src/share/vm/opto/loopnode.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 5981
3213ba4d3dff
child 6630
cd3c534f8f4a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if (n->in(0) && !n->is_expensive()) {
    92     early = n->in(0);
    93     if (!early->is_CFG()) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for (; i < n->req(); i++) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if (c_d > e_d) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if (c_d == e_d &&    // Same depth?
   111                early != cin) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while (1) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if (n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d)
   121           break;                // early is deeper; keep him
   122         if (n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   if (n->is_expensive()) {
   136     assert(n->in(0), "should have control input");
   137     early = get_early_ctrl_for_expensive(n, early);
   138   }
   140   return early;
   141 }
   143 //------------------------------get_early_ctrl_for_expensive---------------------------------
   144 // Move node up the dominator tree as high as legal while still beneficial
   145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
   146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
   147   assert(OptimizeExpensiveOps, "optimization off?");
   149   Node* ctl = n->in(0);
   150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
   151   uint min_dom_depth = dom_depth(earliest);
   152 #ifdef ASSERT
   153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
   154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
   155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
   156   }
   157 #endif
   158   if (dom_depth(ctl) < min_dom_depth) {
   159     return earliest;
   160   }
   162   while (1) {
   163     Node *next = ctl;
   164     // Moving the node out of a loop on the projection of a If
   165     // confuses loop predication. So once we hit a Loop in a If branch
   166     // that doesn't branch to an UNC, we stop. The code that process
   167     // expensive nodes will notice the loop and skip over it to try to
   168     // move the node further up.
   169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
   170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   171         break;
   172       }
   173       next = idom(ctl->in(1)->in(0));
   174     } else if (ctl->is_Proj()) {
   175       // We only move it up along a projection if the projection is
   176       // the single control projection for its parent: same code path,
   177       // if it's a If with UNC or fallthrough of a call.
   178       Node* parent_ctl = ctl->in(0);
   179       if (parent_ctl == NULL) {
   180         break;
   181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
   182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
   183       } else if (parent_ctl->is_If()) {
   184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   185           break;
   186         }
   187         assert(idom(ctl) == parent_ctl, "strange");
   188         next = idom(parent_ctl);
   189       } else if (ctl->is_CatchProj()) {
   190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
   191           break;
   192         }
   193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
   194         next = parent_ctl->in(0)->in(0)->in(0);
   195       } else {
   196         // Check if parent control has a single projection (this
   197         // control is the only possible successor of the parent
   198         // control). If so, we can try to move the node above the
   199         // parent control.
   200         int nb_ctl_proj = 0;
   201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
   202           Node *p = parent_ctl->fast_out(i);
   203           if (p->is_Proj() && p->is_CFG()) {
   204             nb_ctl_proj++;
   205             if (nb_ctl_proj > 1) {
   206               break;
   207             }
   208           }
   209         }
   211         if (nb_ctl_proj > 1) {
   212           break;
   213         }
   214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
   215         assert(idom(ctl) == parent_ctl, "strange");
   216         next = idom(parent_ctl);
   217       }
   218     } else {
   219       next = idom(ctl);
   220     }
   221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
   222       break;
   223     }
   224     ctl = next;
   225   }
   227   if (ctl != n->in(0)) {
   228     _igvn.hash_delete(n);
   229     n->set_req(0, ctl);
   230     _igvn.hash_insert(n);
   231   }
   233   return ctl;
   234 }
   237 //------------------------------set_early_ctrl---------------------------------
   238 // Set earliest legal control
   239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   240   Node *early = get_early_ctrl(n);
   242   // Record earliest legal location
   243   set_ctrl(n, early);
   244 }
   246 //------------------------------set_subtree_ctrl-------------------------------
   247 // set missing _ctrl entries on new nodes
   248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   249   // Already set?  Get out.
   250   if( _nodes[n->_idx] ) return;
   251   // Recursively set _nodes array to indicate where the Node goes
   252   uint i;
   253   for( i = 0; i < n->req(); ++i ) {
   254     Node *m = n->in(i);
   255     if( m && m != C->root() )
   256       set_subtree_ctrl( m );
   257   }
   259   // Fixup self
   260   set_early_ctrl( n );
   261 }
   263 //------------------------------is_counted_loop--------------------------------
   264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   265   PhaseGVN *gvn = &_igvn;
   267   // Counted loop head must be a good RegionNode with only 3 not NULL
   268   // control input edges: Self, Entry, LoopBack.
   269   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   270     return false;
   272   Node *init_control = x->in(LoopNode::EntryControl);
   273   Node *back_control = x->in(LoopNode::LoopBackControl);
   274   if (init_control == NULL || back_control == NULL)    // Partially dead
   275     return false;
   276   // Must also check for TOP when looking for a dead loop
   277   if (init_control->is_top() || back_control->is_top())
   278     return false;
   280   // Allow funny placement of Safepoint
   281   if (back_control->Opcode() == Op_SafePoint)
   282     back_control = back_control->in(TypeFunc::Control);
   284   // Controlling test for loop
   285   Node *iftrue = back_control;
   286   uint iftrue_op = iftrue->Opcode();
   287   if (iftrue_op != Op_IfTrue &&
   288       iftrue_op != Op_IfFalse)
   289     // I have a weird back-control.  Probably the loop-exit test is in
   290     // the middle of the loop and I am looking at some trailing control-flow
   291     // merge point.  To fix this I would have to partially peel the loop.
   292     return false; // Obscure back-control
   294   // Get boolean guarding loop-back test
   295   Node *iff = iftrue->in(0);
   296   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   297     return false;
   298   BoolNode *test = iff->in(1)->as_Bool();
   299   BoolTest::mask bt = test->_test._test;
   300   float cl_prob = iff->as_If()->_prob;
   301   if (iftrue_op == Op_IfFalse) {
   302     bt = BoolTest(bt).negate();
   303     cl_prob = 1.0 - cl_prob;
   304   }
   305   // Get backedge compare
   306   Node *cmp = test->in(1);
   307   int cmp_op = cmp->Opcode();
   308   if (cmp_op != Op_CmpI)
   309     return false;                // Avoid pointer & float compares
   311   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   312   Node *incr  = cmp->in(1);
   313   Node *limit = cmp->in(2);
   315   // ---------
   316   // need 'loop()' test to tell if limit is loop invariant
   317   // ---------
   319   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   320     Node *tmp = incr;            // Then reverse order into the CmpI
   321     incr = limit;
   322     limit = tmp;
   323     bt = BoolTest(bt).commute(); // And commute the exit test
   324   }
   325   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   326     return false;
   327   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   328     return false;
   330   Node* phi_incr = NULL;
   331   // Trip-counter increment must be commutative & associative.
   332   if (incr->is_Phi()) {
   333     if (incr->as_Phi()->region() != x || incr->req() != 3)
   334       return false; // Not simple trip counter expression
   335     phi_incr = incr;
   336     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   337     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   338       return false;
   339   }
   341   Node* trunc1 = NULL;
   342   Node* trunc2 = NULL;
   343   const TypeInt* iv_trunc_t = NULL;
   344   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   345     return false; // Funny increment opcode
   346   }
   347   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   349   // Get merge point
   350   Node *xphi = incr->in(1);
   351   Node *stride = incr->in(2);
   352   if (!stride->is_Con()) {     // Oops, swap these
   353     if (!xphi->is_Con())       // Is the other guy a constant?
   354       return false;             // Nope, unknown stride, bail out
   355     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   356     xphi = stride;
   357     stride = tmp;
   358   }
   359   // Stride must be constant
   360   int stride_con = stride->get_int();
   361   if (stride_con == 0)
   362     return false; // missed some peephole opt
   364   if (!xphi->is_Phi())
   365     return false; // Too much math on the trip counter
   366   if (phi_incr != NULL && phi_incr != xphi)
   367     return false;
   368   PhiNode *phi = xphi->as_Phi();
   370   // Phi must be of loop header; backedge must wrap to increment
   371   if (phi->region() != x)
   372     return false;
   373   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   374       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   375     return false;
   376   }
   377   Node *init_trip = phi->in(LoopNode::EntryControl);
   379   // If iv trunc type is smaller than int, check for possible wrap.
   380   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   381     assert(trunc1 != NULL, "must have found some truncation");
   383     // Get a better type for the phi (filtered thru if's)
   384     const TypeInt* phi_ft = filtered_type(phi);
   386     // Can iv take on a value that will wrap?
   387     //
   388     // Ensure iv's limit is not within "stride" of the wrap value.
   389     //
   390     // Example for "short" type
   391     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   392     //    If the stride is +10, then the last value of the induction
   393     //    variable before the increment (phi_ft->_hi) must be
   394     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   395     //    ensure no truncation occurs after the increment.
   397     if (stride_con > 0) {
   398       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   399           iv_trunc_t->_lo > phi_ft->_lo) {
   400         return false;  // truncation may occur
   401       }
   402     } else if (stride_con < 0) {
   403       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   404           iv_trunc_t->_hi < phi_ft->_hi) {
   405         return false;  // truncation may occur
   406       }
   407     }
   408     // No possibility of wrap so truncation can be discarded
   409     // Promote iv type to Int
   410   } else {
   411     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   412   }
   414   // If the condition is inverted and we will be rolling
   415   // through MININT to MAXINT, then bail out.
   416   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   417       // Odd stride
   418       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   419       // Count down loop rolls through MAXINT
   420       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   421       // Count up loop rolls through MININT
   422       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   423     return false; // Bail out
   424   }
   426   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   427   const TypeInt* limit_t = gvn->type(limit)->is_int();
   429   if (stride_con > 0) {
   430     jlong init_p = (jlong)init_t->_lo + stride_con;
   431     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
   432       return false; // cyclic loop or this loop trips only once
   433   } else {
   434     jlong init_p = (jlong)init_t->_hi + stride_con;
   435     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
   436       return false; // cyclic loop or this loop trips only once
   437   }
   439   // =================================================
   440   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   441   //
   442   assert(x->Opcode() == Op_Loop, "regular loops only");
   443   C->print_method(PHASE_BEFORE_CLOOPS, 3);
   445   Node *hook = new (C) Node(6);
   447   if (LoopLimitCheck) {
   449   // ===================================================
   450   // Generate loop limit check to avoid integer overflow
   451   // in cases like next (cyclic loops):
   452   //
   453   // for (i=0; i <= max_jint; i++) {}
   454   // for (i=0; i <  max_jint; i+=2) {}
   455   //
   456   //
   457   // Limit check predicate depends on the loop test:
   458   //
   459   // for(;i != limit; i++)       --> limit <= (max_jint)
   460   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   461   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   462   //
   464   // Check if limit is excluded to do more precise int overflow check.
   465   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   466   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   468   // If compare points directly to the phi we need to adjust
   469   // the compare so that it points to the incr. Limit have
   470   // to be adjusted to keep trip count the same and the
   471   // adjusted limit should be checked for int overflow.
   472   if (phi_incr != NULL) {
   473     stride_m  += stride_con;
   474   }
   476   if (limit->is_Con()) {
   477     int limit_con = limit->get_int();
   478     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   479         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   480       // Bailout: it could be integer overflow.
   481       return false;
   482     }
   483   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   484              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   485       // Limit's type may satisfy the condition, for example,
   486       // when it is an array length.
   487   } else {
   488     // Generate loop's limit check.
   489     // Loop limit check predicate should be near the loop.
   490     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   491     if (!limit_check_proj) {
   492       // The limit check predicate is not generated if this method trapped here before.
   493 #ifdef ASSERT
   494       if (TraceLoopLimitCheck) {
   495         tty->print("missing loop limit check:");
   496         loop->dump_head();
   497         x->dump(1);
   498       }
   499 #endif
   500       return false;
   501     }
   503     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   504     Node* cmp_limit;
   505     Node* bol;
   507     if (stride_con > 0) {
   508       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   509       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
   510     } else {
   511       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   512       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
   513     }
   514     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   515     bol = _igvn.register_new_node_with_optimizer(bol);
   516     set_subtree_ctrl(bol);
   518     // Replace condition in original predicate but preserve Opaque node
   519     // so that previous predicates could be found.
   520     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   521            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   522     Node* opq = check_iff->in(1)->in(1);
   523     _igvn.hash_delete(opq);
   524     opq->set_req(1, bol);
   525     // Update ctrl.
   526     set_ctrl(opq, check_iff->in(0));
   527     set_ctrl(check_iff->in(1), check_iff->in(0));
   529 #ifndef PRODUCT
   530     // report that the loop predication has been actually performed
   531     // for this loop
   532     if (TraceLoopLimitCheck) {
   533       tty->print_cr("Counted Loop Limit Check generated:");
   534       debug_only( bol->dump(2); )
   535     }
   536 #endif
   537   }
   539   if (phi_incr != NULL) {
   540     // If compare points directly to the phi we need to adjust
   541     // the compare so that it points to the incr. Limit have
   542     // to be adjusted to keep trip count the same and we
   543     // should avoid int overflow.
   544     //
   545     //   i = init; do {} while(i++ < limit);
   546     // is converted to
   547     //   i = init; do {} while(++i < limit+1);
   548     //
   549     limit = gvn->transform(new (C) AddINode(limit, stride));
   550   }
   552   // Now we need to canonicalize loop condition.
   553   if (bt == BoolTest::ne) {
   554     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   555     // 'ne' can be replaced with 'lt' only when init < limit.
   556     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   557       bt = BoolTest::lt;
   558     // 'ne' can be replaced with 'gt' only when init > limit.
   559     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   560       bt = BoolTest::gt;
   561   }
   563   if (incl_limit) {
   564     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   565     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   566     //
   567     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   568     limit = gvn->transform(new (C) AddINode(limit, one));
   569     if (bt == BoolTest::le)
   570       bt = BoolTest::lt;
   571     else if (bt == BoolTest::ge)
   572       bt = BoolTest::gt;
   573     else
   574       ShouldNotReachHere();
   575   }
   576   set_subtree_ctrl( limit );
   578   } else { // LoopLimitCheck
   580   // If compare points to incr, we are ok.  Otherwise the compare
   581   // can directly point to the phi; in this case adjust the compare so that
   582   // it points to the incr by adjusting the limit.
   583   if (cmp->in(1) == phi || cmp->in(2) == phi)
   584     limit = gvn->transform(new (C) AddINode(limit,stride));
   586   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   587   // Final value for iterator should be: trip_count * stride + init_trip.
