_Store()) {
   372       int vw = vector_width_in_bytes(s);
   373       assert(vw > 1, "sanity");
   374       SWPointer p(s, this);
   375       if (cmp_ct.at(j) >  max_ct ||
   376           cmp_ct.at(j) == max_ct &&
   377             (vw >  max_vw ||
   378              vw == max_vw &&
   379               (data_size(s) <  min_size ||
   380                data_size(s) == min_size &&
   381                  (p.offset_in_bytes() < min_iv_offset)))) {
   382         max_ct = cmp_ct.at(j);
   383         max_vw = vw;
   384         max_idx = j;
   385         min_size = data_size(s);
   386         min_iv_offset = p.offset_in_bytes();
   387       }
   388     }
   389   }
   390   // If no stores, look at loads
   391   if (max_ct == 0) {
   392     for (uint j = 0; j < memops.size(); j++) {
   393       MemNode* s = memops.at(j)->as_Mem();
   394       if (s->is_Load()) {
   395         int vw = vector_width_in_bytes(s);
   396         assert(vw > 1, "sanity");
   397         SWPointer p(s, this);
   398         if (cmp_ct.at(j) >  max_ct ||
   399             cmp_ct.at(j) == max_ct &&
   400               (vw >  max_vw ||
   401                vw == max_vw &&
   402                 (data_size(s) <  min_size ||
   403                  data_size(s) == min_size &&
   404                    (p.offset_in_bytes() < min_iv_offset)))) {
   405           max_ct = cmp_ct.at(j);
   406           max_vw = vw;
   407           max_idx = j;
   408           min_size = data_size(s);
   409           min_iv_offset = p.offset_in_bytes();
   410         }
   411       }
   412     }
   413   }
   415 #ifdef ASSERT
   416   if (TraceSuperWord && Verbose) {
   417     tty->print_cr("\nVector memops after find_align_to_refs");
   418     for (uint i = 0; i < memops.size(); i++) {
   419       MemNode* s = memops.at(i)->as_Mem();
   420       s->dump();
   421     }
   422   }
   423 #endif
   425   if (max_ct > 0) {
   426 #ifdef ASSERT
   427     if (TraceSuperWord) {
   428       tty->print("\nVector align to node: ");
   429       memops.at(max_idx)->as_Mem()->dump();
   430     }
   431 #endif
   432     return memops.at(max_idx)->as_Mem();
   433   }
   434   return NULL;
   435 }
   437 //------------------------------ref_is_alignable---------------------------
   438 // Can the preloop align the reference to position zero in the vector?
   439 bool SuperWord::ref_is_alignable(SWPointer& p) {
   440   if (!p.has_iv()) {
   441     return true;   // no induction variable
   442   }
   443   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   444   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   445   int preloop_stride = pre_end->stride_con();
   447   int span = preloop_stride * p.scale_in_bytes();
   449   // Stride one accesses are alignable.
   450   if (ABS(span) == p.memory_size())
   451     return true;
   453   // If initial offset from start of object is computable,
   454   // compute alignment within the vector.
   455   int vw = vector_width_in_bytes(p.mem());
   456   assert(vw > 1, "sanity");
   457   if (vw % span == 0) {
   458     Node* init_nd = pre_end->init_trip();
   459     if (init_nd->is_Con() && p.invar() == NULL) {
   460       int init = init_nd->bottom_type()->is_int()->get_con();
   462       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   463       assert(init_offset >= 0, "positive offset from object start");
   465       if (span > 0) {
   466         return (vw - (init_offset % vw)) % span == 0;
   467       } else {
   468         assert(span < 0, "nonzero stride * scale");
   469         return (init_offset % vw) % -span == 0;
   470       }
   471     }
   472   }
   473   return false;
   474 }
   476 //---------------------------get_iv_adjustment---------------------------
   477 // Calculate loop's iv adjustment for this memory ops.
   478 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
   479   SWPointer align_to_ref_p(mem_ref, this);
   480   int offset = align_to_ref_p.offset_in_bytes();
   481   int scale  = align_to_ref_p.scale_in_bytes();
   482   int vw       = vector_width_in_bytes(mem_ref);
   483   assert(vw > 1, "sanity");
   484   int stride_sign   = (scale * iv_stride()) > 0 ? 1 : -1;
   485   // At least one iteration is executed in pre-loop by default. As result
   486   // several iterations are needed to align memory operations in main-loop even
   487   // if offset is 0.
   488   int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
   489   int elt_size = align_to_ref_p.memory_size();
   490   assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
   491          err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
   492   int iv_adjustment = iv_adjustment_in_bytes/elt_size;
   494 #ifndef PRODUCT
   495   if (TraceSuperWord)
   496     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
   497                   offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
   498 #endif
   499   return iv_adjustment;
   500 }
   502 //---------------------------dependence_graph---------------------------
   503 // Construct dependency graph.
   504 // Add dependence edges to load/store nodes for memory dependence
   505 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   506 void SuperWord::dependence_graph() {
   507   // First, assign a dependence node to each memory node
   508   for (int i = 0; i < _block.length(); i++ ) {
   509     Node *n = _block.at(i);
   510     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   511       _dg.make_node(n);
   512     }
   513   }
   515   // For each memory slice, create the dependences
   516   for (int i = 0; i < _mem_slice_head.length(); i++) {
   517     Node* n      = _mem_slice_head.at(i);
   518     Node* n_tail = _mem_slice_tail.at(i);
   520     // Get slice in predecessor order (last is first)
   521     mem_slice_preds(n_tail, n, _nlist);
   523     // Make the slice dependent on the root
   524     DepMem* slice = _dg.dep(n);
   525     _dg.make_edge(_dg.root(), slice);
   527     // Create a sink for the slice
   528     DepMem* slice_sink = _dg.make_node(NULL);
   529     _dg.make_edge(slice_sink, _dg.tail());
   531     // Now visit each pair of memory ops, creating the edges
   532     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   533       Node* s1 = _nlist.at(j);
   535       // If no dependency yet, use slice
   536       if (_dg.dep(s1)->in_cnt() == 0) {
   537         _dg.make_edge(slice, s1);
   538       }
   539       SWPointer p1(s1->as_Mem(), this);
   540       bool sink_dependent = true;
   541       for (int k = j - 1; k >= 0; k--) {
   542         Node* s2 = _nlist.at(k);
   543         if (s1->is_Load() && s2->is_Load())
   544           continue;
   545         SWPointer p2(s2->as_Mem(), this);
   547         int cmp = p1.cmp(p2);
   548         if (SuperWordRTDepCheck &&
   549             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   550           // Create a runtime check to disambiguate
   551           OrderedPair pp(p1.base(), p2.base());
   552           _disjoint_ptrs.append_if_missing(pp);
   553         } else if (!SWPointer::not_equal(cmp)) {
   554           // Possibly same address
   555           _dg.make_edge(s1, s2);
   556           sink_dependent = false;
   557         }
   558       }
   559       if (sink_dependent) {
   560         _dg.make_edge(s1, slice_sink);
   561       }
   562     }
   563 #ifndef PRODUCT
   564     if (TraceSuperWord) {
   565       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   566       for (int q = 0; q < _nlist.length(); q++) {
   567         _dg.print(_nlist.at(q));
   568       }
   569       tty->cr();
   570     }
   571 #endif
   572     _nlist.clear();
   573   }
   575 #ifndef PRODUCT
   576   if (TraceSuperWord) {
   577     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   578     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   579       _disjoint_ptrs.at(r).print();
   580       tty->cr();
   581     }
   582     tty->cr();
   583   }
   584 #endif
   585 }
   587 //---------------------------mem_slice_preds---------------------------
   588 // Return a memory slice (node list) in predecessor order starting at "start"
   589 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   590   assert(preds.length() == 0, "start empty");
   591   Node* n = start;
   592   Node* prev = NULL;
   593   while (true) {
   594     assert(in_bb(n), "must be in block");
   595     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   596       Node* out = n->fast_out(i);
   597       if (out->is_Load()) {
   598         if (in_bb(out)) {
   599           preds.push(out);
   600         }
   601       } else {
   602         // FIXME
   603         if (out->is_MergeMem() && !in_bb(out)) {
   604           // Either unrolling is causing a memory edge not to disappear,
   605           // or need to run igvn.optimize() again before SLP
   606         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   607           // Ditto.  Not sure what else to check further.
   608         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   609           // StoreCM has an input edge used as a precedence edge.
   610           // Maybe an issue when oop stores are vectorized.
