src/share/vm/memory/genCollectedHeap.cpp

Wed, 18 Jan 2012 09:50:16 -0800

author
johnc
date
Wed, 18 Jan 2012 09:50:16 -0800
changeset 3538
d903bf750e9f
parent 3499
aa3d708d67c4
child 3711
b632e80fc9dc
permissions
-rw-r--r--

7129514: time warp warnings after 7117303
Summary: Replace calls to os::javaTimeMillis() that are used to update the milliseconds since the last GC to an equivalent that uses a monotonically non-decreasing time source.
Reviewed-by: ysr, jmasa

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/collectedHeap.inline.hpp"
    33 #include "memory/compactPermGen.hpp"
    34 #include "memory/filemap.hpp"
    35 #include "memory/gcLocker.inline.hpp"
    36 #include "memory/genCollectedHeap.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.inline.hpp"
    39 #include "memory/generationSpec.hpp"
    40 #include "memory/permGen.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "memory/space.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.inline2.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/vmError.hpp"
    55 #include "utilities/workgroup.hpp"
    56 #ifndef SERIALGC
    57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    59 #endif
    61 GenCollectedHeap* GenCollectedHeap::_gch;
    62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    64 // The set of potentially parallel tasks in strong root scanning.
    65 enum GCH_process_strong_roots_tasks {
    66   // We probably want to parallelize both of these internally, but for now...
    67   GCH_PS_younger_gens,
    68   // Leave this one last.
    69   GCH_PS_NumElements
    70 };
    72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    73   SharedHeap(policy),
    74   _gen_policy(policy),
    75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    76   _full_collections_completed(0)
    77 {
    78   if (_gen_process_strong_tasks == NULL ||
    79       !_gen_process_strong_tasks->valid()) {
    80     vm_exit_during_initialization("Failed necessary allocation.");
    81   }
    82   assert(policy != NULL, "Sanity check");
    83   _preloading_shared_classes = false;
    84 }
    86 jint GenCollectedHeap::initialize() {
    87   CollectedHeap::pre_initialize();
    89   int i;
    90   _n_gens = gen_policy()->number_of_generations();
    92   // While there are no constraints in the GC code that HeapWordSize
    93   // be any particular value, there are multiple other areas in the
    94   // system which believe this to be true (e.g. oop->object_size in some
    95   // cases incorrectly returns the size in wordSize units rather than
    96   // HeapWordSize).
    97   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    99   // The heap must be at least as aligned as generations.
   100   size_t alignment = Generation::GenGrain;
   102   _gen_specs = gen_policy()->generations();
   103   PermanentGenerationSpec *perm_gen_spec =
   104                                 collector_policy()->permanent_generation();
   106   // Make sure the sizes are all aligned.
   107   for (i = 0; i < _n_gens; i++) {
   108     _gen_specs[i]->align(alignment);
   109   }
   110   perm_gen_spec->align(alignment);
   112   // If we are dumping the heap, then allocate a wasted block of address
   113   // space in order to push the heap to a lower address.  This extra
   114   // address range allows for other (or larger) libraries to be loaded
   115   // without them occupying the space required for the shared spaces.
   117   if (DumpSharedSpaces) {
   118     uintx reserved = 0;
   119     uintx block_size = 64*1024*1024;
   120     while (reserved < SharedDummyBlockSize) {
   121       char* dummy = os::reserve_memory(block_size);
   122       reserved += block_size;
   123     }
   124   }
   126   // Allocate space for the heap.
   128   char* heap_address;
   129   size_t total_reserved = 0;
   130   int n_covered_regions = 0;
   131   ReservedSpace heap_rs(0);
   133   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
   134                           &n_covered_regions, &heap_rs);
   136   if (UseSharedSpaces) {
   137     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   138       if (heap_rs.is_reserved()) {
   139         heap_rs.release();
   140       }
   141       FileMapInfo* mapinfo = FileMapInfo::current_info();
   142       mapinfo->fail_continue("Unable to reserve shared region.");
   143       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   144                &heap_rs);
   145     }
   146   }
   148   if (!heap_rs.is_reserved()) {
   149     vm_shutdown_during_initialization(
   150       "Could not reserve enough space for object heap");
   151     return JNI_ENOMEM;
   152   }
   154   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   155                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   157   // It is important to do this in a way such that concurrent readers can't
   158   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   159   _reserved.set_word_size(0);
   160   _reserved.set_start((HeapWord*)heap_rs.base());
   161   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   162                                            - perm_gen_spec->misc_code_size();
   163   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   165   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   166   set_barrier_set(rem_set()->bs());
   168   _gch = this;
   170   for (i = 0; i < _n_gens; i++) {
   171     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   172                                               UseSharedSpaces, UseSharedSpaces);
   173     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   174     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   175   }
   176   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   178   clear_incremental_collection_failed();
   180 #ifndef SERIALGC
   181   // If we are running CMS, create the collector responsible
   182   // for collecting the CMS generations.
   183   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   184     bool success = create_cms_collector();
   185     if (!success) return JNI_ENOMEM;
   186   }
   187 #endif // SERIALGC
   189   return JNI_OK;
   190 }
   193 char* GenCollectedHeap::allocate(size_t alignment,
   194                                  PermanentGenerationSpec* perm_gen_spec,
   195                                  size_t* _total_reserved,
   196                                  int* _n_covered_regions,
   197                                  ReservedSpace* heap_rs){
   198   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   199     "the maximum representable size";
   201   // Now figure out the total size.
   202   size_t total_reserved = 0;
   203   int n_covered_regions = 0;
   204   const size_t pageSize = UseLargePages ?