   588   Node *one_p = gvn->intcon( 1);
   589   Node *one_m = gvn->intcon(-1);
   591   Node *trip_count = NULL;
   592   switch( bt ) {
   593   case BoolTest::eq:
   594     ShouldNotReachHere();
   595   case BoolTest::ne:            // Ahh, the case we desire
   596     if (stride_con == 1)
   597       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
   598     else if (stride_con == -1)
   599       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
   600     else
   601       ShouldNotReachHere();
   602     set_subtree_ctrl(trip_count);
   603     //_loop.map(trip_count->_idx,loop(limit));
   604     break;
   605   case BoolTest::le:            // Maybe convert to '<' case
   606     limit = gvn->transform(new (C) AddINode(limit,one_p));
   607     set_subtree_ctrl( limit );
   608     hook->init_req(4, limit);
   610     bt = BoolTest::lt;
   611     // Make the new limit be in the same loop nest as the old limit
   612     //_loop.map(limit->_idx,limit_loop);
   613     // Fall into next case
   614   case BoolTest::lt: {          // Maybe convert to '!=' case
   615     if (stride_con < 0) // Count down loop rolls through MAXINT
   616       ShouldNotReachHere();
   617     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   618     set_subtree_ctrl( range );
   619     hook->init_req(0, range);
   621     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   622     set_subtree_ctrl( bias );
   623     hook->init_req(1, bias);
   625     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
   626     set_subtree_ctrl( bias1 );
   627     hook->init_req(2, bias1);
   629     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   630     set_subtree_ctrl( trip_count );
   631     hook->init_req(3, trip_count);
   632     break;
   633   }
   635   case BoolTest::ge:            // Maybe convert to '>' case
   636     limit = gvn->transform(new (C) AddINode(limit,one_m));
   637     set_subtree_ctrl( limit );
   638     hook->init_req(4 ,limit);
   640     bt = BoolTest::gt;
   641     // Make the new limit be in the same loop nest as the old limit
   642     //_loop.map(limit->_idx,limit_loop);
   643     // Fall into next case
   644   case BoolTest::gt: {          // Maybe convert to '!=' case
   645     if (stride_con > 0) // count up loop rolls through MININT
   646       ShouldNotReachHere();
   647     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   648     set_subtree_ctrl( range );
   649     hook->init_req(0, range);
   651     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   652     set_subtree_ctrl( bias );
   653     hook->init_req(1, bias);
   655     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
   656     set_subtree_ctrl( bias1 );
   657     hook->init_req(2, bias1);
   659     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   660     set_subtree_ctrl( trip_count );
   661     hook->init_req(3, trip_count);
   662     break;
   663   }
   664   } // switch( bt )
   666   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
   667   set_subtree_ctrl( span );
   668   hook->init_req(5, span);
   670   limit = gvn->transform(new (C) AddINode(span,init_trip));
   671   set_subtree_ctrl( limit );
   673   } // LoopLimitCheck
   675   // Check for SafePoint on backedge and remove
   676   Node *sfpt = x->in(LoopNode::LoopBackControl);
   677   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   678     lazy_replace( sfpt, iftrue );
   679     if (loop->_safepts != NULL) {
   680       loop->_safepts->yank(sfpt);
   681     }
   682     loop->_tail = iftrue;
   683   }
   685   // Build a canonical trip test.
   686   // Clone code, as old values may be in use.
   687   incr = incr->clone();
   688   incr->set_req(1,phi);
   689   incr->set_req(2,stride);
   690   incr = _igvn.register_new_node_with_optimizer(incr);
   691   set_early_ctrl( incr );
   692   _igvn.hash_delete(phi);
   693   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   695   // If phi type is more restrictive than Int, raise to
   696   // Int to prevent (almost) infinite recursion in igvn
   697   // which can only handle integer types for constants or minint..maxint.
   698   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   699     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   700     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   701     nphi = _igvn.register_new_node_with_optimizer(nphi);
   702     set_ctrl(nphi, get_ctrl(phi));
   703     _igvn.replace_node(phi, nphi);
   704     phi = nphi->as_Phi();
   705   }
   706   cmp = cmp->clone();
   707   cmp->set_req(1,incr);
   708   cmp->set_req(2,limit);
   709   cmp = _igvn.register_new_node_with_optimizer(cmp);
   710   set_ctrl(cmp, iff->in(0));
   712   test = test->clone()->as_Bool();
   713   (*(BoolTest*)&test->_test)._test = bt;
   714   test->set_req(1,cmp);
   715   _igvn.register_new_node_with_optimizer(test);
   716   set_ctrl(test, iff->in(0));
   718   // Replace the old IfNode with a new LoopEndNode
   719   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   720   IfNode *le = lex->as_If();
   721   uint dd = dom_depth(iff);
   722   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   723   set_loop(le, loop);
   725   // Get the loop-exit control
   726   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   728   // Need to swap loop-exit and loop-back control?
   729   if (iftrue_op == Op_IfFalse) {
   730     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
   731     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
   733     loop->_tail = back_control = ift2;
   734     set_loop(ift2, loop);
   735     set_loop(iff2, get_loop(iffalse));
   737     // Lazy update of 'get_ctrl' mechanism.
   738     lazy_replace_proj( iffalse, iff2 );
   739     lazy_replace_proj( iftrue,  ift2 );
   741     // Swap names
   742     iffalse = iff2;
   743     iftrue  = ift2;
   744   } else {
   745     _igvn.hash_delete(iffalse);
   746     _igvn.hash_delete(iftrue);
   747     iffalse->set_req_X( 0, le, &_igvn );
   748     iftrue ->set_req_X( 0, le, &_igvn );
   749   }
   751   set_idom(iftrue,  le, dd+1);
   752   set_idom(iffalse, le, dd+1);
   753   assert(iff->outcnt() == 0, "should be dead now");
   754   lazy_replace( iff, le ); // fix 'get_ctrl'
   756   // Now setup a new CountedLoopNode to replace the existing LoopNode
   757   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
   758   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   759   // The following assert is approximately true, and defines the intention
   760   // of can_be_counted_loop.  It fails, however, because phase->type
   761   // is not yet initialized for this loop and its parts.
   762   //assert(l->can_be_counted_loop(this), "sanity");
   763   _igvn.register_new_node_with_optimizer(l);
   764   set_loop(l, loop);
   765   loop->_head = l;
   766   // Fix all data nodes placed at the old loop head.
   767   // Uses the lazy-update mechanism of 'get_ctrl'.
   768   lazy_replace( x, l );
   769   set_idom(l, init_control, dom_depth(x));
   771   // Check for immediately preceding SafePoint and remove
   772   Node *sfpt2 = le->in(0);
   773   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
   774     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   775     if (loop->_safepts != NULL) {
   776       loop->_safepts->yank(sfpt2);
   777     }
   778   }
   780   // Free up intermediate goo
   781   _igvn.remove_dead_node(hook);
   783 #ifdef ASSERT
   784   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   785   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   786 #endif
   787 #ifndef PRODUCT
   788   if (TraceLoopOpts) {
   789     tty->print("Counted      ");
   790     loop->dump_head();
   791   }
   792 #endif
   794   C->print_method(PHASE_AFTER_CLOOPS, 3);
   796   return true;
   797 }
   799 //----------------------exact_limit-------------------------------------------
   800 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   801   assert(loop->_head->is_CountedLoop(), "");
   802   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   803   assert(cl->is_valid_counted_loop(), "");
   805   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   806       cl->limit()->Opcode() == Op_LoopLimit) {
   807     // Old code has exact limit (it could be incorrect in case of int overflow).
   808     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   809     return cl->limit();
   810   }
   811   Node *limit = NULL;
   812 #ifdef ASSERT
   813   BoolTest::mask bt = cl->loopexit()->test_trip();
   814   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   815 #endif
   816   if (cl->has_exact_trip_count()) {
   817     // Simple case: loop has constant boundaries.
   818     // Use jlongs to avoid integer overflow.
   819     int stride_con = cl->stride_con();
   820     jlong  init_con = cl->init_trip()->get_int();
   821     jlong limit_con = cl->limit()->get_int();
   822     julong trip_cnt = cl->trip_count();
   823     jlong final_con = init_con + trip_cnt*stride_con;
   824     int final_int = (int)final_con;
   825     // The final value should be in integer range since the loop
   826     // is counted and the limit was checked for overflow.
   827     assert(final_con == (jlong)final_int, "final value should be integer");
   828     limit = _igvn.intcon(final_int);
   829   } else {
   830     // Create new LoopLimit node to get exact limit (final iv value).
   831     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   832     register_new_node(limit, cl->in(LoopNode::EntryControl));
   833   }
   834   assert(limit != NULL, "sanity");
   835   return limit;
   836 }
   838 //------------------------------Ideal------------------------------------------
   839 // Return a node which is more "ideal" than the current node.
   840 // Attempt to convert into a counted-loop.
   841 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   842   if (!can_be_counted_loop(phase)) {
   843     phase->C->set_major_progress();
   844   }
   845   return RegionNode::Ideal(phase, can_reshape);
   846 }
   849 //=============================================================================
   850 //------------------------------Ideal------------------------------------------
   851 // Return a node which is more "ideal" than the current node.
   852 // Attempt to convert into a counted-loop.
   853 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   854   return RegionNode::Ideal(phase, can_reshape);
   855 }
   857 //------------------------------dump_spec--------------------------------------
   858 // Dump special per-node info
   859 #ifndef PRODUCT
   860 void CountedLoopNode::dump_spec(outputStream *st) const {
   861   LoopNode::dump_spec(st);
   862   if (stride_is_con()) {
   863     st->print("stride: %d ",stride_con());
   864   }
   865   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   866   if (is_main_loop()) st->print("main of N%d", _idx);
   867   if (is_post_loop()) st->print("post of N%d", _main_idx);
   868 }
   869 #endif
   871 //=============================================================================
   872 int CountedLoopEndNode::stride_con() const {
   873   return stride()->bottom_type()->is_int()->get_con();
   874 }
   876 //=============================================================================
   877 //------------------------------Value-----------------------------------------
   878 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   879   const Type* init_t   = phase->type(in(Init));
   880   const Type* limit_t  = phase->type(in(Limit));
   881   const Type* stride_t = phase->type(in(Stride));
   882   // Either input is TOP ==> the result is TOP
   883   if (init_t   == Type::TOP) return Type::TOP;
   884   if (limit_t  == Type::TOP) return Type::TOP;
   885   if (stride_t == Type::TOP) return Type::TOP;
   887   int stride_con = stride_t->is_int()->get_con();
   888   if (stride_con == 1)
   889     return NULL;  // Identity
   891   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   892     // Use jlongs to avoid integer overflow.
   893     jlong init_con   =  init_t->is_int()->get_con();
   894     jlong limit_con  = limit_t->is_int()->get_con();
   895     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   896     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
   897     jlong final_con  = init_con + stride_con*trip_count;
   898     int final_int = (int)final_con;
   899     // The final value should be in integer range since the loop
   900     // is counted and the limit was checked for overflow.
   901     assert(final_con == (jlong)final_int, "final value should be integer");
   902     return TypeInt::make(final_int);
   903   }
   905   return bottom_type(); // TypeInt::INT
   906 }
   908 //------------------------------Ideal------------------------------------------
   909 // Return a node which is more "ideal" than the current node.
   910 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   911   if (phase->type(in(Init))   == Type::TOP ||
   912       phase->type(in(Limit))  == Type::TOP ||
   913       phase->type(in(Stride)) == Type::TOP)
   914     return NULL;  // Dead
   916   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   917   if (stride_con == 1)
   918     return NULL;  // Identity
   920   if (in(Init)->is_Con() && in(Limit)->is_Con())
   921     return NULL;  // Value
   923   // Delay following optimizations until all loop optimizations
   924   // done to keep Ideal graph simple.
   925   if (!can_reshape || phase->C->major_progress())
   926     return NULL;
   928   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   929   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   930   int stride_p;
   931   jlong lim, ini;
   932   julong max;
   933   if (stride_con > 0) {
   934     stride_p = stride_con;
   935     lim = limit_t->_hi;
   936     ini = init_t->_lo;
   937     max = (julong)max_jint;
   938   } else {
   939     stride_p = -stride_con;
   940     lim = init_t->_hi;
   941     ini = limit_t->_lo;
   942     max = (julong)min_jint;
   943   }
   944   julong range = lim - ini + stride_p;
   945   if (range <= max) {
   946     // Convert to integer expression if it is not overflow.
   947     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   948     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
   949     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
   950     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
   951     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
   952     return new (phase->C) AddINode(span, in(Init)); // exact limit
   953   }
   955   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   956       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   957     // Convert to long expression to avoid integer overflow
   958     // and let igvn optimizer convert this division.
   959     //
   960     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
   961     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
   962     Node* stride   = phase->longcon(stride_con);
   963     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   965     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
   966     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
   967     Node *span;
   968     if (stride_con > 0 && is_power_of_2(stride_p)) {
   969       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   970       // and avoid generating rounding for division. Zero trip guard should
   971       // guarantee that init < limit but sometimes the guard is missing and
   972       // we can get situation when init > limit. Note, for the empty loop
   973       // optimization zero trip guard is generated explicitly which leaves
   974       // only RCE predicate where exact limit is used and the predicate
   975       // will simply fail forcing recompilation.
   976       Node* neg_stride   = phase->longcon(-stride_con);
   977       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
   978     } else {
   979       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
   980       span = phase->transform(new (phase->C) MulLNode(trip, stride));
   981     }
   982     // Convert back to int
   983     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
   984     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
   985   }
   987   return NULL;    // No progress
   988 }
   990 //------------------------------Identity---------------------------------------
   991 // If stride == 1 return limit node.
   992 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
   993   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   994   if (stride_con == 1 || stride_con == -1)
   995     return in(Limit);
   996   return this;
   997 }
   999 //=============================================================================
  1000 //----------------------match_incr_with_optional_truncation--------------------
  1001 // Match increment with optional truncation:
  1002 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
  1003 // Return NULL for failure. Success returns the increment node.
  1004 Node* CountedLoopNode::match_incr_with_optional_truncation(
  1005                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
  1006   // Quick cutouts:
  1007   if (expr == NULL || expr->req() != 3)  return NULL;
  1009   Node *t1 = NULL;
  1010   Node *t2 = NULL;
  1011   const TypeInt* trunc_t = TypeInt::INT;
  1012   Node* n1 = expr;
  1013   int   n1op = n1->Opcode();
  1015   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
  1016   if (n1op == Op_AndI &&
  1017       n1->in(2)->is_Con() &&
  1018       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
  1019     // %%% This check should match any mask of 2**K-1.
  1020     t1 = n1;
  1021     n1 = t1->in(1);
  1022     n1op = n1->Opcode();
  1023     trunc_t = TypeInt::CHAR;
  1024   } else if (n1op == Op_RShiftI &&
  1025              n1->in(1) != NULL &&
  1026              n1->in(1)->Opcode() == Op_LShiftI &&
  1027              n1->in(2) == n1->in(1)->in(2) &&
  1028              n1->in(2)->is_Con()) {
  1029     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
  1030     // %%% This check should match any shift in [1..31].
  1031     if (shift == 16 || shift == 8) {
  1032       t1 = n1;
  1033       t2 = t1->in(1);
  1034       n1 = t2->in(1);
  1035       n1op = n1->Opcode();
  1036       if (shift == 16) {
  1037         trunc_t = TypeInt::SHORT;
  1038       } else if (shift == 8) {
  1039         trunc_t = TypeInt::BYTE;
  1044   // If (maybe after stripping) it is an AddI, we won:
  1045   if (n1op == Op_AddI) {
  1046     *trunc1 = t1;
  1047     *trunc2 = t2;
  1048     *trunc_type = trunc_t;
  1049     return n1;
  1052   // failed
  1053   return NULL;
  1057 //------------------------------filtered_type--------------------------------
  1058 // Return a type based on condition control flow
  1059 // A successful return will be a type that is restricted due
  1060 // to a series of dominating if-tests, such as:
  1061 //    if (i < 10) {
  1062 //       if (i > 0) {
  1063 //          here: "i" type is [1..10)
  1064 //       }
  1065 //    }
  1066 // or a control flow merge
  1067 //    if (i < 10) {
  1068 //       do {
  1069 //          phi( , ) -- at top of loop type is [min_int..10)
  1070 //         i = ?