   611         } else {
   612           assert(out == prev || prev == NULL, "no branches off of store slice");
   613         }
   614       }
   615     }
   616     if (n == stop) break;
   617     preds.push(n);
   618     prev = n;
   619     assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
   620     n = n->in(MemNode::Memory);
   621   }
   622 }
   624 //------------------------------stmts_can_pack---------------------------
   625 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   626 // s1 aligned at "align"
   627 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   629   // Do not use superword for non-primitives
   630   BasicType bt1 = velt_basic_type(s1);
   631   BasicType bt2 = velt_basic_type(s2);
   632   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
   633     return false;
   634   if (Matcher::max_vector_size(bt1) < 2) {
   635     return false; // No vectors for this type
   636   }
   638   if (isomorphic(s1, s2)) {
   639     if (independent(s1, s2)) {
   640       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   641         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   642           int s1_align = alignment(s1);
   643           int s2_align = alignment(s2);
   644           if (s1_align == top_align || s1_align == align) {
   645             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   646               return true;
   647             }
   648           }
   649         }
   650       }
   651     }
   652   }
   653   return false;
   654 }
   656 //------------------------------exists_at---------------------------
   657 // Does s exist in a pack at position pos?
   658 bool SuperWord::exists_at(Node* s, uint pos) {
   659   for (int i = 0; i < _packset.length(); i++) {
   660     Node_List* p = _packset.at(i);
   661     if (p->at(pos) == s) {
   662       return true;
   663     }
   664   }
   665   return false;
   666 }
   668 //------------------------------are_adjacent_refs---------------------------
   669 // Is s1 immediately before s2 in memory?
   670 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   671   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   672   if (!in_bb(s1)    || !in_bb(s2))    return false;
   674   // Do not use superword for non-primitives
   675   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   676       !is_java_primitive(s2->as_Mem()->memory_type())) {
   677     return false;
   678   }
   680   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   681   // only pack memops that are in the same alias set until that's fixed.
   682   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   683       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   684     return false;
   685   SWPointer p1(s1->as_Mem(), this);
   686   SWPointer p2(s2->as_Mem(), this);
   687   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   688   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   689   return diff == data_size(s1);
   690 }
   692 //------------------------------isomorphic---------------------------
   693 // Are s1 and s2 similar?
   694 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   695   if (s1->Opcode() != s2->Opcode()) return false;
   696   if (s1->req() != s2->req()) return false;
   697   if (s1->in(0) != s2->in(0)) return false;
   698   if (!same_velt_type(s1, s2)) return false;
   699   return true;
   700 }
   702 //------------------------------independent---------------------------
   703 // Is there no data path from s1 to s2 or s2 to s1?
   704 bool SuperWord::independent(Node* s1, Node* s2) {
   705   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   706   int d1 = depth(s1);
   707   int d2 = depth(s2);
   708   if (d1 == d2) return s1 != s2;
   709   Node* deep    = d1 > d2 ? s1 : s2;
   710   Node* shallow = d1 > d2 ? s2 : s1;
   712   visited_clear();
   714   return independent_path(shallow, deep);
   715 }
   717 //------------------------------independent_path------------------------------
   718 // Helper for independent
   719 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   720   if (dp >= 1000) return false; // stop deep recursion
   721   visited_set(deep);
   722   int shal_depth = depth(shallow);
   723   assert(shal_depth <= depth(deep), "must be");
   724   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   725     Node* pred = preds.current();
   726     if (in_bb(pred) && !visited_test(pred)) {
   727       if (shallow == pred) {
   728         return false;
   729       }
   730       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   731         return false;
   732       }
   733     }
   734   }
   735   return true;
   736 }
   738 //------------------------------set_alignment---------------------------
   739 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   740   set_alignment(s1, align);
   741   if (align == top_align || align == bottom_align) {
   742     set_alignment(s2, align);
   743   } else {
   744     set_alignment(s2, align + data_size(s1));
   745   }
   746 }
   748 //------------------------------data_size---------------------------
   749 int SuperWord::data_size(Node* s) {
   750   int bsize = type2aelembytes(velt_basic_type(s));
   751   assert(bsize != 0, "valid size");
   752   return bsize;
   753 }
   755 //------------------------------extend_packlist---------------------------
   756 // Extend packset by following use->def and def->use links from pack members.
   757 void SuperWord::extend_packlist() {
   758   bool changed;
   759   do {
   760     changed = false;
   761     for (int i = 0; i < _packset.length(); i++) {
   762       Node_List* p = _packset.at(i);
   763       changed |= follow_use_defs(p);
   764       changed |= follow_def_uses(p);
   765     }
   766   } while (changed);
   768 #ifndef PRODUCT
   769   if (TraceSuperWord) {
   770     tty->print_cr("\nAfter extend_packlist");
   771     print_packset();
   772   }
   773 #endif
   774 }
   776 //------------------------------follow_use_defs---------------------------
   777 // Extend the packset by visiting operand definitions of nodes in pack p
   778 bool SuperWord::follow_use_defs(Node_List* p) {
   779   assert(p->size() == 2, "just checking");
   780   Node* s1 = p->at(0);
   781   Node* s2 = p->at(1);
   782   assert(s1->req() == s2->req(), "just checking");
   783   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   785   if (s1->is_Load()) return false;
   787   int align = alignment(s1);
   788   bool changed = false;
   789   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   790   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   791   for (int j = start; j < end; j++) {
   792     Node* t1 = s1->in(j);
   793     Node* t2 = s2->in(j);
   794     if (!in_bb(t1) || !in_bb(t2))
   795       continue;
   796     if (stmts_can_pack(t1, t2, align)) {
   797       if (est_savings(t1, t2) >= 0) {
   798         Node_List* pair = new Node_List();
   799         pair->push(t1);
   800         pair->push(t2);
   801         _packset.append(pair);
   802         set_alignment(t1, t2, align);
   803         changed = true;
   804       }
   805     }
   806   }
   807   return changed;
   808 }
   810 //------------------------------follow_def_uses---------------------------
   811 // Extend the packset by visiting uses of nodes in pack p
   812 bool SuperWord::follow_def_uses(Node_List* p) {
   813   bool changed = false;
   814   Node* s1 = p->at(0);
   815   Node* s2 = p->at(1);
   816   assert(p->size() == 2, "just checking");
   817   assert(s1->req() == s2->req(), "just checking");
   818   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   820   if (s1->is_Store()) return false;
   822   int align = alignment(s1);
   823   int savings = -1;
   824   Node* u1 = NULL;
   825   Node* u2 = NULL;
   826   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   827     Node* t1 = s1->fast_out(i);
   828     if (!in_bb(t1)) continue;
   829     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   830       Node* t2 = s2->fast_out(j);
   831       if (!in_bb(t2)) continue;
   832       if (!opnd_positions_match(s1, t1, s2, t2))
   833         continue;
   834       if (stmts_can_pack(t1, t2, align)) {
   835         int my_savings = est_savings(t1, t2);
   836         if (my_savings > savings) {
   837           savings = my_savings;
   838           u1 = t1;
   839           u2 = t2;
   840         }
   841       }
   842     }
   843   }
   844   if (savings >= 0) {
   845     Node_List* pair = new Node_List();
   846     pair->push(u1);
   847     pair->push(u2);
   848     _packset.append(pair);
   849     set_alignment(u1, u2, align);
   850     changed = true;
   851   }
   852   return changed;
   853 }
   855 //---------------------------opnd_positions_match-------------------------
   856 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   857 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   858   uint ct = u1->req();
   859   if (ct != u2->req()) return false;
   860   uint i1 = 0;
   861   uint i2 = 0;
   862   do {
   863     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   864     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   865     if (i1 != i2) {
   866       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
   867         // Further analysis relies on operands position matching.
   868         u2->swap_edges(i1, i2);
   869       } else {
   870         return false;
   871       }
   872     }
   873   } while (i1 < ct);
   874   return true;
   875 }
   877 //------------------------------est_savings---------------------------
   878 // Estimate the savings from executing s1 and s2 as a pack
   879 int SuperWord::est_savings(Node* s1, Node* s2) {
   880   int save_in = 2 - 1; // 2 operations per instruction in packed form
   882   // inputs
   883   for (uint i = 1; i < s1->req(); i++) {
   884     Node* x1 = s1->in(i);
   885     Node* x2 = s2->in(i);
   886     if (x1 != x2) {
   887       if (are_adjacent_refs(x1, x2)) {
   888         save_in += adjacent_profit(x1, x2);
   889       } else if (!in_packset(x1, x2)) {
   890         save_in -= pack_cost(2);
   891       } else {
   892         save_in += unpack_cost(2);
   893       }
   894     }
   895   }
   897   // uses of result
   898   uint ct = 0;
   899   int save_use = 0;
   900   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   901     Node* s1_use = s1->fast_out(i);
   902     for (int j = 0; j < _packset.length(); j++) {
   903       Node_List* p = _packset.at(j);
   904       if (p->at(0) == s1_use) {
   905         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   906           Node* s2_use = s2->fast_out(k);
   907           if (p->at(p->size()-1) == s2_use) {
   908             ct++;
   909             if (are_adjacent_refs(s1_use, s2_use)) {
   910               save_use += adjacent_profit(s1_use, s2_use);
   911             }
   912           }
   913         }
   914       }
   915     }
   916   }
   918   if (ct < s1->outcnt()) save_use += unpack_cost(1);
   919   if (ct < s2->outcnt()) save_use += unpack_cost(1);
   921   return MAX2(save_in, save_use);
   922 }
   924 //------------------------------costs---------------------------
   925 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   926 int SuperWord::pack_cost(int ct)   { return ct; }
   927 int SuperWord::unpack_cost(int ct) { return ct; }
   929 //------------------------------combine_packs---------------------------
   930 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   931 void SuperWord::combine_packs() {
   932   bool changed = true;
   933   // Combine packs regardless max vector size.