   205       os::large_page_size() : os::vm_page_size();
   207   for (int i = 0; i < _n_gens; i++) {
   208     total_reserved += _gen_specs[i]->max_size();
   209     if (total_reserved < _gen_specs[i]->max_size()) {
   210       vm_exit_during_initialization(overflow_msg);
   211     }
   212     n_covered_regions += _gen_specs[i]->n_covered_regions();
   213   }
   214   assert(total_reserved % pageSize == 0,
   215          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
   216                  SIZE_FORMAT, total_reserved, pageSize));
   217   total_reserved += perm_gen_spec->max_size();
   218   assert(total_reserved % pageSize == 0,
   219          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
   220                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
   221                  pageSize, perm_gen_spec->max_size()));
   223   if (total_reserved < perm_gen_spec->max_size()) {
   224     vm_exit_during_initialization(overflow_msg);
   225   }
   226   n_covered_regions += perm_gen_spec->n_covered_regions();
   228   // Add the size of the data area which shares the same reserved area
   229   // as the heap, but which is not actually part of the heap.
   230   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   232   total_reserved += s;
   233   if (total_reserved < s) {
   234     vm_exit_during_initialization(overflow_msg);
   235   }
   237   if (UseLargePages) {
   238     assert(total_reserved != 0, "total_reserved cannot be 0");
   239     total_reserved = round_to(total_reserved, os::large_page_size());
   240     if (total_reserved < os::large_page_size()) {
   241       vm_exit_during_initialization(overflow_msg);
   242     }
   243   }
   245   // Calculate the address at which the heap must reside in order for
   246   // the shared data to be at the required address.
   248   char* heap_address;
   249   if (UseSharedSpaces) {
   251     // Calculate the address of the first word beyond the heap.
   252     FileMapInfo* mapinfo = FileMapInfo::current_info();
   253     int lr = CompactingPermGenGen::n_regions - 1;
   254     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   255     heap_address = mapinfo->region_base(lr) + capacity;
   257     // Calculate the address of the first word of the heap.
   258     heap_address -= total_reserved;
   259   } else {
   260     heap_address = NULL;  // any address will do.
   261     if (UseCompressedOops) {
   262       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   263       *_total_reserved = total_reserved;
   264       *_n_covered_regions = n_covered_regions;
   265       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   266                                    UseLargePages, heap_address);
   268       if (heap_address != NULL && !heap_rs->is_reserved()) {
   269         // Failed to reserve at specified address - the requested memory
   270         // region is taken already, for example, by 'java' launcher.
   271         // Try again to reserver heap higher.
   272         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   273         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   274                                      UseLargePages, heap_address);
   276         if (heap_address != NULL && !heap_rs->is_reserved()) {
   277           // Failed to reserve at specified address again - give up.
   278           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   279           assert(heap_address == NULL, "");
   280           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   281                                        UseLargePages, heap_address);
   282         }
   283       }
   284       return heap_address;
   285     }
   286   }
   288   *_total_reserved = total_reserved;
   289   *_n_covered_regions = n_covered_regions;
   290   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   291                                UseLargePages, heap_address);
   293   return heap_address;
   294 }
   297 void GenCollectedHeap::post_initialize() {
   298   SharedHeap::post_initialize();
   299   TwoGenerationCollectorPolicy *policy =
   300     (TwoGenerationCollectorPolicy *)collector_policy();
   301   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   302   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   303   assert(def_new_gen->kind() == Generation::DefNew ||
   304          def_new_gen->kind() == Generation::ParNew ||
   305          def_new_gen->kind() == Generation::ASParNew,
   306          "Wrong generation kind");
   308   Generation* old_gen = get_gen(1);
   309   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   310          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   311          old_gen->kind() == Generation::MarkSweepCompact,
   312     "Wrong generation kind");
   314   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   315                                  old_gen->capacity(),
   316                                  def_new_gen->from()->capacity());
   317   policy->initialize_gc_policy_counters();
   318 }
   320 void GenCollectedHeap::ref_processing_init() {
   321   SharedHeap::ref_processing_init();
   322   for (int i = 0; i < _n_gens; i++) {
   323     _gens[i]->ref_processor_init();
   324   }
   325 }
   327 size_t GenCollectedHeap::capacity() const {
   328   size_t res = 0;
   329   for (int i = 0; i < _n_gens; i++) {
   330     res += _gens[i]->capacity();
   331   }
   332   return res;
   333 }
   335 size_t GenCollectedHeap::used() const {
   336   size_t res = 0;
   337   for (int i = 0; i < _n_gens; i++) {
   338     res += _gens[i]->used();
   339   }
   340   return res;
   341 }
   343 // Save the "used_region" for generations level and lower,
   344 // and, if perm is true, for perm gen.
   345 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   346   assert(level < _n_gens, "Illegal level parameter");
   347   for (int i = level; i >= 0; i--) {
   348     _gens[i]->save_used_region();
   349   }
   350   if (perm) {
   351     perm_gen()->save_used_region();
   352   }
   353 }
   355 size_t GenCollectedHeap::max_capacity() const {
   356   size_t res = 0;
   357   for (int i = 0; i < _n_gens; i++) {
   358     res += _gens[i]->max_capacity();
   359   }
   360   return res;
   361 }
   363 // Update the _full_collections_completed counter
   364 // at the end of a stop-world full GC.
   365 unsigned int GenCollectedHeap::update_full_collections_completed() {
   366   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   367   assert(_full_collections_completed <= _total_full_collections,
   368          "Can't complete more collections than were started");
   369   _full_collections_completed = _total_full_collections;
   370   ml.notify_all();
   371   return _full_collections_completed;
   372 }
   374 // Update the _full_collections_completed counter, as appropriate,
   375 // at the end of a concurrent GC cycle. Note the conditional update
   376 // below to allow this method to be called by a concurrent collector
   377 // without synchronizing in any manner with the VM thread (which
   378 // may already have initiated a STW full collection "concurrently").
   379 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   380   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   381   assert((_full_collections_completed <= _total_full_collections) &&
   382          (count <= _total_full_collections),
   383          "Can't complete more collections than were started");
   384   if (count > _full_collections_completed) {
   385     _full_collections_completed = count;
   386     ml.notify_all();
   387   }
   388   return _full_collections_completed;
   389 }
   392 #ifndef PRODUCT
   393 // Override of memory state checking method in CollectedHeap:
   394 // Some collectors (CMS for example) can't have badHeapWordVal written
   395 // in the first two words of an object. (For instance , in the case of
   396 // CMS these words hold state used to synchronize between certain
   397 // (concurrent) GC steps and direct allocating mutators.)
   398 // The skip_header_HeapWords() method below, allows us to skip
   399 // over the requisite number of HeapWord's. Note that (for
   400 // generational collectors) this means that those many words are
   401 // skipped in each object, irrespective of the generation in which
   402 // that object lives. The resultant loss of precision seems to be
   403 // harmless and the pain of avoiding that imprecision appears somewhat
   404 // higher than we are prepared to pay for such rudimentary debugging
   405 // support.
   406 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   407                                                          size_t size) {
   408   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   409     // We are asked to check a size in HeapWords,
   410     // but the memory is mangled in juint words.
   411     juint* start = (juint*) (addr + skip_header_HeapWords());
   412     juint* end   = (juint*) (addr + size);
   413     for (juint* slot = start; slot < end; slot += 1) {
   414       assert(*slot == badHeapWordVal,
   415              "Found non badHeapWordValue in pre-allocation check");
   416     }
   417   }
   418 }
   419 #endif
   421 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   422                                                bool is_tlab,
   423                                                bool first_only) {
   424   HeapWord* res;
   425   for (int i = 0; i < _n_gens; i++) {
   426     if (_gens[i]->should_allocate(size, is_tlab)) {
   427       res = _gens[i]->allocate(size, is_tlab);
   428       if (res != NULL) return res;
   429       else if (first_only) break;
   430     }
   431   }
   432   // Otherwise...
   433   return NULL;
   434 }
   436 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   437                                          bool* gc_overhead_limit_was_exceeded) {
   438   return collector_policy()->mem_allocate_work(size,
   439                                                false /* is_tlab */,
   440                                                gc_overhead_limit_was_exceeded);
   441 }
   443 bool GenCollectedHeap::must_clear_all_soft_refs() {
   444   return _gc_cause == GCCause::_last_ditch_collection;
   445 }
   447 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   448   return UseConcMarkSweepGC &&
   449          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   450           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   451 }
   453 void GenCollectedHeap::do_collection(bool  full,
   454                                      bool   clear_all_soft_refs,
   455                                      size_t size,
   456                                      bool   is_tlab,
   457                                      int    max_level) {
   458   bool prepared_for_verification = false;
   459   ResourceMark rm;
   460   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   462   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   463   assert(my_thread->is_VM_thread() ||
   464          my_thread->is_ConcurrentGC_thread(),
   465          "incorrect thread type capability");
   466   assert(Heap_lock->is_locked(),
   467          "the requesting thread should have the Heap_lock");
   468   guarantee(!is_gc_active(), "collection is not reentrant");
   469   assert(max_level < n_gens(), "sanity check");
   471   if (GC_locker::check_active_before_gc()) {
   472     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   473   }
   475   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   476                           collector_policy()->should_clear_all_soft_refs();
   478   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   480   const size_t perm_prev_used = perm_gen()->used();
   482   print_heap_before_gc();
   483   if (Verbose) {
   484     gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
   485   }
   487   {
   488     FlagSetting fl(_is_gc_active, true);
   490     bool complete = full && (max_level == (n_gens()-1));
   491     const char* gc_cause_str = "GC ";
   492     if (complete) {
   493       GCCause::Cause cause = gc_cause();
   494       if (cause == GCCause::_java_lang_system_gc) {
   495         gc_cause_str = "Full GC (System) ";
   496       } else {
   497         gc_cause_str = "Full GC ";
   498       }
   499     }
   500     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   501     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   502     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
   504     gc_prologue(complete);
   505     increment_total_collections(complete);
   507     size_t gch_prev_used = used();
   509     int starting_level = 0;
   510     if (full) {
   511       // Search for the oldest generation which will collect all younger
   512       // generations, and start collection loop there.
   513       for (int i = max_level; i >= 0; i--) {
   514         if (_gens[i]->full_collects_younger_generations()) {
   515           starting_level = i;
   516           break;
   517         }
   518       }
   519     }
   521     bool must_restore_marks_for_biased_locking = false;
   523     int max_level_collected = starting_level;
   524     for (int i = starting_level; i <= max_level; i++) {
   525       if (_gens[i]->should_collect(full, size, is_tlab)) {
   526         if (i == n_gens() - 1) {  // a major collection is to happen
   527           if (!complete) {
   528             // The full_collections increment was missed above.
   529             increment_total_full_collections();
   530           }
   531           pre_full_gc_dump();    // do any pre full gc dumps
   532         }
   533         // Timer for individual generations. Last argument is false: no CR
   534         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   535         TraceCollectorStats tcs(_gens[i]->counters());
   536         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   538         size_t prev_used = _gens[i]->used();
   539         _gens[i]->stat_record()->invocations++;
   540         _gens[i]->stat_record()->accumulated_time.start();
   542         // Must be done anew before each collection because
   543         // a previous collection will do mangling and will
   544         // change top of some spaces.
