src/share/vm/opto/block.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 6478
044b28168e20
child 6490
41b780b43b74
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/loopnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "utilities/copy.hpp"
    38 void Block_Array::grow( uint i ) {
    39   assert(i >= Max(), "must be an overflow");
    40   debug_only(_limit = i+1);
    41   if( i < _size )  return;
    42   if( !_size ) {
    43     _size = 1;
    44     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    45     _blocks[0] = NULL;
    46   }
    47   uint old = _size;
    48   while( i >= _size ) _size <<= 1;      // Double to fit
    49   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    50   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    51 }
    53 void Block_List::remove(uint i) {
    54   assert(i < _cnt, "index out of bounds");
    55   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    56   pop(); // shrink list by one block
    57 }
    59 void Block_List::insert(uint i, Block *b) {
    60   push(b); // grow list by one block
    61   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    62   _blocks[i] = b;
    63 }
    65 #ifndef PRODUCT
    66 void Block_List::print() {
    67   for (uint i=0; i < size(); i++) {
    68     tty->print("B%d ", _blocks[i]->_pre_order);
    69   }
    70   tty->print("size = %d\n", size());
    71 }
    72 #endif
    74 uint Block::code_alignment() {
    75   // Check for Root block
    76   if (_pre_order == 0) return CodeEntryAlignment;
    77   // Check for Start block
    78   if (_pre_order == 1) return InteriorEntryAlignment;
    79   // Check for loop alignment
    80   if (has_loop_alignment()) return loop_alignment();
    82   return relocInfo::addr_unit(); // no particular alignment
    83 }
    85 uint Block::compute_loop_alignment() {
    86   Node *h = head();
    87   int unit_sz = relocInfo::addr_unit();
    88   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
    89     // Pre- and post-loops have low trip count so do not bother with
    90     // NOPs for align loop head.  The constants are hidden from tuning
    91     // but only because my "divide by 4" heuristic surely gets nearly
    92     // all possible gain (a "do not align at all" heuristic has a
    93     // chance of getting a really tiny gain).
    94     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
    95                                 h->as_CountedLoop()->is_post_loop())) {
    96       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
    97     }
    98     // Loops with low backedge frequency should not be aligned.
    99     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
   100     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
   101       return unit_sz; // Loop does not loop, more often than not!
   102     }
   103     return OptoLoopAlignment; // Otherwise align loop head
   104   }
   106   return unit_sz; // no particular alignment
   107 }
   109 // Compute the size of first 'inst_cnt' instructions in this block.
   110 // Return the number of instructions left to compute if the block has
   111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   112 // exceeds OptoLoopAlignment.
   113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   114                                     PhaseRegAlloc* ra) {
   115   uint last_inst = number_of_nodes();
   116   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   117     uint inst_size = get_node(j)->size(ra);
   118     if( inst_size > 0 ) {
   119       inst_cnt--;
   120       uint sz = sum_size + inst_size;
   121       if( sz <= (uint)OptoLoopAlignment ) {
   122         // Compute size of instructions which fit into fetch buffer only
   123         // since all inst_cnt instructions will not fit even if we align them.
   124         sum_size = sz;
   125       } else {
   126         return 0;
   127       }
   128     }
   129   }
   130   return inst_cnt;
   131 }
   133 uint Block::find_node( const Node *n ) const {
   134   for( uint i = 0; i < number_of_nodes(); i++ ) {
   135     if( get_node(i) == n )
   136       return i;
   137   }
   138   ShouldNotReachHere();
   139   return 0;
   140 }
   142 // Find and remove n from block list
   143 void Block::find_remove( const Node *n ) {
   144   remove_node(find_node(n));
   145 }
   147 bool Block::contains(const Node *n) const {
   148   return _nodes.contains(n);
   149 }
   151 // Return empty status of a block.  Empty blocks contain only the head, other
   152 // ideal nodes, and an optional trailing goto.
   153 int Block::is_Empty() const {
   155   // Root or start block is not considered empty
   156   if (head()->is_Root() || head()->is_Start()) {
   157     return not_empty;
   158   }
   160   int success_result = completely_empty;
   161   int end_idx = number_of_nodes() - 1;
   163   // Check for ending goto
   164   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
   165     success_result = empty_with_goto;
   166     end_idx--;
   167   }
   169   // Unreachable blocks are considered empty
   170   if (num_preds() <= 1) {
   171     return success_result;
   172   }
   174   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   175   // turn directly into code, because only MachNodes have non-trivial
   176   // emit() functions.
   177   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
   178     end_idx--;
   179   }
   181   // No room for any interesting instructions?
   182   if (end_idx == 0) {
   183     return success_result;
   184   }
   186   return not_empty;
   187 }
   189 // Return true if the block's code implies that it is likely to be
   190 // executed infrequently.  Check to see if the block ends in a Halt or
   191 // a low probability call.
   192 bool Block::has_uncommon_code() const {
   193   Node* en = end();
   195   if (en->is_MachGoto())
   196     en = en->in(0);
   197   if (en->is_Catch())
   198     en = en->in(0);
   199   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
   200     MachCallNode* call = en->in(0)->as_MachCall();
   201     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   202       // This is true for slow-path stubs like new_{instance,array},
   203       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   204       // The magic number corresponds to the probability of an uncommon_trap,
   205       // even though it is a count not a probability.
   206       return true;
   207     }
   208   }
   210   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   211   return op == Op_Halt;
   212 }
   214 // True if block is low enough frequency or guarded by a test which
   215 // mostly does not go here.
   216 bool PhaseCFG::is_uncommon(const Block* block) {
   217   // Initial blocks must never be moved, so are never uncommon.
   218   if (block->head()->is_Root() || block->head()->is_Start())  return false;
   220   // Check for way-low freq
   221   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   223   // Look for code shape indicating uncommon_trap or slow path
   224   if (block->has_uncommon_code()) return true;
   226   const float epsilon = 0.05f;
   227   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   228   uint uncommon_preds = 0;
   229   uint freq_preds = 0;
   230   uint uncommon_for_freq_preds = 0;
   232   for( uint i=1; i< block->num_preds(); i++ ) {
   233     Block* guard = get_block_for_node(block->pred(i));
   234     // Check to see if this block follows its guard 1 time out of 10000
   235     // or less.
   236     //
   237     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   238     // we intend to be "uncommon", such as slow-path TLE allocation,
   239     // predicted call failure, and uncommon trap triggers.
   240     //
   241     // Use an epsilon value of 5% to allow for variability in frequency
   242     // predictions and floating point calculations. The net effect is
   243     // that guard_factor is set to 9500.
   244     //
   245     // Ignore low-frequency blocks.
   246     // The next check is (guard->_freq < 1.e-5 * 9500.).
   247     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   248       uncommon_preds++;
   249     } else {
   250       freq_preds++;
   251       if(block->_freq < guard->_freq * guard_factor ) {
   252         uncommon_for_freq_preds++;
   253       }
   254     }
   255   }
   256   if( block->num_preds() > 1 &&
   257       // The block is uncommon if all preds are uncommon or
   258       (uncommon_preds == (block->num_preds()-1) ||
   259       // it is uncommon for all frequent preds.