   934   while (changed) {
   935     changed = false;
   936     for (int i = 0; i < _packset.length(); i++) {
   937       Node_List* p1 = _packset.at(i);
   938       if (p1 == NULL) continue;
   939       for (int j = 0; j < _packset.length(); j++) {
   940         Node_List* p2 = _packset.at(j);
   941         if (p2 == NULL) continue;
   942         if (i == j) continue;
   943         if (p1->at(p1->size()-1) == p2->at(0)) {
   944           for (uint k = 1; k < p2->size(); k++) {
   945             p1->push(p2->at(k));
   946           }
   947           _packset.at_put(j, NULL);
   948           changed = true;
   949         }
   950       }
   951     }
   952   }
   954   // Split packs which have size greater then max vector size.
   955   for (int i = 0; i < _packset.length(); i++) {
   956     Node_List* p1 = _packset.at(i);
   957     if (p1 != NULL) {
   958       BasicType bt = velt_basic_type(p1->at(0));
   959       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
   960       assert(is_power_of_2(max_vlen), "sanity");
   961       uint psize = p1->size();
   962       if (!is_power_of_2(psize)) {
   963         // Skip pack which can't be vector.
   964         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
   965         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
   966         _packset.at_put(i, NULL);
   967         continue;
   968       }
   969       if (psize > max_vlen) {
   970         Node_List* pack = new Node_List();
   971         for (uint j = 0; j < psize; j++) {
   972           pack->push(p1->at(j));
   973           if (pack->size() >= max_vlen) {
   974             assert(is_power_of_2(pack->size()), "sanity");
   975             _packset.append(pack);
   976             pack = new Node_List();
   977           }
   978         }
   979         _packset.at_put(i, NULL);
   980       }
   981     }
   982   }
   984   // Compress list.
   985   for (int i = _packset.length() - 1; i >= 0; i--) {
   986     Node_List* p1 = _packset.at(i);
   987     if (p1 == NULL) {
   988       _packset.remove_at(i);
   989     }
   990   }
   992 #ifndef PRODUCT
   993   if (TraceSuperWord) {
   994     tty->print_cr("\nAfter combine_packs");
   995     print_packset();
   996   }
   997 #endif
   998 }
  1000 //-----------------------------construct_my_pack_map--------------------------
  1001 // Construct the map from nodes to packs.  Only valid after the
  1002 // point where a node is only in one pack (after combine_packs).
  1003 void SuperWord::construct_my_pack_map() {
  1004   Node_List* rslt = NULL;
  1005   for (int i = 0; i < _packset.length(); i++) {
  1006     Node_List* p = _packset.at(i);
  1007     for (uint j = 0; j < p->size(); j++) {
  1008       Node* s = p->at(j);
  1009       assert(my_pack(s) == NULL, "only in one pack");
  1010       set_my_pack(s, p);
  1015 //------------------------------filter_packs---------------------------
  1016 // Remove packs that are not implemented or not profitable.
  1017 void SuperWord::filter_packs() {
  1019   // Remove packs that are not implemented
  1020   for (int i = _packset.length() - 1; i >= 0; i--) {
  1021     Node_List* pk = _packset.at(i);
  1022     bool impl = implemented(pk);
  1023     if (!impl) {
  1024 #ifndef PRODUCT
  1025       if (TraceSuperWord && Verbose) {
  1026         tty->print_cr("Unimplemented");
  1027         pk->at(0)->dump();
  1029 #endif
  1030       remove_pack_at(i);
  1034   // Remove packs that are not profitable
  1035   bool changed;
  1036   do {
  1037     changed = false;
  1038     for (int i = _packset.length() - 1; i >= 0; i--) {
  1039       Node_List* pk = _packset.at(i);
  1040       bool prof = profitable(pk);
  1041       if (!prof) {
  1042 #ifndef PRODUCT
  1043         if (TraceSuperWord && Verbose) {
  1044           tty->print_cr("Unprofitable");
  1045           pk->at(0)->dump();
  1047 #endif
  1048         remove_pack_at(i);
  1049         changed = true;
  1052   } while (changed);
  1054 #ifndef PRODUCT
  1055   if (TraceSuperWord) {
  1056     tty->print_cr("\nAfter filter_packs");
  1057     print_packset();
  1058     tty->cr();
  1060 #endif
  1063 //------------------------------implemented---------------------------
  1064 // Can code be generated for pack p?
  1065 bool SuperWord::implemented(Node_List* p) {
  1066   Node* p0 = p->at(0);
  1067   return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
  1070 //------------------------------same_inputs--------------------------
  1071 // For pack p, are all idx operands the same?
  1072 static bool same_inputs(Node_List* p, int idx) {
  1073   Node* p0 = p->at(0);
  1074   uint vlen = p->size();
  1075   Node* p0_def = p0->in(idx);
  1076   for (uint i = 1; i < vlen; i++) {
  1077     Node* pi = p->at(i);
  1078     Node* pi_def = pi->in(idx);
  1079     if (p0_def != pi_def)
  1080       return false;
  1082   return true;
  1085 //------------------------------profitable---------------------------
  1086 // For pack p, are all operands and all uses (with in the block) vector?
  1087 bool SuperWord::profitable(Node_List* p) {
  1088   Node* p0 = p->at(0);
  1089   uint start, end;
  1090   VectorNode::vector_operands(p0, &start, &end);
  1092   // Return false if some inputs are not vectors or vectors with different
  1093   // size or alignment.
  1094   // Also, for now, return false if not scalar promotion case when inputs are
  1095   // the same. Later, implement PackNode and allow differing, non-vector inputs
  1096   // (maybe just the ones from outside the block.)
  1097   for (uint i = start; i < end; i++) {
  1098     if (!is_vector_use(p0, i))
  1099       return false;
  1101   if (VectorNode::is_shift(p0)) {
  1102     // For now, return false if shift count is vector or not scalar promotion
  1103     // case (different shift counts) because it is not supported yet.
  1104     Node* cnt = p0->in(2);
  1105     Node_List* cnt_pk = my_pack(cnt);
  1106     if (cnt_pk != NULL)
  1107       return false;
  1108     if (!same_inputs(p, 2))
  1109       return false;
  1111   if (!p0->is_Store()) {
  1112     // For now, return false if not all uses are vector.
  1113     // Later, implement ExtractNode and allow non-vector uses (maybe
  1114     // just the ones outside the block.)
  1115     for (uint i = 0; i < p->size(); i++) {
  1116       Node* def = p->at(i);
  1117       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1118         Node* use = def->fast_out(j);
  1119         for (uint k = 0; k < use->req(); k++) {
  1120           Node* n = use->in(k);
  1121           if (def == n) {
  1122             if (!is_vector_use(use, k)) {
  1123               return false;
  1130   return true;
  1133 //------------------------------schedule---------------------------
  1134 // Adjust the memory graph for the packed operations
  1135 void SuperWord::schedule() {
  1137   // Co-locate in the memory graph the members of each memory pack
  1138   for (int i = 0; i < _packset.length(); i++) {
  1139     co_locate_pack(_packset.at(i));
  1143 //-------------------------------remove_and_insert-------------------
  1144 // Remove "current" from its current position in the memory graph and insert
  1145 // it after the appropriate insertion point (lip or uip).
  1146 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
  1147                                   Node *uip, Unique_Node_List &sched_before) {
  1148   Node* my_mem = current->in(MemNode::Memory);
  1149   bool sched_up = sched_before.member(current);
  1151   // remove current_store from its current position in the memmory graph
  1152   for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1153     Node* use = current->out(i);
  1154     if (use->is_Mem()) {
  1155       assert(use->in(MemNode::Memory) == current, "must be");
  1156       if (use == prev) { // connect prev to my_mem
  1157           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
  1158           --i; //deleted this edge; rescan position
  1159       } else if (sched_before.member(use)) {
  1160         if (!sched_up) { // Will be moved together with current
  1161           _igvn.replace_input_of(use, MemNode::Memory, uip);
  1162           --i; //deleted this edge; rescan position
  1164       } else {
  1165         if (sched_up) { // Will be moved together with current
  1166           _igvn.replace_input_of(use, MemNode::Memory, lip);
  1167           --i; //deleted this edge; rescan position
  1173   Node *insert_pt =  sched_up ?  uip : lip;
  1175   // all uses of insert_pt's memory state should use current's instead
  1176   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
  1177     Node* use = insert_pt->out(i);
  1178     if (use->is_Mem()) {
  1179       assert(use->in(MemNode::Memory) == insert_pt, "must be");
  1180       _igvn.replace_input_of(use, MemNode::Memory, current);
  1181       --i; //deleted this edge; rescan position
  1182     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
  1183       uint pos; //lip (lower insert point) must be the last one in the memory slice
  1184       for (pos=1; pos < use->req(); pos++) {
  1185         if (use->in(pos) == insert_pt) break;
  1187       _igvn.replace_input_of(use, pos, current);
  1188       --i;
  1192   //connect current to insert_pt
  1193   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
  1196 //------------------------------co_locate_pack----------------------------------
  1197 // To schedule a store pack, we need to move any sandwiched memory ops either before
  1198 // or after the pack, based upon dependence information:
  1199 // (1) If any store in the pack depends on the sandwiched memory op, the
  1200 //     sandwiched memory op must be scheduled BEFORE the pack;
  1201 // (2) If a sandwiched memory op depends on any store in the pack, the
  1202 //     sandwiched memory op must be scheduled AFTER the pack;
  1203 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1204 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1205 //     scheduled before the pack, memB must also be scheduled before the pack;
  1206 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1207 //     schedule this store AFTER the pack
  1208 // (5) We know there is no dependence cycle, so there in no other case;
  1209 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1210 //
  1211 // To schedule a load pack, we use the memory state of either the first or the last load in
  1212 // the pack, based on the dependence constraint.