  1071 //       } while ( i < 10)
  1072 //
  1073 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
  1074   assert(n && n->bottom_type()->is_int(), "must be int");
  1075   const TypeInt* filtered_t = NULL;
  1076   if (!n->is_Phi()) {
  1077     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
  1078     filtered_t = filtered_type_from_dominators(n, n_ctrl);
  1080   } else {
  1081     Node* phi    = n->as_Phi();
  1082     Node* region = phi->in(0);
  1083     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
  1084     if (region && region != C->top()) {
  1085       for (uint i = 1; i < phi->req(); i++) {
  1086         Node* val   = phi->in(i);
  1087         Node* use_c = region->in(i);
  1088         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
  1089         if (val_t != NULL) {
  1090           if (filtered_t == NULL) {
  1091             filtered_t = val_t;
  1092           } else {
  1093             filtered_t = filtered_t->meet(val_t)->is_int();
  1099   const TypeInt* n_t = _igvn.type(n)->is_int();
  1100   if (filtered_t != NULL) {
  1101     n_t = n_t->join(filtered_t)->is_int();
  1103   return n_t;
  1107 //------------------------------filtered_type_from_dominators--------------------------------
  1108 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1109 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1110   if (val->is_Con()) {
  1111      return val->bottom_type()->is_int();
  1113   uint if_limit = 10; // Max number of dominating if's visited
  1114   const TypeInt* rtn_t = NULL;
  1116   if (use_ctrl && use_ctrl != C->top()) {
  1117     Node* val_ctrl = get_ctrl(val);
  1118     uint val_dom_depth = dom_depth(val_ctrl);
  1119     Node* pred = use_ctrl;
  1120     uint if_cnt = 0;
  1121     while (if_cnt < if_limit) {
  1122       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1123         if_cnt++;
  1124         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1125         if (if_t != NULL) {
  1126           if (rtn_t == NULL) {
  1127             rtn_t = if_t;
  1128           } else {
  1129             rtn_t = rtn_t->join(if_t)->is_int();
  1133       pred = idom(pred);
  1134       if (pred == NULL || pred == C->top()) {
  1135         break;
  1137       // Stop if going beyond definition block of val
  1138       if (dom_depth(pred) < val_dom_depth) {
  1139         break;
  1143   return rtn_t;
  1147 //------------------------------dump_spec--------------------------------------
  1148 // Dump special per-node info
  1149 #ifndef PRODUCT
  1150 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1151   if( in(TestValue)->is_Bool() ) {
  1152     BoolTest bt( test_trip()); // Added this for g++.
  1154     st->print("[");
  1155     bt.dump_on(st);
  1156     st->print("]");
  1158   st->print(" ");
  1159   IfNode::dump_spec(st);
  1161 #endif
  1163 //=============================================================================
  1164 //------------------------------is_member--------------------------------------
  1165 // Is 'l' a member of 'this'?
  1166 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1167   while( l->_nest > _nest ) l = l->_parent;
  1168   return l == this;
  1171 //------------------------------set_nest---------------------------------------
  1172 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1173 int IdealLoopTree::set_nest( uint depth ) {
  1174   _nest = depth;
  1175   int bits = _has_call;
  1176   if( _child ) bits |= _child->set_nest(depth+1);
  1177   if( bits ) _has_call = 1;
  1178   if( _next  ) bits |= _next ->set_nest(depth  );
  1179   return bits;
  1182 //------------------------------split_fall_in----------------------------------
  1183 // Split out multiple fall-in edges from the loop header.  Move them to a
  1184 // private RegionNode before the loop.  This becomes the loop landing pad.
  1185 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1186   PhaseIterGVN &igvn = phase->_igvn;
  1187   uint i;
  1189   // Make a new RegionNode to be the landing pad.
  1190   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
  1191   phase->set_loop(landing_pad,_parent);
  1192   // Gather all the fall-in control paths into the landing pad
  1193   uint icnt = fall_in_cnt;
  1194   uint oreq = _head->req();
  1195   for( i = oreq-1; i>0; i-- )
  1196     if( !phase->is_member( this, _head->in(i) ) )
  1197       landing_pad->set_req(icnt--,_head->in(i));
  1199   // Peel off PhiNode edges as well
  1200   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1201     Node *oj = _head->fast_out(j);
  1202     if( oj->is_Phi() ) {
  1203       PhiNode* old_phi = oj->as_Phi();
  1204       assert( old_phi->region() == _head, "" );
  1205       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1206       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1207       uint icnt = fall_in_cnt;
  1208       for( i = oreq-1; i>0; i-- ) {
  1209         if( !phase->is_member( this, _head->in(i) ) ) {
  1210           p->init_req(icnt--, old_phi->in(i));
  1211           // Go ahead and clean out old edges from old phi
  1212           old_phi->del_req(i);
  1215       // Search for CSE's here, because ZKM.jar does a lot of
  1216       // loop hackery and we need to be a little incremental
  1217       // with the CSE to avoid O(N^2) node blow-up.
  1218       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1219       if( p2 ) {                // Found CSE
  1220         p->destruct();          // Recover useless new node
  1221         p = p2;                 // Use old node
  1222       } else {
  1223         igvn.register_new_node_with_optimizer(p, old_phi);
  1225       // Make old Phi refer to new Phi.
  1226       old_phi->add_req(p);
  1227       // Check for the special case of making the old phi useless and
  1228       // disappear it.  In JavaGrande I have a case where this useless
  1229       // Phi is the loop limit and prevents recognizing a CountedLoop
  1230       // which in turn prevents removing an empty loop.
  1231       Node *id_old_phi = old_phi->Identity( &igvn );
  1232       if( id_old_phi != old_phi ) { // Found a simple identity?
  1233         // Note that I cannot call 'replace_node' here, because
  1234         // that will yank the edge from old_phi to the Region and
  1235         // I'm mid-iteration over the Region's uses.
  1236         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1237           Node* use = old_phi->last_out(i);
  1238           igvn.rehash_node_delayed(use);
  1239           uint uses_found = 0;
  1240           for (uint j = 0; j < use->len(); j++) {
  1241             if (use->in(j) == old_phi) {
  1242               if (j < use->req()) use->set_req (j, id_old_phi);
  1243               else                use->set_prec(j, id_old_phi);
  1244               uses_found++;
  1247           i -= uses_found;    // we deleted 1 or more copies of this edge
  1250       igvn._worklist.push(old_phi);
  1253   // Finally clean out the fall-in edges from the RegionNode
  1254   for( i = oreq-1; i>0; i-- ) {
  1255     if( !phase->is_member( this, _head->in(i) ) ) {
  1256       _head->del_req(i);
  1259   // Transform landing pad
  1260   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1261   // Insert landing pad into the header
  1262   _head->add_req(landing_pad);
  1265 //------------------------------split_outer_loop-------------------------------
  1266 // Split out the outermost loop from this shared header.
  1267 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1268   PhaseIterGVN &igvn = phase->_igvn;
  1270   // Find index of outermost loop; it should also be my tail.
  1271   uint outer_idx = 1;
  1272   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1274   // Make a LoopNode for the outermost loop.
  1275   Node *ctl = _head->in(LoopNode::EntryControl);
  1276   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
  1277   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1278   phase->set_created_loop_node();
  1280   // Outermost loop falls into '_head' loop
  1281   _head->set_req(LoopNode::EntryControl, outer);
  1282   _head->del_req(outer_idx);
  1283   // Split all the Phis up between '_head' loop and 'outer' loop.
  1284   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1285     Node *out = _head->fast_out(j);
  1286     if( out->is_Phi() ) {
  1287       PhiNode *old_phi = out->as_Phi();
  1288       assert( old_phi->region() == _head, "" );
  1289       Node *phi = PhiNode::make_blank(outer, old_phi);
  1290       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1291       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1292       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1293       // Make old Phi point to new Phi on the fall-in path
  1294       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
  1295       old_phi->del_req(outer_idx);
  1299   // Use the new loop head instead of the old shared one
  1300   _head = outer;
  1301   phase->set_loop(_head, this);
  1304 //------------------------------fix_parent-------------------------------------
  1305 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1306   loop->_parent = parent;
  1307   if( loop->_child ) fix_parent( loop->_child, loop   );
  1308   if( loop->_next  ) fix_parent( loop->_next , parent );
  1311 //------------------------------estimate_path_freq-----------------------------
  1312 static float estimate_path_freq( Node *n ) {
  1313   // Try to extract some path frequency info
  1314   IfNode *iff;
  1315   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1316     uint nop = n->Opcode();
  1317     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1318       n = n->in(0);
  1319       continue;
  1321     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1322       // Assume call does not always throw exceptions: means the call-site
  1323       // count is also the frequency of the fall-through path.
  1324       assert( n->is_CatchProj(), "" );
  1325       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1326         return 0.0f;            // Assume call exception path is rare
  1327       Node *call = n->in(0)->in(0)->in(0);
  1328       assert( call->is_Call(), "expect a call here" );
  1329       const JVMState *jvms = ((CallNode*)call)->jvms();
  1330       ciMethodData* methodData = jvms->method()->method_data();
  1331       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1332       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1333       if ((data == NULL) || !data->is_CounterData()) {
  1334         // no call profile available, try call's control input
  1335         n = n->in(0);
  1336         continue;
  1338       return data->as_CounterData()->count()/FreqCountInvocations;
  1340     // See if there's a gating IF test
  1341     Node *n_c = n->in(0);
  1342     if( !n_c->is_If() ) break;       // No estimate available
  1343     iff = n_c->as_If();
  1344     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1345       // Compute how much count comes on this path
  1346       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1347     // Have no count info.  Skip dull uncommon-trap like branches.
  1348     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1349         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1350       break;
  1351     // Skip through never-taken branch; look for a real loop exit.
  1352     n = iff->in(0);
  1354   return 0.0f;                  // No estimate available
  1357 //------------------------------merge_many_backedges---------------------------
  1358 // Merge all the backedges from the shared header into a private Region.
  1359 // Feed that region as the one backedge to this loop.
  1360 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1361   uint i;
  1363   // Scan for the top 2 hottest backedges
  1364   float hotcnt = 0.0f;
  1365   float warmcnt = 0.0f;
  1366   uint hot_idx = 0;
  1367   // Loop starts at 2 because slot 1 is the fall-in path
  1368   for( i = 2; i < _head->req(); i++ ) {
  1369     float cnt = estimate_path_freq(_head->in(i));
  1370     if( cnt > hotcnt ) {       // Grab hottest path
  1371       warmcnt = hotcnt;
  1372       hotcnt = cnt;
  1373       hot_idx = i;
  1374     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1375       warmcnt = cnt;
  1379   // See if the hottest backedge is worthy of being an inner loop
  1380   // by being much hotter than the next hottest backedge.
  1381   if( hotcnt <= 0.0001 ||
  1382       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1384   // Peel out the backedges into a private merge point; peel
  1385   // them all except optionally hot_idx.
  1386   PhaseIterGVN &igvn = phase->_igvn;
  1388   Node *hot_tail = NULL;
  1389   // Make a Region for the merge point
  1390   Node *r = new (phase->C) RegionNode(1);
  1391   for( i = 2; i < _head->req(); i++ ) {
  1392     if( i != hot_idx )
  1393       r->add_req( _head->in(i) );
  1394     else hot_tail = _head->in(i);
  1396   igvn.register_new_node_with_optimizer(r, _head);
  1397   // Plug region into end of loop _head, followed by hot_tail
  1398   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1399   _head->set_req(2, r);
  1400   if( hot_idx ) _head->add_req(hot_tail);
  1402   // Split all the Phis up between '_head' loop and the Region 'r'
  1403   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1404     Node *out = _head->fast_out(j);
  1405     if( out->is_Phi() ) {
  1406       PhiNode* n = out->as_Phi();
  1407       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1408       Node *hot_phi = NULL;
  1409       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
  1410       // Check all inputs for the ones to peel out
  1411       uint j = 1;
  1412       for( uint i = 2; i < n->req(); i++ ) {
  1413         if( i != hot_idx )
  1414           phi->set_req( j++, n->in(i) );
  1415         else hot_phi = n->in(i);
  1417       // Register the phi but do not transform until whole place transforms
  1418       igvn.register_new_node_with_optimizer(phi, n);
  1419       // Add the merge phi to the old Phi
  1420       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1421       n->set_req(2, phi);
  1422       if( hot_idx ) n->add_req(hot_phi);
  1427   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1428   // of self loop tree.  Turn self into a loop headed by _head and with
  1429   // tail being the new merge point.
  1430   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1431   phase->set_loop(_tail,ilt);   // Adjust tail
  1432   _tail = r;                    // Self's tail is new merge point
  1433   phase->set_loop(r,this);
  1434   ilt->_child = _child;         // New guy has my children
  1435   _child = ilt;                 // Self has new guy as only child
  1436   ilt->_parent = this;          // new guy has self for parent
  1437   ilt->_nest = _nest;           // Same nesting depth (for now)
  1439   // Starting with 'ilt', look for child loop trees using the same shared
  1440   // header.  Flatten these out; they will no longer be loops in the end.
  1441   IdealLoopTree **pilt = &_child;
  1442   while( ilt ) {
  1443     if( ilt->_head == _head ) {
  1444       uint i;
  1445       for( i = 2; i < _head->req(); i++ )
  1446         if( _head->in(i) == ilt->_tail )
  1447           break;                // Still a loop
  1448       if( i == _head->req() ) { // No longer a loop
  1449         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1450         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1451         IdealLoopTree **cp = &ilt->_child;
  1452         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1453         *cp = ilt->_next;       // Hang next list at end of child list
  1454         *pilt = ilt->_child;    // Move child up to replace ilt
  1455         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1456         ilt = ilt->_child;      // Repeat using new ilt
  1457         continue;               // do not advance over ilt->_child
  1459       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1460       phase->set_loop(_head,ilt);
  1462     pilt = &ilt->_child;        // Advance to next
  1463     ilt = *pilt;
  1466   if( _child ) fix_parent( _child, this );
  1469 //------------------------------beautify_loops---------------------------------
  1470 // Split shared headers and insert loop landing pads.
  1471 // Insert a LoopNode to replace the RegionNode.
  1472 // Return TRUE if loop tree is structurally changed.
  1473 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1474   bool result = false;
  1475   // Cache parts in locals for easy
  1476   PhaseIterGVN &igvn = phase->_igvn;
  1478   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1480   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1481   int fall_in_cnt = 0;
  1482   for( uint i = 1; i < _head->req(); i++ )
  1483     if( !phase->is_member( this, _head->in(i) ) )
  1484       fall_in_cnt++;
  1485   assert( fall_in_cnt, "at least 1 fall-in path" );
  1486   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1487     split_fall_in( phase, fall_in_cnt );
  1489   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1490   // the left.
  1491   fall_in_cnt = 1;
  1492   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1493     fall_in_cnt++;
  1494   if( fall_in_cnt > 1 ) {
  1495     // Since I am just swapping inputs I do not need to update def-use info
  1496     Node *tmp = _head->in(1);
  1497     _head->set_req( 1, _head->in(fall_in_cnt) );
  1498     _head->set_req( fall_in_cnt, tmp );
  1499     // Swap also all Phis
  1500     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1501       Node* phi = _head->fast_out(i);
  1502       if( phi->is_Phi() ) {
  1503         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1504         tmp = phi->in(1);
  1505         phi->set_req( 1, phi->in(fall_in_cnt) );
  1506         phi->set_req( fall_in_cnt, tmp );
  1510   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1511   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1513   // If I am a shared header (multiple backedges), peel off the many
  1514   // backedges into a private merge point and use the merge point as
  1515   // the one true backedge.
