src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

Mon, 27 Feb 2012 09:17:44 +0100

author
roland
date
Mon, 27 Feb 2012 09:17:44 +0100
changeset 3606
da4be62fb889
parent 2708
1d1603768966
child 4136
bf2edd3c9b0f
permissions
-rw-r--r--

7147740: add assertions to check stack alignment on VM entry from generated code (x64)
Summary: check stack alignment on VM entry on x64.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "assembler_x86.inline.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_solaris.inline.hpp"
    36 #include "nativeInst_x86.hpp"
    37 #include "os_share_solaris.hpp"
    38 #include "prims/jniFastGetField.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "runtime/arguments.hpp"
    42 #include "runtime/extendedPC.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/osThread.hpp"
    49 #include "runtime/sharedRuntime.hpp"
    50 #include "runtime/stubRoutines.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "thread_solaris.inline.hpp"
    53 #include "utilities/events.hpp"
    54 #include "utilities/vmError.hpp"
    55 #ifdef COMPILER1
    56 #include "c1/c1_Runtime1.hpp"
    57 #endif
    58 #ifdef COMPILER2
    59 #include "opto/runtime.hpp"
    60 #endif
    62 // put OS-includes here
    63 # include <sys/types.h>
    64 # include <sys/mman.h>
    65 # include <pthread.h>
    66 # include <signal.h>
    67 # include <setjmp.h>
    68 # include <errno.h>
    69 # include <dlfcn.h>
    70 # include <stdio.h>
    71 # include <unistd.h>
    72 # include <sys/resource.h>
    73 # include <thread.h>
    74 # include <sys/stat.h>
    75 # include <sys/time.h>
    76 # include <sys/filio.h>
    77 # include <sys/utsname.h>
    78 # include <sys/systeminfo.h>
    79 # include <sys/socket.h>
    80 # include <sys/trap.h>
    81 # include <sys/lwp.h>
    82 # include <pwd.h>
    83 # include <poll.h>
    84 # include <sys/lwp.h>
    85 # include <procfs.h>     //  see comment in <sys/procfs.h>
    87 #ifndef AMD64
    88 // QQQ seems useless at this point
    89 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
    90 #endif // AMD64
    91 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
    94 #define MAX_PATH (2 * K)
    96 // Minimum stack size for the VM.  It's easier to document a constant value
    97 // but it's different for x86 and sparc because the page sizes are different.
    98 #ifdef AMD64
    99 size_t os::Solaris::min_stack_allowed = 224*K;
   100 #define REG_SP REG_RSP
   101 #define REG_PC REG_RIP
   102 #define REG_FP REG_RBP
   103 #else
   104 size_t os::Solaris::min_stack_allowed = 64*K;
   105 #define REG_SP UESP
   106 #define REG_PC EIP
   107 #define REG_FP EBP
   108 // 4900493 counter to prevent runaway LDTR refresh attempt
   110 static volatile int ldtr_refresh = 0;
   111 // the libthread instruction that faults because of the stale LDTR
   113 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
   114                        };
   115 #endif // AMD64
   117 char* os::non_memory_address_word() {
   118   // Must never look like an address returned by reserve_memory,
   119   // even in its subfields (as defined by the CPU immediate fields,
   120   // if the CPU splits constants across multiple instructions).
   121   return (char*) -1;
   122 }
   124 //
   125 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
   126 // There are issues with libthread giving out uc_links for different threads
   127 // on the same uc_link chain and bad or circular links.
   128 //
   129 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
   130   if (valid >= suspect ||
   131       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
   132       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
   133       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
   134     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
   135     return false;
   136   }
   138   if (thread->is_Java_thread()) {
   139     if (!valid_stack_address(thread, (address)suspect)) {
   140       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
   141       return false;
   142     }
   143     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
   144       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
   145       return false;
   146     }
   147   }
   148   return true;
   149 }
   151 // We will only follow one level of uc_link since there are libthread
   152 // issues with ucontext linking and it is better to be safe and just
   153 // let caller retry later.
   154 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
   155   ucontext_t *uc) {
   157   ucontext_t *retuc = NULL;
   159   if (uc != NULL) {
   160     if (uc->uc_link == NULL) {
   161       // cannot validate without uc_link so accept current ucontext
   162       retuc = uc;
   163     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   164       // first ucontext is valid so try the next one
   165       uc = uc->uc_link;
   166       if (uc->uc_link == NULL) {
   167         // cannot validate without uc_link so accept current ucontext
   168         retuc = uc;
   169       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   170         // the ucontext one level down is also valid so return it
   171         retuc = uc;
   172       }
   173     }
   174   }
   175   return retuc;
   176 }
   178 // Assumes ucontext is valid
   179 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
   180   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
   181 }
   183 // Assumes ucontext is valid
   184 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
   185   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   186 }
   188 // Assumes ucontext is valid
   189 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
   190   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   191 }
   193 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   194 // is currently interrupted by SIGPROF.
   195 //
   196 // The difference between this and os::fetch_frame_from_context() is that
   197 // here we try to skip nested signal frames.
   198 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
   199   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   201   assert(thread != NULL, "just checking");
   202   assert(ret_sp != NULL, "just checking");
   203   assert(ret_fp != NULL, "just checking");
   205   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
   206   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
   207 }
   209 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   210                     intptr_t** ret_sp, intptr_t** ret_fp) {
   212   ExtendedPC  epc;
   213   ucontext_t *uc = (ucontext_t*)ucVoid;
   215   if (uc != NULL) {
   216     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   217     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
   218     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
   219   } else {
   220     // construct empty ExtendedPC for return value checking
   221     epc = ExtendedPC(NULL);
   222     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   223     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   224   }
   226   return epc;
   227 }
   229 frame os::fetch_frame_from_context(void* ucVoid) {
   230   intptr_t* sp;
   231   intptr_t* fp;
   232   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   233   return frame(sp, fp, epc.pc());
   234 }
   236 frame os::get_sender_for_C_frame(frame* fr) {
   237   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   238 }
   240 extern "C" intptr_t *_get_current_sp();  // in .il file
   242 address os::current_stack_pointer() {
   243   return (address)_get_current_sp();
   244 }
   246 extern "C" intptr_t *_get_current_fp();  // in .il file
   248 frame os::current_frame() {
   249   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
   250   frame myframe((intptr_t*)os::current_stack_pointer(),
   251                 (intptr_t*)fp,
   252                 CAST_FROM_FN_PTR(address, os::current_frame));
   253   if (os::is_first_C_frame(&myframe)) {
   254     // stack is not walkable
   255     frame ret; // This will be a null useless frame
   256     return ret;
   257   } else {
   258     return os::get_sender_for_C_frame(&myframe);
   259   }
   260 }
   262 // This is a simple callback that just fetches a PC for an interrupted thread.
   263 // The thread need not be suspended and the fetched PC is just a hint.
   264 // This one is currently used for profiling the VMThread ONLY!
   266 // Must be synchronous
   267 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
   268   Thread*     thread = args->thread();
   269   ucontext_t* uc     = args->ucontext();
   270   intptr_t* sp;
   272   assert(ProfileVM && thread->is_VM_thread(), "just checking");
   274   ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
   275   _addr = new_addr;
   276 }
   278 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
   279   char lwpstatusfile[PROCFILE_LENGTH];
   280   int lwpfd, err;
   282   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
   283     return (err);
   284   if (*flags == TRS_LWPID) {
   285     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
   286             *lwp);
   287     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
   288       perror("thr_mutator_status: open lwpstatus");
   289       return (EINVAL);
   290     }
   291     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
   292         sizeof (lwpstatus_t)) {
   293       perror("thr_mutator_status: read lwpstatus");
   294       (void) close(lwpfd);
   295       return (EINVAL);
   296     }
   297     (void) close(lwpfd);
   298   }
   299   return (0);
   300 }
   302 #ifndef AMD64
   304 // Detecting SSE support by OS
   305 // From solaris_i486.s
   306 extern "C" bool sse_check();
   307 extern "C" bool sse_unavailable();
   309 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
   310 static int sse_status = SSE_UNKNOWN;
   313 static void  check_for_sse_support() {
   314   if (!VM_Version::supports_sse()) {
   315     sse_status = SSE_NOT_SUPPORTED;