   260        uncommon_for_freq_preds == freq_preds) ) {
   261     return true;
   262   }
   263   return false;
   264 }
   266 #ifndef PRODUCT
   267 void Block::dump_bidx(const Block* orig, outputStream* st) const {
   268   if (_pre_order) st->print("B%d",_pre_order);
   269   else st->print("N%d", head()->_idx);
   271   if (Verbose && orig != this) {
   272     // Dump the original block's idx
   273     st->print(" (");
   274     orig->dump_bidx(orig, st);
   275     st->print(")");
   276   }
   277 }
   279 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
   280   if (is_connector()) {
   281     for (uint i=1; i<num_preds(); i++) {
   282       Block *p = cfg->get_block_for_node(pred(i));
   283       p->dump_pred(cfg, orig, st);
   284     }
   285   } else {
   286     dump_bidx(orig, st);
   287     st->print(" ");
   288   }
   289 }
   291 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
   292   // Print the basic block
   293   dump_bidx(this, st);
   294   st->print(": #\t");
   296   // Print the incoming CFG edges and the outgoing CFG edges
   297   for( uint i=0; i<_num_succs; i++ ) {
   298     non_connector_successor(i)->dump_bidx(_succs[i], st);
   299     st->print(" ");
   300   }
   301   st->print("<- ");
   302   if( head()->is_block_start() ) {
   303     for (uint i=1; i<num_preds(); i++) {
   304       Node *s = pred(i);
   305       if (cfg != NULL) {
   306         Block *p = cfg->get_block_for_node(s);
   307         p->dump_pred(cfg, p, st);
   308       } else {
   309         while (!s->is_block_start())
   310           s = s->in(0);
   311         st->print("N%d ", s->_idx );
   312       }
   313     }
   314   } else {
   315     st->print("BLOCK HEAD IS JUNK  ");
   316   }
   318   // Print loop, if any
   319   const Block *bhead = this;    // Head of self-loop
   320   Node *bh = bhead->head();
   322   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
   323     LoopNode *loop = bh->as_Loop();
   324     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
   325     while (bx->is_connector()) {
   326       bx = cfg->get_block_for_node(bx->pred(1));
   327     }
   328     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   329     // Dump any loop-specific bits, especially for CountedLoops.
   330     loop->dump_spec(st);
   331   } else if (has_loop_alignment()) {
   332     st->print(" top-of-loop");
   333   }
   334   st->print(" Freq: %g",_freq);
   335   if( Verbose || WizardMode ) {
   336     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   337     st->print(" RegPressure: %d",_reg_pressure);
   338     st->print(" IHRP Index: %d",_ihrp_index);
   339     st->print(" FRegPressure: %d",_freg_pressure);
   340     st->print(" FHRP Index: %d",_fhrp_index);
   341   }
   342   st->print_cr("");
   343 }
   345 void Block::dump() const {
   346   dump(NULL);
   347 }
   349 void Block::dump(const PhaseCFG* cfg) const {
   350   dump_head(cfg);
   351   for (uint i=0; i< number_of_nodes(); i++) {
   352     get_node(i)->dump();
   353   }
   354   tty->print("\n");
   355 }
   356 #endif
   358 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
   359 : Phase(CFG)
   360 , _block_arena(arena)
   361 , _root(root)
   362 , _matcher(matcher)
   363 , _node_to_block_mapping(arena)
   364 , _node_latency(NULL)
   365 #ifndef PRODUCT
   366 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   367 #endif
   368 #ifdef ASSERT
   369 , _raw_oops(arena)
   370 #endif
   371 {
   372   ResourceMark rm;
   373   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   374   // then Match it into a machine-specific Node.  Then clone the machine
   375   // Node on demand.
   376   Node *x = new (C) GotoNode(NULL);
   377   x->init_req(0, x);
   378   _goto = matcher.match_tree(x);
   379   assert(_goto != NULL, "");
   380   _goto->set_req(0,_goto);
   382   // Build the CFG in Reverse Post Order
   383   _number_of_blocks = build_cfg();
   384   _root_block = get_block_for_node(_root);
   385 }
   387 // Build a proper looking CFG.  Make every block begin with either a StartNode
   388 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   389 // The RootNode both starts and ends it's own block.  Do this with a recursive
   390 // backwards walk over the control edges.
   391 uint PhaseCFG::build_cfg() {
   392   Arena *a = Thread::current()->resource_area();
   393   VectorSet visited(a);
   395   // Allocate stack with enough space to avoid frequent realloc
   396   Node_Stack nstack(a, C->unique() >> 1);
   397   nstack.push(_root, 0);
   398   uint sum = 0;                 // Counter for blocks
   400   while (nstack.is_nonempty()) {
   401     // node and in's index from stack's top
   402     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   403     // only nodes which point to the start of basic block (see below).
   404     Node *np = nstack.node();
   405     // idx > 0, except for the first node (_root) pushed on stack
   406     // at the beginning when idx == 0.
   407     // We will use the condition (idx == 0) later to end the build.
   408     uint idx = nstack.index();
   409     Node *proj = np->in(idx);
   410     const Node *x = proj->is_block_proj();
   411     // Does the block end with a proper block-ending Node?  One of Return,
   412     // If or Goto? (This check should be done for visited nodes also).
   413     if (x == NULL) {                    // Does not end right...
   414       Node *g = _goto->clone(); // Force it to end in a Goto
   415       g->set_req(0, proj);
   416       np->set_req(idx, g);
   417       x = proj = g;
   418     }
   419     if (!visited.test_set(x->_idx)) { // Visit this block once
   420       // Skip any control-pinned middle'in stuff
   421       Node *p = proj;
   422       do {
   423         proj = p;                   // Update pointer to last Control
   424         p = p->in(0);               // Move control forward
   425       } while( !p->is_block_proj() &&
   426                !p->is_block_start() );
   427       // Make the block begin with one of Region or StartNode.
   428       if( !p->is_block_start() ) {
   429         RegionNode *r = new (C) RegionNode( 2 );
   430         r->init_req(1, p);         // Insert RegionNode in the way
   431         proj->set_req(0, r);        // Insert RegionNode in the way
   432         p = r;
   433       }
   434       // 'p' now points to the start of this basic block
   436       // Put self in array of basic blocks
   437       Block *bb = new (_block_arena) Block(_block_arena, p);
   438       map_node_to_block(p, bb);
   439       map_node_to_block(x, bb);
   440       if( x != p ) {                // Only for root is x == p
   441         bb->push_node((Node*)x);
   442       }
   443       // Now handle predecessors
   444       ++sum;                        // Count 1 for self block
   445       uint cnt = bb->num_preds();
   446       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   447         Node *prevproj = p->in(i);  // Get prior input
   448         assert( !prevproj->is_Con(), "dead input not removed" );
   449         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   450         // i.e., it splits at the source (via an IF or SWITCH) and merges
   451         // at the destination (via a many-input Region).