  1516   if( _head->req() > 3 ) {
  1517     // Merge the many backedges into a single backedge but leave
  1518     // the hottest backedge as separate edge for the following peel.
  1519     merge_many_backedges( phase );
  1520     result = true;
  1523   // If I have one hot backedge, peel off myself loop.
  1524   // I better be the outermost loop.
  1525   if( _head->req() > 3 ) {
  1526     split_outer_loop( phase );
  1527     result = true;
  1529   } else if( !_head->is_Loop() && !_irreducible ) {
  1530     // Make a new LoopNode to replace the old loop head
  1531     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
  1532     l = igvn.register_new_node_with_optimizer(l, _head);
  1533     phase->set_created_loop_node();
  1534     // Go ahead and replace _head
  1535     phase->_igvn.replace_node( _head, l );
  1536     _head = l;
  1537     phase->set_loop(_head, this);
  1540   // Now recursively beautify nested loops
  1541   if( _child ) result |= _child->beautify_loops( phase );
  1542   if( _next  ) result |= _next ->beautify_loops( phase );
  1543   return result;
  1546 //------------------------------allpaths_check_safepts----------------------------
  1547 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1548 // encountered.  Helper for check_safepts.
  1549 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1550   assert(stack.size() == 0, "empty stack");
  1551   stack.push(_tail);
  1552   visited.Clear();
  1553   visited.set(_tail->_idx);
  1554   while (stack.size() > 0) {
  1555     Node* n = stack.pop();
  1556     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1557       // Terminate this path
  1558     } else if (n->Opcode() == Op_SafePoint) {
  1559       if (_phase->get_loop(n) != this) {
  1560         if (_required_safept == NULL) _required_safept = new Node_List();
  1561         _required_safept->push(n);  // save the one closest to the tail
  1563       // Terminate this path
  1564     } else {
  1565       uint start = n->is_Region() ? 1 : 0;
  1566       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1567       for (uint i = start; i < end; i++) {
  1568         Node* in = n->in(i);
  1569         assert(in->is_CFG(), "must be");
  1570         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1571           stack.push(in);
  1578 //------------------------------check_safepts----------------------------
  1579 // Given dominators, try to find loops with calls that must always be
  1580 // executed (call dominates loop tail).  These loops do not need non-call
  1581 // safepoints (ncsfpt).
  1582 //
  1583 // A complication is that a safepoint in a inner loop may be needed
  1584 // by an outer loop. In the following, the inner loop sees it has a
  1585 // call (block 3) on every path from the head (block 2) to the
  1586 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1587 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1588 //
  1589 //          entry  0
  1590 //                 |
  1591 //                 v
  1592 // outer 1,2    +->1
  1593 //              |  |
  1594 //              |  v
  1595 //              |  2<---+  ncsfpt in 2
  1596 //              |_/|\   |
  1597 //                 | v  |
  1598 // inner 2,3      /  3  |  call in 3
  1599 //               /   |  |
  1600 //              v    +--+
  1601 //        exit  4
  1602 //
  1603 //
  1604 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1605 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1606 // is first looked for in the lists for the outer loops of the current loop.
  1607 //
  1608 // The insights into the problem:
  1609 //  A) counted loops are okay
  1610 //  B) innermost loops are okay (only an inner loop can delete
  1611 //     a ncsfpt needed by an outer loop)
  1612 //  C) a loop is immune from an inner loop deleting a safepoint
  1613 //     if the loop has a call on the idom-path
  1614 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1615 //     idom-path that is not in a nested loop
  1616 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1617 //     loop needs to be prevented from deletion by an inner loop
  1618 //
  1619 // There are two analyses:
  1620 //  1) The first, and cheaper one, scans the loop body from
  1621 //     tail to head following the idom (immediate dominator)
  1622 //     chain, looking for the cases (C,D,E) above.
  1623 //     Since inner loops are scanned before outer loops, there is summary
  1624 //     information about inner loops.  Inner loops can be skipped over
  1625 //     when the tail of an inner loop is encountered.
  1626 //
  1627 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1628 //     the idom path (which is rare), scans all predecessor control paths
  1629 //     from the tail to the head, terminating a path when a call or sfpt
  1630 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1631 //
  1632 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1633   // Bottom up traversal
  1634   IdealLoopTree* ch = _child;
  1635   if (_child) _child->check_safepts(visited, stack);
  1636   if (_next)  _next ->check_safepts(visited, stack);
  1638   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1639     bool  has_call         = false; // call on dom-path
  1640     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1641     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1642     // Scan the dom-path nodes from tail to head
  1643     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1644       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1645         has_call = true;
  1646         _has_sfpt = 1;          // Then no need for a safept!
  1647         break;
  1648       } else if (n->Opcode() == Op_SafePoint) {
  1649         if (_phase->get_loop(n) == this) {
  1650           has_local_ncsfpt = true;
  1651           break;
  1653         if (nonlocal_ncsfpt == NULL) {
  1654           nonlocal_ncsfpt = n; // save the one closest to the tail
  1656       } else {
  1657         IdealLoopTree* nlpt = _phase->get_loop(n);
  1658         if (this != nlpt) {
  1659           // If at an inner loop tail, see if the inner loop has already
  1660           // recorded seeing a call on the dom-path (and stop.)  If not,
  1661           // jump to the head of the inner loop.
  1662           assert(is_member(nlpt), "nested loop");
  1663           Node* tail = nlpt->_tail;
  1664           if (tail->in(0)->is_If()) tail = tail->in(0);
  1665           if (n == tail) {
  1666             // If inner loop has call on dom-path, so does outer loop
  1667             if (nlpt->_has_sfpt) {
  1668               has_call = true;
  1669               _has_sfpt = 1;
  1670               break;
  1672             // Skip to head of inner loop
  1673             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1674             n = nlpt->_head;
  1679     // Record safept's that this loop needs preserved when an
  1680     // inner loop attempts to delete it's safepoints.
  1681     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1682       if (nonlocal_ncsfpt != NULL) {
  1683         if (_required_safept == NULL) _required_safept = new Node_List();
  1684         _required_safept->push(nonlocal_ncsfpt);
  1685       } else {
  1686         // Failed to find a suitable safept on the dom-path.  Now use
  1687         // an all paths walk from tail to head, looking for safepoints to preserve.
  1688         allpaths_check_safepts(visited, stack);
  1694 //---------------------------is_deleteable_safept----------------------------
  1695 // Is safept not required by an outer loop?
  1696 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1697   assert(sfpt->Opcode() == Op_SafePoint, "");
  1698   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1699   while (lp != NULL) {
  1700     Node_List* sfpts = lp->_required_safept;
  1701     if (sfpts != NULL) {
  1702       for (uint i = 0; i < sfpts->size(); i++) {
  1703         if (sfpt == sfpts->at(i))
  1704           return false;
  1707     lp = lp->_parent;
  1709   return true;
  1712 //---------------------------replace_parallel_iv-------------------------------
  1713 // Replace parallel induction variable (parallel to trip counter)
  1714 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1715   assert(loop->_head->is_CountedLoop(), "");
  1716   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1717   if (!cl->is_valid_counted_loop())
  1718     return;         // skip malformed counted loop
  1719   Node *incr = cl->incr();
  1720   if (incr == NULL)
  1721     return;         // Dead loop?
  1722   Node *init = cl->init_trip();
  1723   Node *phi  = cl->phi();
  1724   int stride_con = cl->stride_con();
  1726   // Visit all children, looking for Phis
  1727   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1728     Node *out = cl->out(i);
  1729     // Look for other phis (secondary IVs). Skip dead ones
  1730     if (!out->is_Phi() || out == phi || !has_node(out))
  1731       continue;
  1732     PhiNode* phi2 = out->as_Phi();
  1733     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1734     // Look for induction variables of the form:  X += constant
  1735     if (phi2->region() != loop->_head ||
  1736         incr2->req() != 3 ||
  1737         incr2->in(1) != phi2 ||
  1738         incr2 == incr ||
  1739         incr2->Opcode() != Op_AddI ||
  1740         !incr2->in(2)->is_Con())
  1741       continue;
  1743     // Check for parallel induction variable (parallel to trip counter)
  1744     // via an affine function.  In particular, count-down loops with
  1745     // count-up array indices are common. We only RCE references off
  1746     // the trip-counter, so we need to convert all these to trip-counter
  1747     // expressions.
  1748     Node *init2 = phi2->in( LoopNode::EntryControl );
  1749     int stride_con2 = incr2->in(2)->get_int();
  1751     // The general case here gets a little tricky.  We want to find the
  1752     // GCD of all possible parallel IV's and make a new IV using this
  1753     // GCD for the loop.  Then all possible IVs are simple multiples of
  1754     // the GCD.  In practice, this will cover very few extra loops.
  1755     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1756     // where +/-1 is the common case, but other integer multiples are
  1757     // also easy to handle.
  1758     int ratio_con = stride_con2/stride_con;
  1760     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1761 #ifndef PRODUCT
  1762       if (TraceLoopOpts) {
  1763         tty->print("Parallel IV: %d ", phi2->_idx);
  1764         loop->dump_head();
  1766 #endif
  1767       // Convert to using the trip counter.  The parallel induction
  1768       // variable differs from the trip counter by a loop-invariant
  1769       // amount, the difference between their respective initial values.
  1770       // It is scaled by the 'ratio_con'.
  1771       Node* ratio = _igvn.intcon(ratio_con);
  1772       set_ctrl(ratio, C->root());
  1773       Node* ratio_init = new (C) MulINode(init, ratio);
  1774       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1775       set_early_ctrl(ratio_init);
  1776       Node* diff = new (C) SubINode(init2, ratio_init);
  1777       _igvn.register_new_node_with_optimizer(diff, init2);
  1778       set_early_ctrl(diff);
  1779       Node* ratio_idx = new (C) MulINode(phi, ratio);
  1780       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1781       set_ctrl(ratio_idx, cl);
  1782       Node* add = new (C) AddINode(ratio_idx, diff);
  1783       _igvn.register_new_node_with_optimizer(add);
  1784       set_ctrl(add, cl);
  1785       _igvn.replace_node( phi2, add );
  1786       // Sometimes an induction variable is unused
  1787       if (add->outcnt() == 0) {
  1788         _igvn.remove_dead_node(add);
  1790       --i; // deleted this phi; rescan starting with next position
  1791       continue;
  1796 //------------------------------counted_loop-----------------------------------
  1797 // Convert to counted loops where possible
  1798 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1800   // For grins, set the inner-loop flag here
  1801   if (!_child) {
  1802     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1805   if (_head->is_CountedLoop() ||
  1806       phase->is_counted_loop(_head, this)) {
  1807     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1809     // Look for safepoints to remove.
  1810     Node_List* sfpts = _safepts;
  1811     if (sfpts != NULL) {
  1812       for (uint i = 0; i < sfpts->size(); i++) {
  1813         Node* n = sfpts->at(i);
  1814         assert(phase->get_loop(n) == this, "");
  1815         if (phase->is_deleteable_safept(n)) {
  1816           phase->lazy_replace(n, n->in(TypeFunc::Control));
  1821     // Look for induction variables
  1822     phase->replace_parallel_iv(this);
  1824   } else if (_parent != NULL && !_irreducible) {
  1825     // Not a counted loop.
  1826     // Look for a safepoint on the idom-path.
  1827     Node* sfpt = tail();
  1828     for (; sfpt != _head; sfpt = phase->idom(sfpt)) {
  1829       if (sfpt->Opcode() == Op_SafePoint && phase->get_loop(sfpt) == this)
  1830         break; // Found one
  1832     // Delete other safepoints in this loop.
  1833     Node_List* sfpts = _safepts;
  1834     if (sfpts != NULL && sfpt != _head && sfpt->Opcode() == Op_SafePoint) {
  1835       for (uint i = 0; i < sfpts->size(); i++) {
  1836         Node* n = sfpts->at(i);
  1837         assert(phase->get_loop(n) == this, "");
  1838         if (n != sfpt && phase->is_deleteable_safept(n)) {
  1839           phase->lazy_replace(n, n->in(TypeFunc::Control));
  1845   // Recursively
  1846   if (_child) _child->counted_loop( phase );
  1847   if (_next)  _next ->counted_loop( phase );
  1850 #ifndef PRODUCT
  1851 //------------------------------dump_head--------------------------------------
  1852 // Dump 1 liner for loop header info
  1853 void IdealLoopTree::dump_head( ) const {
  1854   for (uint i=0; i<_nest; i++)
  1855     tty->print("  ");
  1856   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1857   if (_irreducible) tty->print(" IRREDUCIBLE");
  1858   Node* entry = _head->in(LoopNode::EntryControl);
  1859   if (LoopLimitCheck) {
  1860     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1861     if (predicate != NULL ) {
  1862       tty->print(" limit_check");
  1863       entry = entry->in(0)->in(0);
  1866   if (UseLoopPredicate) {
  1867     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1868     if (entry != NULL) {
  1869       tty->print(" predicated");
  1872   if (_head->is_CountedLoop()) {
  1873     CountedLoopNode *cl = _head->as_CountedLoop();
  1874     tty->print(" counted");
  1876     Node* init_n = cl->init_trip();
  1877     if (init_n  != NULL &&  init_n->is_Con())
  1878       tty->print(" [%d,", cl->init_trip()->get_int());
  1879     else
  1880       tty->print(" [int,");
  1881     Node* limit_n = cl->limit();
  1882     if (limit_n  != NULL &&  limit_n->is_Con())
  1883       tty->print("%d),", cl->limit()->get_int());
  1884     else
  1885       tty->print("int),");
  1886     int stride_con  = cl->stride_con();
  1887     if (stride_con > 0) tty->print("+");
  1888     tty->print("%d", stride_con);
  1890     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
  1892     if (cl->is_pre_loop ()) tty->print(" pre" );
  1893     if (cl->is_main_loop()) tty->print(" main");
  1894     if (cl->is_post_loop()) tty->print(" post");
  1896   tty->cr();
  1899 //------------------------------dump-------------------------------------------
  1900 // Dump loops by loop tree
  1901 void IdealLoopTree::dump( ) const {
  1902   dump_head();
  1903   if (_child) _child->dump();
  1904   if (_next)  _next ->dump();
  1907 #endif
  1909 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1910   if (loop == root) {
  1911     if (loop->_child != NULL) {
  1912       log->begin_head("loop_tree");
  1913       log->end_head();
  1914       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1915       log->tail("loop_tree");
  1916       assert(loop->_next == NULL, "what?");
  1918   } else {
  1919     Node* head = loop->_head;
  1920     log->begin_head("loop");
  1921     log->print(" idx='%d' ", head->_idx);
  1922     if (loop->_irreducible) log->print("irreducible='1' ");
  1923     if (head->is_Loop()) {
  1924       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1925       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1927     if (head->is_CountedLoop()) {
  1928       CountedLoopNode* cl = head->as_CountedLoop();
  1929       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1930       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1931       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1933     log->end_head();
  1934     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1935     log->tail("loop");
  1936     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1940 //---------------------collect_potentially_useful_predicates-----------------------
  1941 // Helper function to collect potentially useful predicates to prevent them from
  1942 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1943 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1944                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1945   if (loop->_child) { // child
  1946     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1949   // self (only loops that we can apply loop predication may use their predicates)
  1950   if (loop->_head->is_Loop() &&
  1951       !loop->_irreducible    &&
  1952       !loop->tail()->is_top()) {
  1953     LoopNode* lpn = loop->_head->as_Loop();
  1954     Node* entry = lpn->in(LoopNode::EntryControl);
  1955     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1956     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1957       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1958       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1959       entry = entry->in(0)->in(0);
  1961     predicate_proj = find_predicate(entry); // Predicate
  1962     if (predicate_proj != NULL ) {
  1963       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1967   if (loop->_next) { // sibling
  1968     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1972 //------------------------eliminate_useless_predicates-----------------------------
  1973 // Eliminate all inserted predicates if they could not be used by loop predication.