  1213 void SuperWord::co_locate_pack(Node_List* pk) {
  1214   if (pk->at(0)->is_Store()) {
  1215     MemNode* first     = executed_first(pk)->as_Mem();
  1216     MemNode* last      = executed_last(pk)->as_Mem();
  1217     Unique_Node_List schedule_before_pack;
  1218     Unique_Node_List memops;
  1220     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1221     MemNode* previous  = last;
  1222     while (true) {
  1223       assert(in_bb(current), "stay in block");
  1224       memops.push(previous);
  1225       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1226         Node* use = current->out(i);
  1227         if (use->is_Mem() && use != previous)
  1228           memops.push(use);
  1230       if (current == first) break;
  1231       previous = current;
  1232       current  = current->in(MemNode::Memory)->as_Mem();
  1235     // determine which memory operations should be scheduled before the pack
  1236     for (uint i = 1; i < memops.size(); i++) {
  1237       Node *s1 = memops.at(i);
  1238       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1239         for (uint j = 0; j< i; j++) {
  1240           Node *s2 = memops.at(j);
  1241           if (!independent(s1, s2)) {
  1242             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1243               schedule_before_pack.push(s1); // s1 must be scheduled before
  1244               Node_List* mem_pk = my_pack(s1);
  1245               if (mem_pk != NULL) {
  1246                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1247                   Node* s = mem_pk->at(ii);  // follow partner
  1248                   if (memops.member(s) && !schedule_before_pack.member(s))
  1249                     schedule_before_pack.push(s);
  1252               break;
  1259     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1260     // Following code moves loads connected to upper_insert_pt below aliased stores.
  1261     // Collect such loads here and reconnect them back to upper_insert_pt later.
  1262     memops.clear();
  1263     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
  1264       Node* use = upper_insert_pt->out(i);
  1265       if (!use->is_Store())
  1266         memops.push(use);
  1269     MemNode* lower_insert_pt = last;
  1270     previous                 = last; //previous store in pk
  1271     current                  = last->in(MemNode::Memory)->as_Mem();
  1273     // start scheduling from "last" to "first"
  1274     while (true) {
  1275       assert(in_bb(current), "stay in block");
  1276       assert(in_pack(previous, pk), "previous stays in pack");
  1277       Node* my_mem = current->in(MemNode::Memory);
  1279       if (in_pack(current, pk)) {
  1280         // Forward users of my memory state (except "previous) to my input memory state
  1281         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1282           Node* use = current->out(i);
  1283           if (use->is_Mem() && use != previous) {
  1284             assert(use->in(MemNode::Memory) == current, "must be");
  1285             if (schedule_before_pack.member(use)) {
  1286               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
  1287             } else {
  1288               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
  1290             --i; // deleted this edge; rescan position
  1293         previous = current;
  1294       } else { // !in_pack(current, pk) ==> a sandwiched store
  1295         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1298       if (current == first) break;
  1299       current = my_mem->as_Mem();
  1300     } // end while
  1302     // Reconnect loads back to upper_insert_pt.
  1303     for (uint i = 0; i < memops.size(); i++) {
  1304       Node *ld = memops.at(i);
  1305       if (ld->in(MemNode::Memory) != upper_insert_pt) {
  1306         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
  1309   } else if (pk->at(0)->is_Load()) { //load
  1310     // all loads in the pack should have the same memory state. By default,
  1311     // we use the memory state of the last load. However, if any load could
  1312     // not be moved down due to the dependence constraint, we use the memory
  1313     // state of the first load.
  1314     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1315     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1316     bool schedule_last = true;
  1317     for (uint i = 0; i < pk->size(); i++) {
  1318       Node* ld = pk->at(i);
  1319       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1320            current=current->in(MemNode::Memory)) {
  1321         assert(current != first_mem, "corrupted memory graph");
  1322         if(current->is_Mem() && !independent(current, ld)){
  1323           schedule_last = false; // a later store depends on this load
  1324           break;
  1329     Node* mem_input = schedule_last ? last_mem : first_mem;
  1330     _igvn.hash_delete(mem_input);
  1331     // Give each load the same memory state
  1332     for (uint i = 0; i < pk->size(); i++) {
  1333       LoadNode* ld = pk->at(i)->as_Load();
  1334       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
  1339 //------------------------------output---------------------------
  1340 // Convert packs into vector node operations
  1341 void SuperWord::output() {
  1342   if (_packset.length() == 0) return;
  1344 #ifndef PRODUCT
  1345   if (TraceLoopOpts) {
  1346     tty->print("SuperWord    ");
  1347     lpt()->dump_head();
  1349 #endif
  1351   // MUST ENSURE main loop's initial value is properly aligned:
  1352   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1354   align_initial_loop_index(align_to_ref());
  1356   // Insert extract (unpack) operations for scalar uses
  1357   for (int i = 0; i < _packset.length(); i++) {
  1358     insert_extracts(_packset.at(i));
  1361   Compile* C = _phase->C;
  1362   uint max_vlen_in_bytes = 0;
  1363   for (int i = 0; i < _block.length(); i++) {
  1364     Node* n = _block.at(i);
  1365     Node_List* p = my_pack(n);
  1366     if (p && n == executed_last(p)) {
  1367       uint vlen = p->size();
  1368       uint vlen_in_bytes = 0;
  1369       Node* vn = NULL;
  1370       Node* low_adr = p->at(0);
  1371       Node* first   = executed_first(p);
  1372       int   opc = n->Opcode();
  1373       if (n->is_Load()) {
  1374         Node* ctl = n->in(MemNode::Control);
  1375         Node* mem = first->in(MemNode::Memory);
  1376         Node* adr = low_adr->in(MemNode::Address);
  1377         const TypePtr* atyp = n->adr_type();
  1378         vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
  1379         vlen_in_bytes = vn->as_LoadVector()->memory_size();
  1380       } else if (n->is_Store()) {
  1381         // Promote value to be stored to vector
  1382         Node* val = vector_opd(p, MemNode::ValueIn);
  1383         Node* ctl = n->in(MemNode::Control);
  1384         Node* mem = first->in(MemNode::Memory);
  1385         Node* adr = low_adr->in(MemNode::Address);
  1386         const TypePtr* atyp = n->adr_type();
  1387         vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
  1388         vlen_in_bytes = vn->as_StoreVector()->memory_size();
  1389       } else if (n->req() == 3) {
  1390         // Promote operands to vector
  1391         Node* in1 = vector_opd(p, 1);
  1392         Node* in2 = vector_opd(p, 2);
  1393         if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
  1394           // Move invariant vector input into second position to avoid register spilling.
  1395           Node* tmp = in1;
  1396           in1 = in2;
  1397           in2 = tmp;
  1399         vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
  1400         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
  1401       } else {
  1402         ShouldNotReachHere();
  1404       assert(vn != NULL, "sanity");
  1405       _igvn.register_new_node_with_optimizer(vn);
  1406       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1407       for (uint j = 0; j < p->size(); j++) {
  1408         Node* pm = p->at(j);
  1409         _igvn.replace_node(pm, vn);
  1411       _igvn._worklist.push(vn);
  1413       if (vlen_in_bytes > max_vlen_in_bytes) {
  1414         max_vlen_in_bytes = vlen_in_bytes;
  1416 #ifdef ASSERT
  1417       if (TraceNewVectors) {
  1418         tty->print("new Vector node: ");
  1419         vn->dump();
  1421 #endif
  1424   C->set_max_vector_size(max_vlen_in_bytes);
  1427 //------------------------------vector_opd---------------------------
  1428 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1429 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1430   Node* p0 = p->at(0);
  1431   uint vlen = p->size();
  1432   Node* opd = p0->in(opd_idx);
  1434   if (same_inputs(p, opd_idx)) {
  1435     if (opd->is_Vector() || opd->is_LoadVector()) {
  1436       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
  1437       return opd; // input is matching vector
  1439     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
  1440       Compile* C = _phase->C;
  1441       Node* cnt = opd;
  1442       // Vector instructions do not mask shift count, do it here.