   452         // This breaks critical edges.  The RegionNode to start the block
   453         // will be added when <p,i> is pulled off the node stack
   454         if ( cnt > 2 ) {             // Merging many things?
   455           assert( prevproj== bb->pred(i),"");
   456           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   457             // Force a block on the control-dependent edge
   458             Node *g = _goto->clone();       // Force it to end in a Goto
   459             g->set_req(0,prevproj);
   460             p->set_req(i,g);
   461           }
   462         }
   463         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   464       }
   465     } else { // Post-processing visited nodes
   466       nstack.pop();                 // remove node from stack
   467       // Check if it the fist node pushed on stack at the beginning.
   468       if (idx == 0) break;          // end of the build
   469       // Find predecessor basic block
   470       Block *pb = get_block_for_node(x);
   471       // Insert into nodes array, if not already there
   472       if (!has_block(proj)) {
   473         assert( x != proj, "" );
   474         // Map basic block of projection
   475         map_node_to_block(proj, pb);
   476         pb->push_node(proj);
   477       }
   478       // Insert self as a child of my predecessor block
   479       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
   480       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
   481               "too many control users, not a CFG?" );
   482     }
   483   }
   484   // Return number of basic blocks for all children and self
   485   return sum;
   486 }
   488 // Inserts a goto & corresponding basic block between
   489 // block[block_no] and its succ_no'th successor block
   490 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   491   // get block with block_no
   492   assert(block_no < number_of_blocks(), "illegal block number");
   493   Block* in  = get_block(block_no);
   494   // get successor block succ_no
   495   assert(succ_no < in->_num_succs, "illegal successor number");
   496   Block* out = in->_succs[succ_no];
   497   // Compute frequency of the new block. Do this before inserting
   498   // new block in case succ_prob() needs to infer the probability from
   499   // surrounding blocks.
   500   float freq = in->_freq * in->succ_prob(succ_no);
   501   // get ProjNode corresponding to the succ_no'th successor of the in block
   502   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
   503   // create region for basic block
   504   RegionNode* region = new (C) RegionNode(2);
   505   region->init_req(1, proj);
   506   // setup corresponding basic block
   507   Block* block = new (_block_arena) Block(_block_arena, region);
   508   map_node_to_block(region, block);
   509   C->regalloc()->set_bad(region->_idx);
   510   // add a goto node
   511   Node* gto = _goto->clone(); // get a new goto node
   512   gto->set_req(0, region);
   513   // add it to the basic block
   514   block->push_node(gto);
   515   map_node_to_block(gto, block);
   516   C->regalloc()->set_bad(gto->_idx);
   517   // hook up successor block
   518   block->_succs.map(block->_num_succs++, out);
   519   // remap successor's predecessors if necessary
   520   for (uint i = 1; i < out->num_preds(); i++) {
   521     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   522   }
   523   // remap predecessor's successor to new block
   524   in->_succs.map(succ_no, block);
   525   // Set the frequency of the new block
   526   block->_freq = freq;
   527   // add new basic block to basic block list
   528   add_block_at(block_no + 1, block);
   529 }
   531 // Does this block end in a multiway branch that cannot have the default case
   532 // flipped for another case?
   533 static bool no_flip_branch( Block *b ) {
   534   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
   535   if( branch_idx < 1 ) return false;
   536   Node *bra = b->get_node(branch_idx);
   537   if( bra->is_Catch() )
   538     return true;
   539   if( bra->is_Mach() ) {
   540     if( bra->is_MachNullCheck() )
   541       return true;
   542     int iop = bra->as_Mach()->ideal_Opcode();
   543     if( iop == Op_FastLock || iop == Op_FastUnlock )
   544       return true;
   545   }
   546   return false;
   547 }
   549 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   550 // true target.  NeverBranch are treated as a conditional branch that always
   551 // goes the same direction for most of the optimizer and are used to give a
   552 // fake exit path to infinite loops.  At this late stage they need to turn
   553 // into Goto's so that when you enter the infinite loop you indeed hang.
   554 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   555   // Find true target
   556   int end_idx = b->end_idx();
   557   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
   558   Block *succ = b->_succs[idx];
   559   Node* gto = _goto->clone(); // get a new goto node
   560   gto->set_req(0, b->head());
   561   Node *bp = b->get_node(end_idx);
   562   b->map_node(gto, end_idx); // Slam over NeverBranch
   563   map_node_to_block(gto, b);
   564   C->regalloc()->set_bad(gto->_idx);
   565   b->pop_node();              // Yank projections
   566   b->pop_node();              // Yank projections
   567   b->_succs.map(0,succ);        // Map only successor
   568   b->_num_succs = 1;
   569   // remap successor's predecessors if necessary
   570   uint j;
   571   for( j = 1; j < succ->num_preds(); j++)
   572     if( succ->pred(j)->in(0) == bp )
   573       succ->head()->set_req(j, gto);
   574   // Kill alternate exit path
   575   Block *dead = b->_succs[1-idx];
   576   for( j = 1; j < dead->num_preds(); j++)
   577     if( dead->pred(j)->in(0) == bp )
   578       break;
   579   // Scan through block, yanking dead path from
   580   // all regions and phis.
   581   dead->head()->del_req(j);
   582   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
   583     dead->get_node(k)->del_req(j);
   584 }
   586 // Helper function to move block bx to the slot following b_index. Return
   587 // true if the move is successful, otherwise false
   588 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   589   if (bx == NULL) return false;
   591   // Return false if bx is already scheduled.
   592   uint bx_index = bx->_pre_order;
   593   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
   594     return false;
   595   }
   597   // Find the current index of block bx on the block list
   598   bx_index = b_index + 1;
   599   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
   600     bx_index++;
   601   }
   602   assert(get_block(bx_index) == bx, "block not found");
   604   // If the previous block conditionally falls into bx, return false,
   605   // because moving bx will create an extra jump.
   606   for(uint k = 1; k < bx->num_preds(); k++ ) {
   607     Block* pred = get_block_for_node(bx->pred(k));
   608     if (pred == get_block(bx_index - 1)) {
   609       if (pred->_num_succs != 1) {
   610         return false;
   611       }
   612     }
   613   }
   615   // Reinsert bx just past block 'b'
   616   _blocks.remove(bx_index);
   617   _blocks.insert(b_index + 1, bx);
   618   return true;
   619 }
   621 // Move empty and uncommon blocks to the end.
   622 void PhaseCFG::move_to_end(Block *b, uint i) {
   623   int e = b->is_Empty();
   624   if (e != Block::not_empty) {
   625     if (e == Block::empty_with_goto) {
   626       // Remove the goto, but leave the block.
   627       b->pop_node();
   628     }
   629     // Mark this block as a connector block, which will cause it to be
   630     // ignored in certain functions such as non_connector_successor().
   631     b->set_connector();
   632   }
   633   // Move the empty block to the end, and don't recheck.