  1974 // Note: it will also eliminates loop limits check predicate since it also uses
  1975 // Opaque1 node (see Parse::add_predicate()).
  1976 void PhaseIdealLoop::eliminate_useless_predicates() {
  1977   if (C->predicate_count() == 0)
  1978     return; // no predicate left
  1980   Unique_Node_List useful_predicates; // to store useful predicates
  1981   if (C->has_loops()) {
  1982     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1985   for (int i = C->predicate_count(); i > 0; i--) {
  1986      Node * n = C->predicate_opaque1_node(i-1);
  1987      assert(n->Opcode() == Op_Opaque1, "must be");
  1988      if (!useful_predicates.member(n)) { // not in the useful list
  1989        _igvn.replace_node(n, n->in(1));
  1994 //------------------------process_expensive_nodes-----------------------------
  1995 // Expensive nodes have their control input set to prevent the GVN
  1996 // from commoning them and as a result forcing the resulting node to
  1997 // be in a more frequent path. Use CFG information here, to change the
  1998 // control inputs so that some expensive nodes can be commoned while
  1999 // not executed more frequently.
  2000 bool PhaseIdealLoop::process_expensive_nodes() {
  2001   assert(OptimizeExpensiveOps, "optimization off?");
  2003   // Sort nodes to bring similar nodes together
  2004   C->sort_expensive_nodes();
  2006   bool progress = false;
  2008   for (int i = 0; i < C->expensive_count(); ) {
  2009     Node* n = C->expensive_node(i);
  2010     int start = i;
  2011     // Find nodes similar to n
  2012     i++;
  2013     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
  2014     int end = i;
  2015     // And compare them two by two
  2016     for (int j = start; j < end; j++) {
  2017       Node* n1 = C->expensive_node(j);
  2018       if (is_node_unreachable(n1)) {
  2019         continue;
  2021       for (int k = j+1; k < end; k++) {
  2022         Node* n2 = C->expensive_node(k);
  2023         if (is_node_unreachable(n2)) {
  2024           continue;
  2027         assert(n1 != n2, "should be pair of nodes");
  2029         Node* c1 = n1->in(0);
  2030         Node* c2 = n2->in(0);
  2032         Node* parent_c1 = c1;
  2033         Node* parent_c2 = c2;
  2035         // The call to get_early_ctrl_for_expensive() moves the
  2036         // expensive nodes up but stops at loops that are in a if
  2037         // branch. See whether we can exit the loop and move above the
  2038         // If.
  2039         if (c1->is_Loop()) {
  2040           parent_c1 = c1->in(1);
  2042         if (c2->is_Loop()) {
  2043           parent_c2 = c2->in(1);
  2046         if (parent_c1 == parent_c2) {
  2047           _igvn._worklist.push(n1);
  2048           _igvn._worklist.push(n2);
  2049           continue;
  2052         // Look for identical expensive node up the dominator chain.
  2053         if (is_dominator(c1, c2)) {
  2054           c2 = c1;
  2055         } else if (is_dominator(c2, c1)) {
  2056           c1 = c2;
  2057         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
  2058                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
  2059           // Both branches have the same expensive node so move it up
  2060           // before the if.
  2061           c1 = c2 = idom(parent_c1->in(0));
  2063         // Do the actual moves
  2064         if (n1->in(0) != c1) {
  2065           _igvn.hash_delete(n1);
  2066           n1->set_req(0, c1);
  2067           _igvn.hash_insert(n1);
  2068           _igvn._worklist.push(n1);
  2069           progress = true;
  2071         if (n2->in(0) != c2) {
  2072           _igvn.hash_delete(n2);
  2073           n2->set_req(0, c2);
  2074           _igvn.hash_insert(n2);
  2075           _igvn._worklist.push(n2);
  2076           progress = true;
  2082   return progress;
  2086 //=============================================================================
  2087 //----------------------------build_and_optimize-------------------------------
  2088 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  2089 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  2090 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  2091   ResourceMark rm;
  2093   int old_progress = C->major_progress();
  2094   uint orig_worklist_size = _igvn._worklist.size();
  2096   // Reset major-progress flag for the driver's heuristics
  2097   C->clear_major_progress();
  2099 #ifndef PRODUCT
  2100   // Capture for later assert
  2101   uint unique = C->unique();
  2102   _loop_invokes++;
  2103   _loop_work += unique;
  2104 #endif
  2106   // True if the method has at least 1 irreducible loop
  2107   _has_irreducible_loops = false;
  2109   _created_loop_node = false;
  2111   Arena *a = Thread::current()->resource_area();
  2112   VectorSet visited(a);
  2113   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  2114   _nodes.map(C->unique(), NULL);
  2115   memset(_nodes.adr(), 0, wordSize * C->unique());
  2117   // Pre-build the top-level outermost loop tree entry
  2118   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  2119   // Do not need a safepoint at the top level
  2120   _ltree_root->_has_sfpt = 1;
  2122   // Initialize Dominators.
  2123   // Checked in clone_loop_predicate() during beautify_loops().
  2124   _idom_size = 0;
  2125   _idom      = NULL;
  2126   _dom_depth = NULL;
  2127   _dom_stk   = NULL;
  2129   // Empty pre-order array
  2130   allocate_preorders();
  2132   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  2133   // IdealLoopTree entries.  Data nodes are NOT walked.
  2134   build_loop_tree();
  2135   // Check for bailout, and return
  2136   if (C->failing()) {
  2137     return;
  2140   // No loops after all
  2141   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  2143   // There should always be an outer loop containing the Root and Return nodes.
  2144   // If not, we have a degenerate empty program.  Bail out in this case.
  2145   if (!has_node(C->root())) {
  2146     if (!_verify_only) {
  2147       C->clear_major_progress();
  2148       C->record_method_not_compilable("empty program detected during loop optimization");
  2150     return;
  2153   // Nothing to do, so get out
  2154   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
  2155   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
  2156   if (stop_early && !do_expensive_nodes) {
  2157     _igvn.optimize();           // Cleanup NeverBranches
  2158     return;
  2161   // Set loop nesting depth
  2162   _ltree_root->set_nest( 0 );
  2164   // Split shared headers and insert loop landing pads.
  2165   // Do not bother doing this on the Root loop of course.
  2166   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  2167     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
  2168     if( _ltree_root->_child->beautify_loops( this ) ) {
  2169       // Re-build loop tree!
  2170       _ltree_root->_child = NULL;
  2171       _nodes.clear();
  2172       reallocate_preorders();
  2173       build_loop_tree();
  2174       // Check for bailout, and return
  2175       if (C->failing()) {
  2176         return;
  2178       // Reset loop nesting depth
  2179       _ltree_root->set_nest( 0 );
  2181       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
  2185   // Build Dominators for elision of NULL checks & loop finding.
  2186   // Since nodes do not have a slot for immediate dominator, make
  2187   // a persistent side array for that info indexed on node->_idx.
  2188   _idom_size = C->unique();
  2189   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  2190   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  2191   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  2192   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  2194   Dominators();
  2196   if (!_verify_only) {
  2197     // As a side effect, Dominators removed any unreachable CFG paths
  2198     // into RegionNodes.  It doesn't do this test against Root, so
  2199     // we do it here.
  2200     for( uint i = 1; i < C->root()->req(); i++ ) {
  2201       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  2202         _igvn.delete_input_of(C->root(), i);
  2203         i--;                      // Rerun same iteration on compressed edges
  2207     // Given dominators, try to find inner loops with calls that must
  2208     // always be executed (call dominates loop tail).  These loops do
  2209     // not need a separate safepoint.
  2210     Node_List cisstack(a);
  2211     _ltree_root->check_safepts(visited, cisstack);
  2214   // Walk the DATA nodes and place into loops.  Find earliest control
  2215   // node.  For CFG nodes, the _nodes array starts out and remains
  2216   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2217   // _nodes array holds the earliest legal controlling CFG node.
  2219   // Allocate stack with enough space to avoid frequent realloc
  2220   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2221   Node_Stack nstack( a, stack_size );
  2223   visited.Clear();
  2224   Node_List worklist(a);
  2225   // Don't need C->root() on worklist since
  2226   // it will be processed among C->top() inputs
  2227   worklist.push( C->top() );
  2228   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2229   build_loop_early( visited, worklist, nstack );
  2231   // Given early legal placement, try finding counted loops.  This placement
  2232   // is good enough to discover most loop invariants.
  2233   if( !_verify_me && !_verify_only )
  2234     _ltree_root->counted_loop( this );
  2236   // Find latest loop placement.  Find ideal loop placement.
  2237   visited.Clear();
  2238   init_dom_lca_tags();
  2239   // Need C->root() on worklist when processing outs
  2240   worklist.push( C->root() );
  2241   NOT_PRODUCT( C->verify_graph_edges(); )
  2242   worklist.push( C->top() );
  2243   build_loop_late( visited, worklist, nstack );
  2245   if (_verify_only) {
  2246     // restore major progress flag
  2247     for (int i = 0; i < old_progress; i++)
  2248       C->set_major_progress();
  2249     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2250     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2251     return;
  2254   // clear out the dead code after build_loop_late
  2255   while (_deadlist.size()) {
  2256     _igvn.remove_globally_dead_node(_deadlist.pop());
  2259   if (stop_early) {
  2260     assert(do_expensive_nodes, "why are we here?");
  2261     if (process_expensive_nodes()) {
  2262       // If we made some progress when processing expensive nodes then
  2263       // the IGVN may modify the graph in a way that will allow us to
  2264       // make some more progress: we need to try processing expensive
  2265       // nodes again.
  2266       C->set_major_progress();
  2268     _igvn.optimize();
  2269     return;
  2272   // Some parser-inserted loop predicates could never be used by loop
  2273   // predication or they were moved away from loop during some optimizations.
  2274   // For example, peeling. Eliminate them before next loop optimizations.
  2275   if (UseLoopPredicate || LoopLimitCheck) {
  2276     eliminate_useless_predicates();
  2279 #ifndef PRODUCT
  2280   C->verify_graph_edges();
  2281   if (_verify_me) {             // Nested verify pass?
  2282     // Check to see if the verify mode is broken
  2283     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2284     return;
  2286   if(VerifyLoopOptimizations) verify();
  2287   if(TraceLoopOpts && C->has_loops()) {
  2288     _ltree_root->dump();
  2290 #endif
  2292   if (skip_loop_opts) {
  2293     // Cleanup any modified bits
  2294     _igvn.optimize();
  2296     if (C->log() != NULL) {
  2297       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2299     return;
  2302   if (ReassociateInvariants) {
  2303     // Reassociate invariants and prep for split_thru_phi
  2304     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2305       IdealLoopTree* lpt = iter.current();
  2306       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2308       lpt->reassociate_invariants(this);
  2310       // Because RCE opportunities can be masked by split_thru_phi,
  2311       // look for RCE candidates and inhibit split_thru_phi
  2312       // on just their loop-phi's for this pass of loop opts
  2313       if (SplitIfBlocks && do_split_ifs) {
  2314         if (lpt->policy_range_check(this)) {
  2315           lpt->_rce_candidate = 1; // = true
  2321   // Check for aggressive application of split-if and other transforms
  2322   // that require basic-block info (like cloning through Phi's)
  2323   if( SplitIfBlocks && do_split_ifs ) {
  2324     visited.Clear();
  2325     split_if_with_blocks( visited, nstack );
  2326     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2329   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
  2330     C->set_major_progress();
  2333   // Perform loop predication before iteration splitting
  2334   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2335     _ltree_root->_child->loop_predication(this);
  2338   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2339     if (do_intrinsify_fill()) {
  2340       C->set_major_progress();
  2344   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2345   // range checks or one-shot null checks.
  2347   // If split-if's didn't hack the graph too bad (no CFG changes)
  2348   // then do loop opts.
  2349   if (C->has_loops() && !C->major_progress()) {
  2350     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2351     _ltree_root->_child->iteration_split( this, worklist );
  2352     // No verify after peeling!  GCM has hoisted code out of the loop.
  2353     // After peeling, the hoisted code could sink inside the peeled area.
  2354     // The peeling code does not try to recompute the best location for
  2355     // all the code before the peeled area, so the verify pass will always
  2356     // complain about it.
  2358   // Do verify graph edges in any case
  2359   NOT_PRODUCT( C->verify_graph_edges(); );
  2361   if (!do_split_ifs) {
  2362     // We saw major progress in Split-If to get here.  We forced a
  2363     // pass with unrolling and not split-if, however more split-if's
  2364     // might make progress.  If the unrolling didn't make progress
  2365     // then the major-progress flag got cleared and we won't try
  2366     // another round of Split-If.  In particular the ever-common
  2367     // instance-of/check-cast pattern requires at least 2 rounds of
  2368     // Split-If to clear out.
  2369     C->set_major_progress();
  2372   // Repeat loop optimizations if new loops were seen
  2373   if (created_loop_node()) {
  2374     C->set_major_progress();
  2377   // Keep loop predicates and perform optimizations with them
  2378   // until no more loop optimizations could be done.
  2379   // After that switch predicates off and do more loop optimizations.
  2380   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2381      C->cleanup_loop_predicates(_igvn);
  2382 #ifndef PRODUCT
  2383      if (TraceLoopOpts) {
  2384        tty->print_cr("PredicatesOff");
  2386 #endif
  2387      C->set_major_progress();
  2390   // Convert scalar to superword operations at the end of all loop opts.
  2391   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2392     // SuperWord transform
  2393     SuperWord sw(this);
  2394     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2395       IdealLoopTree* lpt = iter.current();
  2396       if (lpt->is_counted()) {
  2397         sw.transform_loop(lpt);
  2402   // Cleanup any modified bits
  2403   _igvn.optimize();
  2405   // disable assert until issue with split_flow_path is resolved (6742111)
  2406   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2407   //        "shouldn't introduce irreducible loops");
  2409   if (C->log() != NULL) {
  2410     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2414 #ifndef PRODUCT
  2415 //------------------------------print_statistics-------------------------------
  2416 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2417 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2418 void PhaseIdealLoop::print_statistics() {
  2419   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2422 //------------------------------verify-----------------------------------------
  2423 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2424 static int fail;                // debug only, so its multi-thread dont care
  2425 void PhaseIdealLoop::verify() const {
  2426   int old_progress = C->major_progress();
  2427   ResourceMark rm;
  2428   PhaseIdealLoop loop_verify( _igvn, this );
  2429   VectorSet visited(Thread::current()->resource_area());
  2431   fail = 0;
  2432   verify_compare( C->root(), &loop_verify, visited );
  2433   assert( fail == 0, "verify loops failed" );
  2434   // Verify loop structure is the same
  2435   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2436   // Reset major-progress.  It was cleared by creating a verify version of
  2437   // PhaseIdealLoop.
