src/share/vm/opto/node.hpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4115
e626685e9f6c
child 4159
8e47bac5643a
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class Block_Array;
    46 class BoolNode;
    47 class BoxLockNode;
    48 class CMoveNode;
    49 class CallDynamicJavaNode;
    50 class CallJavaNode;
    51 class CallLeafNode;
    52 class CallNode;
    53 class CallRuntimeNode;
    54 class CallStaticJavaNode;
    55 class CatchNode;
    56 class CatchProjNode;
    57 class CheckCastPPNode;
    58 class ClearArrayNode;
    59 class CmpNode;
    60 class CodeBuffer;
    61 class ConstraintCastNode;
    62 class ConNode;
    63 class CountedLoopNode;
    64 class CountedLoopEndNode;
    65 class DecodeNNode;
    66 class EncodePNode;
    67 class FastLockNode;
    68 class FastUnlockNode;
    69 class IfNode;
    70 class IfFalseNode;
    71 class IfTrueNode;
    72 class InitializeNode;
    73 class JVMState;
    74 class JumpNode;
    75 class JumpProjNode;
    76 class LoadNode;
    77 class LoadStoreNode;
    78 class LockNode;
    79 class LoopNode;
    80 class MachBranchNode;
    81 class MachCallDynamicJavaNode;
    82 class MachCallJavaNode;
    83 class MachCallLeafNode;
    84 class MachCallNode;
    85 class MachCallRuntimeNode;
    86 class MachCallStaticJavaNode;
    87 class MachConstantBaseNode;
    88 class MachConstantNode;
    89 class MachGotoNode;
    90 class MachIfNode;
    91 class MachNode;
    92 class MachNullCheckNode;
    93 class MachProjNode;
    94 class MachReturnNode;
    95 class MachSafePointNode;
    96 class MachSpillCopyNode;
    97 class MachTempNode;
    98 class Matcher;
    99 class MemBarNode;
   100 class MemBarStoreStoreNode;
   101 class MemNode;
   102 class MergeMemNode;
   103 class MulNode;
   104 class MultiNode;
   105 class MultiBranchNode;
   106 class NeverBranchNode;
   107 class Node;
   108 class Node_Array;
   109 class Node_List;
   110 class Node_Stack;
   111 class NullCheckNode;
   112 class OopMap;
   113 class ParmNode;
   114 class PCTableNode;
   115 class PhaseCCP;
   116 class PhaseGVN;
   117 class PhaseIterGVN;
   118 class PhaseRegAlloc;
   119 class PhaseTransform;
   120 class PhaseValues;
   121 class PhiNode;
   122 class Pipeline;
   123 class ProjNode;
   124 class RegMask;
   125 class RegionNode;
   126 class RootNode;
   127 class SafePointNode;
   128 class SafePointScalarObjectNode;
   129 class StartNode;
   130 class State;
   131 class StoreNode;
   132 class SubNode;
   133 class Type;
   134 class TypeNode;
   135 class UnlockNode;
   136 class VectorNode;
   137 class LoadVectorNode;
   138 class StoreVectorNode;
   139 class VectorSet;
   140 typedef void (*NFunc)(Node&,void*);
   141 extern "C" {
   142   typedef int (*C_sort_func_t)(const void *, const void *);
   143 }
   145 // The type of all node counts and indexes.
   146 // It must hold at least 16 bits, but must also be fast to load and store.
   147 // This type, if less than 32 bits, could limit the number of possible nodes.
   148 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   149 typedef unsigned int node_idx_t;
   152 #ifndef OPTO_DU_ITERATOR_ASSERT
   153 #ifdef ASSERT
   154 #define OPTO_DU_ITERATOR_ASSERT 1
   155 #else
   156 #define OPTO_DU_ITERATOR_ASSERT 0
   157 #endif
   158 #endif //OPTO_DU_ITERATOR_ASSERT
   160 #if OPTO_DU_ITERATOR_ASSERT
   161 class DUIterator;
   162 class DUIterator_Fast;
   163 class DUIterator_Last;
   164 #else
   165 typedef uint   DUIterator;
   166 typedef Node** DUIterator_Fast;
   167 typedef Node** DUIterator_Last;
   168 #endif
   170 // Node Sentinel
   171 #define NodeSentinel (Node*)-1
   173 // Unknown count frequency
   174 #define COUNT_UNKNOWN (-1.0f)
   176 //------------------------------Node-------------------------------------------
   177 // Nodes define actions in the program.  They create values, which have types.
   178 // They are both vertices in a directed graph and program primitives.  Nodes
   179 // are labeled; the label is the "opcode", the primitive function in the lambda
   180 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   181 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   182 // the Node's function.  These inputs also define a Type equation for the Node.
   183 // Solving these Type equations amounts to doing dataflow analysis.
   184 // Control and data are uniformly represented in the graph.  Finally, Nodes
   185 // have a unique dense integer index which is used to index into side arrays
   186 // whenever I have phase-specific information.
   188 class Node {
   189   friend class VMStructs;
   191   // Lots of restrictions on cloning Nodes
   192   Node(const Node&);            // not defined; linker error to use these
   193   Node &operator=(const Node &rhs);
   195 public:
   196   friend class Compile;
   197   #if OPTO_DU_ITERATOR_ASSERT
   198   friend class DUIterator_Common;
   199   friend class DUIterator;
   200   friend class DUIterator_Fast;
   201   friend class DUIterator_Last;
   202   #endif
   204   // Because Nodes come and go, I define an Arena of Node structures to pull
   205   // from.  This should allow fast access to node creation & deletion.  This
   206   // field is a local cache of a value defined in some "program fragment" for
   207   // which these Nodes are just a part of.
   209   // New Operator that takes a Compile pointer, this will eventually
   210   // be the "new" New operator.
   211   inline void* operator new( size_t x, Compile* C) {
   212     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   213 #ifdef ASSERT
   214     n->_in = (Node**)n; // magic cookie for assertion check
   215 #endif
   216     n->_out = (Node**)C;
   217     return (void*)n;
   218   }
   220   // Delete is a NOP
   221   void operator delete( void *ptr ) {}
   222   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   223   void destruct();
   225   // Create a new Node.  Required is the number is of inputs required for
   226   // semantic correctness.
   227   Node( uint required );
   229   // Create a new Node with given input edges.
   230   // This version requires use of the "edge-count" new.
   231   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   232   Node( Node *n0 );
   233   Node( Node *n0, Node *n1 );
   234   Node( Node *n0, Node *n1, Node *n2 );
   235   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   236   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   237   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   238   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   239             Node *n4, Node *n5, Node *n6 );
   241   // Clone an inherited Node given only the base Node type.
   242   Node* clone() const;
   244   // Clone a Node, immediately supplying one or two new edges.