   634   _blocks.remove(i);
   635   _blocks.push(b);
   636 }
   638 // Set loop alignment for every block
   639 void PhaseCFG::set_loop_alignment() {
   640   uint last = number_of_blocks();
   641   assert(get_block(0) == get_root_block(), "");
   643   for (uint i = 1; i < last; i++) {
   644     Block* block = get_block(i);
   645     if (block->head()->is_Loop()) {
   646       block->set_loop_alignment(block);
   647     }
   648   }
   649 }
   651 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   652 // to the end.
   653 void PhaseCFG::remove_empty_blocks() {
   654   // Move uncommon blocks to the end
   655   uint last = number_of_blocks();
   656   assert(get_block(0) == get_root_block(), "");
   658   for (uint i = 1; i < last; i++) {
   659     Block* block = get_block(i);
   660     if (block->is_connector()) {
   661       break;
   662     }
   664     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   665     // true target.  NeverBranch are treated as a conditional branch that
   666     // always goes the same direction for most of the optimizer and are used
   667     // to give a fake exit path to infinite loops.  At this late stage they
   668     // need to turn into Goto's so that when you enter the infinite loop you
   669     // indeed hang.
   670     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
   671       convert_NeverBranch_to_Goto(block);
   672     }
   674     // Look for uncommon blocks and move to end.
   675     if (!C->do_freq_based_layout()) {
   676       if (is_uncommon(block)) {
   677         move_to_end(block, i);
   678         last--;                   // No longer check for being uncommon!
   679         if (no_flip_branch(block)) { // Fall-thru case must follow?
   680           // Find the fall-thru block
   681           block = get_block(i);
   682           move_to_end(block, i);
   683           last--;
   684         }
   685         // backup block counter post-increment
   686         i--;
   687       }
   688     }
   689   }
   691   // Move empty blocks to the end
   692   last = number_of_blocks();
   693   for (uint i = 1; i < last; i++) {
   694     Block* block = get_block(i);
   695     if (block->is_Empty() != Block::not_empty) {
   696       move_to_end(block, i);
   697       last--;
   698       i--;
   699     }
   700   } // End of for all blocks
   701 }
   703 // Fix up the final control flow for basic blocks.
   704 void PhaseCFG::fixup_flow() {
   705   // Fixup final control flow for the blocks.  Remove jump-to-next
   706   // block. If neither arm of an IF follows the conditional branch, we
   707   // have to add a second jump after the conditional.  We place the
   708   // TRUE branch target in succs[0] for both GOTOs and IFs.
   709   for (uint i = 0; i < number_of_blocks(); i++) {
   710     Block* block = get_block(i);
   711     block->_pre_order = i;          // turn pre-order into block-index
   713     // Connector blocks need no further processing.
   714     if (block->is_connector()) {
   715       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
   716       continue;
   717     }
   718     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
   720     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
   721     Block* bs0 = block->non_connector_successor(0);
   723     // Check for multi-way branches where I cannot negate the test to
   724     // exchange the true and false targets.
   725     if (no_flip_branch(block)) {
   726       // Find fall through case - if must fall into its target
   727       int branch_idx = block->number_of_nodes() - block->_num_succs;
   728       for (uint j2 = 0; j2 < block->_num_succs; j2++) {
   729         const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
   730         if (p->_con == 0) {
   731           // successor j2 is fall through case
   732           if (block->non_connector_successor(j2) != bnext) {
   733             // but it is not the next block => insert a goto
   734             insert_goto_at(i, j2);
   735           }
   736           // Put taken branch in slot 0
   737           if (j2 == 0 && block->_num_succs == 2) {
   738             // Flip targets in succs map
   739             Block *tbs0 = block->_succs[0];
   740             Block *tbs1 = block->_succs[1];
   741             block->_succs.map(0, tbs1);
   742             block->_succs.map(1, tbs0);
   743           }
   744           break;
   745         }
   746       }
   748       // Remove all CatchProjs
   749       for (uint j = 0; j < block->_num_succs; j++) {
   750         block->pop_node();
   751       }
   753     } else if (block->_num_succs == 1) {
   754       // Block ends in a Goto?
   755       if (bnext == bs0) {
   756         // We fall into next block; remove the Goto
   757         block->pop_node();
   758       }
   760     } else if(block->_num_succs == 2) { // Block ends in a If?
   761       // Get opcode of 1st projection (matches _succs[0])
   762       // Note: Since this basic block has 2 exits, the last 2 nodes must
   763       //       be projections (in any order), the 3rd last node must be
   764       //       the IfNode (we have excluded other 2-way exits such as
   765       //       CatchNodes already).
   766       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
   767       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
   768       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
   770       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   771       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
   772       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
   774       Block* bs1 = block->non_connector_successor(1);
   776       // Check for neither successor block following the current
   777       // block ending in a conditional. If so, move one of the
   778       // successors after the current one, provided that the
   779       // successor was previously unscheduled, but moveable
   780       // (i.e., all paths to it involve a branch).
   781       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
   782         // Choose the more common successor based on the probability
   783         // of the conditional branch.
   784         Block* bx = bs0;
   785         Block* by = bs1;
   787         // _prob is the probability of taking the true path. Make
   788         // p the probability of taking successor #1.
   789         float p = iff->as_MachIf()->_prob;
   790         if (proj0->Opcode() == Op_IfTrue) {
   791           p = 1.0 - p;
   792         }
   794         // Prefer successor #1 if p > 0.5
   795         if (p > PROB_FAIR) {
   796           bx = bs1;
   797           by = bs0;
   798         }
   800         // Attempt the more common successor first
   801         if (move_to_next(bx, i)) {
   802           bnext = bx;
   803         } else if (move_to_next(by, i)) {
   804           bnext = by;
   805         }
   806       }
   808       // Check for conditional branching the wrong way.  Negate
   809       // conditional, if needed, so it falls into the following block
   810       // and branches to the not-following block.
   812       // Check for the next block being in succs[0].  We are going to branch
   813       // to succs[0], so we want the fall-thru case as the next block in
   814       // succs[1].
   815       if (bnext == bs0) {
   816         // Fall-thru case in succs[0], so flip targets in succs map
   817         Block* tbs0 = block->_succs[0];
   818         Block* tbs1 = block->_succs[1];
   819         block->_succs.map(0, tbs1);
   820         block->_succs.map(1, tbs0);
   821         // Flip projection for each target
   822         ProjNode* tmp = proj0;
   823         proj0 = proj1;
   824         proj1 = tmp;
   826       } else if(bnext != bs1) {
   827         // Need a double-branch
   828         // The existing conditional branch need not change.
   829         // Add a unconditional branch to the false target.
   830         // Alas, it must appear in its own block and adding a
   831         // block this late in the game is complicated.  Sigh.
   832         insert_goto_at(i, 1);
   833       }
   835       // Make sure we TRUE branch to the target
   836       if (proj0->Opcode() == Op_IfFalse) {
   837         iff->as_MachIf()->negate();
   838       }
   840       block->pop_node();          // Remove IfFalse & IfTrue projections
   841       block->pop_node();
   843     } else {
   844       // Multi-exit block, e.g. a switch statement
   845       // But we don't need to do anything here
   846     }
   847   } // End of for all blocks
   848 }
   851 // postalloc_expand: Expand nodes after register allocation.