  2438   for( int i=0; i<old_progress; i++ )
  2439     C->set_major_progress();
  2442 //------------------------------verify_compare---------------------------------
  2443 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2444 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2445   if( !n ) return;
  2446   if( visited.test_set( n->_idx ) ) return;
  2447   if( !_nodes[n->_idx] ) {      // Unreachable
  2448     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2449     return;
  2452   uint i;
  2453   for( i = 0; i < n->req(); i++ )
  2454     verify_compare( n->in(i), loop_verify, visited );
  2456   // Check the '_nodes' block/loop structure
  2457   i = n->_idx;
  2458   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2459     if( _nodes[i] != loop_verify->_nodes[i] &&
  2460         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2461       tty->print("Mismatched control setting for: ");
  2462       n->dump();
  2463       if( fail++ > 10 ) return;
  2464       Node *c = get_ctrl_no_update(n);
  2465       tty->print("We have it as: ");
  2466       if( c->in(0) ) c->dump();
  2467         else tty->print_cr("N%d",c->_idx);
  2468       tty->print("Verify thinks: ");
  2469       if( loop_verify->has_ctrl(n) )
  2470         loop_verify->get_ctrl_no_update(n)->dump();
  2471       else
  2472         loop_verify->get_loop_idx(n)->dump();
  2473       tty->cr();
  2475   } else {                    // We have a loop
  2476     IdealLoopTree *us = get_loop_idx(n);
  2477     if( loop_verify->has_ctrl(n) ) {
  2478       tty->print("Mismatched loop setting for: ");
  2479       n->dump();
  2480       if( fail++ > 10 ) return;
  2481       tty->print("We have it as: ");
  2482       us->dump();
  2483       tty->print("Verify thinks: ");
  2484       loop_verify->get_ctrl_no_update(n)->dump();
  2485       tty->cr();
  2486     } else if (!C->major_progress()) {
  2487       // Loop selection can be messed up if we did a major progress
  2488       // operation, like split-if.  Do not verify in that case.
  2489       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2490       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2491         tty->print("Unequals loops for: ");
  2492         n->dump();
  2493         if( fail++ > 10 ) return;
  2494         tty->print("We have it as: ");
  2495         us->dump();
  2496         tty->print("Verify thinks: ");
  2497         them->dump();
  2498         tty->cr();
  2503   // Check for immediate dominators being equal
  2504   if( i >= _idom_size ) {
  2505     if( !n->is_CFG() ) return;
  2506     tty->print("CFG Node with no idom: ");
  2507     n->dump();
  2508     return;
  2510   if( !n->is_CFG() ) return;
  2511   if( n == C->root() ) return; // No IDOM here
  2513   assert(n->_idx == i, "sanity");
  2514   Node *id = idom_no_update(n);
  2515   if( id != loop_verify->idom_no_update(n) ) {
  2516     tty->print("Unequals idoms for: ");
  2517     n->dump();
  2518     if( fail++ > 10 ) return;
  2519     tty->print("We have it as: ");
  2520     id->dump();
  2521     tty->print("Verify thinks: ");
  2522     loop_verify->idom_no_update(n)->dump();
  2523     tty->cr();
  2528 //------------------------------verify_tree------------------------------------
  2529 // Verify that tree structures match.  Because the CFG can change, siblings
  2530 // within the loop tree can be reordered.  We attempt to deal with that by
  2531 // reordering the verify's loop tree if possible.
  2532 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2533   assert( _parent == parent, "Badly formed loop tree" );
  2535   // Siblings not in same order?  Attempt to re-order.
  2536   if( _head != loop->_head ) {
  2537     // Find _next pointer to update
  2538     IdealLoopTree **pp = &loop->_parent->_child;
  2539     while( *pp != loop )
  2540       pp = &((*pp)->_next);
  2541     // Find proper sibling to be next
  2542     IdealLoopTree **nn = &loop->_next;
  2543     while( (*nn) && (*nn)->_head != _head )
  2544       nn = &((*nn)->_next);
  2546     // Check for no match.
  2547     if( !(*nn) ) {
  2548       // Annoyingly, irreducible loops can pick different headers
  2549       // after a major_progress operation, so the rest of the loop
  2550       // tree cannot be matched.
  2551       if (_irreducible && Compile::current()->major_progress())  return;
  2552       assert( 0, "failed to match loop tree" );
  2555     // Move (*nn) to (*pp)
  2556     IdealLoopTree *hit = *nn;
  2557     *nn = hit->_next;
  2558     hit->_next = loop;
  2559     *pp = loop;
  2560     loop = hit;
  2561     // Now try again to verify
  2564   assert( _head  == loop->_head , "mismatched loop head" );
  2565   Node *tail = _tail;           // Inline a non-updating version of
  2566   while( !tail->in(0) )         // the 'tail()' call.
  2567     tail = tail->in(1);
  2568   assert( tail == loop->_tail, "mismatched loop tail" );
  2570   // Counted loops that are guarded should be able to find their guards
  2571   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2572     CountedLoopNode *cl = _head->as_CountedLoop();
  2573     Node *init = cl->init_trip();
  2574     Node *ctrl = cl->in(LoopNode::EntryControl);
  2575     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2576     Node *iff  = ctrl->in(0);
  2577     assert( iff->Opcode() == Op_If, "" );
  2578     Node *bol  = iff->in(1);
  2579     assert( bol->Opcode() == Op_Bool, "" );
  2580     Node *cmp  = bol->in(1);
  2581     assert( cmp->Opcode() == Op_CmpI, "" );
  2582     Node *add  = cmp->in(1);
  2583     Node *opaq;
  2584     if( add->Opcode() == Op_Opaque1 ) {
  2585       opaq = add;
  2586     } else {
  2587       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2588       assert( add == init, "" );
  2589       opaq = cmp->in(2);
  2591     assert( opaq->Opcode() == Op_Opaque1, "" );
  2595   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2596   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2597   // Innermost loops need to verify loop bodies,
  2598   // but only if no 'major_progress'
  2599   int fail = 0;
  2600   if (!Compile::current()->major_progress() && _child == NULL) {
  2601     for( uint i = 0; i < _body.size(); i++ ) {
  2602       Node *n = _body.at(i);
  2603       if (n->outcnt() == 0)  continue; // Ignore dead
  2604       uint j;
  2605       for( j = 0; j < loop->_body.size(); j++ )
  2606         if( loop->_body.at(j) == n )
  2607           break;
  2608       if( j == loop->_body.size() ) { // Not found in loop body
  2609         // Last ditch effort to avoid assertion: Its possible that we
  2610         // have some users (so outcnt not zero) but are still dead.
  2611         // Try to find from root.
  2612         if (Compile::current()->root()->find(n->_idx)) {
  2613           fail++;
  2614           tty->print("We have that verify does not: ");
  2615           n->dump();
  2619     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2620       Node *n = loop->_body.at(i2);
  2621       if (n->outcnt() == 0)  continue; // Ignore dead
  2622       uint j;
  2623       for( j = 0; j < _body.size(); j++ )
  2624         if( _body.at(j) == n )
  2625           break;
  2626       if( j == _body.size() ) { // Not found in loop body
  2627         // Last ditch effort to avoid assertion: Its possible that we
  2628         // have some users (so outcnt not zero) but are still dead.
  2629         // Try to find from root.
  2630         if (Compile::current()->root()->find(n->_idx)) {
  2631           fail++;
  2632           tty->print("Verify has that we do not: ");
  2633           n->dump();
  2637     assert( !fail, "loop body mismatch" );
  2641 #endif
  2643 //------------------------------set_idom---------------------------------------
  2644 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2645   uint idx = d->_idx;
  2646   if (idx >= _idom_size) {
  2647     uint newsize = _idom_size<<1;
  2648     while( idx >= newsize ) {
  2649       newsize <<= 1;
  2651     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2652     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2653     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2654     _idom_size = newsize;
  2656   _idom[idx] = n;
  2657   _dom_depth[idx] = dom_depth;
  2660 //------------------------------recompute_dom_depth---------------------------------------
  2661 // The dominator tree is constructed with only parent pointers.
  2662 // This recomputes the depth in the tree by first tagging all
  2663 // nodes as "no depth yet" marker.  The next pass then runs up
  2664 // the dom tree from each node marked "no depth yet", and computes
  2665 // the depth on the way back down.
  2666 void PhaseIdealLoop::recompute_dom_depth() {
  2667   uint no_depth_marker = C->unique();
  2668   uint i;
  2669   // Initialize depth to "no depth yet"
  2670   for (i = 0; i < _idom_size; i++) {
  2671     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2672      _dom_depth[i] = no_depth_marker;
  2675   if (_dom_stk == NULL) {
  2676     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2677     if (init_size < 10) init_size = 10;
  2678     _dom_stk = new GrowableArray<uint>(init_size);
  2680   // Compute new depth for each node.
  2681   for (i = 0; i < _idom_size; i++) {
  2682     uint j = i;
  2683     // Run up the dom tree to find a node with a depth
  2684     while (_dom_depth[j] == no_depth_marker) {
  2685       _dom_stk->push(j);
  2686       j = _idom[j]->_idx;
  2688     // Compute the depth on the way back down this tree branch
  2689     uint dd = _dom_depth[j] + 1;
  2690     while (_dom_stk->length() > 0) {
  2691       uint j = _dom_stk->pop();
  2692       _dom_depth[j] = dd;
  2693       dd++;
  2698 //------------------------------sort-------------------------------------------
  2699 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2700 // loop tree, not the root.
  2701 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2702   if( !innermost ) return loop; // New innermost loop
  2704   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2705   assert( loop_preorder, "not yet post-walked loop" );
  2706   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2707   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2709   // Insert at start of list
  2710   while( l ) {                  // Insertion sort based on pre-order
  2711     if( l == loop ) return innermost; // Already on list!
  2712     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2713     assert( l_preorder, "not yet post-walked l" );
  2714     // Check header pre-order number to figure proper nesting
  2715     if( loop_preorder > l_preorder )
  2716       break;                    // End of insertion
  2717     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2718     // Since I split shared headers, you'd think this could not happen.
  2719     // BUT: I must first do the preorder numbering before I can discover I
  2720     // have shared headers, so the split headers all get the same preorder
  2721     // number as the RegionNode they split from.
  2722     if( loop_preorder == l_preorder &&
  2723         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2724       break;                    // Also check for shared headers (same pre#)
  2725     pp = &l->_parent;           // Chain up list
  2726     l = *pp;
  2728   // Link into list
  2729   // Point predecessor to me
  2730   *pp = loop;
  2731   // Point me to successor
  2732   IdealLoopTree *p = loop->_parent;
  2733   loop->_parent = l;            // Point me to successor
  2734   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2735   return innermost;
  2738 //------------------------------build_loop_tree--------------------------------
  2739 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2740 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2741 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2742 // tightest enclosing IdealLoopTree for post-walked.
  2743 //
  2744 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2745 // a loop backedge with that doesn't have any work on the backedge.  This
  2746 // helps me construct nested loops with shared headers better.
  2747 //
  2748 // Once I've done the forward recursion, I do the post-work.  For each child
  2749 // I check to see if there is a backedge.  Backedges define a loop!  I
  2750 // insert an IdealLoopTree at the target of the backedge.
  2751 //
  2752 // During the post-work I also check to see if I have several children
  2753 // belonging to different loops.  If so, then this Node is a decision point
  2754 // where control flow can choose to change loop nests.  It is at this
  2755 // decision point where I can figure out how loops are nested.  At this
  2756 // time I can properly order the different loop nests from my children.
  2757 // Note that there may not be any backedges at the decision point!
  2758 //
  2759 // Since the decision point can be far removed from the backedges, I can't
  2760 // order my loops at the time I discover them.  Thus at the decision point
  2761 // I need to inspect loop header pre-order numbers to properly nest my
  2762 // loops.  This means I need to sort my childrens' loops by pre-order.
  2763 // The sort is of size number-of-control-children, which generally limits
  2764 // it to size 2 (i.e., I just choose between my 2 target loops).
  2765 void PhaseIdealLoop::build_loop_tree() {
  2766   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2767   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2768   Node *n = C->root();
  2769   bltstack.push(n);
  2770   int pre_order = 1;
  2771   int stack_size;
  2773   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2774     n = bltstack.top(); // Leave node on stack
  2775     if ( !is_visited(n) ) {
  2776       // ---- Pre-pass Work ----
  2777       // Pre-walked but not post-walked nodes need a pre_order number.
  2779       set_preorder_visited( n, pre_order ); // set as visited
  2781       // ---- Scan over children ----
  2782       // Scan first over control projections that lead to loop headers.
  2783       // This helps us find inner-to-outer loops with shared headers better.
  2785       // Scan children's children for loop headers.
  2786       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2787         Node* m = n->raw_out(i);       // Child
  2788         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2789           // Scan over children's children to find loop
  2790           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2791             Node* l = m->fast_out(j);
  2792             if( is_visited(l) &&       // Been visited?
  2793                 !is_postvisited(l) &&  // But not post-visited
  2794                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2795               // Found!  Scan the DFS down this path before doing other paths
  2796               bltstack.push(m);
  2797               break;
  2802       pre_order++;
  2804     else if ( !is_postvisited(n) ) {
  2805       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2806       // such as com.sun.rsasign.am::a.
  2807       // For non-recursive version, first, process current children.
  2808       // On next iteration, check if additional children were added.
  2809       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2810         Node* u = n->raw_out(k);
  2811         if ( u->is_CFG() && !is_visited(u) ) {
  2812           bltstack.push(u);
  2815       if ( bltstack.length() == stack_size ) {
  2816         // There were no additional children, post visit node now
  2817         (void)bltstack.pop(); // Remove node from stack
  2818         pre_order = build_loop_tree_impl( n, pre_order );
  2819         // Check for bailout
  2820         if (C->failing()) {
  2821           return;
  2823         // Check to grow _preorders[] array for the case when
  2824         // build_loop_tree_impl() adds new nodes.
  2825         check_grow_preorders();
  2828     else {
  2829       (void)bltstack.pop(); // Remove post-visited node from stack
  2834 //------------------------------build_loop_tree_impl---------------------------
  2835 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2836   // ---- Post-pass Work ----
  2837   // Pre-walked but not post-walked nodes need a pre_order number.
  2839   // Tightest enclosing loop for this Node
  2840   IdealLoopTree *innermost = NULL;
  2842   // For all children, see if any edge is a backedge.  If so, make a loop
  2843   // for it.  Then find the tightest enclosing loop for the self Node.
  2844   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2845     Node* m = n->fast_out(i);   // Child
  2846     if( n == m ) continue;      // Ignore control self-cycles
  2847     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2849     IdealLoopTree *l;           // Child's loop
  2850     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2851       // Found a backedge
  2852       assert( get_preorder(m) < pre_order, "should be backedge" );
  2853       // Check for the RootNode, which is already a LoopNode and is allowed
  2854       // to have multiple "backedges".
  2855       if( m == C->root()) {     // Found the root?
  2856         l = _ltree_root;        // Root is the outermost LoopNode
  2857       } else {                  // Else found a nested loop
  2858         // Insert a LoopNode to mark this loop.