  1443       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  1444       const TypeInt* t = opd->find_int_type();
  1445       if (t != NULL && t->is_con()) {
  1446         juint shift = t->get_con();
  1447         if (shift > mask) { // Unsigned cmp
  1448           cnt = ConNode::make(C, TypeInt::make(shift & mask));
  1450       } else {
  1451         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  1452           cnt = ConNode::make(C, TypeInt::make(mask));
  1453           _igvn.register_new_node_with_optimizer(cnt);
  1454           cnt = new (C) AndINode(opd, cnt);
  1455           _igvn.register_new_node_with_optimizer(cnt);
  1456           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1458         assert(opd->bottom_type()->isa_int(), "int type only");
  1459         // Move non constant shift count into vector register.
  1460         cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
  1462       if (cnt != opd) {
  1463         _igvn.register_new_node_with_optimizer(cnt);
  1464         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1466       return cnt;
  1468     assert(!opd->is_StoreVector(), "such vector is not expected here");
  1469     // Convert scalar input to vector with the same number of elements as
  1470     // p0's vector. Use p0's type because size of operand's container in
  1471     // vector should match p0's size regardless operand's size.
  1472     const Type* p0_t = velt_type(p0);
  1473     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
  1475     _igvn.register_new_node_with_optimizer(vn);
  1476     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1477 #ifdef ASSERT
  1478     if (TraceNewVectors) {
  1479       tty->print("new Vector node: ");
  1480       vn->dump();
  1482 #endif
  1483     return vn;
  1486   // Insert pack operation
  1487   BasicType bt = velt_basic_type(p0);
  1488   PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
  1489   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
  1491   for (uint i = 1; i < vlen; i++) {
  1492     Node* pi = p->at(i);
  1493     Node* in = pi->in(opd_idx);
  1494     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1495     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
  1496     pk->add_opd(in);
  1498   _igvn.register_new_node_with_optimizer(pk);
  1499   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1500 #ifdef ASSERT
  1501   if (TraceNewVectors) {
  1502     tty->print("new Vector node: ");
  1503     pk->dump();
  1505 #endif
  1506   return pk;
  1509 //------------------------------insert_extracts---------------------------
  1510 // If a use of pack p is not a vector use, then replace the
  1511 // use with an extract operation.
  1512 void SuperWord::insert_extracts(Node_List* p) {
  1513   if (p->at(0)->is_Store()) return;
  1514   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1516   // Inspect each use of each pack member.  For each use that is
  1517   // not a vector use, replace the use with an extract operation.
  1519   for (uint i = 0; i < p->size(); i++) {
  1520     Node* def = p->at(i);
  1521     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1522       Node* use = def->fast_out(j);
  1523       for (uint k = 0; k < use->req(); k++) {
  1524         Node* n = use->in(k);
  1525         if (def == n) {
  1526           if (!is_vector_use(use, k)) {
  1527             _n_idx_list.push(use, k);
  1534   while (_n_idx_list.is_nonempty()) {
  1535     Node* use = _n_idx_list.node();
  1536     int   idx = _n_idx_list.index();
  1537     _n_idx_list.pop();
  1538     Node* def = use->in(idx);
  1540     // Insert extract operation
  1541     _igvn.hash_delete(def);
  1542     int def_pos = alignment(def) / data_size(def);
  1544     Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
  1545     _igvn.register_new_node_with_optimizer(ex);
  1546     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1547     _igvn.replace_input_of(use, idx, ex);
  1548     _igvn._worklist.push(def);
  1550     bb_insert_after(ex, bb_idx(def));
  1551     set_velt_type(ex, velt_type(def));
  1555 //------------------------------is_vector_use---------------------------
  1556 // Is use->in(u_idx) a vector use?
  1557 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1558   Node_List* u_pk = my_pack(use);
  1559   if (u_pk == NULL) return false;
  1560   Node* def = use->in(u_idx);
  1561   Node_List* d_pk = my_pack(def);
  1562   if (d_pk == NULL) {
  1563     // check for scalar promotion
  1564     Node* n = u_pk->at(0)->in(u_idx);
  1565     for (uint i = 1; i < u_pk->size(); i++) {
  1566       if (u_pk->at(i)->in(u_idx) != n) return false;
  1568     return true;
  1570   if (u_pk->size() != d_pk->size())
  1571     return false;
  1572   for (uint i = 0; i < u_pk->size(); i++) {
  1573     Node* ui = u_pk->at(i);
  1574     Node* di = d_pk->at(i);
  1575     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1576       return false;
  1578   return true;
  1581 //------------------------------construct_bb---------------------------
  1582 // Construct reverse postorder list of block members
  1583 bool SuperWord::construct_bb() {
  1584   Node* entry = bb();
  1586   assert(_stk.length() == 0,            "stk is empty");
  1587   assert(_block.length() == 0,          "block is empty");
  1588   assert(_data_entry.length() == 0,     "data_entry is empty");
  1589   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1590   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1592   // Find non-control nodes with no inputs from within block,
  1593   // create a temporary map from node _idx to bb_idx for use
  1594   // by the visited and post_visited sets,
  1595   // and count number of nodes in block.
  1596   int bb_ct = 0;
  1597   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1598     Node *n = lpt()->_body.at(i);
  1599     set_bb_idx(n, i); // Create a temporary map
  1600     if (in_bb(n)) {
  1601       if (n->is_LoadStore() || n->is_MergeMem() ||
  1602           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
  1603         // Bailout if the loop has LoadStore, MergeMem or data Proj
  1604         // nodes. Superword optimization does not work with them.
  1605         return false;
  1607       bb_ct++;
  1608       if (!n->is_CFG()) {
  1609         bool found = false;
  1610         for (uint j = 0; j < n->req(); j++) {
  1611           Node* def = n->in(j);
  1612           if (def && in_bb(def)) {
  1613             found = true;
  1614             break;
  1617         if (!found) {
  1618           assert(n != entry, "can't be entry");
  1619           _data_entry.push(n);
  1625   // Find memory slices (head and tail)
  1626   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1627     Node *n = lp()->fast_out(i);
  1628     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1629       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1630       if (n_tail != n->in(LoopNode::EntryControl)) {
  1631         if (!n_tail->is_Mem()) {
  1632           assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
  1633           return false; // Bailout
  1635         _mem_slice_head.push(n);
  1636         _mem_slice_tail.push(n_tail);
  1641   // Create an RPO list of nodes in block
  1643   visited_clear();
  1644   post_visited_clear();
  1646   // Push all non-control nodes with no inputs from within block, then control entry
  1647   for (int j = 0; j < _data_entry.length(); j++) {
  1648     Node* n = _data_entry.at(j);
  1649     visited_set(n);
  1650     _stk.push(n);
  1652   visited_set(entry);
  1653   _stk.push(entry);
  1655   // Do a depth first walk over out edges
  1656   int rpo_idx = bb_ct - 1;
  1657   int size;
  1658   while ((size = _stk.length()) > 0) {
  1659     Node* n = _stk.top(); // Leave node on stack
  1660     if (!visited_test_set(n)) {
  1661       // forward arc in graph
  1662     } else if (!post_visited_test(n)) {
  1663       // cross or back arc
  1664       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1665         Node *use = n->fast_out(i);
  1666         if (in_bb(use) && !visited_test(use) &&
  1667             // Don't go around backedge
  1668             (!use->is_Phi() || n == entry)) {
  1669           _stk.push(use);
  1672       if (_stk.length() == size) {
  1673         // There were no additional uses, post visit node now
  1674         _stk.pop(); // Remove node from stack
  1675         assert(rpo_idx >= 0, "");
  1676         _block.at_put_grow(rpo_idx, n);
  1677         rpo_idx--;
  1678         post_visited_set(n);
  1679         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1681     } else {
  1682       _stk.pop(); // Remove post-visited node from stack
  1686   // Create real map of block indices for nodes
  1687   for (int j = 0; j < _block.length(); j++) {
  1688     Node* n = _block.at(j);
  1689     set_bb_idx(n, j);
  1692   initialize_bb(); // Ensure extra info is allocated.