   316     return;
   317   }
   318   // looking for _sse_hw in libc.so, if it does not exist or
   319   // the value (int) is 0, OS has no support for SSE
   320   int *sse_hwp;
   321   void *h;
   323   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
   324     //open failed, presume no support for SSE
   325     sse_status = SSE_NOT_SUPPORTED;
   326     return;
   327   }
   328   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
   329     sse_status = SSE_NOT_SUPPORTED;
   330   } else if (*sse_hwp == 0) {
   331     sse_status = SSE_NOT_SUPPORTED;
   332   }
   333   dlclose(h);
   335   if (sse_status == SSE_UNKNOWN) {
   336     bool (*try_sse)() = (bool (*)())sse_check;
   337     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
   338   }
   340 }
   342 #endif // AMD64
   344 bool os::supports_sse() {
   345 #ifdef AMD64
   346   return true;
   347 #else
   348   if (sse_status == SSE_UNKNOWN)
   349     check_for_sse_support();
   350   return sse_status == SSE_SUPPORTED;
   351 #endif // AMD64
   352 }
   354 bool os::is_allocatable(size_t bytes) {
   355 #ifdef AMD64
   356   return true;
   357 #else
   359   if (bytes < 2 * G) {
   360     return true;
   361   }
   363   char* addr = reserve_memory(bytes, NULL);
   365   if (addr != NULL) {
   366     release_memory(addr, bytes);
   367   }
   369   return addr != NULL;
   370 #endif // AMD64
   372 }
   374 extern "C" void Fetch32PFI () ;
   375 extern "C" void Fetch32Resume () ;
   376 #ifdef AMD64
   377 extern "C" void FetchNPFI () ;
   378 extern "C" void FetchNResume () ;
   379 #endif // AMD64
   381 extern "C" JNIEXPORT int
   382 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
   383                           int abort_if_unrecognized) {
   384   ucontext_t* uc = (ucontext_t*) ucVoid;
   386 #ifndef AMD64
   387   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
   388     // the SSE instruction faulted. supports_sse() need return false.
   389     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
   390     return true;
   391   }
   392 #endif // !AMD64
   394   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
   396   SignalHandlerMark shm(t);
   398   if(sig == SIGPIPE || sig == SIGXFSZ) {
   399     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   400       return true;
   401     } else {
   402       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   403         char buf[64];
   404         warning("Ignoring %s - see 4229104 or 6499219",
   405                 os::exception_name(sig, buf, sizeof(buf)));
   407       }
   408       return true;
   409     }
   410   }
   412   JavaThread* thread = NULL;
   413   VMThread* vmthread = NULL;
   415   if (os::Solaris::signal_handlers_are_installed) {
   416     if (t != NULL ){
   417       if(t->is_Java_thread()) {
   418         thread = (JavaThread*)t;
   419       }
   420       else if(t->is_VM_thread()){
   421         vmthread = (VMThread *)t;
   422       }
   423     }
   424   }
   426   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
   428   if (sig == os::Solaris::SIGasync()) {
   429     if(thread){
   430       OSThread::InterruptArguments args(thread, uc);
   431       thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   432       return true;
   433     }
   434     else if(vmthread){
   435       OSThread::InterruptArguments args(vmthread, uc);
   436       vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   437       return true;
   438     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   439       return true;
   440     } else {
   441       // If os::Solaris::SIGasync not chained, and this is a non-vm and
   442       // non-java thread
   443       return true;
   444     }
   445   }
   447   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   448     // can't decode this kind of signal
   449     info = NULL;
   450   } else {
   451     assert(sig == info->si_signo, "bad siginfo");
   452   }
   454   // decide if this trap can be handled by a stub
   455   address stub = NULL;
   457   address pc          = NULL;
   459   //%note os_trap_1
   460   if (info != NULL && uc != NULL && thread != NULL) {
   461     // factor me: getPCfromContext
   462     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   464     // SafeFetch32() support
   465     if (pc == (address) Fetch32PFI) {
   466       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   467       return true ;
   468     }
   469 #ifdef AMD64
   470     if (pc == (address) FetchNPFI) {
   471        uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
   472        return true ;
   473     }
   474 #endif // AMD64
   476     // Handle ALL stack overflow variations here
   477     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
   478       address addr = (address) info->si_addr;
   479       if (thread->in_stack_yellow_zone(addr)) {
   480         thread->disable_stack_yellow_zone();
   481         if (thread->thread_state() == _thread_in_Java) {
   482           // Throw a stack overflow exception.  Guard pages will be reenabled
   483           // while unwinding the stack.
   484           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   485         } else {
   486           // Thread was in the vm or native code.  Return and try to finish.
   487           return true;
   488         }
   489       } else if (thread->in_stack_red_zone(addr)) {
   490         // Fatal red zone violation.  Disable the guard pages and fall through
   491         // to handle_unexpected_exception way down below.