   852 //
   853 // postalloc_expand has to be called after register allocation, just
   854 // before output (i.e. scheduling). It only gets called if
   855 // Matcher::require_postalloc_expand is true.
   856 //
   857 // Background:
   858 //
   859 // Nodes that are expandend (one compound node requiring several
   860 // assembler instructions to be implemented split into two or more
   861 // non-compound nodes) after register allocation are not as nice as
   862 // the ones expanded before register allocation - they don't
   863 // participate in optimizations as global code motion. But after
   864 // register allocation we can expand nodes that use registers which
   865 // are not spillable or registers that are not allocated, because the
   866 // old compound node is simply replaced (in its location in the basic
   867 // block) by a new subgraph which does not contain compound nodes any
   868 // more. The scheduler called during output can later on process these
   869 // non-compound nodes.
   870 //
   871 // Implementation:
   872 //
   873 // Nodes requiring postalloc expand are specified in the ad file by using
   874 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
   875 // contains a single call to an encoding, as does an ins_encode
   876 // statement. Instead of an emit() function a postalloc_expand() function
   877 // is generated that doesn't emit assembler but creates a new
   878 // subgraph. The code below calls this postalloc_expand function for each
   879 // node with the appropriate attribute. This function returns the new
   880 // nodes generated in an array passed in the call. The old node,
   881 // potential MachTemps before and potential Projs after it then get
   882 // disconnected and replaced by the new nodes. The instruction
   883 // generating the result has to be the last one in the array. In
   884 // general it is assumed that Projs after the node expanded are
   885 // kills. These kills are not required any more after expanding as
   886 // there are now explicitly visible def-use chains and the Projs are
   887 // removed. This does not hold for calls: They do not only have
   888 // kill-Projs but also Projs defining values. Therefore Projs after
   889 // the node expanded are removed for all but for calls. If a node is
   890 // to be reused, it must be added to the nodes list returned, and it
   891 // will be added again.
   892 //
   893 // Implementing the postalloc_expand function for a node in an enc_class
   894 // is rather tedious. It requires knowledge about many node details, as
   895 // the nodes and the subgraph must be hand crafted. To simplify this,
   896 // adlc generates some utility variables into the postalloc_expand function,
   897 // e.g., holding the operands as specified by the postalloc_expand encoding
   898 // specification, e.g.:
   899 //  * unsigned idx_<par_name>  holding the index of the node in the ins
   900 //  * Node *n_<par_name>       holding the node loaded from the ins
   901 //  * MachOpnd *op_<par_name>  holding the corresponding operand
   902 //
   903 // The ordering of operands can not be determined by looking at a
   904 // rule. Especially if a match rule matches several different trees,
   905 // several nodes are generated from one instruct specification with
   906 // different operand orderings. In this case the adlc generated
   907 // variables are the only way to access the ins and operands
   908 // deterministically.
   909 //
   910 // If assigning a register to a node that contains an oop, don't
   911 // forget to call ra_->set_oop() for the node.
   912 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
   913   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
   914   GrowableArray <Node *> remove(32);
   915   GrowableArray <Node *> succs(32);
   916   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
   917   DEBUG_ONLY(bool foundNode = false);
   919   // for all blocks
   920   for (uint i = 0; i < number_of_blocks(); i++) {
   921     Block *b = _blocks[i];
   922     // For all instructions in the current block.
   923     for (uint j = 0; j < b->number_of_nodes(); j++) {
   924       Node *n = b->get_node(j);
   925       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
   926 #ifdef ASSERT
   927         if (TracePostallocExpand) {
   928           if (!foundNode) {
   929             foundNode = true;
   930             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
   931                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
   932           }
   933           tty->print("  postalloc expanding "); n->dump();
   934           if (Verbose) {
   935             tty->print("    with ins:\n");
   936             for (uint k = 0; k < n->len(); ++k) {
   937               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
   938             }
   939           }
   940         }
   941 #endif
   942         new_nodes.clear();
   943         // Collect nodes that have to be removed from the block later on.
   944         uint req = n->req();
   945         remove.clear();
   946         for (uint k = 0; k < req; ++k) {
   947           if (n->in(k) && n->in(k)->is_MachTemp()) {
   948             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
   949             n->in(k)->del_req(0);
   950             j--;
   951           }
   952         }
   954         // Check whether we can allocate enough nodes. We set a fix limit for
   955         // the size of postalloc expands with this.
   956         uint unique_limit = C->unique() + 40;
   957         if (unique_limit >= _ra->node_regs_max_index()) {
   958           Compile::current()->record_failure("out of nodes in postalloc expand");
   959           return;
   960         }
   962         // Emit (i.e. generate new nodes).
   963         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
   965         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
   967         // Disconnect the inputs of the old node.
   968         //
   969         // We reuse MachSpillCopy nodes. If we need to expand them, there
   970         // are many, so reusing pays off. If reused, the node already
   971         // has the new ins. n must be the last node on new_nodes list.
   972         if (!n->is_MachSpillCopy()) {
   973           for (int k = req - 1; k >= 0; --k) {
   974             n->del_req(k);
   975           }
   976         }
   978 #ifdef ASSERT
   979         // Check that all nodes have proper operands.
   980         for (int k = 0; k < new_nodes.length(); ++k) {
   981           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
   982           MachNode *m = new_nodes.at(k)->as_Mach();
   983           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
   984             if (MachOper::notAnOper(m->_opnds[l])) {
   985               outputStream *os = tty;
   986               os->print("Node %s ", m->Name());
   987               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
   988               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
   989             }
   990           }
   991         }
   992 #endif
   994         // Collect succs of old node in remove (for projections) and in succs (for
   995         // all other nodes) do _not_ collect projections in remove (but in succs)
   996         // in case the node is a call. We need the projections for calls as they are
   997         // associated with registes (i.e. they are defs).
   998         succs.clear();
   999         for (DUIterator k = n->outs(); n->has_out(k); k++) {
  1000           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
  1001             remove.push(n->out(k));
  1002           } else {
  1003             succs.push(n->out(k));
  1006         // Replace old node n as input of its succs by last of the new nodes.
  1007         for (int k = 0; k < succs.length(); ++k) {
  1008           Node *succ = succs.at(k);
  1009           for (uint l = 0; l < succ->req(); ++l) {
  1010             if (succ->in(l) == n) {
  1011               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
  1014           for (uint l = succ->req(); l < succ->len(); ++l) {
  1015             if (succ->in(l) == n) {
  1016               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
  1021         // Index of old node in block.
  1022         uint index = b->find_node(n);
  1023         // Insert new nodes into block and map them in nodes->blocks array
  1024         // and remember last node in n2.
  1025         Node *n2 = NULL;
  1026         for (int k = 0; k < new_nodes.length(); ++k) {
  1027           n2 = new_nodes.at(k);
  1028           b->insert_node(n2, ++index);
  1029           map_node_to_block(n2, b);
  1032         // Add old node n to remove and remove them all from block.