  1694 #ifndef PRODUCT
  1695   if (TraceSuperWord) {
  1696     print_bb();
  1697     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1698     for (int m = 0; m < _data_entry.length(); m++) {
  1699       tty->print("%3d ", m);
  1700       _data_entry.at(m)->dump();
  1702     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1703     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1704       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1705       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1708 #endif
  1709   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1710   return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
  1713 //------------------------------initialize_bb---------------------------
  1714 // Initialize per node info
  1715 void SuperWord::initialize_bb() {
  1716   Node* last = _block.at(_block.length() - 1);
  1717   grow_node_info(bb_idx(last));
  1720 //------------------------------bb_insert_after---------------------------
  1721 // Insert n into block after pos
  1722 void SuperWord::bb_insert_after(Node* n, int pos) {
  1723   int n_pos = pos + 1;
  1724   // Make room
  1725   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1726     _block.at_put_grow(i+1, _block.at(i));
  1728   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1729     _node_info.at_put_grow(j+1, _node_info.at(j));
  1731   // Set value
  1732   _block.at_put_grow(n_pos, n);
  1733   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1734   // Adjust map from node->_idx to _block index
  1735   for (int i = n_pos; i < _block.length(); i++) {
  1736     set_bb_idx(_block.at(i), i);
  1740 //------------------------------compute_max_depth---------------------------
  1741 // Compute max depth for expressions from beginning of block
  1742 // Use to prune search paths during test for independence.
  1743 void SuperWord::compute_max_depth() {
  1744   int ct = 0;
  1745   bool again;
  1746   do {
  1747     again = false;
  1748     for (int i = 0; i < _block.length(); i++) {
  1749       Node* n = _block.at(i);
  1750       if (!n->is_Phi()) {
  1751         int d_orig = depth(n);
  1752         int d_in   = 0;
  1753         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1754           Node* pred = preds.current();
  1755           if (in_bb(pred)) {
  1756             d_in = MAX2(d_in, depth(pred));
  1759         if (d_in + 1 != d_orig) {
  1760           set_depth(n, d_in + 1);
  1761           again = true;
  1765     ct++;
  1766   } while (again);
  1767 #ifndef PRODUCT
  1768   if (TraceSuperWord && Verbose)
  1769     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1770 #endif
  1773 //-------------------------compute_vector_element_type-----------------------
  1774 // Compute necessary vector element type for expressions
  1775 // This propagates backwards a narrower integer type when the
  1776 // upper bits of the value are not needed.
  1777 // Example:  char a,b,c;  a = b + c;
  1778 // Normally the type of the add is integer, but for packed character
  1779 // operations the type of the add needs to be char.
  1780 void SuperWord::compute_vector_element_type() {
  1781 #ifndef PRODUCT
  1782   if (TraceSuperWord && Verbose)
  1783     tty->print_cr("\ncompute_velt_type:");
  1784 #endif
  1786   // Initial type
  1787   for (int i = 0; i < _block.length(); i++) {
  1788     Node* n = _block.at(i);
  1789     set_velt_type(n, container_type(n));
  1792   // Propagate integer narrowed type backwards through operations
  1793   // that don't depend on higher order bits
  1794   for (int i = _block.length() - 1; i >= 0; i--) {
  1795     Node* n = _block.at(i);
  1796     // Only integer types need be examined
  1797     const Type* vtn = velt_type(n);
  1798     if (vtn->basic_type() == T_INT) {
  1799       uint start, end;
  1800       VectorNode::vector_operands(n, &start, &end);
  1802       for (uint j = start; j < end; j++) {
  1803         Node* in  = n->in(j);
  1804         // Don't propagate through a memory
  1805         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
  1806             data_size(n) < data_size(in)) {
  1807           bool same_type = true;
  1808           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1809             Node *use = in->fast_out(k);
  1810             if (!in_bb(use) || !same_velt_type(use, n)) {
  1811               same_type = false;
  1812               break;
  1815           if (same_type) {
  1816             // For right shifts of small integer types (bool, byte, char, short)
  1817             // we need precise information about sign-ness. Only Load nodes have
  1818             // this information because Store nodes are the same for signed and
  1819             // unsigned values. And any arithmetic operation after a load may
  1820             // expand a value to signed Int so such right shifts can't be used
  1821             // because vector elements do not have upper bits of Int.
  1822             const Type* vt = vtn;
  1823             if (VectorNode::is_shift(in)) {
  1824               Node* load = in->in(1);
  1825               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
  1826                 vt = velt_type(load);
  1827               } else if (in->Opcode() != Op_LShiftI) {
  1828                 // Widen type to Int to avoid creation of right shift vector
  1829                 // (align + data_size(s1) check in stmts_can_pack() will fail).
  1830                 // Note, left shifts work regardless type.
  1831                 vt = TypeInt::INT;
  1834             set_velt_type(in, vt);
  1840 #ifndef PRODUCT
  1841   if (TraceSuperWord && Verbose) {
  1842     for (int i = 0; i < _block.length(); i++) {
  1843       Node* n = _block.at(i);
  1844       velt_type(n)->dump();
  1845       tty->print("\t");
  1846       n->dump();
  1849 #endif
  1852 //------------------------------memory_alignment---------------------------
  1853 // Alignment within a vector memory reference
  1854 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
  1855   SWPointer p(s, this);
  1856   if (!p.valid()) {
  1857     return bottom_align;
  1859   int vw = vector_width_in_bytes(s);
  1860   if (vw < 2) {
  1861     return bottom_align; // No vectors for this type
  1863   int offset  = p.offset_in_bytes();
  1864   offset     += iv_adjust*p.memory_size();
  1865   int off_rem = offset % vw;
  1866   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
  1867   return off_mod;
  1870 //---------------------------container_type---------------------------
  1871 // Smallest type containing range of values
  1872 const Type* SuperWord::container_type(Node* n) {
  1873   if (n->is_Mem()) {
  1874     BasicType bt = n->as_Mem()->memory_type();
  1875     if (n->is_Store() && (bt == T_CHAR)) {
  1876       // Use T_SHORT type instead of T_CHAR for stored values because any
  1877       // preceding arithmetic operation extends values to signed Int.
  1878       bt = T_SHORT;
  1880     if (n->Opcode() == Op_LoadUB) {
  1881       // Adjust type for unsigned byte loads, it is important for right shifts.
  1882       // T_BOOLEAN is used because there is no basic type representing type
  1883       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
  1884       // size (one byte) and sign is important.
  1885       bt = T_BOOLEAN;
  1887     return Type::get_const_basic_type(bt);
  1889   const Type* t = _igvn.type(n);
  1890   if (t->basic_type() == T_INT) {
  1891     // A narrow type of arithmetic operations will be determined by
  1892     // propagating the type of memory operations.
  1893     return TypeInt::INT;
  1895   return t;
  1898 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
  1899   const Type* vt1 = velt_type(n1);
  1900   const Type* vt2 = velt_type(n2);
  1901   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
  1902     // Compare vectors element sizes for integer types.
  1903     return data_size(n1) == data_size(n2);
  1905   return vt1 == vt2;
  1908 //------------------------------in_packset---------------------------
  1909 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1910 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1911   for (int i = 0; i < _packset.length(); i++) {
  1912     Node_List* p = _packset.at(i);
  1913     assert(p->size() == 2, "must be");
  1914     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1915       return true;
  1918   return false;
  1921 //------------------------------in_pack---------------------------
  1922 // Is s in pack p?
  1923 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1924   for (uint i = 0; i < p->size(); i++) {
  1925     if (p->at(i) == s) {
  1926       return p;
  1929   return NULL;
  1932 //------------------------------remove_pack_at---------------------------
  1933 // Remove the pack at position pos in the packset
  1934 void SuperWord::remove_pack_at(int pos) {
  1935   Node_List* p = _packset.at(pos);
  1936   for (uint i = 0; i < p->size(); i++) {
  1937     Node* s = p->at(i);
  1938     set_my_pack(s, NULL);
  1940   _packset.remove_at(pos);
  1943 //------------------------------executed_first---------------------------
  1944 // Return the node executed first in pack p.  Uses the RPO block list
  1945 // to determine order.
  1946 Node* SuperWord::executed_first(Node_List* p) {
  1947   Node* n = p->at(0);
  1948   int n_rpo = bb_idx(n);
  1949   for (uint i = 1; i < p->size(); i++) {
  1950     Node* s = p->at(i);
  1951     int s_rpo = bb_idx(s);
  1952     if (s_rpo < n_rpo) {
  1953       n = s;
  1954       n_rpo = s_rpo;
  1957   return n;
  1960 //------------------------------executed_last---------------------------
  1961 // Return the node executed last in pack p.
  1962 Node* SuperWord::executed_last(Node_List* p) {
  1963   Node* n = p->at(0);
  1964   int n_rpo = bb_idx(n);
  1965   for (uint i = 1; i < p->size(); i++) {
  1966     Node* s = p->at(i);
  1967     int s_rpo = bb_idx(s);
  1968     if (s_rpo > n_rpo) {
  1969       n = s;
  1970       n_rpo = s_rpo;
  1973   return n;
  1976 //----------------------------align_initial_loop_index---------------------------
  1977 // Adjust pre-loop limit so that in main loop, a load/store reference
  1978 // to align_to_ref will be a position zero in the vector.
  1979 //   (iv + k) mod vector_align == 0
  1980 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1981   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1982   assert(main_head->is_main_loop(), "");
  1983   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1984   assert(pre_end != NULL, "");
  1985   Node *pre_opaq1 = pre_end->limit();
  1986   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1987   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1988   Node *lim0 = pre_opaq->in(1);
  1990   // Where we put new limit calculations
  1991   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1993   // Ensure the original loop limit is available from the
  1994   // pre-loop Opaque1 node.