   245   // The first and second arguments, if non-null, replace in(1) and in(2),
   246   // respectively.
   247   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   248     Node* nn = clone();
   249     if (in1 != NULL)  nn->set_req(1, in1);
   250     if (in2 != NULL)  nn->set_req(2, in2);
   251     return nn;
   252   }
   254 private:
   255   // Shared setup for the above constructors.
   256   // Handles all interactions with Compile::current.
   257   // Puts initial values in all Node fields except _idx.
   258   // Returns the initial value for _idx, which cannot
   259   // be initialized by assignment.
   260   inline int Init(int req, Compile* C);
   262 //----------------- input edge handling
   263 protected:
   264   friend class PhaseCFG;        // Access to address of _in array elements
   265   Node **_in;                   // Array of use-def references to Nodes
   266   Node **_out;                  // Array of def-use references to Nodes
   268   // Input edges are split into two categories.  Required edges are required
   269   // for semantic correctness; order is important and NULLs are allowed.
   270   // Precedence edges are used to help determine execution order and are
   271   // added, e.g., for scheduling purposes.  They are unordered and not
   272   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   273   // are required, from _cnt to _max-1 are precedence edges.
   274   node_idx_t _cnt;              // Total number of required Node inputs.
   276   node_idx_t _max;              // Actual length of input array.
   278   // Output edges are an unordered list of def-use edges which exactly
   279   // correspond to required input edges which point from other nodes
   280   // to this one.  Thus the count of the output edges is the number of
   281   // users of this node.
   282   node_idx_t _outcnt;           // Total number of Node outputs.
   284   node_idx_t _outmax;           // Actual length of output array.
   286   // Grow the actual input array to the next larger power-of-2 bigger than len.
   287   void grow( uint len );
   288   // Grow the output array to the next larger power-of-2 bigger than len.
   289   void out_grow( uint len );
   291  public:
   292   // Each Node is assigned a unique small/dense number.  This number is used
   293   // to index into auxiliary arrays of data and bitvectors.
   294   // It is declared const to defend against inadvertant assignment,
   295   // since it is used by clients as a naked field.
   296   const node_idx_t _idx;
   298   // Get the (read-only) number of input edges
   299   uint req() const { return _cnt; }
   300   uint len() const { return _max; }
   301   // Get the (read-only) number of output edges
   302   uint outcnt() const { return _outcnt; }
   304 #if OPTO_DU_ITERATOR_ASSERT
   305   // Iterate over the out-edges of this node.  Deletions are illegal.
   306   inline DUIterator outs() const;
   307   // Use this when the out array might have changed to suppress asserts.
   308   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   309   // Does the node have an out at this position?  (Used for iteration.)
   310   inline bool has_out(DUIterator& i) const;
   311   inline Node*    out(DUIterator& i) const;
   312   // Iterate over the out-edges of this node.  All changes are illegal.
   313   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   314   inline Node*    fast_out(DUIterator_Fast& i) const;
   315   // Iterate over the out-edges of this node, deleting one at a time.
   316   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   317   inline Node*    last_out(DUIterator_Last& i) const;
   318   // The inline bodies of all these methods are after the iterator definitions.
   319 #else
   320   // Iterate over the out-edges of this node.  Deletions are illegal.
   321   // This iteration uses integral indexes, to decouple from array reallocations.
   322   DUIterator outs() const  { return 0; }
   323   // Use this when the out array might have changed to suppress asserts.
   324   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   326   // Reference to the i'th output Node.  Error if out of bounds.
   327   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   328   // Does the node have an out at this position?  (Used for iteration.)
   329   bool has_out(DUIterator i) const { return i < _outcnt; }
   331   // Iterate over the out-edges of this node.  All changes are illegal.
   332   // This iteration uses a pointer internal to the out array.
   333   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   334     Node** out = _out;
   335     // Assign a limit pointer to the reference argument:
   336     max = out + (ptrdiff_t)_outcnt;
   337     // Return the base pointer:
   338     return out;
   339   }
   340   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   341   // Iterate over the out-edges of this node, deleting one at a time.
   342   // This iteration uses a pointer internal to the out array.
   343   DUIterator_Last last_outs(DUIterator_Last& min) const {
   344     Node** out = _out;
   345     // Assign a limit pointer to the reference argument:
   346     min = out;
   347     // Return the pointer to the start of the iteration:
   348     return out + (ptrdiff_t)_outcnt - 1;
   349   }
   350   Node*    last_out(DUIterator_Last i) const  { return *i; }
   351 #endif
   353   // Reference to the i'th input Node.  Error if out of bounds.
   354   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   355   // Reference to the i'th output Node.  Error if out of bounds.
   356   // Use this accessor sparingly.  We are going trying to use iterators instead.
   357   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   358   // Return the unique out edge.
   359   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   360   // Delete out edge at position 'i' by moving last out edge to position 'i'
   361   void  raw_del_out(uint i) {
   362     assert(i < _outcnt,"oob");
   363     assert(_outcnt > 0,"oob");
   364     #if OPTO_DU_ITERATOR_ASSERT
   365     // Record that a change happened here.
   366     debug_only(_last_del = _out[i]; ++_del_tick);
   367     #endif
   368     _out[i] = _out[--_outcnt];
   369     // Smash the old edge so it can't be used accidentally.
   370     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   371   }
   373 #ifdef ASSERT
   374   bool is_dead() const;
   375 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   376 #endif
   378   // Set a required input edge, also updates corresponding output edge
   379   void add_req( Node *n ); // Append a NEW required input
   380   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   381   void del_req( uint idx ); // Delete required edge & compact
   382   void ins_req( uint i, Node *n ); // Insert a NEW required input
   383   void set_req( uint i, Node *n ) {
   384     assert( is_not_dead(n), "can not use dead node");
   385     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   386     assert( !VerifyHashTableKeys || _hash_lock == 0,
   387             "remove node from hash table before modifying it");
   388     Node** p = &_in[i];    // cache this._in, across the del_out call
   389     if (*p != NULL)  (*p)->del_out((Node *)this);
   390     (*p) = n;
   391     if (n != NULL)      n->add_out((Node *)this);
   392   }
   393   // Light version of set_req() to init inputs after node creation.
   394   void init_req( uint i, Node *n ) {
   395     assert( i == 0 && this == n ||
   396             is_not_dead(n), "can not use dead node");
   397     assert( i < _cnt, "oob");
   398     assert( !VerifyHashTableKeys || _hash_lock == 0,
   399             "remove node from hash table before modifying it");
   400     assert( _in[i] == NULL, "sanity");
   401     _in[i] = n;
   402     if (n != NULL)      n->add_out((Node *)this);
   403   }
   404   // Find first occurrence of n among my edges:
   405   int find_edge(Node* n);
   406   int replace_edge(Node* old, Node* neww);
   407   // NULL out all inputs to eliminate incoming Def-Use edges.