  1033         remove.push(n);
  1034         j--;
  1035 #ifdef ASSERT
  1036         if (TracePostallocExpand && Verbose) {
  1037           tty->print("    removing:\n");
  1038           for (int k = 0; k < remove.length(); ++k) {
  1039             tty->print("        "); remove.at(k)->dump();
  1041           tty->print("    inserting:\n");
  1042           for (int k = 0; k < new_nodes.length(); ++k) {
  1043             tty->print("        "); new_nodes.at(k)->dump();
  1046 #endif
  1047         for (int k = 0; k < remove.length(); ++k) {
  1048           if (b->contains(remove.at(k))) {
  1049             b->find_remove(remove.at(k));
  1050           } else {
  1051             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
  1054         // If anything has been inserted (n2 != NULL), continue after last node inserted.
  1055         // This does not always work. Some postalloc expands don't insert any nodes, if they
  1056         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
  1057         j = n2 ? b->find_node(n2) : j;
  1062 #ifdef ASSERT
  1063   if (foundNode) {
  1064     tty->print("FINISHED %d %s\n", C->compile_id(),
  1065                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
  1066     tty->flush();
  1068 #endif
  1072 //------------------------------dump-------------------------------------------
  1073 #ifndef PRODUCT
  1074 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
  1075   const Node *x = end->is_block_proj();
  1076   assert( x, "not a CFG" );
  1078   // Do not visit this block again
  1079   if( visited.test_set(x->_idx) ) return;
  1081   // Skip through this block
  1082   const Node *p = x;
  1083   do {
  1084     p = p->in(0);               // Move control forward
  1085     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
  1086   } while( !p->is_block_start() );
  1088   // Recursively visit
  1089   for (uint i = 1; i < p->req(); i++) {
  1090     _dump_cfg(p->in(i), visited);
  1093   // Dump the block
  1094   get_block_for_node(p)->dump(this);
  1097 void PhaseCFG::dump( ) const {
  1098   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
  1099   if (_blocks.size()) {        // Did we do basic-block layout?
  1100     for (uint i = 0; i < number_of_blocks(); i++) {
  1101       const Block* block = get_block(i);
  1102       block->dump(this);
  1104   } else {                      // Else do it with a DFS
  1105     VectorSet visited(_block_arena);
  1106     _dump_cfg(_root,visited);
  1110 void PhaseCFG::dump_headers() {
  1111   for (uint i = 0; i < number_of_blocks(); i++) {
  1112     Block* block = get_block(i);
  1113     if (block != NULL) {
  1114       block->dump_head(this);
  1119 void PhaseCFG::verify() const {
  1120 #ifdef ASSERT
  1121   // Verify sane CFG
  1122   for (uint i = 0; i < number_of_blocks(); i++) {
  1123     Block* block = get_block(i);
  1124     uint cnt = block->number_of_nodes();
  1125     uint j;
  1126     for (j = 0; j < cnt; j++)  {
  1127       Node *n = block->get_node(j);
  1128       assert(get_block_for_node(n) == block, "");
  1129       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
  1130         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
  1132       for (uint k = 0; k < n->req(); k++) {
  1133         Node *def = n->in(k);
  1134         if (def && def != n) {
  1135           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
  1136           // Verify that instructions in the block is in correct order.
  1137           // Uses must follow their definition if they are at the same block.
  1138           // Mostly done to check that MachSpillCopy nodes are placed correctly
  1139           // when CreateEx node is moved in build_ifg_physical().
  1140           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
  1141               // See (+++) comment in reg_split.cpp
  1142               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
  1143             bool is_loop = false;
  1144             if (n->is_Phi()) {
  1145               for (uint l = 1; l < def->req(); l++) {
  1146                 if (n == def->in(l)) {
  1147                   is_loop = true;
  1148                   break; // Some kind of loop
  1152             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
  1158     j = block->end_idx();
  1159     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
  1160     assert(bp, "last instruction must be a block proj");
  1161     assert(bp == block->get_node(j), "wrong number of successors for this block");
  1162     if (bp->is_Catch()) {
  1163       while (block->get_node(--j)->is_MachProj()) {
  1166       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
  1167     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
  1168       assert(block->_num_succs == 2, "Conditional branch must have two targets");
  1171 #endif
  1173 #endif
  1175 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
  1176   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
  1179 void UnionFind::extend( uint from_idx, uint to_idx ) {
  1180   _nesting.check();
  1181   if( from_idx >= _max ) {
  1182     uint size = 16;
  1183     while( size <= from_idx ) size <<=1;
  1184     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
  1185     _max = size;
  1187   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
  1188   _indices[from_idx] = to_idx;
  1191 void UnionFind::reset( uint max ) {
  1192   assert( max <= max_uint, "Must fit within uint" );
  1193   // Force the Union-Find mapping to be at least this large
  1194   extend(max,0);
  1195   // Initialize to be the ID mapping.
  1196   for( uint i=0; i<max; i++ ) map(i,i);
  1199 // Straight out of Tarjan's union-find algorithm
  1200 uint UnionFind::Find_compress( uint idx ) {
  1201   uint cur  = idx;
  1202   uint next = lookup(cur);
  1203   while( next != cur ) {        // Scan chain of equivalences
  1204     assert( next < cur, "always union smaller" );
  1205     cur = next;                 // until find a fixed-point
  1206     next = lookup(cur);
  1208   // Core of union-find algorithm: update chain of
  1209   // equivalences to be equal to the root.
  1210   while( idx != next ) {
  1211     uint tmp = lookup(idx);
  1212     map(idx, next);
  1213     idx = tmp;
  1215   return idx;
  1218 // Like Find above, but no path compress, so bad asymptotic behavior
  1219 uint UnionFind::Find_const( uint idx ) const {
  1220   if( idx == 0 ) return idx;    // Ignore the zero idx
  1221   // Off the end?  This can happen during debugging dumps
  1222   // when data structures have not finished being updated.
  1223   if( idx >= _max ) return idx;
  1224   uint next = lookup(idx);
  1225   while( next != idx ) {        // Scan chain of equivalences
  1226     idx = next;                 // until find a fixed-point
  1227     next = lookup(idx);
  1229   return next;
  1232 // union 2 sets together.