   545         record_gen_tops_before_GC();
   547         if (PrintGC && Verbose) {
   548           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   549                      i,
   550                      _gens[i]->stat_record()->invocations,
   551                      size*HeapWordSize);
   552         }
   554         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   555             total_collections() >= VerifyGCStartAt) {
   556           HandleMark hm;  // Discard invalid handles created during verification
   557           if (!prepared_for_verification) {
   558             prepare_for_verify();
   559             prepared_for_verification = true;
   560           }
   561           gclog_or_tty->print(" VerifyBeforeGC:");
   562           Universe::verify(true);
   563         }
   564         COMPILER2_PRESENT(DerivedPointerTable::clear());
   566         if (!must_restore_marks_for_biased_locking &&
   567             _gens[i]->performs_in_place_marking()) {
   568           // We perform this mark word preservation work lazily
   569           // because it's only at this point that we know whether we
   570           // absolutely have to do it; we want to avoid doing it for
   571           // scavenge-only collections where it's unnecessary
   572           must_restore_marks_for_biased_locking = true;
   573           BiasedLocking::preserve_marks();
   574         }
   576         // Do collection work
   577         {
   578           // Note on ref discovery: For what appear to be historical reasons,
   579           // GCH enables and disabled (by enqueing) refs discovery.
   580           // In the future this should be moved into the generation's
   581           // collect method so that ref discovery and enqueueing concerns
   582           // are local to a generation. The collect method could return
   583           // an appropriate indication in the case that notification on
   584           // the ref lock was needed. This will make the treatment of
   585           // weak refs more uniform (and indeed remove such concerns
   586           // from GCH). XXX
   588           HandleMark hm;  // Discard invalid handles created during gc
   589           save_marks();   // save marks for all gens
   590           // We want to discover references, but not process them yet.
   591           // This mode is disabled in process_discovered_references if the
   592           // generation does some collection work, or in
   593           // enqueue_discovered_references if the generation returns
   594           // without doing any work.
   595           ReferenceProcessor* rp = _gens[i]->ref_processor();
   596           // If the discovery of ("weak") refs in this generation is
   597           // atomic wrt other collectors in this configuration, we
   598           // are guaranteed to have empty discovered ref lists.
   599           if (rp->discovery_is_atomic()) {
   600             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   601             rp->setup_policy(do_clear_all_soft_refs);
   602           } else {
   603             // collect() below will enable discovery as appropriate
   604           }
   605           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   606           if (!rp->enqueuing_is_done()) {
   607             rp->enqueue_discovered_references();
   608           } else {
   609             rp->set_enqueuing_is_done(false);
   610           }
   611           rp->verify_no_references_recorded();
   612         }
   613         max_level_collected = i;
   615         // Determine if allocation request was met.
   616         if (size > 0) {
   617           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   618             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   619               size = 0;
   620             }
   621           }
   622         }
   624         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   626         _gens[i]->stat_record()->accumulated_time.stop();
   628         update_gc_stats(i, full);
   630         if (VerifyAfterGC && i >= VerifyGCLevel &&
   631             total_collections() >= VerifyGCStartAt) {
   632           HandleMark hm;  // Discard invalid handles created during verification
   633           gclog_or_tty->print(" VerifyAfterGC:");
   634           Universe::verify(false);
   635         }
   637         if (PrintGCDetails) {
   638           gclog_or_tty->print(":");
   639           _gens[i]->print_heap_change(prev_used);
   640         }
   641       }
   642     }
   644     // Update "complete" boolean wrt what actually transpired --
   645     // for instance, a promotion failure could have led to
   646     // a whole heap collection.
   647     complete = complete || (max_level_collected == n_gens() - 1);
   649     if (complete) { // We did a "major" collection
   650       post_full_gc_dump();   // do any post full gc dumps
   651     }
   653     if (PrintGCDetails) {
   654       print_heap_change(gch_prev_used);
   656       // Print perm gen info for full GC with PrintGCDetails flag.
   657       if (complete) {
   658         print_perm_heap_change(perm_prev_used);
   659       }
   660     }
   662     for (int j = max_level_collected; j >= 0; j -= 1) {
   663       // Adjust generation sizes.
   664       _gens[j]->compute_new_size();
   665     }
   667     if (complete) {
   668       // Ask the permanent generation to adjust size for full collections
   669       perm()->compute_new_size();
   670       update_full_collections_completed();
   671     }
   673     // Track memory usage and detect low memory after GC finishes
   674     MemoryService::track_memory_usage();
   676     gc_epilogue(complete);
   678     if (must_restore_marks_for_biased_locking) {
   679       BiasedLocking::restore_marks();
   680     }
   681   }
   683   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   684   AdaptiveSizePolicyOutput(sp, total_collections());
   686   print_heap_after_gc();
   688 #ifdef TRACESPINNING
   689   ParallelTaskTerminator::print_termination_counts();
   690 #endif
   692   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
   693     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
   694     vm_exit(-1);
   695   }
   696 }
   698 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   699   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   700 }
   702 void GenCollectedHeap::set_par_threads(uint t) {
   703   SharedHeap::set_par_threads(t);
   704   _gen_process_strong_tasks->set_n_threads(t);
   705 }
   707 void GenCollectedHeap::
   708 gen_process_strong_roots(int level,
   709                          bool younger_gens_as_roots,
   710                          bool activate_scope,
   711                          bool collecting_perm_gen,
   712                          SharedHeap::ScanningOption so,
   713                          OopsInGenClosure* not_older_gens,
   714                          bool do_code_roots,
   715                          OopsInGenClosure* older_gens) {
   716   // General strong roots.