  1995   Node *orig_limit = pre_opaq->original_loop_limit();
  1996   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1998   SWPointer align_to_ref_p(align_to_ref, this);
  1999   assert(align_to_ref_p.valid(), "sanity");
  2001   // Given:
  2002   //     lim0 == original pre loop limit
  2003   //     V == v_align (power of 2)
  2004   //     invar == extra invariant piece of the address expression
  2005   //     e == offset [ +/- invar ]
  2006   //
  2007   // When reassociating expressions involving '%' the basic rules are:
  2008   //     (a - b) % k == 0   =>  a % k == b % k
  2009   // and:
  2010   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  2011   //
  2012   // For stride > 0 && scale > 0,
  2013   //   Derive the new pre-loop limit "lim" such that the two constraints:
  2014   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  2015   //     (2) (e + lim) % V == 0
  2016   //   are true.
  2017   //
  2018   //   Substituting (1) into (2),
  2019   //     (e + lim0 + N) % V == 0
  2020   //   solve for N:
  2021   //     N = (V - (e + lim0)) % V
  2022   //   substitute back into (1), so that new limit
  2023   //     lim = lim0 + (V - (e + lim0)) % V
  2024   //
  2025   // For stride > 0 && scale < 0
  2026   //   Constraints:
  2027   //     lim = lim0 + N
  2028   //     (e - lim) % V == 0
  2029   //   Solving for lim:
  2030   //     (e - lim0 - N) % V == 0
  2031   //     N = (e - lim0) % V
  2032   //     lim = lim0 + (e - lim0) % V
  2033   //
  2034   // For stride < 0 && scale > 0
  2035   //   Constraints:
  2036   //     lim = lim0 - N
  2037   //     (e + lim) % V == 0
  2038   //   Solving for lim:
  2039   //     (e + lim0 - N) % V == 0
  2040   //     N = (e + lim0) % V
  2041   //     lim = lim0 - (e + lim0) % V
  2042   //
  2043   // For stride < 0 && scale < 0
  2044   //   Constraints:
  2045   //     lim = lim0 - N
  2046   //     (e - lim) % V == 0
  2047   //   Solving for lim:
  2048   //     (e - lim0 + N) % V == 0
  2049   //     N = (V - (e - lim0)) % V
  2050   //     lim = lim0 - (V - (e - lim0)) % V
  2052   int vw = vector_width_in_bytes(align_to_ref);
  2053   int stride   = iv_stride();
  2054   int scale    = align_to_ref_p.scale_in_bytes();
  2055   int elt_size = align_to_ref_p.memory_size();
  2056   int v_align  = vw / elt_size;
  2057   assert(v_align > 1, "sanity");
  2058   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
  2059   Node *offsn  = _igvn.intcon(offset);
  2061   Node *e = offsn;
  2062   if (align_to_ref_p.invar() != NULL) {
  2063     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
  2064     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2065     Node* aref     = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
  2066     _igvn.register_new_node_with_optimizer(aref);
  2067     _phase->set_ctrl(aref, pre_ctrl);
  2068     if (align_to_ref_p.negate_invar()) {
  2069       e = new (_phase->C) SubINode(e, aref);
  2070     } else {
  2071       e = new (_phase->C) AddINode(e, aref);
  2073     _igvn.register_new_node_with_optimizer(e);
  2074     _phase->set_ctrl(e, pre_ctrl);
  2076   if (vw > ObjectAlignmentInBytes) {
  2077     // incorporate base e +/- base && Mask >>> log2(elt)
  2078     Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
  2079     _igvn.register_new_node_with_optimizer(xbase);
  2080 #ifdef _LP64
  2081     xbase  = new (_phase->C) ConvL2INode(xbase);
  2082     _igvn.register_new_node_with_optimizer(xbase);
  2083 #endif
  2084     Node* mask = _igvn.intcon(vw-1);
  2085     Node* masked_xbase  = new (_phase->C) AndINode(xbase, mask);
  2086     _igvn.register_new_node_with_optimizer(masked_xbase);
  2087     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2088     Node* bref     = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
  2089     _igvn.register_new_node_with_optimizer(bref);
  2090     _phase->set_ctrl(bref, pre_ctrl);
  2091     e = new (_phase->C) AddINode(e, bref);
  2092     _igvn.register_new_node_with_optimizer(e);
  2093     _phase->set_ctrl(e, pre_ctrl);
  2096   // compute e +/- lim0
  2097   if (scale < 0) {
  2098     e = new (_phase->C) SubINode(e, lim0);
  2099   } else {
  2100     e = new (_phase->C) AddINode(e, lim0);
  2102   _igvn.register_new_node_with_optimizer(e);
  2103   _phase->set_ctrl(e, pre_ctrl);
  2105   if (stride * scale > 0) {
  2106     // compute V - (e +/- lim0)
  2107     Node* va  = _igvn.intcon(v_align);
  2108     e = new (_phase->C) SubINode(va, e);
  2109     _igvn.register_new_node_with_optimizer(e);
  2110     _phase->set_ctrl(e, pre_ctrl);
  2112   // compute N = (exp) % V
  2113   Node* va_msk = _igvn.intcon(v_align - 1);
  2114   Node* N = new (_phase->C) AndINode(e, va_msk);
  2115   _igvn.register_new_node_with_optimizer(N);
  2116   _phase->set_ctrl(N, pre_ctrl);
  2118   //   substitute back into (1), so that new limit
  2119   //     lim = lim0 + N
  2120   Node* lim;
  2121   if (stride < 0) {
  2122     lim = new (_phase->C) SubINode(lim0, N);
  2123   } else {
  2124     lim = new (_phase->C) AddINode(lim0, N);
  2126   _igvn.register_new_node_with_optimizer(lim);
  2127   _phase->set_ctrl(lim, pre_ctrl);
  2128   Node* constrained =
  2129     (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
  2130                  : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
  2131   _igvn.register_new_node_with_optimizer(constrained);
  2132   _phase->set_ctrl(constrained, pre_ctrl);
  2133   _igvn.hash_delete(pre_opaq);
  2134   pre_opaq->set_req(1, constrained);
  2137 //----------------------------get_pre_loop_end---------------------------
  2138 // Find pre loop end from main loop.  Returns null if none.
  2139 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  2140   Node *ctrl = cl->in(LoopNode::EntryControl);
  2141   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  2142   Node *iffm = ctrl->in(0);
  2143   if (!iffm->is_If()) return NULL;
  2144   Node *p_f = iffm->in(0);
  2145   if (!p_f->is_IfFalse()) return NULL;
  2146   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  2147   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  2148   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  2149   return pre_end;
  2153 //------------------------------init---------------------------
  2154 void SuperWord::init() {
  2155   _dg.init();
  2156   _packset.clear();
  2157   _disjoint_ptrs.clear();
  2158   _block.clear();
  2159   _data_entry.clear();
  2160   _mem_slice_head.clear();
  2161   _mem_slice_tail.clear();
  2162   _node_info.clear();
  2163   _align_to_ref = NULL;
  2164   _lpt = NULL;
  2165   _lp = NULL;
  2166   _bb = NULL;
  2167   _iv = NULL;
  2170 //------------------------------print_packset---------------------------
  2171 void SuperWord::print_packset() {
  2172 #ifndef PRODUCT
  2173   tty->print_cr("packset");
  2174   for (int i = 0; i < _packset.length(); i++) {
  2175     tty->print_cr("Pack: %d", i);
  2176     Node_List* p = _packset.at(i);
  2177     print_pack(p);
  2179 #endif
  2182 //------------------------------print_pack---------------------------
  2183 void SuperWord::print_pack(Node_List* p) {
  2184   for (uint i = 0; i < p->size(); i++) {
  2185     print_stmt(p->at(i));
  2189 //------------------------------print_bb---------------------------
  2190 void SuperWord::print_bb() {
  2191 #ifndef PRODUCT
  2192   tty->print_cr("\nBlock");
  2193   for (int i = 0; i < _block.length(); i++) {
  2194     Node* n = _block.at(i);
  2195     tty->print("%d ", i);
  2196     if (n) {
  2197       n->dump();
  2200 #endif
  2203 //------------------------------print_stmt---------------------------
  2204 void SuperWord::print_stmt(Node* s) {
  2205 #ifndef PRODUCT
  2206   tty->print(" align: %d \t", alignment(s));
  2207   s->dump();
  2208 #endif
  2211 //------------------------------blank---------------------------
  2212 char* SuperWord::blank(uint depth) {
  2213   static char blanks[101];
  2214   assert(depth < 101, "too deep");
  2215   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  2216   blanks[depth] = '\0';
  2217   return blanks;
  2221 //==============================SWPointer===========================
  2223 //----------------------------SWPointer------------------------
  2224 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  2225   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  2226   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  2228   Node* adr = mem->in(MemNode::Address);
  2229   if (!adr->is_AddP()) {
  2230     assert(!valid(), "too complex");
  2231     return;
  2233   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  2234   Node* base = adr->in(AddPNode::Base);
  2235   //unsafe reference could not be aligned appropriately without runtime checking
  2236   if (base == NULL || base->bottom_type() == Type::TOP) {
  2237     assert(!valid(), "unsafe access");
  2238     return;
  2240   for (int i = 0; i < 3; i++) {
  2241     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  2242       assert(!valid(), "too complex");
  2243       return;
  2245     adr = adr->in(AddPNode::Address);
  2246     if (base == adr || !adr->is_AddP()) {
  2247       break; // stop looking at addp's
  2250   _base = base;
  2251   _adr  = adr;
  2252   assert(valid(), "Usable");
  2255 // Following is used to create a temporary object during
  2256 // the pattern match of an address expression.