  1233 void UnionFind::Union( uint idx1, uint idx2 ) {
  1234   uint src = Find(idx1);
  1235   uint dst = Find(idx2);
  1236   assert( src, "" );
  1237   assert( dst, "" );
  1238   assert( src < _max, "oob" );
  1239   assert( dst < _max, "oob" );
  1240   assert( src < dst, "always union smaller" );
  1241   map(dst,src);
  1244 #ifndef PRODUCT
  1245 void Trace::dump( ) const {
  1246   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1247   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1248     tty->print("  B%d", b->_pre_order);
  1249     if (b->head()->is_Loop()) {
  1250       tty->print(" (L%d)", b->compute_loop_alignment());
  1252     if (b->has_loop_alignment()) {
  1253       tty->print(" (T%d)", b->code_alignment());
  1256   tty->cr();
  1259 void CFGEdge::dump( ) const {
  1260   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1261              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1262   switch(state()) {
  1263   case connected:
  1264     tty->print("connected");
  1265     break;
  1266   case open:
  1267     tty->print("open");
  1268     break;
  1269   case interior:
  1270     tty->print("interior");
  1271     break;
  1273   if (infrequent()) {
  1274     tty->print("  infrequent");
  1276   tty->cr();
  1278 #endif
  1280 // Comparison function for edges
  1281 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1282   float freq0 = (*e0)->freq();
  1283   float freq1 = (*e1)->freq();
  1284   if (freq0 != freq1) {
  1285     return freq0 > freq1 ? -1 : 1;
  1288   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1289   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1291   return dist1 - dist0;
  1294 // Comparison function for edges
  1295 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
  1296   Trace *tr0 = *(Trace **) p0;
  1297   Trace *tr1 = *(Trace **) p1;
  1298   Block *b0 = tr0->first_block();
  1299   Block *b1 = tr1->first_block();
  1301   // The trace of connector blocks goes at the end;
  1302   // we only expect one such trace
  1303   if (b0->is_connector() != b1->is_connector()) {
  1304     return b1->is_connector() ? -1 : 1;
  1307   // Pull more frequently executed blocks to the beginning
  1308   float freq0 = b0->_freq;
  1309   float freq1 = b1->_freq;
  1310   if (freq0 != freq1) {
  1311     return freq0 > freq1 ? -1 : 1;
  1314   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1316   return diff;
  1319 // Find edges of interest, i.e, those which can fall through. Presumes that
  1320 // edges which don't fall through are of low frequency and can be generally
  1321 // ignored.  Initialize the list of traces.
  1322 void PhaseBlockLayout::find_edges() {
  1323   // Walk the blocks, creating edges and Traces
  1324   uint i;
  1325   Trace *tr = NULL;
  1326   for (i = 0; i < _cfg.number_of_blocks(); i++) {
  1327     Block* b = _cfg.get_block(i);
  1328     tr = new Trace(b, next, prev);
  1329     traces[tr->id()] = tr;
  1331     // All connector blocks should be at the end of the list
  1332     if (b->is_connector()) break;
  1334     // If this block and the next one have a one-to-one successor
  1335     // predecessor relationship, simply append the next block
  1336     int nfallthru = b->num_fall_throughs();
  1337     while (nfallthru == 1 &&
  1338            b->succ_fall_through(0)) {
  1339       Block *n = b->_succs[0];
  1341       // Skip over single-entry connector blocks, we don't want to
  1342       // add them to the trace.
  1343       while (n->is_connector() && n->num_preds() == 1) {
  1344         n = n->_succs[0];
  1347       // We see a merge point, so stop search for the next block
  1348       if (n->num_preds() != 1) break;
  1350       i++;
  1351       assert(n = _cfg.get_block(i), "expecting next block");
  1352       tr->append(n);
  1353       uf->map(n->_pre_order, tr->id());
  1354       traces[n->_pre_order] = NULL;
  1355       nfallthru = b->num_fall_throughs();
  1356       b = n;
  1359     if (nfallthru > 0) {
  1360       // Create a CFGEdge for each outgoing
  1361       // edge that could be a fall-through.
  1362       for (uint j = 0; j < b->_num_succs; j++ ) {
  1363         if (b->succ_fall_through(j)) {
  1364           Block *target = b->non_connector_successor(j);
  1365           float freq = b->_freq * b->succ_prob(j);
  1366           int from_pct = (int) ((100 * freq) / b->_freq);
  1367           int to_pct = (int) ((100 * freq) / target->_freq);
  1368           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1374   // Group connector blocks into one trace
  1375   for (i++; i < _cfg.number_of_blocks(); i++) {
  1376     Block *b = _cfg.get_block(i);
  1377     assert(b->is_connector(), "connector blocks at the end");
  1378     tr->append(b);
  1379     uf->map(b->_pre_order, tr->id());
  1380     traces[b->_pre_order] = NULL;
  1384 // Union two traces together in uf, and null out the trace in the list
  1385 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
  1386   uint old_id = old_trace->id();
  1387   uint updated_id = updated_trace->id();
  1389   uint lo_id = updated_id;
  1390   uint hi_id = old_id;
  1392   // If from is greater than to, swap values to meet
  1393   // UnionFind guarantee.
  1394   if (updated_id > old_id) {
  1395     lo_id = old_id;
  1396     hi_id = updated_id;
  1398     // Fix up the trace ids
  1399     traces[lo_id] = traces[updated_id];
  1400     updated_trace->set_id(lo_id);
  1403   // Union the lower with the higher and remove the pointer
  1404   // to the higher.
  1405   uf->Union(lo_id, hi_id);
  1406   traces[hi_id] = NULL;
  1409 // Append traces together via the most frequently executed edges
  1410 void PhaseBlockLayout::grow_traces() {
  1411   // Order the edges, and drive the growth of Traces via the most
  1412   // frequently executed edges.
  1413   edges->sort(edge_order);
  1414   for (int i = 0; i < edges->length(); i++) {
  1415     CFGEdge *e = edges->at(i);
  1417     if (e->state() != CFGEdge::open) continue;
  1419     Block *src_block = e->from();
  1420     Block *targ_block = e->to();
  1422     // Don't grow traces along backedges?
  1423     if (!BlockLayoutRotateLoops) {
  1424       if (targ_block->_rpo <= src_block->_rpo) {
  1425         targ_block->set_loop_alignment(targ_block);
  1426         continue;
  1430     Trace *src_trace = trace(src_block);
  1431     Trace *targ_trace = trace(targ_block);
  1433     // If the edge in question can join two traces at their ends,
  1434     // append one trace to the other.
  1435    if (src_trace->last_block() == src_block) {
  1436       if (src_trace == targ_trace) {
  1437         e->set_state(CFGEdge::interior);
  1438         if (targ_trace->backedge(e)) {
  1439           // Reset i to catch any newly eligible edge
  1440           // (Or we could remember the first "open" edge, and reset there)
  1441           i = 0;
  1443       } else if (targ_trace->first_block() == targ_block) {
  1444         e->set_state(CFGEdge::connected);
  1445         src_trace->append(targ_trace);
  1446         union_traces(src_trace, targ_trace);
  1452 // Embed one trace into another, if the fork or join points are sufficiently
  1453 // balanced.
  1454 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
  1455   // Walk the edge list a another time, looking at unprocessed edges.
  1456   // Fold in diamonds
  1457   for (int i = 0; i < edges->length(); i++) {
  1458     CFGEdge *e = edges->at(i);
  1460     if (e->state() != CFGEdge::open) continue;
  1461     if (fall_thru_only) {
  1462       if (e->infrequent()) continue;
  1465     Block *src_block = e->from();
  1466     Trace *src_trace = trace(src_block);
  1467     bool src_at_tail = src_trace->last_block() == src_block;
  1469     Block *targ_block  = e->to();
  1470     Trace *targ_trace  = trace(targ_block);
  1471     bool targ_at_start = targ_trace->first_block() == targ_block;
  1473     if (src_trace == targ_trace) {
  1474       // This may be a loop, but we can't do much about it.