   718   if (!do_code_roots) {
   719     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   720                                      not_older_gens, NULL, older_gens);
   721   } else {
   722     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   723     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   724     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   725                                      not_older_gens, &code_roots, older_gens);
   726   }
   728   if (younger_gens_as_roots) {
   729     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   730       for (int i = 0; i < level; i++) {
   731         not_older_gens->set_generation(_gens[i]);
   732         _gens[i]->oop_iterate(not_older_gens);
   733       }
   734       not_older_gens->reset_generation();
   735     }
   736   }
   737   // When collection is parallel, all threads get to cooperate to do
   738   // older-gen scanning.
   739   for (int i = level+1; i < _n_gens; i++) {
   740     older_gens->set_generation(_gens[i]);
   741     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   742     older_gens->reset_generation();
   743   }
   745   _gen_process_strong_tasks->all_tasks_completed();
   746 }
   748 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   749                                               CodeBlobClosure* code_roots,
   750                                               OopClosure* non_root_closure) {
   751   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
   752   // "Local" "weak" refs
   753   for (int i = 0; i < _n_gens; i++) {
   754     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   755   }
   756 }
   758 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   759 void GenCollectedHeap::                                                 \
   760 oop_since_save_marks_iterate(int level,                                 \
   761                              OopClosureType* cur,                       \
   762                              OopClosureType* older) {                   \
   763   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   764   for (int i = level+1; i < n_gens(); i++) {                            \
   765     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   766   }                                                                     \
   767   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   768 }
   770 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   772 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   774 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   775   for (int i = level; i < _n_gens; i++) {
   776     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   777   }
   778   return perm_gen()->no_allocs_since_save_marks();
   779 }
   781 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   782   return _gens[0]->supports_inline_contig_alloc();
   783 }
   785 HeapWord** GenCollectedHeap::top_addr() const {
   786   return _gens[0]->top_addr();
   787 }
   789 HeapWord** GenCollectedHeap::end_addr() const {
   790   return _gens[0]->end_addr();
   791 }
   793 size_t GenCollectedHeap::unsafe_max_alloc() {
   794   return _gens[0]->unsafe_max_alloc_nogc();
   795 }
   797 // public collection interfaces
   799 void GenCollectedHeap::collect(GCCause::Cause cause) {
   800   if (should_do_concurrent_full_gc(cause)) {
   801 #ifndef SERIALGC
   802     // mostly concurrent full collection
   803     collect_mostly_concurrent(cause);
   804 #else  // SERIALGC
   805     ShouldNotReachHere();
   806 #endif // SERIALGC
   807   } else {
   808 #ifdef ASSERT
   809     if (cause == GCCause::_scavenge_alot) {
   810       // minor collection only
   811       collect(cause, 0);
   812     } else {
   813       // Stop-the-world full collection
   814       collect(cause, n_gens() - 1);
   815     }
   816 #else
   817     // Stop-the-world full collection
   818     collect(cause, n_gens() - 1);
   819 #endif
   820   }
   821 }
   823 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   824   // The caller doesn't have the Heap_lock
   825   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   826   MutexLocker ml(Heap_lock);
   827   collect_locked(cause, max_level);
   828 }
   830 // This interface assumes that it's being called by the
   831 // vm thread. It collects the heap assuming that the
   832 // heap lock is already held and that we are executing in
   833 // the context of the vm thread.
   834 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   835   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   836   assert(Heap_lock->is_locked(), "Precondition#2");
   837   GCCauseSetter gcs(this, cause);
   838   switch (cause) {
   839     case GCCause::_heap_inspection:
   840     case GCCause::_heap_dump: {
   841       HandleMark hm;
   842       do_full_collection(false,         // don't clear all soft refs
   843                          n_gens() - 1);
   844       break;
   845     }
   846     default: // XXX FIX ME
   847       ShouldNotReachHere(); // Unexpected use of this function
   848   }
   849 }
   851 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   852   // The caller has the Heap_lock
   853   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   854   collect_locked(cause, n_gens() - 1);
   855 }
   857 // this is the private collection interface
   858 // The Heap_lock is expected to be held on entry.
   860 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   861   if (_preloading_shared_classes) {
   862     report_out_of_shared_space(SharedPermGen);
   863   }
   864   // Read the GC count while holding the Heap_lock
   865   unsigned int gc_count_before      = total_collections();
   866   unsigned int full_gc_count_before = total_full_collections();
   867   {
   868     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   869     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   870                          cause, max_level);
   871     VMThread::execute(&op);
   872   }
   873 }
   875 #ifndef SERIALGC
   876 bool GenCollectedHeap::create_cms_collector() {
   878   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   879          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   880          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   881          "Unexpected generation kinds");
   882   // Skip two header words in the block content verification
   883   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   884   CMSCollector* collector = new CMSCollector(
   885     (ConcurrentMarkSweepGeneration*)_gens[1],
   886     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   887     _rem_set->as_CardTableRS(),
   888     (ConcurrentMarkSweepPolicy*) collector_policy());
   890   if (collector == NULL || !collector->completed_initialization()) {
   891     if (collector) {
   892       delete collector;  // Be nice in embedded situation
   893     }
   894     vm_shutdown_during_initialization("Could not create CMS collector");
   895     return false;
   896   }
   897   return true;  // success
   898 }
   900 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   901   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   903   MutexLocker ml(Heap_lock);
   904   // Read the GC counts while holding the Heap_lock
   905   unsigned int full_gc_count_before = total_full_collections();
   906   unsigned int gc_count_before      = total_collections();
   907   {
   908     MutexUnlocker mu(Heap_lock);
   909     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   910     VMThread::execute(&op);
   911   }
   912 }
   913 #endif // SERIALGC
   916 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   917                                           int max_level) {
   918   int local_max_level;
   919   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   920       gc_cause() == GCCause::_gc_locker) {
   921     local_max_level = 0;
   922   } else {
   923     local_max_level = max_level;
   924   }
   926   do_collection(true                 /* full */,
   927                 clear_all_soft_refs  /* clear_all_soft_refs */,
   928                 0                    /* size */,
   929                 false                /* is_tlab */,
   930                 local_max_level      /* max_level */);
   931   // Hack XXX FIX ME !!!
   932   // A scavenge may not have been attempted, or may have
   933   // been attempted and failed, because the old gen was too full
   934   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   935       incremental_collection_will_fail(false /* don't consult_young */)) {
   936     if (PrintGCDetails) {
   937       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   938                              "because scavenge failed");
   939     }
   940     // This time allow the old gen to be collected as well
   941     do_collection(true                 /* full */,
   942                   clear_all_soft_refs  /* clear_all_soft_refs */,
   943                   0                    /* size */,
   944                   false                /* is_tlab */,
   945                   n_gens() - 1         /* max_level */);
   946   }
   947 }
   949 bool GenCollectedHeap::is_in_young(oop p) {
   950   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   951   assert(result == _gens[0]->is_in_reserved(p),
   952          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
   953   return result;
   954 }
   956 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   957 bool GenCollectedHeap::is_in(const void* p) const {
   958   #ifndef ASSERT
   959   guarantee(VerifyBeforeGC   ||
   960             VerifyDuringGC   ||
   961             VerifyBeforeExit ||
   962             PrintAssembly    ||
   963             tty->count() != 0 ||   // already printing
   964             VerifyAfterGC    ||
   965     VMError::fatal_error_in_progress(), "too expensive");
   967   #endif
   968   // This might be sped up with a cache of the last generation that
   969   // answered yes.
   970   for (int i = 0; i < _n_gens; i++) {
   971     if (_gens[i]->is_in(p)) return true;
   972   }
   973   if (_perm_gen->as_gen()->is_in(p)) return true;
   974   // Otherwise...
   975   return false;
   976 }
   978 #ifdef ASSERT
   979 // Don't implement this by using is_in_young().  This method is used
   980 // in some cases to check that is_in_young() is correct.
   981 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   982   assert(is_in_reserved(p) || p == NULL,
   983     "Does not work if address is non-null and outside of the heap");
   984   // The order of the generations is young (low addr), old, perm (high addr)
   985   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   986 }
   987 #endif
   989 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   990   for (int i = 0; i < _n_gens; i++) {
   991     _gens[i]->oop_iterate(cl);
   992   }
   993 }
   995 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
   996   for (int i = 0; i < _n_gens; i++) {
   997     _gens[i]->oop_iterate(mr, cl);
   998   }
   999 }
  1001 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
  1002   for (int i = 0; i < _n_gens; i++) {
  1003     _gens[i]->object_iterate(cl);
  1005   perm_gen()->object_iterate(cl);
  1008 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
  1009   for (int i = 0; i < _n_gens; i++) {
  1010     _gens[i]->safe_object_iterate(cl);
  1012   perm_gen()->safe_object_iterate(cl);
  1015 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1016   for (int i = 0; i < _n_gens; i++) {
  1017     _gens[i]->object_iterate_since_last_GC(cl);
  1021 Space* GenCollectedHeap::space_containing(const void* addr) const {
  1022   for (int i = 0; i < _n_gens; i++) {
  1023     Space* res = _gens[i]->space_containing(addr);
  1024     if (res != NULL) return res;
  1026   Space* res = perm_gen()->space_containing(addr);
  1027   if (res != NULL) return res;
  1028   // Otherwise...
  1029   assert(false, "Could not find containing space");
  1030   return NULL;
  1034 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  1035   assert(is_in_reserved(addr), "block_start of address outside of heap");
  1036   for (int i = 0; i < _n_gens; i++) {
  1037     if (_gens[i]->is_in_reserved(addr)) {
  1038       assert(_gens[i]->is_in(addr),
  1039              "addr should be in allocated part of generation");
  1040       return _gens[i]->block_start(addr);
  1043   if (perm_gen()->is_in_reserved(addr)) {
  1044     assert(perm_gen()->is_in(addr),
  1045            "addr should be in allocated part of perm gen");
  1046     return perm_gen()->block_start(addr);
  1048   assert(false, "Some generation should contain the address");
  1049   return NULL;
  1052 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  1053   assert(is_in_reserved(addr), "block_size of address outside of heap");
  1054   for (int i = 0; i < _n_gens; i++) {
  1055     if (_gens[i]->is_in_reserved(addr)) {
  1056       assert(_gens[i]->is_in(addr),
  1057              "addr should be in allocated part of generation");
  1058       return _gens[i]->block_size(addr);
  1061   if (perm_gen()->is_in_reserved(addr)) {
  1062     assert(perm_gen()->is_in(addr),
  1063            "addr should be in allocated part of perm gen");
  1064     return perm_gen()->block_size(addr);
  1066   assert(false, "Some generation should contain the address");
  1067   return 0;
  1070 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1071   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1072   assert(block_start(addr) == addr, "addr must be a block start");
  1073   for (int i = 0; i < _n_gens; i++) {
  1074     if (_gens[i]->is_in_reserved(addr)) {
  1075       return _gens[i]->block_is_obj(addr);
  1078   if (perm_gen()->is_in_reserved(addr)) {
  1079     return perm_gen()->block_is_obj(addr);
  1081   assert(false, "Some generation should contain the address");
  1082   return false;
  1085 bool GenCollectedHeap::supports_tlab_allocation() const {
  1086   for (int i = 0; i < _n_gens; i += 1) {
  1087     if (_gens[i]->supports_tlab_allocation()) {
  1088       return true;
  1091   return false;
  1094 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1095   size_t result = 0;
  1096   for (int i = 0; i < _n_gens; i += 1) {
  1097     if (_gens[i]->supports_tlab_allocation()) {
  1098       result += _gens[i]->tlab_capacity();
  1101   return result;
  1104 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1105   size_t result = 0;
  1106   for (int i = 0; i < _n_gens; i += 1) {
  1107     if (_gens[i]->supports_tlab_allocation()) {
  1108       result += _gens[i]->unsafe_max_tlab_alloc();
  1111   return result;
  1114 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1115   bool gc_overhead_limit_was_exceeded;
  1116   return collector_policy()->mem_allocate_work(size /* size */,
  1117                                                true /* is_tlab */,
  1118                                                &gc_overhead_limit_was_exceeded);
  1121 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1122 // from the list headed by "*prev_ptr".
  1123 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1124   bool first = true;
  1125   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1126   ScratchBlock **smallest_ptr, *smallest;
  1127   ScratchBlock  *cur = *prev_ptr;
  1128   while (cur) {
  1129     assert(*prev_ptr == cur, "just checking");
  1130     if (first || cur->num_words < min_size) {
  1131       smallest_ptr = prev_ptr;
  1132       smallest     = cur;
  1133       min_size     = smallest->num_words;
  1134       first        = false;
  1136     prev_ptr = &cur->next;
  1137     cur     =  cur->next;
  1139   smallest      = *smallest_ptr;
  1140   *smallest_ptr = smallest->next;
  1141   return smallest;
  1144 // Sort the scratch block list headed by res into decreasing size order,
  1145 // and set "res" to the result.
  1146 static void sort_scratch_list(ScratchBlock*& list) {
  1147   ScratchBlock* sorted = NULL;
  1148   ScratchBlock* unsorted = list;
  1149   while (unsorted) {
  1150     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1151     smallest->next  = sorted;
  1152     sorted          = smallest;
  1154   list = sorted;
  1157 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1158                                                size_t max_alloc_words) {
  1159   ScratchBlock* res = NULL;
  1160   for (int i = 0; i < _n_gens; i++) {
  1161     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1163   sort_scratch_list(res);
  1164   return res;
  1167 void GenCollectedHeap::release_scratch() {
  1168   for (int i = 0; i < _n_gens; i++) {
  1169     _gens[i]->reset_scratch();
  1173 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1174   void do_generation(Generation* gen) {
  1175     gen->prepare_for_verify();
  1177 };
  1179 void GenCollectedHeap::prepare_for_verify() {
  1180   ensure_parsability(false);        // no need to retire TLABs
  1181   GenPrepareForVerifyClosure blk;
  1182   generation_iterate(&blk, false);
  1183   perm_gen()->prepare_for_verify();
  1187 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1188                                           bool old_to_young) {
  1189   if (old_to_young) {
  1190     for (int i = _n_gens-1; i >= 0; i--) {
  1191       cl->do_generation(_gens[i]);
  1193   } else {
  1194     for (int i = 0; i < _n_gens; i++) {
  1195       cl->do_generation(_gens[i]);
  1200 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1201   for (int i = 0; i < _n_gens; i++) {
  1202     _gens[i]->space_iterate(cl, true);
  1204   perm_gen()->space_iterate(cl, true);
  1207 bool GenCollectedHeap::is_maximal_no_gc() const {
  1208   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1209     if (!_gens[i]->is_maximal_no_gc()) {
  1210       return false;
  1213   return true;
  1216 void GenCollectedHeap::save_marks() {
  1217   for (int i = 0; i < _n_gens; i++) {
  1218     _gens[i]->save_marks();
  1220   perm_gen()->save_marks();
  1223 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1224   for (int i = 0; i <= collectedGen; i++) {
  1225     _gens[i]->compute_new_size();
  1229 GenCollectedHeap* GenCollectedHeap::heap() {
  1230   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1231   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1232   return _gch;
  1236 void GenCollectedHeap::prepare_for_compaction() {
  1237   Generation* scanning_gen = _gens[_n_gens-1];
  1238   // Start by compacting into same gen.