  2257 SWPointer::SWPointer(SWPointer* p) :
  2258   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  2259   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  2261 //------------------------scaled_iv_plus_offset--------------------
  2262 // Match: k*iv + offset
  2263 // where: k is a constant that maybe zero, and
  2264 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  2265 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  2266   if (scaled_iv(n)) {
  2267     return true;
  2269   if (offset_plus_k(n)) {
  2270     return true;
  2272   int opc = n->Opcode();
  2273   if (opc == Op_AddI) {
  2274     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  2275       return true;
  2277     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2278       return true;
  2280   } else if (opc == Op_SubI) {
  2281     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  2282       return true;
  2284     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2285       _scale *= -1;
  2286       return true;
  2289   return false;
  2292 //----------------------------scaled_iv------------------------
  2293 // Match: k*iv where k is a constant that's not zero
  2294 bool SWPointer::scaled_iv(Node* n) {
  2295   if (_scale != 0) {
  2296     return false;  // already found a scale
  2298   if (n == iv()) {
  2299     _scale = 1;
  2300     return true;
  2302   int opc = n->Opcode();
  2303   if (opc == Op_MulI) {
  2304     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2305       _scale = n->in(2)->get_int();
  2306       return true;
  2307     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2308       _scale = n->in(1)->get_int();
  2309       return true;
  2311   } else if (opc == Op_LShiftI) {
  2312     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2313       _scale = 1 << n->in(2)->get_int();
  2314       return true;
  2316   } else if (opc == Op_ConvI2L) {
  2317     if (scaled_iv_plus_offset(n->in(1))) {
  2318       return true;
  2320   } else if (opc == Op_LShiftL) {
  2321     if (!has_iv() && _invar == NULL) {
  2322       // Need to preserve the current _offset value, so
  2323       // create a temporary object for this expression subtree.
  2324       // Hacky, so should re-engineer the address pattern match.
  2325       SWPointer tmp(this);
  2326       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2327         if (tmp._invar == NULL) {
  2328           int mult = 1 << n->in(2)->get_int();
  2329           _scale   = tmp._scale  * mult;
  2330           _offset += tmp._offset * mult;
  2331           return true;
  2336   return false;
  2339 //----------------------------offset_plus_k------------------------
  2340 // Match: offset is (k [+/- invariant])
  2341 // where k maybe zero and invariant is optional, but not both.
  2342 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2343   int opc = n->Opcode();
  2344   if (opc == Op_ConI) {
  2345     _offset += negate ? -(n->get_int()) : n->get_int();
  2346     return true;
  2347   } else if (opc == Op_ConL) {
  2348     // Okay if value fits into an int
  2349     const TypeLong* t = n->find_long_type();
  2350     if (t->higher_equal(TypeLong::INT)) {
  2351       jlong loff = n->get_long();
  2352       jint  off  = (jint)loff;
  2353       _offset += negate ? -off : loff;
  2354       return true;
  2356     return false;
  2358   if (_invar != NULL) return false; // already have an invariant
  2359   if (opc == Op_AddI) {
  2360     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2361       _negate_invar = negate;
  2362       _invar = n->in(1);
  2363       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2364       return true;
  2365     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2366       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2367       _negate_invar = negate;
  2368       _invar = n->in(2);
  2369       return true;
  2372   if (opc == Op_SubI) {
  2373     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2374       _negate_invar = negate;
  2375       _invar = n->in(1);
  2376       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2377       return true;
  2378     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2379       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2380       _negate_invar = !negate;
  2381       _invar = n->in(2);
  2382       return true;
  2385   if (invariant(n)) {
  2386     _negate_invar = negate;
  2387     _invar = n;
  2388     return true;
  2390   return false;
  2393 //----------------------------print------------------------
  2394 void SWPointer::print() {
  2395 #ifndef PRODUCT
  2396   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2397              _base != NULL ? _base->_idx : 0,
  2398              _adr  != NULL ? _adr->_idx  : 0,
  2399              _scale, _offset,
  2400              _negate_invar?'-':'+',
  2401              _invar != NULL ? _invar->_idx : 0);
  2402 #endif
  2405 // ========================= OrderedPair =====================
  2407 const OrderedPair OrderedPair::initial;
  2409 // ========================= SWNodeInfo =====================
  2411 const SWNodeInfo SWNodeInfo::initial;
  2414 // ============================ DepGraph ===========================
  2416 //------------------------------make_node---------------------------
  2417 // Make a new dependence graph node for an ideal node.
  2418 DepMem* DepGraph::make_node(Node* node) {
  2419   DepMem* m = new (_arena) DepMem(node);
  2420   if (node != NULL) {
  2421     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2422     _map.at_put_grow(node->_idx, m);
  2424   return m;
  2427 //------------------------------make_edge---------------------------
  2428 // Make a new dependence graph edge from dpred -> dsucc
  2429 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2430   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2431   dpred->set_out_head(e);
  2432   dsucc->set_in_head(e);
  2433   return e;
  2436 // ========================== DepMem ========================
  2438 //------------------------------in_cnt---------------------------
  2439 int DepMem::in_cnt() {
  2440   int ct = 0;
  2441   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2442   return ct;
  2445 //------------------------------out_cnt---------------------------
  2446 int DepMem::out_cnt() {
  2447   int ct = 0;
  2448   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2449   return ct;
  2452 //------------------------------print-----------------------------
  2453 void DepMem::print() {
  2454 #ifndef PRODUCT
  2455   tty->print("  DepNode %d (", _node->_idx);
  2456   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2457     Node* pred = p->pred()->node();
  2458     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2460   tty->print(") [");
  2461   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2462     Node* succ = s->succ()->node();
  2463     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2465   tty->print_cr(" ]");
  2466 #endif
  2469 // =========================== DepEdge =========================
  2471 //------------------------------DepPreds---------------------------
  2472 void DepEdge::print() {
  2473 #ifndef PRODUCT
  2474   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2475 #endif
  2478 // =========================== DepPreds =========================
  2479 // Iterator over predecessor edges in the dependence graph.
  2481 //------------------------------DepPreds---------------------------
  2482 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2483   _n = n;
  2484   _done = false;
  2485   if (_n->is_Store() || _n->is_Load()) {
  2486     _next_idx = MemNode::Address;
  2487     _end_idx  = n->req();
  2488     _dep_next = dg.dep(_n)->in_head();
  2489   } else if (_n->is_Mem()) {
  2490     _next_idx = 0;
  2491     _end_idx  = 0;
  2492     _dep_next = dg.dep(_n)->in_head();
  2493   } else {
  2494     _next_idx = 1;
  2495     _end_idx  = _n->req();
  2496     _dep_next = NULL;
  2498   next();
  2501 //------------------------------next---------------------------
  2502 void DepPreds::next() {
  2503   if (_dep_next != NULL) {
  2504     _current  = _dep_next->pred()->node();
  2505     _dep_next = _dep_next->next_in();
  2506   } else if (_next_idx < _end_idx) {
  2507     _current  = _n->in(_next_idx++);
  2508   } else {
  2509     _done = true;
  2513 // =========================== DepSuccs =========================
  2514 // Iterator over successor edges in the dependence graph.
  2516 //------------------------------DepSuccs---------------------------
  2517 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2518   _n = n;
  2519   _done = false;
  2520   if (_n->is_Load()) {
  2521     _next_idx = 0;
  2522     _end_idx  = _n->outcnt();
  2523     _dep_next = dg.dep(_n)->out_head();
  2524   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2525     _next_idx = 0;
  2526     _end_idx  = 0;
  2527     _dep_next = dg.dep(_n)->out_head();
  2528   } else {
  2529     _next_idx = 0;
  2530     _end_idx  = _n->outcnt();
  2531     _dep_next = NULL;
  2533   next();
  2536 //-------------------------------next---------------------------
  2537 void DepSuccs::next() {
  2538   if (_dep_next != NULL) {
  2539     _current  = _dep_next->succ()->node();
  2540     _dep_next = _dep_next->next_out();
  2541   } else if (_next_idx < _end_idx) {
  2542     _current  = _n->raw_out(_next_idx++);
  2543   } else {
  2544     _done = true;

mercurial