  1475       e->set_state(CFGEdge::interior);
  1476       continue;
  1479     if (fall_thru_only) {
  1480       // If the edge links the middle of two traces, we can't do anything.
  1481       // Mark the edge and continue.
  1482       if (!src_at_tail & !targ_at_start) {
  1483         continue;
  1486       // Don't grow traces along backedges?
  1487       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1488           continue;
  1491       // If both ends of the edge are available, why didn't we handle it earlier?
  1492       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1494       if (targ_at_start) {
  1495         // Insert the "targ" trace in the "src" trace if the insertion point
  1496         // is a two way branch.
  1497         // Better profitability check possible, but may not be worth it.
  1498         // Someday, see if the this "fork" has an associated "join";
  1499         // then make a policy on merging this trace at the fork or join.
  1500         // For example, other things being equal, it may be better to place this
  1501         // trace at the join point if the "src" trace ends in a two-way, but
  1502         // the insertion point is one-way.
  1503         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1504         e->set_state(CFGEdge::connected);
  1505         src_trace->insert_after(src_block, targ_trace);
  1506         union_traces(src_trace, targ_trace);
  1507       } else if (src_at_tail) {
  1508         if (src_trace != trace(_cfg.get_root_block())) {
  1509           e->set_state(CFGEdge::connected);
  1510           targ_trace->insert_before(targ_block, src_trace);
  1511           union_traces(targ_trace, src_trace);
  1514     } else if (e->state() == CFGEdge::open) {
  1515       // Append traces, even without a fall-thru connection.
  1516       // But leave root entry at the beginning of the block list.
  1517       if (targ_trace != trace(_cfg.get_root_block())) {
  1518         e->set_state(CFGEdge::connected);
  1519         src_trace->append(targ_trace);
  1520         union_traces(src_trace, targ_trace);
  1526 // Order the sequence of the traces in some desirable way, and fixup the
  1527 // jumps at the end of each block.
  1528 void PhaseBlockLayout::reorder_traces(int count) {
  1529   ResourceArea *area = Thread::current()->resource_area();
  1530   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1531   Block_List worklist;
  1532   int new_count = 0;
  1534   // Compact the traces.
  1535   for (int i = 0; i < count; i++) {
  1536     Trace *tr = traces[i];
  1537     if (tr != NULL) {
  1538       new_traces[new_count++] = tr;
  1542   // The entry block should be first on the new trace list.
  1543   Trace *tr = trace(_cfg.get_root_block());
  1544   assert(tr == new_traces[0], "entry trace misplaced");
  1546   // Sort the new trace list by frequency
  1547   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1549   // Patch up the successor blocks
  1550   _cfg.clear_blocks();
  1551   for (int i = 0; i < new_count; i++) {
  1552     Trace *tr = new_traces[i];
  1553     if (tr != NULL) {
  1554       tr->fixup_blocks(_cfg);
  1559 // Order basic blocks based on frequency
  1560 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
  1561 : Phase(BlockLayout)
  1562 , _cfg(cfg) {
  1563   ResourceMark rm;
  1564   ResourceArea *area = Thread::current()->resource_area();
  1566   // List of traces
  1567   int size = _cfg.number_of_blocks() + 1;
  1568   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1569   memset(traces, 0, size*sizeof(Trace*));
  1570   next = NEW_ARENA_ARRAY(area, Block *, size);
  1571   memset(next,   0, size*sizeof(Block *));
  1572   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1573   memset(prev  , 0, size*sizeof(Block *));
  1575   // List of edges
  1576   edges = new GrowableArray<CFGEdge*>;
  1578   // Mapping block index --> block_trace
  1579   uf = new UnionFind(size);
  1580   uf->reset(size);
  1582   // Find edges and create traces.
  1583   find_edges();
  1585   // Grow traces at their ends via most frequent edges.
  1586   grow_traces();
  1588   // Merge one trace into another, but only at fall-through points.
  1589   // This may make diamonds and other related shapes in a trace.
  1590   merge_traces(true);
  1592   // Run merge again, allowing two traces to be catenated, even if
  1593   // one does not fall through into the other. This appends loosely
  1594   // related traces to be near each other.
  1595   merge_traces(false);
  1597   // Re-order all the remaining traces by frequency
  1598   reorder_traces(size);
  1600   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
  1604 // Edge e completes a loop in a trace. If the target block is head of the
  1605 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1606 bool Trace::backedge(CFGEdge *e) {
  1607   bool loop_rotated = false;
  1608   Block *src_block  = e->from();
  1609   Block *targ_block    = e->to();
  1611   assert(last_block() == src_block, "loop discovery at back branch");
  1612   if (first_block() == targ_block) {
  1613     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1614       // Find the last block in the trace that has a conditional
  1615       // branch.
  1616       Block *b;
  1617       for (b = last_block(); b != NULL; b = prev(b)) {
  1618         if (b->num_fall_throughs() == 2) {
  1619           break;
  1623       if (b != last_block() && b != NULL) {
  1624         loop_rotated = true;
  1626         // Rotate the loop by doing two-part linked-list surgery.
  1627         append(first_block());
  1628         break_loop_after(b);
  1632     // Backbranch to the top of a trace
  1633     // Scroll forward through the trace from the targ_block. If we find
  1634     // a loop head before another loop top, use the the loop head alignment.
  1635     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1636       if (b->has_loop_alignment()) {
  1637         break;
  1639       if (b->head()->is_Loop()) {
  1640         targ_block = b;
  1641         break;
  1645     first_block()->set_loop_alignment(targ_block);
  1647   } else {
  1648     // Backbranch into the middle of a trace
  1649     targ_block->set_loop_alignment(targ_block);
  1652   return loop_rotated;
  1655 // push blocks onto the CFG list
  1656 // ensure that blocks have the correct two-way branch sense
  1657 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1658   Block *last = last_block();
  1659   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1660     cfg.add_block(b);
  1661     if (!b->is_connector()) {
  1662       int nfallthru = b->num_fall_throughs();
  1663       if (b != last) {
  1664         if (nfallthru == 2) {
  1665           // Ensure that the sense of the branch is correct
  1666           Block *bnext = next(b);
  1667           Block *bs0 = b->non_connector_successor(0);
  1669           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
  1670           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
  1671           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
  1673           if (bnext == bs0) {
  1674             // Fall-thru case in succs[0], should be in succs[1]
  1676             // Flip targets in _succs map
  1677             Block *tbs0 = b->_succs[0];
  1678             Block *tbs1 = b->_succs[1];
  1679             b->_succs.map( 0, tbs1 );
  1680             b->_succs.map( 1, tbs0 );
  1682             // Flip projections to match targets
  1683             b->map_node(proj1, b->number_of_nodes() - 2);
  1684             b->map_node(proj0, b->number_of_nodes() - 1);

mercurial