  2859         l = new IdealLoopTree(this, m, n);
  2860       } // End of Else found a nested loop
  2861       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2862         set_loop(m, l);         // Set loop header to loop now
  2864     } else {                    // Else not a nested loop
  2865       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2866       l = get_loop(m);          // Get previously determined loop
  2867       // If successor is header of a loop (nest), move up-loop till it
  2868       // is a member of some outer enclosing loop.  Since there are no
  2869       // shared headers (I've split them already) I only need to go up
  2870       // at most 1 level.
  2871       while( l && l->_head == m ) // Successor heads loop?
  2872         l = l->_parent;         // Move up 1 for me
  2873       // If this loop is not properly parented, then this loop
  2874       // has no exit path out, i.e. its an infinite loop.
  2875       if( !l ) {
  2876         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2877         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2878         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2879         // many backedges as well.
  2881         // Here I set the loop to be the root loop.  I could have, after
  2882         // inserting a bogus loop exit, restarted the recursion and found my
  2883         // new loop exit.  This would make the infinite loop a first-class
  2884         // loop and it would then get properly optimized.  What's the use of
  2885         // optimizing an infinite loop?
  2886         l = _ltree_root;        // Oops, found infinite loop
  2888         if (!_verify_only) {
  2889           // Insert the NeverBranch between 'm' and it's control user.
  2890           NeverBranchNode *iff = new (C) NeverBranchNode( m );
  2891           _igvn.register_new_node_with_optimizer(iff);
  2892           set_loop(iff, l);
  2893           Node *if_t = new (C) CProjNode( iff, 0 );
  2894           _igvn.register_new_node_with_optimizer(if_t);
  2895           set_loop(if_t, l);
  2897           Node* cfg = NULL;       // Find the One True Control User of m
  2898           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2899             Node* x = m->fast_out(j);
  2900             if (x->is_CFG() && x != m && x != iff)
  2901               { cfg = x; break; }
  2903           assert(cfg != NULL, "must find the control user of m");
  2904           uint k = 0;             // Probably cfg->in(0)
  2905           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2906           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2908           // Now create the never-taken loop exit
  2909           Node *if_f = new (C) CProjNode( iff, 1 );
  2910           _igvn.register_new_node_with_optimizer(if_f);
  2911           set_loop(if_f, l);
  2912           // Find frame ptr for Halt.  Relies on the optimizer
  2913           // V-N'ing.  Easier and quicker than searching through
  2914           // the program structure.
  2915           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
  2916           _igvn.register_new_node_with_optimizer(frame);
  2917           // Halt & Catch Fire
  2918           Node *halt = new (C) HaltNode( if_f, frame );
  2919           _igvn.register_new_node_with_optimizer(halt);
  2920           set_loop(halt, l);
  2921           C->root()->add_req(halt);
  2923         set_loop(C->root(), _ltree_root);
  2926     // Weeny check for irreducible.  This child was already visited (this
  2927     // IS the post-work phase).  Is this child's loop header post-visited
  2928     // as well?  If so, then I found another entry into the loop.
  2929     if (!_verify_only) {
  2930       while( is_postvisited(l->_head) ) {
  2931         // found irreducible
  2932         l->_irreducible = 1; // = true
  2933         l = l->_parent;
  2934         _has_irreducible_loops = true;
  2935         // Check for bad CFG here to prevent crash, and bailout of compile
  2936         if (l == NULL) {
  2937           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2938           return pre_order;
  2943     // This Node might be a decision point for loops.  It is only if
  2944     // it's children belong to several different loops.  The sort call
  2945     // does a trivial amount of work if there is only 1 child or all
  2946     // children belong to the same loop.  If however, the children
  2947     // belong to different loops, the sort call will properly set the
  2948     // _parent pointers to show how the loops nest.
  2949     //
  2950     // In any case, it returns the tightest enclosing loop.
  2951     innermost = sort( l, innermost );
  2954   // Def-use info will have some dead stuff; dead stuff will have no
  2955   // loop decided on.
  2957   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2958   if( innermost && innermost->_head == n ) {
  2959     assert( get_loop(n) == innermost, "" );
  2960     IdealLoopTree *p = innermost->_parent;
  2961     IdealLoopTree *l = innermost;
  2962     while( p && l->_head == n ) {
  2963       l->_next = p->_child;     // Put self on parents 'next child'
  2964       p->_child = l;            // Make self as first child of parent
  2965       l = p;                    // Now walk up the parent chain
  2966       p = l->_parent;
  2968   } else {
  2969     // Note that it is possible for a LoopNode to reach here, if the
  2970     // backedge has been made unreachable (hence the LoopNode no longer
  2971     // denotes a Loop, and will eventually be removed).
  2973     // Record tightest enclosing loop for self.  Mark as post-visited.
  2974     set_loop(n, innermost);
  2975     // Also record has_call flag early on
  2976     if( innermost ) {
  2977       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2978         // Do not count uncommon calls
  2979         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2980           Node *iff = n->in(0)->in(0);
  2981           // No any calls for vectorized loops.
  2982           if( UseSuperWord || !iff->is_If() ||
  2983               (n->in(0)->Opcode() == Op_IfFalse &&
  2984                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2985               (iff->as_If()->_prob >= 0.01) )
  2986             innermost->_has_call = 1;
  2988       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2989         // Disable loop optimizations if the loop has a scalar replaceable
  2990         // allocation. This disabling may cause a potential performance lost
  2991         // if the allocation is not eliminated for some reason.
  2992         innermost->_allow_optimizations = false;
  2993         innermost->_has_call = 1; // = true
  2994       } else if (n->Opcode() == Op_SafePoint) {
  2995         // Record all safepoints in this loop.
  2996         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
  2997         innermost->_safepts->push(n);
  3002   // Flag as post-visited now
  3003   set_postvisited(n);
  3004   return pre_order;
  3008 //------------------------------build_loop_early-------------------------------
  3009 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3010 // First pass computes the earliest controlling node possible.  This is the
  3011 // controlling input with the deepest dominating depth.
  3012 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3013   while (worklist.size() != 0) {
  3014     // Use local variables nstack_top_n & nstack_top_i to cache values
  3015     // on nstack's top.
  3016     Node *nstack_top_n = worklist.pop();
  3017     uint  nstack_top_i = 0;
  3018 //while_nstack_nonempty:
  3019     while (true) {
  3020       // Get parent node and next input's index from stack's top.
  3021       Node  *n = nstack_top_n;
  3022       uint   i = nstack_top_i;
  3023       uint cnt = n->req(); // Count of inputs
  3024       if (i == 0) {        // Pre-process the node.
  3025         if( has_node(n) &&            // Have either loop or control already?
  3026             !has_ctrl(n) ) {          // Have loop picked out already?
  3027           // During "merge_many_backedges" we fold up several nested loops
  3028           // into a single loop.  This makes the members of the original
  3029           // loop bodies pointing to dead loops; they need to move up
  3030           // to the new UNION'd larger loop.  I set the _head field of these
  3031           // dead loops to NULL and the _parent field points to the owning
  3032           // loop.  Shades of UNION-FIND algorithm.
  3033           IdealLoopTree *ilt;
  3034           while( !(ilt = get_loop(n))->_head ) {
  3035             // Normally I would use a set_loop here.  But in this one special
  3036             // case, it is legal (and expected) to change what loop a Node
  3037             // belongs to.
  3038             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  3040           // Remove safepoints ONLY if I've already seen I don't need one.
  3041           // (the old code here would yank a 2nd safepoint after seeing a
  3042           // first one, even though the 1st did not dominate in the loop body
  3043           // and thus could be avoided indefinitely)
  3044           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  3045               is_deleteable_safept(n)) {
  3046             Node *in = n->in(TypeFunc::Control);
  3047             lazy_replace(n,in);       // Pull safepoint now
  3048             if (ilt->_safepts != NULL) {
  3049               ilt->_safepts->yank(n);
  3051             // Carry on with the recursion "as if" we are walking
  3052             // only the control input
  3053             if( !visited.test_set( in->_idx ) ) {
  3054               worklist.push(in);      // Visit this guy later, using worklist
  3056             // Get next node from nstack:
  3057             // - skip n's inputs processing by setting i > cnt;
  3058             // - we also will not call set_early_ctrl(n) since
  3059             //   has_node(n) == true (see the condition above).
  3060             i = cnt + 1;
  3063       } // if (i == 0)
  3065       // Visit all inputs
  3066       bool done = true;       // Assume all n's inputs will be processed
  3067       while (i < cnt) {
  3068         Node *in = n->in(i);
  3069         ++i;
  3070         if (in == NULL) continue;
  3071         if (in->pinned() && !in->is_CFG())
  3072           set_ctrl(in, in->in(0));
  3073         int is_visited = visited.test_set( in->_idx );
  3074         if (!has_node(in)) {  // No controlling input yet?
  3075           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  3076           assert( !is_visited, "visit only once" );
  3077           nstack.push(n, i);  // Save parent node and next input's index.
  3078           nstack_top_n = in;  // Process current input now.
  3079           nstack_top_i = 0;
  3080           done = false;       // Not all n's inputs processed.
  3081           break; // continue while_nstack_nonempty;
  3082         } else if (!is_visited) {
  3083           // This guy has a location picked out for him, but has not yet
  3084           // been visited.  Happens to all CFG nodes, for instance.
  3085           // Visit him using the worklist instead of recursion, to break
  3086           // cycles.  Since he has a location already we do not need to
  3087           // find his location before proceeding with the current Node.
  3088           worklist.push(in);  // Visit this guy later, using worklist
  3091       if (done) {
  3092         // All of n's inputs have been processed, complete post-processing.
  3094         // Compute earliest point this Node can go.
  3095         // CFG, Phi, pinned nodes already know their controlling input.
  3096         if (!has_node(n)) {
  3097           // Record earliest legal location
  3098           set_early_ctrl( n );
  3100         if (nstack.is_empty()) {
  3101           // Finished all nodes on stack.
  3102           // Process next node on the worklist.
  3103           break;
  3105         // Get saved parent node and next input's index.
  3106         nstack_top_n = nstack.node();
  3107         nstack_top_i = nstack.index();
  3108         nstack.pop();
  3110     } // while (true)
  3114 //------------------------------dom_lca_internal--------------------------------
  3115 // Pair-wise LCA
  3116 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  3117   if( !n1 ) return n2;          // Handle NULL original LCA
  3118   assert( n1->is_CFG(), "" );
  3119   assert( n2->is_CFG(), "" );
  3120   // find LCA of all uses
  3121   uint d1 = dom_depth(n1);
  3122   uint d2 = dom_depth(n2);
  3123   while (n1 != n2) {
  3124     if (d1 > d2) {
  3125       n1 =      idom(n1);
  3126       d1 = dom_depth(n1);
  3127     } else if (d1 < d2) {
  3128       n2 =      idom(n2);
  3129       d2 = dom_depth(n2);
  3130     } else {
  3131       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3132       // of the tree might have the same depth.  These sections have
  3133       // to be searched more carefully.
  3135       // Scan up all the n1's with equal depth, looking for n2.
  3136       Node *t1 = idom(n1);
  3137       while (dom_depth(t1) == d1) {
  3138         if (t1 == n2)  return n2;
  3139         t1 = idom(t1);
  3141       // Scan up all the n2's with equal depth, looking for n1.
  3142       Node *t2 = idom(n2);
  3143       while (dom_depth(t2) == d2) {
  3144         if (t2 == n1)  return n1;
  3145         t2 = idom(t2);
  3147       // Move up to a new dominator-depth value as well as up the dom-tree.
  3148       n1 = t1;
  3149       n2 = t2;
  3150       d1 = dom_depth(n1);
  3151       d2 = dom_depth(n2);
  3154   return n1;
  3157 //------------------------------compute_idom-----------------------------------
  3158 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  3159 // IDOMs are correct.
  3160 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  3161   assert( region->is_Region(), "" );
  3162   Node *LCA = NULL;
  3163   for( uint i = 1; i < region->req(); i++ ) {
  3164     if( region->in(i) != C->top() )
  3165       LCA = dom_lca( LCA, region->in(i) );
  3167   return LCA;
  3170 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  3171   bool had_error = false;
  3172 #ifdef ASSERT
  3173   if (early != C->root()) {
  3174     // Make sure that there's a dominance path from use to LCA
  3175     Node* d = use;
  3176     while (d != LCA) {
  3177       d = idom(d);
  3178       if (d == C->root()) {
  3179         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  3180         n->dump();
  3181         use->dump();
  3182         had_error = true;
  3183         break;
  3187 #endif
  3188   return had_error;
  3192 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  3193   // Compute LCA over list of uses
  3194   bool had_error = false;
  3195   Node *LCA = NULL;
  3196   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  3197     Node* c = n->fast_out(i);
  3198     if (_nodes[c->_idx] == NULL)
  3199       continue;                 // Skip the occasional dead node
  3200     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  3201       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  3202         if( c->in(j) == n ) {   // Found matching input?
  3203           Node *use = c->in(0)->in(j);
  3204           if (_verify_only && use->is_top()) continue;
  3205           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3206           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3209     } else {
  3210       // For CFG data-users, use is in the block just prior
  3211       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  3212       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3213       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3216   assert(!had_error, "bad dominance");
  3217   return LCA;
  3220 //------------------------------get_late_ctrl----------------------------------
  3221 // Compute latest legal control.
  3222 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  3223   assert(early != NULL, "early control should not be NULL");
  3225   Node* LCA = compute_lca_of_uses(n, early);
  3226 #ifdef ASSERT
  3227   if (LCA == C->root() && LCA != early) {
  3228     // def doesn't dominate uses so print some useful debugging output
  3229     compute_lca_of_uses(n, early, true);
  3231 #endif
  3233   // if this is a load, check for anti-dependent stores
  3234   // We use a conservative algorithm to identify potential interfering
  3235   // instructions and for rescheduling the load.  The users of the memory
  3236   // input of this load are examined.  Any use which is not a load and is
  3237   // dominated by early is considered a potentially interfering store.
  3238   // This can produce false positives.
  3239   if (n->is_Load() && LCA != early) {
  3240     Node_List worklist;
  3242     Node *mem = n->in(MemNode::Memory);
  3243     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3244       Node* s = mem->fast_out(i);
  3245       worklist.push(s);
  3247     while(worklist.size() != 0 && LCA != early) {
  3248       Node* s = worklist.pop();
  3249       if (s->is_Load()) {
  3250         continue;
  3251       } else if (s->is_MergeMem()) {
  3252         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3253           Node* s1 = s->fast_out(i);
  3254           worklist.push(s1);
  3256       } else {
  3257         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3258         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3259         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3260           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3266   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3267   return LCA;
  3270 // true if CFG node d dominates CFG node n
  3271 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3272   if (d == n)
  3273     return true;
  3274   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3275   uint dd = dom_depth(d);
  3276   while (dom_depth(n) >= dd) {
  3277     if (n == d)
  3278       return true;
  3279     n = idom(n);
  3281   return false;
  3284 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3285 // Pair-wise LCA with tags.
  3286 // Tag each index with the node 'tag' currently being processed
  3287 // before advancing up the dominator chain using idom().
  3288 // Later calls that find a match to 'tag' know that this path has already
  3289 // been considered in the current LCA (which is input 'n1' by convention).
  3290 // Since get_late_ctrl() is only called once for each node, the tag array
  3291 // does not need to be cleared between calls to get_late_ctrl().