   492         thread->disable_stack_red_zone();
   493         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   494       }
   495     }
   497     if (thread->thread_state() == _thread_in_vm) {
   498       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
   499         stub = StubRoutines::handler_for_unsafe_access();
   500       }
   501     }
   503     if (thread->thread_state() == _thread_in_Java) {
   504       // Support Safepoint Polling
   505       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   506         stub = SharedRuntime::get_poll_stub(pc);
   507       }
   508       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
   509         // BugId 4454115: A read from a MappedByteBuffer can fault
   510         // here if the underlying file has been truncated.
   511         // Do not crash the VM in such a case.
   512         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   513         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   514         if (nm != NULL && nm->has_unsafe_access()) {
   515           stub = StubRoutines::handler_for_unsafe_access();
   516         }
   517       }
   518       else
   519       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
   520         // integer divide by zero
   521         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   522       }
   523 #ifndef AMD64
   524       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
   525         // floating-point divide by zero
   526         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   527       }
   528       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
   529         // The encoding of D2I in i486.ad can cause an exception prior
   530         // to the fist instruction if there was an invalid operation
   531         // pending. We want to dismiss that exception. From the win_32
   532         // side it also seems that if it really was the fist causing
   533         // the exception that we do the d2i by hand with different
   534         // rounding. Seems kind of weird. QQQ TODO
   535         // Note that we take the exception at the NEXT floating point instruction.
   536         if (pc[0] == 0xDB) {
   537             assert(pc[0] == 0xDB, "not a FIST opcode");
   538             assert(pc[1] == 0x14, "not a FIST opcode");
   539             assert(pc[2] == 0x24, "not a FIST opcode");
   540             return true;
   541         } else {
   542             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
   543             assert(pc[-2] == 0x14, "not an flt invalid opcode");
   544             assert(pc[-1] == 0x24, "not an flt invalid opcode");
   545         }
   546       }
   547       else if (sig == SIGFPE ) {
   548         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
   549       }
   550 #endif // !AMD64
   552         // QQQ It doesn't seem that we need to do this on x86 because we should be able
   553         // to return properly from the handler without this extra stuff on the back side.
   555       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   556         // Determination of interpreter/vtable stub/compiled code null exception
   557         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   558       }
   559     }
   561     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   562     // and the heap gets shrunk before the field access.
   563     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   564       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   565       if (addr != (address)-1) {
   566         stub = addr;
   567       }
   568     }
   570     // Check to see if we caught the safepoint code in the
   571     // process of write protecting the memory serialization page.
   572     // It write enables the page immediately after protecting it
   573     // so we can just return to retry the write.
   574     if ((sig == SIGSEGV) &&
   575         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
   576       // Block current thread until the memory serialize page permission restored.
   577       os::block_on_serialize_page_trap();
   578       return true;
   579     }
   580   }
   582   // Execution protection violation
   583   //
   584   // Preventative code for future versions of Solaris which may
   585   // enable execution protection when running the 32-bit VM on AMD64.
   586   //
   587   // This should be kept as the last step in the triage.  We don't
   588   // have a dedicated trap number for a no-execute fault, so be
   589   // conservative and allow other handlers the first shot.
   590   //
   591   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   592   // this si_code is so generic that it is almost meaningless; and
   593   // the si_code for this condition may change in the future.
   594   // Furthermore, a false-positive should be harmless.
   595   if (UnguardOnExecutionViolation > 0 &&
   596       (sig == SIGSEGV || sig == SIGBUS) &&
   597       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
   598     int page_size = os::vm_page_size();
   599     address addr = (address) info->si_addr;
   600     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
   601     // Make sure the pc and the faulting address are sane.
   602     //
   603     // If an instruction spans a page boundary, and the page containing
   604     // the beginning of the instruction is executable but the following
   605     // page is not, the pc and the faulting address might be slightly
   606     // different - we still want to unguard the 2nd page in this case.
   607     //
   608     // 15 bytes seems to be a (very) safe value for max instruction size.
   609     bool pc_is_near_addr =
   610       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   611     bool instr_spans_page_boundary =
   612       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   613                        (intptr_t) page_size) > 0);
   615     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   616       static volatile address last_addr =
   617         (address) os::non_memory_address_word();
   619       // In conservative mode, don't unguard unless the address is in the VM
   620       if (addr != last_addr &&
   621           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   623         // Make memory rwx and retry
   624         address page_start =
   625           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   626         bool res = os::protect_memory((char*) page_start, page_size,
   627                                       os::MEM_PROT_RWX);
   629         if (PrintMiscellaneous && Verbose) {
   630           char buf[256];
   631           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   632                        "at " INTPTR_FORMAT
   633                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   634                        page_start, (res ? "success" : "failed"), errno);
   635           tty->print_raw_cr(buf);
   636         }
   637         stub = pc;
   639         // Set last_addr so if we fault again at the same address, we don't end
   640         // up in an endless loop.
   641         //
   642         // There are two potential complications here.  Two threads trapping at
   643         // the same address at the same time could cause one of the threads to
   644         // think it already unguarded, and abort the VM.  Likely very rare.
   645         //
   646         // The other race involves two threads alternately trapping at
   647         // different addresses and failing to unguard the page, resulting in
   648         // an endless loop.  This condition is probably even more unlikely than
   649         // the first.
   650         //
   651         // Although both cases could be avoided by using locks or thread local
   652         // last_addr, these solutions are unnecessary complication: this
   653         // handler is a best-effort safety net, not a complete solution.  It is
   654         // disabled by default and should only be used as a workaround in case
   655         // we missed any no-execute-unsafe VM code.
   657         last_addr = addr;
   658       }
   659     }
   660   }
   662   if (stub != NULL) {
   663     // save all thread context in case we need to restore it
   665     if (thread != NULL) thread->set_saved_exception_pc(pc);
   666     // 12/02/99: On Sparc it appears that the full context is also saved
   667     // but as yet, no one looks at or restores that saved context
   668     // factor me: setPC
   669     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   670     return true;
   671   }
   673   // signal-chaining
   674   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   675     return true;
   676   }
   678 #ifndef AMD64
   679   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
   680   // Handle an undefined selector caused by an attempt to assign
   681   // fs in libthread getipriptr(). With the current libthread design every 512
   682   // thread creations the LDT for a private thread data structure is extended
   683   // and thre is a hazard that and another thread attempting a thread creation
   684   // will use a stale LDTR that doesn't reflect the structure's growth,
   685   // causing a GP fault.
   686   // Enforce the probable limit of passes through here to guard against an
   687   // infinite loop if some other move to fs caused the GP fault. Note that
   688   // this loop counter is ultimately a heuristic as it is possible for
   689   // more than one thread to generate this fault at a time in an MP system.
   690   // In the case of the loop count being exceeded or if the poll fails
   691   // just fall through to a fatal error.
   692   // If there is some other source of T_GPFLT traps and the text at EIP is
   693   // unreadable this code will loop infinitely until the stack is exausted.
   694   // The key to diagnosis in this case is to look for the bottom signal handler
   695   // frame.
   697   if(! IgnoreLibthreadGPFault) {
   698     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
   699       const unsigned char *p =
   700                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
   702       // Expected instruction?
   704       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
   706         Atomic::inc(&ldtr_refresh);
   708         // Infinite loop?
   710         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
   712           // No, force scheduling to get a fresh view of the LDTR
   714           if(poll(NULL, 0, 10) == 0) {
   716             // Retry the move
   718             return false;
   719           }
   720         }
   721       }
   722     }
   723   }
   724 #endif // !AMD64
   726   if (!abort_if_unrecognized) {
   727     // caller wants another chance, so give it to him
   728     return false;
   729   }
   731   if (!os::Solaris::libjsig_is_loaded) {
   732     struct sigaction oldAct;
   733     sigaction(sig, (struct sigaction *)0, &oldAct);
   734     if (oldAct.sa_sigaction != signalHandler) {
   735       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
   736                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
   737       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
   738     }
   739   }
   741   if (pc == NULL && uc != NULL) {
   742     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   743   }
   745   // unmask current signal
   746   sigset_t newset;
   747   sigemptyset(&newset);
   748   sigaddset(&newset, sig);
   749   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   751   // Determine which sort of error to throw.  Out of swap may signal
   752   // on the thread stack, which could get a mapping error when touched.
   753   address addr = (address) info->si_addr;
   754   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
   755     vm_exit_out_of_memory(0, "Out of swap space to map in thread stack.");
   756   }
   758   VMError err(t, sig, pc, info, ucVoid);
   759   err.report_and_die();
   761   ShouldNotReachHere();
   762 }
   764 void os::print_context(outputStream *st, void *context) {
   765   if (context == NULL) return;
   767   ucontext_t *uc = (ucontext_t*)context;
   768   st->print_cr("Registers:");
   769 #ifdef AMD64
   770   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   771   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   772   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   773   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   774   st->cr();
   775   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   776   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   777   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   778   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   779   st->cr();
   780   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   781   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   782   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   783   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   784   st->cr();
   785   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   786   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   787   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   788   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   789   st->cr();
   790   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   791   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
   792 #else
   793   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
   794   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
   795   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
   796   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
   797   st->cr();
   798   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
   799   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
   800   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
   801   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
   802   st->cr();
   803   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
   804   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
   805 #endif // AMD64
   806   st->cr();
   807   st->cr();
   809   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
   810   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   811   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   812   st->cr();
   814   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   815   // point to garbage if entry point in an nmethod is corrupted. Leave
   816   // this at the end, and hope for the best.
   817   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   818   address pc = epc.pc();
   819   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   820   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   821 }
   823 void os::print_register_info(outputStream *st, void *context) {
   824   if (context == NULL) return;
   826   ucontext_t *uc = (ucontext_t*)context;
   828   st->print_cr("Register to memory mapping:");
   829   st->cr();
   831   // this is horrendously verbose but the layout of the registers in the
   832   // context does not match how we defined our abstract Register set, so
   833   // we can't just iterate through the gregs area
   835   // this is only for the "general purpose" registers
   837 #ifdef AMD64
   838   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   839   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   840   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   841   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   842   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   843   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   844   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   845   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   846   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   847   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   848   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   849   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   850   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   851   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   852   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   853   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   854 #else
   855   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
   856   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
   857   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
   858   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
   859   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
   860   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
   861   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
   862   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
   863 #endif
   865   st->cr();
   866 }
   869 #ifdef AMD64
   870 void os::Solaris::init_thread_fpu_state(void) {
   871   // Nothing to do
   872 }
   873 #else
   874 // From solaris_i486.s
   875 extern "C" void fixcw();
   877 void os::Solaris::init_thread_fpu_state(void) {
   878   // Set fpu to 53 bit precision. This happens too early to use a stub.
   879   fixcw();
   880 }
   882 // These routines are the initial value of atomic_xchg_entry(),
   883 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
   884 // until initialization is complete.
   885 // TODO - replace with .il implementation when compiler supports it.
   887 typedef jint  xchg_func_t        (jint,  volatile jint*);
   888 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
   889 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
   890 typedef jint  add_func_t         (jint,  volatile jint*);
   892 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
   893   // try to use the stub:
   894   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
   896   if (func != NULL) {
   897     os::atomic_xchg_func = func;
   898     return (*func)(exchange_value, dest);
   899   }
   900   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   902   jint old_value = *dest;
   903   *dest = exchange_value;
   904   return old_value;
   905 }
   907 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
   908   // try to use the stub:
   909   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
   911   if (func != NULL) {
   912     os::atomic_cmpxchg_func = func;
   913     return (*func)(exchange_value, dest, compare_value);
   914   }
   915   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   917   jint old_value = *dest;
   918   if (old_value == compare_value)
   919     *dest = exchange_value;
   920   return old_value;
   921 }
   923 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
   924   // try to use the stub:
   925   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
   927   if (func != NULL) {
   928     os::atomic_cmpxchg_long_func = func;
   929     return (*func)(exchange_value, dest, compare_value);
   930   }
   931   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   933   jlong old_value = *dest;
   934   if (old_value == compare_value)
   935     *dest = exchange_value;
   936   return old_value;
   937 }
   939 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
   940   // try to use the stub:
   941   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
   943   if (func != NULL) {
   944     os::atomic_add_func = func;
   945     return (*func)(add_value, dest);
   946   }
   947   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   949   return (*dest) += add_value;
   950 }
   952 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
   953 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
   954 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
   955 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
   957 extern "C" void _solaris_raw_setup_fpu(address ptr);
   958 void os::setup_fpu() {
   959   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   960   _solaris_raw_setup_fpu(fpu_cntrl);
   961 }
   962 #endif // AMD64
   964 #ifndef PRODUCT
   965 void os::verify_stack_alignment() {
   966 #ifdef AMD64
   967   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   968 #endif
   969 }
   970 #endif

mercurial