  1239   CompactPoint cp(scanning_gen, NULL, NULL);
  1240   while (scanning_gen != NULL) {
  1241     scanning_gen->prepare_for_compaction(&cp);
  1242     scanning_gen = prev_gen(scanning_gen);
  1246 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1247   return _gens[level]->gc_stats();
  1250 void GenCollectedHeap::verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */) {
  1251   if (!silent) {
  1252     gclog_or_tty->print("permgen ");
  1254   perm_gen()->verify(allow_dirty);
  1255   for (int i = _n_gens-1; i >= 0; i--) {
  1256     Generation* g = _gens[i];
  1257     if (!silent) {
  1258       gclog_or_tty->print(g->name());
  1259       gclog_or_tty->print(" ");
  1261     g->verify(allow_dirty);
  1263   if (!silent) {
  1264     gclog_or_tty->print("remset ");
  1266   rem_set()->verify();
  1269 void GenCollectedHeap::print_on(outputStream* st) const {
  1270   for (int i = 0; i < _n_gens; i++) {
  1271     _gens[i]->print_on(st);
  1273   perm_gen()->print_on(st);
  1276 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1277   if (workers() != NULL) {
  1278     workers()->threads_do(tc);
  1280 #ifndef SERIALGC
  1281   if (UseConcMarkSweepGC) {
  1282     ConcurrentMarkSweepThread::threads_do(tc);
  1284 #endif // SERIALGC
  1287 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1288 #ifndef SERIALGC
  1289   if (UseParNewGC) {
  1290     workers()->print_worker_threads_on(st);
  1292   if (UseConcMarkSweepGC) {
  1293     ConcurrentMarkSweepThread::print_all_on(st);
  1295 #endif // SERIALGC
  1298 void GenCollectedHeap::print_tracing_info() const {
  1299   if (TraceGen0Time) {
  1300     get_gen(0)->print_summary_info();
  1302   if (TraceGen1Time) {
  1303     get_gen(1)->print_summary_info();
  1307 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1308   if (PrintGCDetails && Verbose) {
  1309     gclog_or_tty->print(" "  SIZE_FORMAT
  1310                         "->" SIZE_FORMAT
  1311                         "("  SIZE_FORMAT ")",
  1312                         prev_used, used(), capacity());
  1313   } else {
  1314     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1315                         "->" SIZE_FORMAT "K"
  1316                         "("  SIZE_FORMAT "K)",
  1317                         prev_used / K, used() / K, capacity() / K);
  1321 //New method to print perm gen info with PrintGCDetails flag
  1322 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1323   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1324   perm_gen()->print_heap_change(perm_prev_used);
  1325   gclog_or_tty->print("]");
  1328 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1329  private:
  1330   bool _full;
  1331  public:
  1332   void do_generation(Generation* gen) {
  1333     gen->gc_prologue(_full);
  1335   GenGCPrologueClosure(bool full) : _full(full) {};
  1336 };
  1338 void GenCollectedHeap::gc_prologue(bool full) {
  1339   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1341   always_do_update_barrier = false;
  1342   // Fill TLAB's and such
  1343   CollectedHeap::accumulate_statistics_all_tlabs();
  1344   ensure_parsability(true);   // retire TLABs
  1346   // Call allocation profiler
  1347   AllocationProfiler::iterate_since_last_gc();
  1348   // Walk generations
  1349   GenGCPrologueClosure blk(full);
  1350   generation_iterate(&blk, false);  // not old-to-young.
  1351   perm_gen()->gc_prologue(full);
  1352 };
  1354 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1355  private:
  1356   bool _full;
  1357  public:
  1358   void do_generation(Generation* gen) {
  1359     gen->gc_epilogue(_full);
  1361   GenGCEpilogueClosure(bool full) : _full(full) {};
  1362 };
  1364 void GenCollectedHeap::gc_epilogue(bool full) {
  1365 #ifdef COMPILER2
  1366   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1367   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1368   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1369 #endif /* COMPILER2 */
  1371   resize_all_tlabs();
  1373   GenGCEpilogueClosure blk(full);
  1374   generation_iterate(&blk, false);  // not old-to-young.
  1375   perm_gen()->gc_epilogue(full);
  1377   if (!CleanChunkPoolAsync) {
  1378     Chunk::clean_chunk_pool();
  1381   always_do_update_barrier = UseConcMarkSweepGC;
  1382 };
  1384 #ifndef PRODUCT
  1385 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1386  private:
  1387  public:
  1388   void do_generation(Generation* gen) {
  1389     gen->record_spaces_top();
  1391 };
  1393 void GenCollectedHeap::record_gen_tops_before_GC() {
  1394   if (ZapUnusedHeapArea) {
  1395     GenGCSaveTopsBeforeGCClosure blk;
  1396     generation_iterate(&blk, false);  // not old-to-young.
  1397     perm_gen()->record_spaces_top();
  1400 #endif  // not PRODUCT
  1402 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1403  public:
  1404   void do_generation(Generation* gen) {
  1405     gen->ensure_parsability();
  1407 };
  1409 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1410   CollectedHeap::ensure_parsability(retire_tlabs);
  1411   GenEnsureParsabilityClosure ep_cl;
  1412   generation_iterate(&ep_cl, false);
  1413   perm_gen()->ensure_parsability();
  1416 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1417                                               oop obj,
  1418                                               size_t obj_size) {
  1419   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1420   HeapWord* result = NULL;
  1422   // First give each higher generation a chance to allocate the promoted object.
  1423   Generation* allocator = next_gen(gen);
  1424   if (allocator != NULL) {
  1425     do {
  1426       result = allocator->allocate(obj_size, false);
  1427     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1430   if (result == NULL) {
  1431     // Then give gen and higher generations a chance to expand and allocate the
  1432     // object.
  1433     do {
  1434       result = gen->expand_and_allocate(obj_size, false);
  1435     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1438   if (result != NULL) {
  1439     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1441   return oop(result);
  1444 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1445   jlong _time;   // in ms
  1446   jlong _now;    // in ms
  1448  public:
  1449   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1451   jlong time() { return _time; }
  1453   void do_generation(Generation* gen) {
  1454     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1456 };
  1458 jlong GenCollectedHeap::millis_since_last_gc() {
  1459   // We need a monotonically non-deccreasing time in ms but
  1460   // os::javaTimeMillis() does not guarantee monotonicity.
  1461   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1462   GenTimeOfLastGCClosure tolgc_cl(now);
  1463   // iterate over generations getting the oldest
  1464   // time that a generation was collected
  1465   generation_iterate(&tolgc_cl, false);
  1466   tolgc_cl.do_generation(perm_gen());
  1468   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1469   // provided the underlying platform provides such a time source
  1470   // (and it is bug free). So we still have to guard against getting
  1471   // back a time later than 'now'.
  1472   jlong retVal = now - tolgc_cl.time();
  1473   if (retVal < 0) {
  1474     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
  1475     return 0;
  1477   return retVal;

mercurial