  3292 // Algorithm trades a larger constant factor for better asymptotic behavior
  3293 //
  3294 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3295   uint d1 = dom_depth(n1);
  3296   uint d2 = dom_depth(n2);
  3298   do {
  3299     if (d1 > d2) {
  3300       // current lca is deeper than n2
  3301       _dom_lca_tags.map(n1->_idx, tag);
  3302       n1 =      idom(n1);
  3303       d1 = dom_depth(n1);
  3304     } else if (d1 < d2) {
  3305       // n2 is deeper than current lca
  3306       Node *memo = _dom_lca_tags[n2->_idx];
  3307       if( memo == tag ) {
  3308         return n1;    // Return the current LCA
  3310       _dom_lca_tags.map(n2->_idx, tag);
  3311       n2 =      idom(n2);
  3312       d2 = dom_depth(n2);
  3313     } else {
  3314       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3315       // of the tree might have the same depth.  These sections have
  3316       // to be searched more carefully.
  3318       // Scan up all the n1's with equal depth, looking for n2.
  3319       _dom_lca_tags.map(n1->_idx, tag);
  3320       Node *t1 = idom(n1);
  3321       while (dom_depth(t1) == d1) {
  3322         if (t1 == n2)  return n2;
  3323         _dom_lca_tags.map(t1->_idx, tag);
  3324         t1 = idom(t1);
  3326       // Scan up all the n2's with equal depth, looking for n1.
  3327       _dom_lca_tags.map(n2->_idx, tag);
  3328       Node *t2 = idom(n2);
  3329       while (dom_depth(t2) == d2) {
  3330         if (t2 == n1)  return n1;
  3331         _dom_lca_tags.map(t2->_idx, tag);
  3332         t2 = idom(t2);
  3334       // Move up to a new dominator-depth value as well as up the dom-tree.
  3335       n1 = t1;
  3336       n2 = t2;
  3337       d1 = dom_depth(n1);
  3338       d2 = dom_depth(n2);
  3340   } while (n1 != n2);
  3341   return n1;
  3344 //------------------------------init_dom_lca_tags------------------------------
  3345 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3346 // Intended use does not involve any growth for the array, so it could
  3347 // be of fixed size.
  3348 void PhaseIdealLoop::init_dom_lca_tags() {
  3349   uint limit = C->unique() + 1;
  3350   _dom_lca_tags.map( limit, NULL );
  3351 #ifdef ASSERT
  3352   for( uint i = 0; i < limit; ++i ) {
  3353     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3355 #endif // ASSERT
  3358 //------------------------------clear_dom_lca_tags------------------------------
  3359 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3360 // Intended use does not involve any growth for the array, so it could
  3361 // be of fixed size.
  3362 void PhaseIdealLoop::clear_dom_lca_tags() {
  3363   uint limit = C->unique() + 1;
  3364   _dom_lca_tags.map( limit, NULL );
  3365   _dom_lca_tags.clear();
  3366 #ifdef ASSERT
  3367   for( uint i = 0; i < limit; ++i ) {
  3368     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3370 #endif // ASSERT
  3373 //------------------------------build_loop_late--------------------------------
  3374 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3375 // Second pass finds latest legal placement, and ideal loop placement.
  3376 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3377   while (worklist.size() != 0) {
  3378     Node *n = worklist.pop();
  3379     // Only visit once
  3380     if (visited.test_set(n->_idx)) continue;
  3381     uint cnt = n->outcnt();
  3382     uint   i = 0;
  3383     while (true) {
  3384       assert( _nodes[n->_idx], "no dead nodes" );
  3385       // Visit all children
  3386       if (i < cnt) {
  3387         Node* use = n->raw_out(i);
  3388         ++i;
  3389         // Check for dead uses.  Aggressively prune such junk.  It might be
  3390         // dead in the global sense, but still have local uses so I cannot
  3391         // easily call 'remove_dead_node'.
  3392         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3393           // Due to cycles, we might not hit the same fixed point in the verify
  3394           // pass as we do in the regular pass.  Instead, visit such phis as
  3395           // simple uses of the loop head.
  3396           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3397             if( !visited.test(use->_idx) )
  3398               worklist.push(use);
  3399           } else if( !visited.test_set(use->_idx) ) {
  3400             nstack.push(n, i); // Save parent and next use's index.
  3401             n   = use;         // Process all children of current use.
  3402             cnt = use->outcnt();
  3403             i   = 0;
  3405         } else {
  3406           // Do not visit around the backedge of loops via data edges.
  3407           // push dead code onto a worklist
  3408           _deadlist.push(use);
  3410       } else {
  3411         // All of n's children have been processed, complete post-processing.
  3412         build_loop_late_post(n);
  3413         if (nstack.is_empty()) {
  3414           // Finished all nodes on stack.
  3415           // Process next node on the worklist.
  3416           break;
  3418         // Get saved parent node and next use's index. Visit the rest of uses.
  3419         n   = nstack.node();
  3420         cnt = n->outcnt();
  3421         i   = nstack.index();
  3422         nstack.pop();
  3428 //------------------------------build_loop_late_post---------------------------
  3429 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3430 // Second pass finds latest legal placement, and ideal loop placement.
  3431 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3433   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3434     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3437   // CFG and pinned nodes already handled
  3438   if( n->in(0) ) {
  3439     if( n->in(0)->is_top() ) return; // Dead?
  3441     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3442     // _must_ be pinned (they have to observe their control edge of course).
  3443     // Unlike Stores (which modify an unallocable resource, the memory
  3444     // state), Mods/Loads can float around.  So free them up.
  3445     bool pinned = true;
  3446     switch( n->Opcode() ) {
  3447     case Op_DivI:
  3448     case Op_DivF:
  3449     case Op_DivD:
  3450     case Op_ModI:
  3451     case Op_ModF:
  3452     case Op_ModD:
  3453     case Op_LoadB:              // Same with Loads; they can sink
  3454     case Op_LoadUB:             // during loop optimizations.
  3455     case Op_LoadUS:
  3456     case Op_LoadD:
  3457     case Op_LoadF:
  3458     case Op_LoadI:
  3459     case Op_LoadKlass:
  3460     case Op_LoadNKlass:
  3461     case Op_LoadL:
  3462     case Op_LoadS:
  3463     case Op_LoadP:
  3464     case Op_LoadN:
  3465     case Op_LoadRange:
  3466     case Op_LoadD_unaligned:
  3467     case Op_LoadL_unaligned:
  3468     case Op_StrComp:            // Does a bunch of load-like effects
  3469     case Op_StrEquals:
  3470     case Op_StrIndexOf:
  3471     case Op_AryEq:
  3472       pinned = false;
  3474     if( pinned ) {
  3475       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3476       if( !chosen_loop->_child )       // Inner loop?
  3477         chosen_loop->_body.push(n); // Collect inner loops
  3478       return;
  3480   } else {                      // No slot zero
  3481     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3482       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3483       return;
  3485     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3488   // Do I have a "safe range" I can select over?
  3489   Node *early = get_ctrl(n);// Early location already computed
  3491   // Compute latest point this Node can go
  3492   Node *LCA = get_late_ctrl( n, early );
  3493   // LCA is NULL due to uses being dead
  3494   if( LCA == NULL ) {
  3495 #ifdef ASSERT
  3496     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3497       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3499 #endif
  3500     _nodes.map(n->_idx, 0);     // This node is useless
  3501     _deadlist.push(n);
  3502     return;
  3504   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3506   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3507   Node *least = legal;          // Best legal position so far
  3508   while( early != legal ) {     // While not at earliest legal
  3509 #ifdef ASSERT
  3510     if (legal->is_Start() && !early->is_Root()) {
  3511       // Bad graph. Print idom path and fail.
  3512       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
  3513       assert(false, "Bad graph detected in build_loop_late");
  3515 #endif
  3516     // Find least loop nesting depth
  3517     legal = idom(legal);        // Bump up the IDOM tree
  3518     // Check for lower nesting depth
  3519     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3520       least = legal;
  3522   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3524   // Try not to place code on a loop entry projection
  3525   // which can inhibit range check elimination.
  3526   if (least != early) {
  3527     Node* ctrl_out = least->unique_ctrl_out();
  3528     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3529         least == ctrl_out->in(LoopNode::EntryControl)) {
  3530       Node* least_dom = idom(least);
  3531       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3532         least = least_dom;
  3537 #ifdef ASSERT
  3538   // If verifying, verify that 'verify_me' has a legal location
  3539   // and choose it as our location.
  3540   if( _verify_me ) {
  3541     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3542     Node *legal = LCA;
  3543     while( early != legal ) {   // While not at earliest legal
  3544       if( legal == v_ctrl ) break;  // Check for prior good location
  3545       legal = idom(legal)      ;// Bump up the IDOM tree
  3547     // Check for prior good location
  3548     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3550 #endif
  3552   // Assign discovered "here or above" point
  3553   least = find_non_split_ctrl(least);
  3554   set_ctrl(n, least);
  3556   // Collect inner loop bodies
  3557   IdealLoopTree *chosen_loop = get_loop(least);
  3558   if( !chosen_loop->_child )   // Inner loop?
  3559     chosen_loop->_body.push(n);// Collect inner loops
  3562 #ifdef ASSERT
  3563 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
  3564   tty->print_cr(msg);
  3565   tty->print("n: "); n->dump();
  3566   tty->print("early(n): "); early->dump();
  3567   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
  3568       n->in(0) != early && !n->in(0)->is_Root()) {
  3569     tty->print("n->in(0): "); n->in(0)->dump();
  3571   for (uint i = 1; i < n->req(); i++) {
  3572     Node* in1 = n->in(i);
  3573     if (in1 != NULL && in1 != n && !in1->is_top()) {
  3574       tty->print("n->in(%d): ", i); in1->dump();
  3575       Node* in1_early = get_ctrl(in1);
  3576       tty->print("early(n->in(%d)): ", i); in1_early->dump();
  3577       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
  3578           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
  3579         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
  3581       for (uint j = 1; j < in1->req(); j++) {
  3582         Node* in2 = in1->in(j);
  3583         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
  3584           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
  3585           Node* in2_early = get_ctrl(in2);
  3586           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
  3587           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
  3588               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
  3589             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
  3595   tty->cr();
  3596   tty->print("LCA(n): "); LCA->dump();
  3597   for (uint i = 0; i < n->outcnt(); i++) {
  3598     Node* u1 = n->raw_out(i);
  3599     if (u1 == n)
  3600       continue;
  3601     tty->print("n->out(%d): ", i); u1->dump();
  3602     if (u1->is_CFG()) {
  3603       for (uint j = 0; j < u1->outcnt(); j++) {
  3604         Node* u2 = u1->raw_out(j);
  3605         if (u2 != u1 && u2 != n && u2->is_CFG()) {
  3606           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3609     } else {
  3610       Node* u1_later = get_ctrl(u1);
  3611       tty->print("later(n->out(%d)): ", i); u1_later->dump();
  3612       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
  3613           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
  3614         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
  3616       for (uint j = 0; j < u1->outcnt(); j++) {
  3617         Node* u2 = u1->raw_out(j);
  3618         if (u2 == n || u2 == u1)
  3619           continue;
  3620         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3621         if (!u2->is_CFG()) {
  3622           Node* u2_later = get_ctrl(u2);
  3623           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
  3624           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
  3625               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
  3626             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
  3632   tty->cr();
  3633   int ct = 0;
  3634   Node *dbg_legal = LCA;
  3635   while(!dbg_legal->is_Start() && ct < 100) {
  3636     tty->print("idom[%d] ",ct); dbg_legal->dump();
  3637     ct++;
  3638     dbg_legal = idom(dbg_legal);
  3640   tty->cr();
  3642 #endif
  3644 #ifndef PRODUCT
  3645 //------------------------------dump-------------------------------------------
  3646 void PhaseIdealLoop::dump( ) const {
  3647   ResourceMark rm;
  3648   Arena* arena = Thread::current()->resource_area();
  3649   Node_Stack stack(arena, C->unique() >> 2);
  3650   Node_List rpo_list;
  3651   VectorSet visited(arena);
  3652   visited.set(C->top()->_idx);
  3653   rpo( C->root(), stack, visited, rpo_list );
  3654   // Dump root loop indexed by last element in PO order
  3655   dump( _ltree_root, rpo_list.size(), rpo_list );
  3658 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3659   loop->dump_head();
  3661   // Now scan for CFG nodes in the same loop
  3662   for( uint j=idx; j > 0;  j-- ) {
  3663     Node *n = rpo_list[j-1];
  3664     if( !_nodes[n->_idx] )      // Skip dead nodes
  3665       continue;
  3666     if( get_loop(n) != loop ) { // Wrong loop nest
  3667       if( get_loop(n)->_head == n &&    // Found nested loop?
  3668           get_loop(n)->_parent == loop )
  3669         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3670       continue;
  3673     // Dump controlling node
  3674     for( uint x = 0; x < loop->_nest; x++ )
  3675       tty->print("  ");
  3676     tty->print("C");
  3677     if( n == C->root() ) {
  3678       n->dump();
  3679     } else {
  3680       Node* cached_idom   = idom_no_update(n);
  3681       Node *computed_idom = n->in(0);
  3682       if( n->is_Region() ) {
  3683         computed_idom = compute_idom(n);
  3684         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3685         // any MultiBranch ctrl node), so apply a similar transform to
  3686         // the cached idom returned from idom_no_update.
  3687         cached_idom = find_non_split_ctrl(cached_idom);
  3689       tty->print(" ID:%d",computed_idom->_idx);
  3690       n->dump();
  3691       if( cached_idom != computed_idom ) {
  3692         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3693                       computed_idom->_idx, cached_idom->_idx);
  3696     // Dump nodes it controls
  3697     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3698       // (k < C->unique() && get_ctrl(find(k)) == n)
  3699       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3700         Node *m = C->root()->find(k);
  3701         if( m && m->outcnt() > 0 ) {
  3702           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3703             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3704                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3706           for( uint j = 0; j < loop->_nest; j++ )
  3707             tty->print("  ");
  3708           tty->print(" ");
  3709           m->dump();
  3716 // Collect a R-P-O for the whole CFG.
  3717 // Result list is in post-order (scan backwards for RPO)
  3718 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3719   stk.push(start, 0);
  3720   visited.set(start->_idx);
  3722   while (stk.is_nonempty()) {
  3723     Node* m   = stk.node();
  3724     uint  idx = stk.index();
  3725     if (idx < m->outcnt()) {
  3726       stk.set_index(idx + 1);
  3727       Node* n = m->raw_out(idx);
  3728       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3729         stk.push(n, 0);
  3731     } else {
  3732       rpo_list.push(m);
  3733       stk.pop();
  3737 #endif
  3740 //=============================================================================
  3741 //------------------------------LoopTreeIterator-----------------------------------
  3743 // Advance to next loop tree using a preorder, left-to-right traversal.
  3744 void LoopTreeIterator::next() {
  3745   assert(!done(), "must not be done.");
  3746   if (_curnt->_child != NULL) {
  3747     _curnt = _curnt->_child;
  3748   } else if (_curnt->_next != NULL) {
  3749     _curnt = _curnt->_next;
  3750   } else {
  3751     while (_curnt != _root && _curnt->_next == NULL) {
  3752       _curnt = _curnt->_parent;
  3754     if (_curnt == _root) {
  3755       _curnt = NULL;
  3756       assert(done(), "must be done.");
  3757     } else {
  3758       assert(_curnt->_next != NULL, "must be more to do");
  3759       _curnt = _curnt->_next;

mercurial