   408   // Return the number of edges between 'n' and 'this'
   409   int  disconnect_inputs(Node *n);
   411   // Quickly, return true if and only if I am Compile::current()->top().
   412   bool is_top() const {
   413     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   414     return (_out == NULL);
   415   }
   416   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   417   void setup_is_top();
   419   // Strip away casting.  (It is depth-limited.)
   420   Node* uncast() const;
   421   // Return whether two Nodes are equivalent, after stripping casting.
   422   bool eqv_uncast(const Node* n) const {
   423     return (this->uncast() == n->uncast());
   424   }
   426 private:
   427   static Node* uncast_helper(const Node* n);
   429   // Add an output edge to the end of the list
   430   void add_out( Node *n ) {
   431     if (is_top())  return;
   432     if( _outcnt == _outmax ) out_grow(_outcnt);
   433     _out[_outcnt++] = n;
   434   }
   435   // Delete an output edge
   436   void del_out( Node *n ) {
   437     if (is_top())  return;
   438     Node** outp = &_out[_outcnt];
   439     // Find and remove n
   440     do {
   441       assert(outp > _out, "Missing Def-Use edge");
   442     } while (*--outp != n);
   443     *outp = _out[--_outcnt];
   444     // Smash the old edge so it can't be used accidentally.
   445     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   446     // Record that a change happened here.
   447     #if OPTO_DU_ITERATOR_ASSERT
   448     debug_only(_last_del = n; ++_del_tick);
   449     #endif
   450   }
   452 public:
   453   // Globally replace this node by a given new node, updating all uses.
   454   void replace_by(Node* new_node);
   455   // Globally replace this node by a given new node, updating all uses
   456   // and cutting input edges of old node.
   457   void subsume_by(Node* new_node) {
   458     replace_by(new_node);
   459     disconnect_inputs(NULL);
   460   }
   461   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   462   // Find the one non-null required input.  RegionNode only
   463   Node *nonnull_req() const;
   464   // Add or remove precedence edges
   465   void add_prec( Node *n );
   466   void rm_prec( uint i );
   467   void set_prec( uint i, Node *n ) {
   468     assert( is_not_dead(n), "can not use dead node");
   469     assert( i >= _cnt, "not a precedence edge");
   470     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   471     _in[i] = n;
   472     if (n != NULL) n->add_out((Node *)this);
   473   }
   474   // Set this node's index, used by cisc_version to replace current node
   475   void set_idx(uint new_idx) {
   476     const node_idx_t* ref = &_idx;
   477     *(node_idx_t*)ref = new_idx;
   478   }
   479   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   480   void swap_edges(uint i1, uint i2) {
   481     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   482     // Def-Use info is unchanged
   483     Node* n1 = in(i1);
   484     Node* n2 = in(i2);
   485     _in[i1] = n2;
   486     _in[i2] = n1;
   487     // If this node is in the hash table, make sure it doesn't need a rehash.
   488     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   489   }
   491   // Iterators over input Nodes for a Node X are written as:
   492   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   493   // NOTE: Required edges can contain embedded NULL pointers.
   495 //----------------- Other Node Properties
   497   // Generate class id for some ideal nodes to avoid virtual query
   498   // methods is_<Node>().
   499   // Class id is the set of bits corresponded to the node class and all its
   500   // super classes so that queries for super classes are also valid.
   501   // Subclasses of the same super class have different assigned bit
   502   // (the third parameter in the macro DEFINE_CLASS_ID).
   503   // Classes with deeper hierarchy are declared first.
   504   // Classes with the same hierarchy depth are sorted by usage frequency.
   505   //
   506   // The query method masks the bits to cut off bits of subclasses
   507   // and then compare the result with the class id
   508   // (see the macro DEFINE_CLASS_QUERY below).
   509   //
   510   //  Class_MachCall=30, ClassMask_MachCall=31
   511   // 12               8               4               0
   512   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   513   //                                  |   |   |   |
   514   //                                  |   |   |   Bit_Mach=2
   515   //                                  |   |   Bit_MachReturn=4
   516   //                                  |   Bit_MachSafePoint=8
   517   //                                  Bit_MachCall=16
   518   //
   519   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   520   // 12               8               4               0
   521   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   522   //                              |   |   |
   523   //                              |   |   Bit_Region=8
   524   //                              |   Bit_Loop=16
   525   //                              Bit_CountedLoop=32
   527   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   528   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   529   Class_##cl = Class_##supcl + Bit_##cl , \
   530   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   532   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   533   // so that it's values fits into 16 bits.
   534   enum NodeClasses {
   535     Bit_Node   = 0x0000,
   536     Class_Node = 0x0000,
   537     ClassMask_Node = 0xFFFF,
   539     DEFINE_CLASS_ID(Multi, Node, 0)
   540       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   541         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   542           DEFINE_CLASS_ID(CallJava,         Call, 0)
   543             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   544             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   545           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   546             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   547           DEFINE_CLASS_ID(Allocate,         Call, 2)
   548             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   549           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   550             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   551             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   552       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   553         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   554           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   555           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   556         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   557           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   558         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   559       DEFINE_CLASS_ID(Start,       Multi, 2)
   560       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   561         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   562         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   564     DEFINE_CLASS_ID(Mach,  Node, 1)
   565       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   566         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   567           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   568             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   569               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   570               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   571             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   572               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   573       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   574         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   575         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   576         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   577       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   578       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   579       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   580       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   582     DEFINE_CLASS_ID(Type,  Node, 2)
   583       DEFINE_CLASS_ID(Phi,   Type, 0)
   584       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   585       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   586       DEFINE_CLASS_ID(CMove, Type, 3)
   587       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   588       DEFINE_CLASS_ID(DecodeN, Type, 5)
   589       DEFINE_CLASS_ID(EncodeP, Type, 6)
   591     DEFINE_CLASS_ID(Proj,  Node, 3)
   592       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   593       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   594       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   595       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   596       DEFINE_CLASS_ID(Parm,      Proj, 4)
   597       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   599     DEFINE_CLASS_ID(Mem,   Node, 4)
   600       DEFINE_CLASS_ID(Load,  Mem, 0)
   601         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   602       DEFINE_CLASS_ID(Store, Mem, 1)
   603         DEFINE_CLASS_ID(StoreVector, Store, 0)
   604       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   606     DEFINE_CLASS_ID(Region, Node, 5)
   607       DEFINE_CLASS_ID(Loop, Region, 0)
   608         DEFINE_CLASS_ID(Root,        Loop, 0)
   609         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   611     DEFINE_CLASS_ID(Sub,   Node, 6)
   612       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   613         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   614         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   616     DEFINE_CLASS_ID(MergeMem, Node, 7)
   617     DEFINE_CLASS_ID(Bool,     Node, 8)
   618     DEFINE_CLASS_ID(AddP,     Node, 9)
   619     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   620     DEFINE_CLASS_ID(Add,      Node, 11)
   621     DEFINE_CLASS_ID(Mul,      Node, 12)
   622     DEFINE_CLASS_ID(Vector,   Node, 13)
   623     DEFINE_CLASS_ID(ClearArray, Node, 14)
   625     _max_classes  = ClassMask_ClearArray
   626   };
   627   #undef DEFINE_CLASS_ID
   629   // Flags are sorted by usage frequency.
   630   enum NodeFlags {
   631     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   632     Flag_rematerialize       = Flag_is_Copy << 1,
   633     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   634     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   635     Flag_is_Con              = Flag_is_macro << 1,
   636     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   637     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   638     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   639     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   640     Flag_has_call            = Flag_avoid_back_to_back << 1,
   641     _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
   642   };
   644 private:
   645   jushort _class_id;
   646   jushort _flags;
   648 protected:
   649   // These methods should be called from constructors only.
   650   void init_class_id(jushort c) {
   651     assert(c <= _max_classes, "invalid node class");
   652     _class_id = c; // cast out const
   653   }
   654   void init_flags(jushort fl) {
   655     assert(fl <= _max_flags, "invalid node flag");
   656     _flags |= fl;
   657   }
   658   void clear_flag(jushort fl) {
   659     assert(fl <= _max_flags, "invalid node flag");
   660     _flags &= ~fl;
   661   }
   663 public:
   664   const jushort class_id() const { return _class_id; }
   666   const jushort flags() const { return _flags; }
   668   // Return a dense integer opcode number
   669   virtual int Opcode() const;
   671   // Virtual inherited Node size
   672   virtual uint size_of() const;
   674   // Other interesting Node properties
   675   #define DEFINE_CLASS_QUERY(type)                           \
   676   bool is_##type() const {                                   \
   677     return ((_class_id & ClassMask_##type) == Class_##type); \
   678   }                                                          \
   679   type##Node *as_##type() const {                            \
   680     assert(is_##type(), "invalid node class");               \
   681     return (type##Node*)this;                                \
   682   }                                                          \
   683   type##Node* isa_##type() const {                           \
   684     return (is_##type()) ? as_##type() : NULL;               \
   685   }
   687   DEFINE_CLASS_QUERY(AbstractLock)
   688   DEFINE_CLASS_QUERY(Add)
   689   DEFINE_CLASS_QUERY(AddP)
   690   DEFINE_CLASS_QUERY(Allocate)
   691   DEFINE_CLASS_QUERY(AllocateArray)
   692   DEFINE_CLASS_QUERY(Bool)
   693   DEFINE_CLASS_QUERY(BoxLock)
   694   DEFINE_CLASS_QUERY(Call)
   695   DEFINE_CLASS_QUERY(CallDynamicJava)
   696   DEFINE_CLASS_QUERY(CallJava)
   697   DEFINE_CLASS_QUERY(CallLeaf)
   698   DEFINE_CLASS_QUERY(CallRuntime)
   699   DEFINE_CLASS_QUERY(CallStaticJava)
   700   DEFINE_CLASS_QUERY(Catch)
   701   DEFINE_CLASS_QUERY(CatchProj)
   702   DEFINE_CLASS_QUERY(CheckCastPP)
   703   DEFINE_CLASS_QUERY(ConstraintCast)
   704   DEFINE_CLASS_QUERY(ClearArray)
   705   DEFINE_CLASS_QUERY(CMove)
   706   DEFINE_CLASS_QUERY(Cmp)
   707   DEFINE_CLASS_QUERY(CountedLoop)
   708   DEFINE_CLASS_QUERY(CountedLoopEnd)
   709   DEFINE_CLASS_QUERY(DecodeN)
   710   DEFINE_CLASS_QUERY(EncodeP)
   711   DEFINE_CLASS_QUERY(FastLock)
   712   DEFINE_CLASS_QUERY(FastUnlock)
   713   DEFINE_CLASS_QUERY(If)
   714   DEFINE_CLASS_QUERY(IfFalse)
   715   DEFINE_CLASS_QUERY(IfTrue)
   716   DEFINE_CLASS_QUERY(Initialize)
   717   DEFINE_CLASS_QUERY(Jump)
   718   DEFINE_CLASS_QUERY(JumpProj)
   719   DEFINE_CLASS_QUERY(Load)
   720   DEFINE_CLASS_QUERY(LoadStore)
   721   DEFINE_CLASS_QUERY(Lock)
   722   DEFINE_CLASS_QUERY(Loop)
   723   DEFINE_CLASS_QUERY(Mach)
   724   DEFINE_CLASS_QUERY(MachBranch)
   725   DEFINE_CLASS_QUERY(MachCall)
   726   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   727   DEFINE_CLASS_QUERY(MachCallJava)
   728   DEFINE_CLASS_QUERY(MachCallLeaf)
   729   DEFINE_CLASS_QUERY(MachCallRuntime)
   730   DEFINE_CLASS_QUERY(MachCallStaticJava)
   731   DEFINE_CLASS_QUERY(MachConstantBase)
   732   DEFINE_CLASS_QUERY(MachConstant)
   733   DEFINE_CLASS_QUERY(MachGoto)
   734   DEFINE_CLASS_QUERY(MachIf)
   735   DEFINE_CLASS_QUERY(MachNullCheck)
   736   DEFINE_CLASS_QUERY(MachProj)
   737   DEFINE_CLASS_QUERY(MachReturn)
   738   DEFINE_CLASS_QUERY(MachSafePoint)
   739   DEFINE_CLASS_QUERY(MachSpillCopy)
   740   DEFINE_CLASS_QUERY(MachTemp)
   741   DEFINE_CLASS_QUERY(Mem)
   742   DEFINE_CLASS_QUERY(MemBar)
   743   DEFINE_CLASS_QUERY(MemBarStoreStore)
   744   DEFINE_CLASS_QUERY(MergeMem)
   745   DEFINE_CLASS_QUERY(Mul)
   746   DEFINE_CLASS_QUERY(Multi)
   747   DEFINE_CLASS_QUERY(MultiBranch)
   748   DEFINE_CLASS_QUERY(Parm)
   749   DEFINE_CLASS_QUERY(PCTable)
   750   DEFINE_CLASS_QUERY(Phi)
   751   DEFINE_CLASS_QUERY(Proj)
   752   DEFINE_CLASS_QUERY(Region)
   753   DEFINE_CLASS_QUERY(Root)
   754   DEFINE_CLASS_QUERY(SafePoint)
   755   DEFINE_CLASS_QUERY(SafePointScalarObject)
   756   DEFINE_CLASS_QUERY(Start)
   757   DEFINE_CLASS_QUERY(Store)
   758   DEFINE_CLASS_QUERY(Sub)
   759   DEFINE_CLASS_QUERY(Type)
   760   DEFINE_CLASS_QUERY(Vector)
   761   DEFINE_CLASS_QUERY(LoadVector)
   762   DEFINE_CLASS_QUERY(StoreVector)
   763   DEFINE_CLASS_QUERY(Unlock)
   765   #undef DEFINE_CLASS_QUERY
   767   // duplicate of is_MachSpillCopy()
   768   bool is_SpillCopy () const {
   769     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   770   }
   772   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   773   // The data node which is safe to leave in dead loop during IGVN optimization.
   774   bool is_dead_loop_safe() const {
   775     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   776            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   777             (!is_Proj() || !in(0)->is_Allocate()));
   778   }
   780   // is_Copy() returns copied edge index (0 or 1)
   781   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   783   virtual bool is_CFG() const { return false; }
   785   // If this node is control-dependent on a test, can it be
   786   // rerouted to a dominating equivalent test?  This is usually
   787   // true of non-CFG nodes, but can be false for operations which
   788   // depend for their correct sequencing on more than one test.
   789   // (In that case, hoisting to a dominating test may silently
   790   // skip some other important test.)
   791   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   793   // When building basic blocks, I need to have a notion of block beginning
   794   // Nodes, next block selector Nodes (block enders), and next block
   795   // projections.  These calls need to work on their machine equivalents.  The
   796   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   797   bool is_block_start() const {
   798     if ( is_Region() )
   799       return this == (const Node*)in(0);
   800     else
   801       return is_Start();
   802   }
   804   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   805   // Goto and Return.  This call also returns the block ending Node.
   806   virtual const Node *is_block_proj() const;
   808   // The node is a "macro" node which needs to be expanded before matching
   809   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   811 //----------------- Optimization
   813   // Get the worst-case Type output for this Node.
   814   virtual const class Type *bottom_type() const;
   816   // If we find a better type for a node, try to record it permanently.
   817   // Return true if this node actually changed.
   818   // Be sure to do the hash_delete game in the "rehash" variant.
   819   void raise_bottom_type(const Type* new_type);
   821   // Get the address type with which this node uses and/or defs memory,
   822   // or NULL if none.  The address type is conservatively wide.
   823   // Returns non-null for calls, membars, loads, stores, etc.
   824   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   825   virtual const class TypePtr *adr_type() const { return NULL; }
   827   // Return an existing node which computes the same function as this node.
   828   // The optimistic combined algorithm requires this to return a Node which
   829   // is a small number of steps away (e.g., one of my inputs).
   830   virtual Node *Identity( PhaseTransform *phase );
   832   // Return the set of values this Node can take on at runtime.
   833   virtual const Type *Value( PhaseTransform *phase ) const;
   835   // Return a node which is more "ideal" than the current node.
   836   // The invariants on this call are subtle.  If in doubt, read the
   837   // treatise in node.cpp above the default implemention AND TEST WITH
   838   // +VerifyIterativeGVN!
   839   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   841   // Some nodes have specific Ideal subgraph transformations only if they are
   842   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   843   // for the transformations to happen.
   844   bool has_special_unique_user() const;
   846   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   847   Node* find_exact_control(Node* ctrl);
   849   // Check if 'this' node dominates or equal to 'sub'.
   850   bool dominates(Node* sub, Node_List &nlist);
   852 protected:
   853   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   854 public:
   856   // Idealize graph, using DU info.  Done after constant propagation
   857   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   859   // See if there is valid pipeline info
   860   static  const Pipeline *pipeline_class();
   861   virtual const Pipeline *pipeline() const;
   863   // Compute the latency from the def to this instruction of the ith input node
   864   uint latency(uint i);
   866   // Hash & compare functions, for pessimistic value numbering
   868   // If the hash function returns the special sentinel value NO_HASH,
   869   // the node is guaranteed never to compare equal to any other node.
   870   // If we accidentally generate a hash with value NO_HASH the node
   871   // won't go into the table and we'll lose a little optimization.
   872   enum { NO_HASH = 0 };
   873   virtual uint hash() const;
   874   virtual uint cmp( const Node &n ) const;
   876   // Operation appears to be iteratively computed (such as an induction variable)
   877   // It is possible for this operation to return false for a loop-varying
   878   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   879   bool is_iteratively_computed();
   881   // Determine if a node is Counted loop induction variable.
   882   // The method is defined in loopnode.cpp.
   883   const Node* is_loop_iv() const;
   885   // Return a node with opcode "opc" and same inputs as "this" if one can
   886   // be found; Otherwise return NULL;
   887   Node* find_similar(int opc);
   889   // Return the unique control out if only one. Null if none or more than one.
   890   Node* unique_ctrl_out();
   892 //----------------- Code Generation
   894   // Ideal register class for Matching.  Zero means unmatched instruction
   895   // (these are cloned instead of converted to machine nodes).
   896   virtual uint ideal_reg() const;
   898   static const uint NotAMachineReg;   // must be > max. machine register
   900   // Do we Match on this edge index or not?  Generally false for Control
   901   // and true for everything else.  Weird for calls & returns.
   902   virtual uint match_edge(uint idx) const;
   904   // Register class output is returned in
   905   virtual const RegMask &out_RegMask() const;
   906   // Register class input is expected in
   907   virtual const RegMask &in_RegMask(uint) const;
   908   // Should we clone rather than spill this instruction?
   909   bool rematerialize() const;
   911   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   912   virtual JVMState* jvms() const;
   914   // Print as assembly
   915   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   916   // Emit bytes starting at parameter 'ptr'
   917   // Bump 'ptr' by the number of output bytes
   918   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   919   // Size of instruction in bytes
   920   virtual uint size(PhaseRegAlloc *ra_) const;
   922   // Convenience function to extract an integer constant from a node.
   923   // If it is not an integer constant (either Con, CastII, or Mach),
   924   // return value_if_unknown.
   925   jint find_int_con(jint value_if_unknown) const {
   926     const TypeInt* t = find_int_type();
   927     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   928   }
   929   // Return the constant, knowing it is an integer constant already
   930   jint get_int() const {
   931     const TypeInt* t = find_int_type();
   932     guarantee(t != NULL, "must be con");
   933     return t->get_con();
   934   }
   935   // Here's where the work is done.  Can produce non-constant int types too.
   936   const TypeInt* find_int_type() const;
   938   // Same thing for long (and intptr_t, via type.hpp):
   939   jlong get_long() const {
   940     const TypeLong* t = find_long_type();
   941     guarantee(t != NULL, "must be con");
   942     return t->get_con();
   943   }
   944   jlong find_long_con(jint value_if_unknown) const {
   945     const TypeLong* t = find_long_type();
   946     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   947   }
   948   const TypeLong* find_long_type() const;
   950   // These guys are called by code generated by ADLC:
   951   intptr_t get_ptr() const;
   952   intptr_t get_narrowcon() const;
   953   jdouble getd() const;
   954   jfloat getf() const;
   956   // Nodes which are pinned into basic blocks
   957   virtual bool pinned() const { return false; }
   959   // Nodes which use memory without consuming it, hence need antidependences
   960   // More specifically, needs_anti_dependence_check returns true iff the node
   961   // (a) does a load, and (b) does not perform a store (except perhaps to a
   962   // stack slot or some other unaliased location).
   963   bool needs_anti_dependence_check() const;
   965   // Return which operand this instruction may cisc-spill. In other words,
   966   // return operand position that can convert from reg to memory access
   967   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   968   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   970 //----------------- Graph walking
   971 public:
   972   // Walk and apply member functions recursively.
   973   // Supplied (this) pointer is root.
   974   void walk(NFunc pre, NFunc post, void *env);
   975   static void nop(Node &, void*); // Dummy empty function
   976   static void packregion( Node &n, void* );
   977 private:
   978   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   980 //----------------- Printing, etc
   981 public:
   982 #ifndef PRODUCT
   983   Node* find(int idx) const;         // Search the graph for the given idx.
   984   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   985   void dump() const;                 // Print this node,
   986   void dump(int depth) const;        // Print this node, recursively to depth d
   987   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
   988   virtual void dump_req() const;     // Print required-edge info
   989   virtual void dump_prec() const;    // Print precedence-edge info
   990   virtual void dump_out() const;     // Print the output edge info
   991   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
   992   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
   993   void verify() const;               // Check Def-Use info for my subgraph
   994   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
   996   // This call defines a class-unique string used to identify class instances
   997   virtual const char *Name() const;
   999   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1000   // RegMask Print Functions
  1001   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1002   void dump_out_regmask() { out_RegMask().dump(); }
  1003   static int _in_dump_cnt;
  1004   static bool in_dump() { return _in_dump_cnt > 0; }
  1005   void fast_dump() const {
  1006     tty->print("%4d: %-17s", _idx, Name());
  1007     for (uint i = 0; i < len(); i++)
  1008       if (in(i))
  1009         tty->print(" %4d", in(i)->_idx);
  1010       else
  1011         tty->print(" NULL");
  1012     tty->print("\n");
  1014 #endif
  1015 #ifdef ASSERT
  1016   void verify_construction();
  1017   bool verify_jvms(const JVMState* jvms) const;
  1018   int  _debug_idx;                     // Unique value assigned to every node.
  1019   int   debug_idx() const              { return _debug_idx; }
  1020   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1022   Node* _debug_orig;                   // Original version of this, if any.
  1023   Node*  debug_orig() const            { return _debug_orig; }
  1024   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1026   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1027   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1028   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1030   static void init_NodeProperty();
  1032   #if OPTO_DU_ITERATOR_ASSERT
  1033   const Node* _last_del;               // The last deleted node.
  1034   uint        _del_tick;               // Bumped when a deletion happens..
  1035   #endif
  1036 #endif
  1037 };
  1039 //-----------------------------------------------------------------------------
  1040 // Iterators over DU info, and associated Node functions.
  1042 #if OPTO_DU_ITERATOR_ASSERT
  1044 // Common code for assertion checking on DU iterators.
  1045 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1046 #ifdef ASSERT
  1047  protected:
  1048   bool         _vdui;               // cached value of VerifyDUIterators
  1049   const Node*  _node;               // the node containing the _out array
  1050   uint         _outcnt;             // cached node->_outcnt
  1051   uint         _del_tick;           // cached node->_del_tick
  1052   Node*        _last;               // last value produced by the iterator
  1054   void sample(const Node* node);    // used by c'tor to set up for verifies
  1055   void verify(const Node* node, bool at_end_ok = false);
  1056   void verify_resync();
  1057   void reset(const DUIterator_Common& that);
  1059 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1060   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1061 #else
  1062   #define I_VDUI_ONLY(i,x) { }
  1063 #endif //ASSERT
  1064 };
  1066 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1068 // Default DU iterator.  Allows appends onto the out array.
  1069 // Allows deletion from the out array only at the current point.
  1070 // Usage:
  1071 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1072 //    Node* y = x->out(i);
  1073 //    ...
  1074 //  }
  1075 // Compiles in product mode to a unsigned integer index, which indexes
  1076 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1077 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1078 // before continuing the loop.  You must delete only the last-produced
  1079 // edge.  You must delete only a single copy of the last-produced edge,
  1080 // or else you must delete all copies at once (the first time the edge
  1081 // is produced by the iterator).
  1082 class DUIterator : public DUIterator_Common {
  1083   friend class Node;
  1085   // This is the index which provides the product-mode behavior.
  1086   // Whatever the product-mode version of the system does to the
  1087   // DUI index is done to this index.  All other fields in
  1088   // this class are used only for assertion checking.
  1089   uint         _idx;
  1091   #ifdef ASSERT
  1092   uint         _refresh_tick;    // Records the refresh activity.
  1094   void sample(const Node* node); // Initialize _refresh_tick etc.
  1095   void verify(const Node* node, bool at_end_ok = false);
  1096   void verify_increment();       // Verify an increment operation.
  1097   void verify_resync();          // Verify that we can back up over a deletion.
  1098   void verify_finish();          // Verify that the loop terminated properly.
  1099   void refresh();                // Resample verification info.
  1100   void reset(const DUIterator& that);  // Resample after assignment.
  1101   #endif
  1103   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1104     { _idx = 0;                         debug_only(sample(node)); }
  1106  public:
  1107   // initialize to garbage; clear _vdui to disable asserts
  1108   DUIterator()
  1109     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1111   void operator++(int dummy_to_specify_postfix_op)
  1112     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1114   void operator--()
  1115     { VDUI_ONLY(verify_resync());       --_idx; }
  1117   ~DUIterator()
  1118     { VDUI_ONLY(verify_finish()); }
  1120   void operator=(const DUIterator& that)
  1121     { _idx = that._idx;                 debug_only(reset(that)); }
  1122 };
  1124 DUIterator Node::outs() const
  1125   { return DUIterator(this, 0); }
  1126 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1127   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1128 bool Node::has_out(DUIterator& i) const
  1129   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1130 Node*    Node::out(DUIterator& i) const
  1131   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1134 // Faster DU iterator.  Disallows insertions into the out array.
  1135 // Allows deletion from the out array only at the current point.
  1136 // Usage:
  1137 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1138 //    Node* y = x->fast_out(i);
  1139 //    ...
  1140 //  }
  1141 // Compiles in product mode to raw Node** pointer arithmetic, with
  1142 // no reloading of pointers from the original node x.  If you delete,
  1143 // you must perform "--i; --imax" just before continuing the loop.
  1144 // If you delete multiple copies of the same edge, you must decrement
  1145 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1146 class DUIterator_Fast : public DUIterator_Common {
  1147   friend class Node;
  1148   friend class DUIterator_Last;
  1150   // This is the pointer which provides the product-mode behavior.
  1151   // Whatever the product-mode version of the system does to the
  1152   // DUI pointer is done to this pointer.  All other fields in
  1153   // this class are used only for assertion checking.
  1154   Node**       _outp;
  1156   #ifdef ASSERT
  1157   void verify(const Node* node, bool at_end_ok = false);
  1158   void verify_limit();
  1159   void verify_resync();
  1160   void verify_relimit(uint n);
  1161   void reset(const DUIterator_Fast& that);
  1162   #endif
  1164   // Note:  offset must be signed, since -1 is sometimes passed
  1165   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1166     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1168  public:
  1169   // initialize to garbage; clear _vdui to disable asserts
  1170   DUIterator_Fast()
  1171     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1173   void operator++(int dummy_to_specify_postfix_op)
  1174     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1176   void operator--()
  1177     { VDUI_ONLY(verify_resync());       --_outp; }
  1179   void operator-=(uint n)   // applied to the limit only
  1180     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1182   bool operator<(DUIterator_Fast& limit) {
  1183     I_VDUI_ONLY(*this, this->verify(_node, true));
  1184     I_VDUI_ONLY(limit, limit.verify_limit());
  1185     return _outp < limit._outp;
  1188   void operator=(const DUIterator_Fast& that)
  1189     { _outp = that._outp;               debug_only(reset(that)); }
  1190 };
  1192 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1193   // Assign a limit pointer to the reference argument:
  1194   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1195   // Return the base pointer:
  1196   return DUIterator_Fast(this, 0);
  1198 Node* Node::fast_out(DUIterator_Fast& i) const {
  1199   I_VDUI_ONLY(i, i.verify(this));
  1200   return debug_only(i._last=) *i._outp;
  1204 // Faster DU iterator.  Requires each successive edge to be removed.
  1205 // Does not allow insertion of any edges.
  1206 // Usage:
  1207 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1208 //    Node* y = x->last_out(i);
  1209 //    ...
  1210 //  }
  1211 // Compiles in product mode to raw Node** pointer arithmetic, with
  1212 // no reloading of pointers from the original node x.
  1213 class DUIterator_Last : private DUIterator_Fast {
  1214   friend class Node;
  1216   #ifdef ASSERT
  1217   void verify(const Node* node, bool at_end_ok = false);
  1218   void verify_limit();
  1219   void verify_step(uint num_edges);
  1220   #endif
  1222   // Note:  offset must be signed, since -1 is sometimes passed
  1223   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1224     : DUIterator_Fast(node, offset) { }
  1226   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1227   void operator<(int)                              {} // do not use
  1229  public:
  1230   DUIterator_Last() { }
  1231   // initialize to garbage
  1233   void operator--()
  1234     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1236   void operator-=(uint n)
  1237     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1239   bool operator>=(DUIterator_Last& limit) {
  1240     I_VDUI_ONLY(*this, this->verify(_node, true));
  1241     I_VDUI_ONLY(limit, limit.verify_limit());
  1242     return _outp >= limit._outp;
  1245   void operator=(const DUIterator_Last& that)
  1246     { DUIterator_Fast::operator=(that); }
  1247 };
  1249 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1250   // Assign a limit pointer to the reference argument:
  1251   imin = DUIterator_Last(this, 0);
  1252   // Return the initial pointer:
  1253   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1255 Node* Node::last_out(DUIterator_Last& i) const {
  1256   I_VDUI_ONLY(i, i.verify(this));
  1257   return debug_only(i._last=) *i._outp;
  1260 #endif //OPTO_DU_ITERATOR_ASSERT
  1262 #undef I_VDUI_ONLY
  1263 #undef VDUI_ONLY
  1265 // An Iterator that truly follows the iterator pattern.  Doesn't
  1266 // support deletion but could be made to.
  1267 //
  1268 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1269 //     Node* m = i.get();
  1270 //
  1271 class SimpleDUIterator : public StackObj {
  1272  private:
  1273   Node* node;
  1274   DUIterator_Fast i;
  1275   DUIterator_Fast imax;
  1276  public:
  1277   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1278   bool has_next() { return i < imax; }
  1279   void next() { i++; }
  1280   Node* get() { return node->fast_out(i); }
  1281 };
  1284 //-----------------------------------------------------------------------------
  1285 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1286 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1287 // Note that the constructor just zeros things, and since I use Arena
  1288 // allocation I do not need a destructor to reclaim storage.
  1289 class Node_Array : public ResourceObj {
  1290   friend class VMStructs;
  1291 protected:
  1292   Arena *_a;                    // Arena to allocate in
  1293   uint   _max;
  1294   Node **_nodes;
  1295   void   grow( uint i );        // Grow array node to fit
  1296 public:
  1297   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1298     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1299     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1300       _nodes[i] = NULL;
  1304   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1305   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1306   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1307   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1308   Node **adr() { return _nodes; }
  1309   // Extend the mapping: index i maps to Node *n.
  1310   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1311   void insert( uint i, Node *n );
  1312   void remove( uint i );        // Remove, preserving order
  1313   void sort( C_sort_func_t func);
  1314   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1315   void clear();                 // Set all entries to NULL, keep storage
  1316   uint Size() const { return _max; }
  1317   void dump() const;
  1318 };
  1320 class Node_List : public Node_Array {
  1321   friend class VMStructs;
  1322   uint _cnt;
  1323 public:
  1324   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1325   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1326   bool contains(Node* n) {
  1327     for (uint e = 0; e < size(); e++) {
  1328       if (at(e) == n) return true;
  1330     return false;
  1332   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1333   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1334   void push( Node *b ) { map(_cnt++,b); }
  1335   void yank( Node *n );         // Find and remove
  1336   Node *pop() { return _nodes[--_cnt]; }
  1337   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1338   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1339   uint size() const { return _cnt; }
  1340   void dump() const;
  1341 };
  1343 //------------------------------Unique_Node_List-------------------------------
  1344 class Unique_Node_List : public Node_List {
  1345   friend class VMStructs;
  1346   VectorSet _in_worklist;
  1347   uint _clock_index;            // Index in list where to pop from next
  1348 public:
  1349   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1350   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1352   void remove( Node *n );
  1353   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1354   VectorSet &member_set(){ return _in_worklist; }
  1356   void push( Node *b ) {
  1357     if( !_in_worklist.test_set(b->_idx) )
  1358       Node_List::push(b);
  1360   Node *pop() {
  1361     if( _clock_index >= size() ) _clock_index = 0;
  1362     Node *b = at(_clock_index);
  1363     map( _clock_index, Node_List::pop());
  1364     if (size() != 0) _clock_index++; // Always start from 0
  1365     _in_worklist >>= b->_idx;
  1366     return b;
  1368   Node *remove( uint i ) {
  1369     Node *b = Node_List::at(i);
  1370     _in_worklist >>= b->_idx;
  1371     map(i,Node_List::pop());
  1372     return b;
  1374   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1375   void  clear() {
  1376     _in_worklist.Clear();        // Discards storage but grows automatically
  1377     Node_List::clear();
  1378     _clock_index = 0;
  1381   // Used after parsing to remove useless nodes before Iterative GVN
  1382   void remove_useless_nodes(VectorSet &useful);
  1384 #ifndef PRODUCT
  1385   void print_set() const { _in_worklist.print(); }
  1386 #endif
  1387 };
  1389 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1390 inline void Compile::record_for_igvn(Node* n) {
  1391   _for_igvn->push(n);
  1394 //------------------------------Node_Stack-------------------------------------
  1395 class Node_Stack {
  1396   friend class VMStructs;
  1397 protected:
  1398   struct INode {
  1399     Node *node; // Processed node
  1400     uint  indx; // Index of next node's child
  1401   };
  1402   INode *_inode_top; // tos, stack grows up
  1403   INode *_inode_max; // End of _inodes == _inodes + _max
  1404   INode *_inodes;    // Array storage for the stack
  1405   Arena *_a;         // Arena to allocate in
  1406   void grow();
  1407 public:
  1408   Node_Stack(int size) {
  1409     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1410     _a = Thread::current()->resource_area();
  1411     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1412     _inode_max = _inodes + max;
  1413     _inode_top = _inodes - 1; // stack is empty
  1416   Node_Stack(Arena *a, int size) : _a(a) {
  1417     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1418     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1419     _inode_max = _inodes + max;
  1420     _inode_top = _inodes - 1; // stack is empty
  1423   void pop() {
  1424     assert(_inode_top >= _inodes, "node stack underflow");
  1425     --_inode_top;
  1427   void push(Node *n, uint i) {
  1428     ++_inode_top;
  1429     if (_inode_top >= _inode_max) grow();
  1430     INode *top = _inode_top; // optimization
  1431     top->node = n;
  1432     top->indx = i;
  1434   Node *node() const {
  1435     return _inode_top->node;
  1437   Node* node_at(uint i) const {
  1438     assert(_inodes + i <= _inode_top, "in range");
  1439     return _inodes[i].node;
  1441   uint index() const {
  1442     return _inode_top->indx;
  1444   uint index_at(uint i) const {
  1445     assert(_inodes + i <= _inode_top, "in range");
  1446     return _inodes[i].indx;
  1448   void set_node(Node *n) {
  1449     _inode_top->node = n;
  1451   void set_index(uint i) {
  1452     _inode_top->indx = i;
  1454   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1455   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1456   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1457   bool is_empty() const { return (_inode_top < _inodes); }
  1458   void clear() { _inode_top = _inodes - 1; } // retain storage
  1460   // Node_Stack is used to map nodes.
  1461   Node* find(uint idx) const;
  1462 };
  1465 //-----------------------------Node_Notes--------------------------------------
  1466 // Debugging or profiling annotations loosely and sparsely associated
  1467 // with some nodes.  See Compile::node_notes_at for the accessor.
  1468 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1469   friend class VMStructs;
  1470   JVMState* _jvms;
  1472 public:
  1473   Node_Notes(JVMState* jvms = NULL) {
  1474     _jvms = jvms;
  1477   JVMState* jvms()            { return _jvms; }
  1478   void  set_jvms(JVMState* x) {        _jvms = x; }
  1480   // True if there is nothing here.
  1481   bool is_clear() {
  1482     return (_jvms == NULL);
  1485   // Make there be nothing here.
  1486   void clear() {
  1487     _jvms = NULL;
  1490   // Make a new, clean node notes.
  1491   static Node_Notes* make(Compile* C) {
  1492     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1493     nn->clear();
  1494     return nn;
  1497   Node_Notes* clone(Compile* C) {
  1498     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1499     (*nn) = (*this);
  1500     return nn;
  1503   // Absorb any information from source.
  1504   bool update_from(Node_Notes* source) {
  1505     bool changed = false;
  1506     if (source != NULL) {
  1507       if (source->jvms() != NULL) {
  1508         set_jvms(source->jvms());
  1509         changed = true;
  1512     return changed;
  1514 };
  1516 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1517 inline Node_Notes*
  1518 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1519                            int idx, bool can_grow) {
  1520   assert(idx >= 0, "oob");
  1521   int block_idx = (idx >> _log2_node_notes_block_size);
  1522   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1523   if (grow_by >= 0) {
  1524     if (!can_grow)  return NULL;
  1525     grow_node_notes(arr, grow_by + 1);
  1527   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1528   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1531 inline bool
  1532 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1533   if (value == NULL || value->is_clear())
  1534     return false;  // nothing to write => write nothing
  1535   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1536   assert(loc != NULL, "");
  1537   return loc->update_from(value);
  1541 //------------------------------TypeNode---------------------------------------
  1542 // Node with a Type constant.
  1543 class TypeNode : public Node {
  1544 protected:
  1545   virtual uint hash() const;    // Check the type
  1546   virtual uint cmp( const Node &n ) const;
  1547   virtual uint size_of() const; // Size is bigger
  1548   const Type* const _type;
  1549 public:
  1550   void set_type(const Type* t) {
  1551     assert(t != NULL, "sanity");
  1552     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1553     *(const Type**)&_type = t;   // cast away const-ness
  1554     // If this node is in the hash table, make sure it doesn't need a rehash.
  1555     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1557   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1558   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1559     init_class_id(Class_Type);
  1561   virtual const Type *Value( PhaseTransform *phase ) const;
  1562   virtual const Type *bottom_type() const;
  1563   virtual       uint  ideal_reg() const;
  1564 #ifndef PRODUCT
  1565   virtual void dump_spec(outputStream *st) const;
  1566 #endif
  1567 };
  1569 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial