src/share/vm/memory/genCollectedHeap.hpp

Wed, 18 Jan 2012 09:50:16 -0800

author
johnc
date
Wed, 18 Jan 2012 09:50:16 -0800
changeset 3538
d903bf750e9f
parent 3357
441e946dc1af
child 3711
b632e80fc9dc
permissions
-rw-r--r--

7129514: time warp warnings after 7117303
Summary: Replace calls to os::javaTimeMillis() that are used to update the milliseconds since the last GC to an equivalent that uses a monotonically non-decreasing time source.
Reviewed-by: ysr, jmasa

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectForPermanentAllocation;
    47   friend class VM_GenCollectFull;
    48   friend class VM_GenCollectFullConcurrent;
    49   friend class VM_GC_HeapInspection;
    50   friend class VM_HeapDumper;
    51   friend class HeapInspection;
    52   friend class GCCauseSetter;
    53   friend class VMStructs;
    54 public:
    55   enum SomeConstants {
    56     max_gens = 10
    57   };
    59   friend class VM_PopulateDumpSharedSpace;
    61  protected:
    62   // Fields:
    63   static GenCollectedHeap* _gch;
    65  private:
    66   int _n_gens;
    67   Generation* _gens[max_gens];
    68   GenerationSpec** _gen_specs;
    70   // The generational collector policy.
    71   GenCollectorPolicy* _gen_policy;
    73   // Indicates that the most recent previous incremental collection failed.
    74   // The flag is cleared when an action is taken that might clear the
    75   // condition that caused that incremental collection to fail.
    76   bool _incremental_collection_failed;
    78   // In support of ExplicitGCInvokesConcurrent functionality
    79   unsigned int _full_collections_completed;
    81   // Data structure for claiming the (potentially) parallel tasks in
    82   // (gen-specific) strong roots processing.
    83   SubTasksDone* _gen_process_strong_tasks;
    84   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
    86   // In block contents verification, the number of header words to skip
    87   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    89   // GC is not allowed during the dump of the shared classes.  Keep track
    90   // of this in order to provide an reasonable error message when terminating.
    91   bool _preloading_shared_classes;
    93 protected:
    94   // Directs each generation up to and including "collectedGen" to recompute
    95   // its desired size.
    96   void compute_new_generation_sizes(int collectedGen);
    98   // Helper functions for allocation
    99   HeapWord* attempt_allocation(size_t size,
   100                                bool   is_tlab,
   101                                bool   first_only);
   103   // Helper function for two callbacks below.
   104   // Considers collection of the first max_level+1 generations.
   105   void do_collection(bool   full,
   106                      bool   clear_all_soft_refs,
   107                      size_t size,
   108                      bool   is_tlab,
   109                      int    max_level);
   111   // Callback from VM_GenCollectForAllocation operation.
   112   // This function does everything necessary/possible to satisfy an
   113   // allocation request that failed in the youngest generation that should
   114   // have handled it (including collection, expansion, etc.)
   115   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   117   // Callback from VM_GenCollectFull operation.
   118   // Perform a full collection of the first max_level+1 generations.
   119   void do_full_collection(bool clear_all_soft_refs, int max_level);
   121   // Does the "cause" of GC indicate that
   122   // we absolutely __must__ clear soft refs?
   123   bool must_clear_all_soft_refs();
   125 public:
   126   GenCollectedHeap(GenCollectorPolicy *policy);
   128   GCStats* gc_stats(int level) const;
   130   // Returns JNI_OK on success
   131   virtual jint initialize();
   132   char* allocate(size_t alignment, PermanentGenerationSpec* perm_gen_spec,
   133                  size_t* _total_reserved, int* _n_covered_regions,
   134                  ReservedSpace* heap_rs);
   136   // Does operations required after initialization has been done.
   137   void post_initialize();
   139   // Initialize ("weak") refs processing support
   140   virtual void ref_processing_init();
   142   virtual CollectedHeap::Name kind() const {
   143     return CollectedHeap::GenCollectedHeap;
   144   }
   146   // The generational collector policy.
   147   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   149   // Adaptive size policy
   150   virtual AdaptiveSizePolicy* size_policy() {
   151     return gen_policy()->size_policy();
   152   }
   154   size_t capacity() const;
   155   size_t used() const;
   157   // Save the "used_region" for generations level and lower,
   158   // and, if perm is true, for perm gen.
   159   void save_used_regions(int level, bool perm);
   161   size_t max_capacity() const;
   163   HeapWord* mem_allocate(size_t size,
   164                          bool*  gc_overhead_limit_was_exceeded);
   166   // We may support a shared contiguous allocation area, if the youngest
   167   // generation does.
   168   bool supports_inline_contig_alloc() const;
   169   HeapWord** top_addr() const;
   170   HeapWord** end_addr() const;
   172   // Return an estimate of the maximum allocation that could be performed
   173   // without triggering any collection activity.  In a generational
   174   // collector, for example, this is probably the largest allocation that
   175   // could be supported in the youngest generation.  It is "unsafe" because
   176   // no locks are taken; the result should be treated as an approximation,
   177   // not a guarantee.
   178   size_t unsafe_max_alloc();
   180   // Does this heap support heap inspection? (+PrintClassHistogram)
   181   virtual bool supports_heap_inspection() const { return true; }
   183   // Perform a full collection of the heap; intended for use in implementing
   184   // "System.gc". This implies as full a collection as the CollectedHeap
   185   // supports. Caller does not hold the Heap_lock on entry.
   186   void collect(GCCause::Cause cause);
   188   // This interface assumes that it's being called by the
   189   // vm thread. It collects the heap assuming that the
   190   // heap lock is already held and that we are executing in
   191   // the context of the vm thread.
   192   void collect_as_vm_thread(GCCause::Cause cause);
   194   // The same as above but assume that the caller holds the Heap_lock.
   195   void collect_locked(GCCause::Cause cause);
   197   // Perform a full collection of the first max_level+1 generations.
   198   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   199   void collect(GCCause::Cause cause, int max_level);
   201   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   202   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   203   // be expensive to compute in general, so, to prevent
   204   // their inadvertent use in product jvm's, we restrict their use to
   205   // assertion checking or verification only.
   206   bool is_in(const void* p) const;
   208   // override
   209   bool is_in_closed_subset(const void* p) const {
   210     if (UseConcMarkSweepGC) {
   211       return is_in_reserved(p);
   212     } else {
   213       return is_in(p);
   214     }
   215   }
   217   // Returns true if the reference is to an object in the reserved space
   218   // for the young generation.
   219   // Assumes the the young gen address range is less than that of the old gen.
   220   bool is_in_young(oop p);
   222 #ifdef ASSERT
   223   virtual bool is_in_partial_collection(const void* p);
   224 #endif
   226   virtual bool is_scavengable(const void* addr) {
   227     return is_in_young((oop)addr);
   228   }
   230   // Iteration functions.
   231   void oop_iterate(OopClosure* cl);
   232   void oop_iterate(MemRegion mr, OopClosure* cl);
   233   void object_iterate(ObjectClosure* cl);
   234   void safe_object_iterate(ObjectClosure* cl);
   235   void object_iterate_since_last_GC(ObjectClosure* cl);
   236   Space* space_containing(const void* addr) const;
   238   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   239   // each address in the (reserved) heap is a member of exactly
   240   // one block.  The defining characteristic of a block is that it is
   241   // possible to find its size, and thus to progress forward to the next
   242   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   243   // represent Java objects, or they might be free blocks in a
   244   // free-list-based heap (or subheap), as long as the two kinds are
   245   // distinguishable and the size of each is determinable.
   247   // Returns the address of the start of the "block" that contains the
   248   // address "addr".  We say "blocks" instead of "object" since some heaps
   249   // may not pack objects densely; a chunk may either be an object or a
   250   // non-object.
   251   virtual HeapWord* block_start(const void* addr) const;
   253   // Requires "addr" to be the start of a chunk, and returns its size.
   254   // "addr + size" is required to be the start of a new chunk, or the end
   255   // of the active area of the heap. Assumes (and verifies in non-product
   256   // builds) that addr is in the allocated part of the heap and is
   257   // the start of a chunk.
   258   virtual size_t block_size(const HeapWord* addr) const;
   260   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   261   // the block is an object. Assumes (and verifies in non-product
   262   // builds) that addr is in the allocated part of the heap and is
   263   // the start of a chunk.
   264   virtual bool block_is_obj(const HeapWord* addr) const;
   266   // Section on TLAB's.
   267   virtual bool supports_tlab_allocation() const;
   268   virtual size_t tlab_capacity(Thread* thr) const;
   269   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   270   virtual HeapWord* allocate_new_tlab(size_t size);
   272   // Can a compiler initialize a new object without store barriers?
   273   // This permission only extends from the creation of a new object
   274   // via a TLAB up to the first subsequent safepoint.
   275   virtual bool can_elide_tlab_store_barriers() const {
   276     return true;
   277   }
   279   virtual bool card_mark_must_follow_store() const {
   280     return UseConcMarkSweepGC;
   281   }
   283   // We don't need barriers for stores to objects in the
   284   // young gen and, a fortiori, for initializing stores to
   285   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   286   // only and may need to be re-examined in case other
   287   // kinds of collectors are implemented in the future.
   288   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   289     // We wanted to assert that:-
   290     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   291     //       "Check can_elide_initializing_store_barrier() for this collector");
   292     // but unfortunately the flag UseSerialGC need not necessarily always
   293     // be set when DefNew+Tenured are being used.
   294     return is_in_young(new_obj);
   295   }
   297   // Can a compiler elide a store barrier when it writes
   298   // a permanent oop into the heap?  Applies when the compiler
   299   // is storing x to the heap, where x->is_perm() is true.
   300   virtual bool can_elide_permanent_oop_store_barriers() const {
   301     // CMS needs to see all, even intra-generational, ref updates.
   302     return !UseConcMarkSweepGC;
   303   }
   305   // The "requestor" generation is performing some garbage collection
   306   // action for which it would be useful to have scratch space.  The
   307   // requestor promises to allocate no more than "max_alloc_words" in any
   308   // older generation (via promotion say.)   Any blocks of space that can
   309   // be provided are returned as a list of ScratchBlocks, sorted by
   310   // decreasing size.
   311   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   312   // Allow each generation to reset any scratch space that it has
   313   // contributed as it needs.
   314   void release_scratch();
   316   // Ensure parsability: override
   317   virtual void ensure_parsability(bool retire_tlabs);
   319   // Time in ms since the longest time a collector ran in
   320   // in any generation.
   321   virtual jlong millis_since_last_gc();
   323   // Total number of full collections completed.
   324   unsigned int total_full_collections_completed() {
   325     assert(_full_collections_completed <= _total_full_collections,
   326            "Can't complete more collections than were started");
   327     return _full_collections_completed;
   328   }
   330   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   331   unsigned int update_full_collections_completed();
   332   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   333   unsigned int update_full_collections_completed(unsigned int count);
   335   // Update "time of last gc" for all constituent generations
   336   // to "now".
   337   void update_time_of_last_gc(jlong now) {
   338     for (int i = 0; i < _n_gens; i++) {
   339       _gens[i]->update_time_of_last_gc(now);
   340     }
   341     perm_gen()->update_time_of_last_gc(now);
   342   }
   344   // Update the gc statistics for each generation.
   345   // "level" is the level of the lastest collection
   346   void update_gc_stats(int current_level, bool full) {
   347     for (int i = 0; i < _n_gens; i++) {
   348       _gens[i]->update_gc_stats(current_level, full);
   349     }
   350     perm_gen()->update_gc_stats(current_level, full);
   351   }
   353   // Override.
   354   bool no_gc_in_progress() { return !is_gc_active(); }
   356   // Override.
   357   void prepare_for_verify();
   359   // Override.
   360   void verify(bool allow_dirty, bool silent, VerifyOption option);
   362   // Override.
   363   virtual void print_on(outputStream* st) const;
   364   virtual void print_gc_threads_on(outputStream* st) const;
   365   virtual void gc_threads_do(ThreadClosure* tc) const;
   366   virtual void print_tracing_info() const;
   368   // PrintGC, PrintGCDetails support
   369   void print_heap_change(size_t prev_used) const;
   370   void print_perm_heap_change(size_t perm_prev_used) const;
   372   // The functions below are helper functions that a subclass of
   373   // "CollectedHeap" can use in the implementation of its virtual
   374   // functions.
   376   class GenClosure : public StackObj {
   377    public:
   378     virtual void do_generation(Generation* gen) = 0;
   379   };
   381   // Apply "cl.do_generation" to all generations in the heap (not including
   382   // the permanent generation).  If "old_to_young" determines the order.
   383   void generation_iterate(GenClosure* cl, bool old_to_young);
   385   void space_iterate(SpaceClosure* cl);
   387   // Return "true" if all generations (but perm) have reached the
   388   // maximal committed limit that they can reach, without a garbage
   389   // collection.
   390   virtual bool is_maximal_no_gc() const;
   392   // Return the generation before "gen", or else NULL.
   393   Generation* prev_gen(Generation* gen) const {
   394     int l = gen->level();
   395     if (l == 0) return NULL;
   396     else return _gens[l-1];
   397   }
   399   // Return the generation after "gen", or else NULL.
   400   Generation* next_gen(Generation* gen) const {
   401     int l = gen->level() + 1;
   402     if (l == _n_gens) return NULL;
   403     else return _gens[l];
   404   }
   406   Generation* get_gen(int i) const {
   407     if (i >= 0 && i < _n_gens)
   408       return _gens[i];
   409     else
   410       return NULL;
   411   }
   413   int n_gens() const {
   414     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   415     return _n_gens;
   416   }
   418   // Convenience function to be used in situations where the heap type can be
   419   // asserted to be this type.
   420   static GenCollectedHeap* heap();
   422   void set_par_threads(uint t);
   424   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   425   // or "older_gens" on root locations for the generation at
   426   // "level".  (The "older_gens" closure is used for scanning references
   427   // from older generations; "not_older_gens" is used everywhere else.)
   428   // If "younger_gens_as_roots" is false, younger generations are
   429   // not scanned as roots; in this case, the caller must be arranging to
   430   // scan the younger generations itself.  (For example, a generation might
   431   // explicitly mark reachable objects in younger generations, to avoid
   432   // excess storage retention.)  If "collecting_perm_gen" is false, then
   433   // roots that may only contain references to permGen objects are not
   434   // scanned; instead, the older_gens closure is applied to all outgoing
   435   // references in the perm gen.  The "so" argument determines which of the roots
   436   // the closure is applied to:
   437   // "SO_None" does none;
   438   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
   439   // "SO_SystemClasses" to all the "system" classes and loaders;
   440   // "SO_Strings" applies the closure to all entries in the StringTable.
   441   void gen_process_strong_roots(int level,
   442                                 bool younger_gens_as_roots,
   443                                 // The remaining arguments are in an order
   444                                 // consistent with SharedHeap::process_strong_roots:
   445                                 bool activate_scope,
   446                                 bool collecting_perm_gen,
   447                                 SharedHeap::ScanningOption so,
   448                                 OopsInGenClosure* not_older_gens,
   449                                 bool do_code_roots,
   450                                 OopsInGenClosure* older_gens);
   452   // Apply "blk" to all the weak roots of the system.  These include
   453   // JNI weak roots, the code cache, system dictionary, symbol table,
   454   // string table, and referents of reachable weak refs.
   455   void gen_process_weak_roots(OopClosure* root_closure,
   456                               CodeBlobClosure* code_roots,
   457                               OopClosure* non_root_closure);
   459   // Set the saved marks of generations, if that makes sense.
   460   // In particular, if any generation might iterate over the oops
   461   // in other generations, it should call this method.
   462   void save_marks();
   464   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   465   // allocated since the last call to save_marks in generations at or above
   466   // "level" (including the permanent generation.)  The "cur" closure is
   467   // applied to references in the generation at "level", and the "older"
   468   // closure to older (and permanent) generations.
   469 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   470   void oop_since_save_marks_iterate(int level,                          \
   471                                     OopClosureType* cur,                \
   472                                     OopClosureType* older);
   474   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   476 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   478   // Returns "true" iff no allocations have occurred in any generation at
   479   // "level" or above (including the permanent generation) since the last
   480   // call to "save_marks".
   481   bool no_allocs_since_save_marks(int level);
   483   // Returns true if an incremental collection is likely to fail.
   484   // We optionally consult the young gen, if asked to do so;
   485   // otherwise we base our answer on whether the previous incremental
   486   // collection attempt failed with no corrective action as of yet.
   487   bool incremental_collection_will_fail(bool consult_young) {
   488     // Assumes a 2-generation system; the first disjunct remembers if an
   489     // incremental collection failed, even when we thought (second disjunct)
   490     // that it would not.
   491     assert(heap()->collector_policy()->is_two_generation_policy(),
   492            "the following definition may not be suitable for an n(>2)-generation system");
   493     return incremental_collection_failed() ||
   494            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   495   }
   497   // If a generation bails out of an incremental collection,
   498   // it sets this flag.
   499   bool incremental_collection_failed() const {
   500     return _incremental_collection_failed;
   501   }
   502   void set_incremental_collection_failed() {
   503     _incremental_collection_failed = true;
   504   }
   505   void clear_incremental_collection_failed() {
   506     _incremental_collection_failed = false;
   507   }
   509   // Promotion of obj into gen failed.  Try to promote obj to higher non-perm
   510   // gens in ascending order; return the new location of obj if successful.
   511   // Otherwise, try expand-and-allocate for obj in each generation starting at
   512   // gen; return the new location of obj if successful.  Otherwise, return NULL.
   513   oop handle_failed_promotion(Generation* gen,
   514                               oop obj,
   515                               size_t obj_size);
   517 private:
   518   // Accessor for memory state verification support
   519   NOT_PRODUCT(
   520     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   521   )
   523   // Override
   524   void check_for_non_bad_heap_word_value(HeapWord* addr,
   525     size_t size) PRODUCT_RETURN;
   527   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   528   // in an essential way: compaction is performed across generations, by
   529   // iterating over spaces.
   530   void prepare_for_compaction();
   532   // Perform a full collection of the first max_level+1 generations.
   533   // This is the low level interface used by the public versions of
   534   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   535   void collect_locked(GCCause::Cause cause, int max_level);
   537   // Returns success or failure.
   538   bool create_cms_collector();
   540   // In support of ExplicitGCInvokesConcurrent functionality
   541   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   542   void collect_mostly_concurrent(GCCause::Cause cause);
   544   // Save the tops of the spaces in all generations
   545   void record_gen_tops_before_GC() PRODUCT_RETURN;
   547 protected:
   548   virtual void gc_prologue(bool full);
   549   virtual void gc_epilogue(bool full);
   551 public:
   552   virtual void preload_and_dump(TRAPS) KERNEL_RETURN;
   553 };
   555 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial