src/cpu/x86/vm/templateTable_x86_64.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4052
75f33eecc1b3
child 4151
6e5a59a8e4a7
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodData.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx /* obj */,
   151                                 rbx /* pre_val */,
   152                                 r15_thread /* thread */,
   153                                 r8  /* tmp */,
   154                                 val != noreg /* tosca_live */,
   155                                 false /* expand_call */);
   156         if (val == noreg) {
   157           __ store_heap_oop_null(Address(rdx, 0));
   158         } else {
   159           __ store_heap_oop(Address(rdx, 0), val);
   160           __ g1_write_barrier_post(rdx /* store_adr */,
   161                                    val /* new_val */,
   162                                    r15_thread /* thread */,
   163                                    r8 /* tmp */,
   164                                    rbx /* tmp2 */);
   165         }
   167       }
   168       break;
   169 #endif // SERIALGC
   170     case BarrierSet::CardTableModRef:
   171     case BarrierSet::CardTableExtension:
   172       {
   173         if (val == noreg) {
   174           __ store_heap_oop_null(obj);
   175         } else {
   176           __ store_heap_oop(obj, val);
   177           // flatten object address if needed
   178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   179             __ store_check(obj.base());
   180           } else {
   181             __ leaq(rdx, obj);
   182             __ store_check(rdx);
   183           }
   184         }
   185       }
   186       break;
   187     case BarrierSet::ModRef:
   188     case BarrierSet::Other:
   189       if (val == noreg) {
   190         __ store_heap_oop_null(obj);
   191       } else {
   192         __ store_heap_oop(obj, val);
   193       }
   194       break;
   195     default      :
   196       ShouldNotReachHere();
   198   }
   199 }
   201 Address TemplateTable::at_bcp(int offset) {
   202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   203   return Address(r13, offset);
   204 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_cputfield:
   216   case Bytecodes::_fast_dputfield:
   217   case Bytecodes::_fast_fputfield:
   218   case Bytecodes::_fast_iputfield:
   219   case Bytecodes::_fast_lputfield:
   220   case Bytecodes::_fast_sputfield:
   221     {
   222       // We skip bytecode quickening for putfield instructions when
   223       // the put_code written to the constant pool cache is zero.
   224       // This is required so that every execution of this instruction
   225       // calls out to InterpreterRuntime::resolve_get_put to do
   226       // additional, required work.
   227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   230       __ movl(bc_reg, bc);
   231       __ cmpl(temp_reg, (int) 0);
   232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   233     }
   234     break;
   235   default:
   236     assert(byte_no == -1, "sanity");
   237     // the pair bytecodes have already done the load.
   238     if (load_bc_into_bc_reg) {
   239       __ movl(bc_reg, bc);
   240     }
   241   }
   243   if (JvmtiExport::can_post_breakpoint()) {
   244     Label L_fast_patch;
   245     // if a breakpoint is present we can't rewrite the stream directly
   246     __ movzbl(temp_reg, at_bcp(0));
   247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   248     __ jcc(Assembler::notEqual, L_fast_patch);
   249     __ get_method(temp_reg);
   250     // Let breakpoint table handling rewrite to quicker bytecode
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   252 #ifndef ASSERT
   253     __ jmpb(L_patch_done);
   254 #else
   255     __ jmp(L_patch_done);
   256 #endif
   257     __ bind(L_fast_patch);
   258   }
   260 #ifdef ASSERT
   261   Label L_okay;
   262   __ load_unsigned_byte(temp_reg, at_bcp(0));
   263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   264   __ jcc(Assembler::equal, L_okay);
   265   __ cmpl(temp_reg, bc_reg);
   266   __ jcc(Assembler::equal, L_okay);
   267   __ stop("patching the wrong bytecode");
   268   __ bind(L_okay);
   269 #endif
   271   // patch bytecode
   272   __ movb(at_bcp(0), bc_reg);
   273   __ bind(L_patch_done);
   274 }
   277 // Individual instructions
   279 void TemplateTable::nop() {
   280   transition(vtos, vtos);
   281   // nothing to do
   282 }
   284 void TemplateTable::shouldnotreachhere() {
   285   transition(vtos, vtos);
   286   __ stop("shouldnotreachhere bytecode");
   287 }
   289 void TemplateTable::aconst_null() {
   290   transition(vtos, atos);
   291   __ xorl(rax, rax);
   292 }
   294 void TemplateTable::iconst(int value) {
   295   transition(vtos, itos);
   296   if (value == 0) {
   297     __ xorl(rax, rax);
   298   } else {
   299     __ movl(rax, value);
   300   }
   301 }
   303 void TemplateTable::lconst(int value) {
   304   transition(vtos, ltos);
   305   if (value == 0) {
   306     __ xorl(rax, rax);
   307   } else {
   308     __ movl(rax, value);
   309   }
   310 }
   312 void TemplateTable::fconst(int value) {
   313   transition(vtos, ftos);
   314   static float one = 1.0f, two = 2.0f;
   315   switch (value) {
   316   case 0:
   317     __ xorps(xmm0, xmm0);
   318     break;
   319   case 1:
   320     __ movflt(xmm0, ExternalAddress((address) &one));
   321     break;
   322   case 2:
   323     __ movflt(xmm0, ExternalAddress((address) &two));
   324     break;
   325   default:
   326     ShouldNotReachHere();
   327     break;
   328   }
   329 }
   331 void TemplateTable::dconst(int value) {
   332   transition(vtos, dtos);
   333   static double one = 1.0;
   334   switch (value) {
   335   case 0:
   336     __ xorpd(xmm0, xmm0);
   337     break;
   338   case 1:
   339     __ movdbl(xmm0, ExternalAddress((address) &one));
   340     break;
   341   default:
   342     ShouldNotReachHere();
   343     break;
   344   }
   345 }
   347 void TemplateTable::bipush() {
   348   transition(vtos, itos);
   349   __ load_signed_byte(rax, at_bcp(1));
   350 }
   352 void TemplateTable::sipush() {
   353   transition(vtos, itos);
   354   __ load_unsigned_short(rax, at_bcp(1));
   355   __ bswapl(rax);
   356   __ sarl(rax, 16);
   357 }
   359 void TemplateTable::ldc(bool wide) {
   360   transition(vtos, vtos);
   361   Label call_ldc, notFloat, notClass, Done;
   363   if (wide) {
   364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   365   } else {
   366     __ load_unsigned_byte(rbx, at_bcp(1));
   367   }
   369   __ get_cpool_and_tags(rcx, rax);
   370   const int base_offset = ConstantPool::header_size() * wordSize;
   371   const int tags_offset = Array<u1>::base_offset_in_bytes();
   373   // get type
   374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   376   // unresolved class - get the resolved class
   377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   378   __ jccb(Assembler::equal, call_ldc);
   380   // unresolved class in error state - call into runtime to throw the error
   381   // from the first resolution attempt
   382   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   383   __ jccb(Assembler::equal, call_ldc);
   385   // resolved class - need to call vm to get java mirror of the class
   386   __ cmpl(rdx, JVM_CONSTANT_Class);
   387   __ jcc(Assembler::notEqual, notClass);
   389   __ bind(call_ldc);
   390   __ movl(c_rarg1, wide);
   391   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   392   __ push_ptr(rax);
   393   __ verify_oop(rax);
   394   __ jmp(Done);
   396   __ bind(notClass);
   397   __ cmpl(rdx, JVM_CONSTANT_Float);
   398   __ jccb(Assembler::notEqual, notFloat);
   399   // ftos
   400   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   401   __ push_f();
   402   __ jmp(Done);
   404   __ bind(notFloat);
   405 #ifdef ASSERT
   406   {
   407     Label L;
   408     __ cmpl(rdx, JVM_CONSTANT_Integer);
   409     __ jcc(Assembler::equal, L);
   410     // String and Object are rewritten to fast_aldc
   411     __ stop("unexpected tag type in ldc");
   412     __ bind(L);
   413   }
   414 #endif
   415   // itos JVM_CONSTANT_Integer only
   416   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   417   __ push_i(rax);
   418   __ bind(Done);
   419 }
   421 // Fast path for caching oop constants.
   422 void TemplateTable::fast_aldc(bool wide) {
   423   transition(vtos, atos);
   425   Register result = rax;
   426   Register tmp = rdx;
   427   int index_size = wide ? sizeof(u2) : sizeof(u1);
   429   Label resolved;
   431   // We are resolved if the resolved reference cache entry contains a
   432   // non-null object (String, MethodType, etc.)
   433   assert_different_registers(result, tmp);
   434   __ get_cache_index_at_bcp(tmp, 1, index_size);
   435   __ load_resolved_reference_at_index(result, tmp);
   436   __ testl(result, result);
   437   __ jcc(Assembler::notZero, resolved);
   439   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   441   // first time invocation - must resolve first
   442   __ movl(tmp, (int)bytecode());
   443   __ call_VM(result, entry, tmp);
   445   __ bind(resolved);
   447   if (VerifyOops) {
   448     __ verify_oop(result);
   449   }
   450 }
   452 void TemplateTable::ldc2_w() {
   453   transition(vtos, vtos);
   454   Label Long, Done;
   455   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   457   __ get_cpool_and_tags(rcx, rax);
   458   const int base_offset = ConstantPool::header_size() * wordSize;
   459   const int tags_offset = Array<u1>::base_offset_in_bytes();
   461   // get type
   462   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   463           JVM_CONSTANT_Double);
   464   __ jccb(Assembler::notEqual, Long);
   465   // dtos
   466   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   467   __ push_d();
   468   __ jmpb(Done);
   470   __ bind(Long);
   471   // ltos
   472   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   473   __ push_l();
   475   __ bind(Done);
   476 }
   478 void TemplateTable::locals_index(Register reg, int offset) {
   479   __ load_unsigned_byte(reg, at_bcp(offset));
   480   __ negptr(reg);
   481 }
   483 void TemplateTable::iload() {
   484   transition(vtos, itos);
   485   if (RewriteFrequentPairs) {
   486     Label rewrite, done;
   487     const Register bc = c_rarg3;
   488     assert(rbx != bc, "register damaged");
   490     // get next byte
   491     __ load_unsigned_byte(rbx,
   492                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   493     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   494     // last two iloads in a pair.  Comparing against fast_iload means that
   495     // the next bytecode is neither an iload or a caload, and therefore
   496     // an iload pair.
   497     __ cmpl(rbx, Bytecodes::_iload);
   498     __ jcc(Assembler::equal, done);
   500     __ cmpl(rbx, Bytecodes::_fast_iload);
   501     __ movl(bc, Bytecodes::_fast_iload2);
   502     __ jccb(Assembler::equal, rewrite);
   504     // if _caload, rewrite to fast_icaload
   505     __ cmpl(rbx, Bytecodes::_caload);
   506     __ movl(bc, Bytecodes::_fast_icaload);
   507     __ jccb(Assembler::equal, rewrite);
   509     // rewrite so iload doesn't check again.
   510     __ movl(bc, Bytecodes::_fast_iload);
   512     // rewrite
   513     // bc: fast bytecode
   514     __ bind(rewrite);
   515     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   516     __ bind(done);
   517   }
   519   // Get the local value into tos
   520   locals_index(rbx);
   521   __ movl(rax, iaddress(rbx));
   522 }
   524 void TemplateTable::fast_iload2() {
   525   transition(vtos, itos);
   526   locals_index(rbx);
   527   __ movl(rax, iaddress(rbx));
   528   __ push(itos);
   529   locals_index(rbx, 3);
   530   __ movl(rax, iaddress(rbx));
   531 }
   533 void TemplateTable::fast_iload() {
   534   transition(vtos, itos);
   535   locals_index(rbx);
   536   __ movl(rax, iaddress(rbx));
   537 }
   539 void TemplateTable::lload() {
   540   transition(vtos, ltos);
   541   locals_index(rbx);
   542   __ movq(rax, laddress(rbx));
   543 }
   545 void TemplateTable::fload() {
   546   transition(vtos, ftos);
   547   locals_index(rbx);
   548   __ movflt(xmm0, faddress(rbx));
   549 }
   551 void TemplateTable::dload() {
   552   transition(vtos, dtos);
   553   locals_index(rbx);
   554   __ movdbl(xmm0, daddress(rbx));
   555 }
   557 void TemplateTable::aload() {
   558   transition(vtos, atos);
   559   locals_index(rbx);
   560   __ movptr(rax, aaddress(rbx));
   561 }
   563 void TemplateTable::locals_index_wide(Register reg) {
   564   __ movl(reg, at_bcp(2));
   565   __ bswapl(reg);
   566   __ shrl(reg, 16);
   567   __ negptr(reg);
   568 }
   570 void TemplateTable::wide_iload() {
   571   transition(vtos, itos);
   572   locals_index_wide(rbx);
   573   __ movl(rax, iaddress(rbx));
   574 }
   576 void TemplateTable::wide_lload() {
   577   transition(vtos, ltos);
   578   locals_index_wide(rbx);
   579   __ movq(rax, laddress(rbx));
   580 }
   582 void TemplateTable::wide_fload() {
   583   transition(vtos, ftos);
   584   locals_index_wide(rbx);
   585   __ movflt(xmm0, faddress(rbx));
   586 }
   588 void TemplateTable::wide_dload() {
   589   transition(vtos, dtos);
   590   locals_index_wide(rbx);
   591   __ movdbl(xmm0, daddress(rbx));
   592 }
   594 void TemplateTable::wide_aload() {
   595   transition(vtos, atos);
   596   locals_index_wide(rbx);
   597   __ movptr(rax, aaddress(rbx));
   598 }
   600 void TemplateTable::index_check(Register array, Register index) {
   601   // destroys rbx
   602   // check array
   603   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   604   // sign extend index for use by indexed load
   605   __ movl2ptr(index, index);
   606   // check index
   607   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   608   if (index != rbx) {
   609     // ??? convention: move aberrant index into ebx for exception message
   610     assert(rbx != array, "different registers");
   611     __ movl(rbx, index);
   612   }
   613   __ jump_cc(Assembler::aboveEqual,
   614              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   615 }
   617 void TemplateTable::iaload() {
   618   transition(itos, itos);
   619   __ pop_ptr(rdx);
   620   // eax: index
   621   // rdx: array
   622   index_check(rdx, rax); // kills rbx
   623   __ movl(rax, Address(rdx, rax,
   624                        Address::times_4,
   625                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   626 }
   628 void TemplateTable::laload() {
   629   transition(itos, ltos);
   630   __ pop_ptr(rdx);
   631   // eax: index
   632   // rdx: array
   633   index_check(rdx, rax); // kills rbx
   634   __ movq(rax, Address(rdx, rbx,
   635                        Address::times_8,
   636                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   637 }
   639 void TemplateTable::faload() {
   640   transition(itos, ftos);
   641   __ pop_ptr(rdx);
   642   // eax: index
   643   // rdx: array
   644   index_check(rdx, rax); // kills rbx
   645   __ movflt(xmm0, Address(rdx, rax,
   646                          Address::times_4,
   647                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   648 }
   650 void TemplateTable::daload() {
   651   transition(itos, dtos);
   652   __ pop_ptr(rdx);
   653   // eax: index
   654   // rdx: array
   655   index_check(rdx, rax); // kills rbx
   656   __ movdbl(xmm0, Address(rdx, rax,
   657                           Address::times_8,
   658                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   659 }
   661 void TemplateTable::aaload() {
   662   transition(itos, atos);
   663   __ pop_ptr(rdx);
   664   // eax: index
   665   // rdx: array
   666   index_check(rdx, rax); // kills rbx
   667   __ load_heap_oop(rax, Address(rdx, rax,
   668                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   669                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   670 }
   672 void TemplateTable::baload() {
   673   transition(itos, itos);
   674   __ pop_ptr(rdx);
   675   // eax: index
   676   // rdx: array
   677   index_check(rdx, rax); // kills rbx
   678   __ load_signed_byte(rax,
   679                       Address(rdx, rax,
   680                               Address::times_1,
   681                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   682 }
   684 void TemplateTable::caload() {
   685   transition(itos, itos);
   686   __ pop_ptr(rdx);
   687   // eax: index
   688   // rdx: array
   689   index_check(rdx, rax); // kills rbx
   690   __ load_unsigned_short(rax,
   691                          Address(rdx, rax,
   692                                  Address::times_2,
   693                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   694 }
   696 // iload followed by caload frequent pair
   697 void TemplateTable::fast_icaload() {
   698   transition(vtos, itos);
   699   // load index out of locals
   700   locals_index(rbx);
   701   __ movl(rax, iaddress(rbx));
   703   // eax: index
   704   // rdx: array
   705   __ pop_ptr(rdx);
   706   index_check(rdx, rax); // kills rbx
   707   __ load_unsigned_short(rax,
   708                          Address(rdx, rax,
   709                                  Address::times_2,
   710                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   711 }
   713 void TemplateTable::saload() {
   714   transition(itos, itos);
   715   __ pop_ptr(rdx);
   716   // eax: index
   717   // rdx: array
   718   index_check(rdx, rax); // kills rbx
   719   __ load_signed_short(rax,
   720                        Address(rdx, rax,
   721                                Address::times_2,
   722                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   723 }
   725 void TemplateTable::iload(int n) {
   726   transition(vtos, itos);
   727   __ movl(rax, iaddress(n));
   728 }
   730 void TemplateTable::lload(int n) {
   731   transition(vtos, ltos);
   732   __ movq(rax, laddress(n));
   733 }
   735 void TemplateTable::fload(int n) {
   736   transition(vtos, ftos);
   737   __ movflt(xmm0, faddress(n));
   738 }
   740 void TemplateTable::dload(int n) {
   741   transition(vtos, dtos);
   742   __ movdbl(xmm0, daddress(n));
   743 }
   745 void TemplateTable::aload(int n) {
   746   transition(vtos, atos);
   747   __ movptr(rax, aaddress(n));
   748 }
   750 void TemplateTable::aload_0() {
   751   transition(vtos, atos);
   752   // According to bytecode histograms, the pairs:
   753   //
   754   // _aload_0, _fast_igetfield
   755   // _aload_0, _fast_agetfield
   756   // _aload_0, _fast_fgetfield
   757   //
   758   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   759   // _aload_0 bytecode checks if the next bytecode is either
   760   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   761   // rewrites the current bytecode into a pair bytecode; otherwise it
   762   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   763   // the pair check anymore.
   764   //
   765   // Note: If the next bytecode is _getfield, the rewrite must be
   766   //       delayed, otherwise we may miss an opportunity for a pair.
   767   //
   768   // Also rewrite frequent pairs
   769   //   aload_0, aload_1
   770   //   aload_0, iload_1
   771   // These bytecodes with a small amount of code are most profitable
   772   // to rewrite
   773   if (RewriteFrequentPairs) {
   774     Label rewrite, done;
   775     const Register bc = c_rarg3;
   776     assert(rbx != bc, "register damaged");
   777     // get next byte
   778     __ load_unsigned_byte(rbx,
   779                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   781     // do actual aload_0
   782     aload(0);
   784     // if _getfield then wait with rewrite
   785     __ cmpl(rbx, Bytecodes::_getfield);
   786     __ jcc(Assembler::equal, done);
   788     // if _igetfield then reqrite to _fast_iaccess_0
   789     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   790            Bytecodes::_aload_0,
   791            "fix bytecode definition");
   792     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   793     __ movl(bc, Bytecodes::_fast_iaccess_0);
   794     __ jccb(Assembler::equal, rewrite);
   796     // if _agetfield then reqrite to _fast_aaccess_0
   797     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   798            Bytecodes::_aload_0,
   799            "fix bytecode definition");
   800     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   801     __ movl(bc, Bytecodes::_fast_aaccess_0);
   802     __ jccb(Assembler::equal, rewrite);
   804     // if _fgetfield then reqrite to _fast_faccess_0
   805     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   806            Bytecodes::_aload_0,
   807            "fix bytecode definition");
   808     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   809     __ movl(bc, Bytecodes::_fast_faccess_0);
   810     __ jccb(Assembler::equal, rewrite);
   812     // else rewrite to _fast_aload0
   813     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   814            Bytecodes::_aload_0,
   815            "fix bytecode definition");
   816     __ movl(bc, Bytecodes::_fast_aload_0);
   818     // rewrite
   819     // bc: fast bytecode
   820     __ bind(rewrite);
   821     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   823     __ bind(done);
   824   } else {
   825     aload(0);
   826   }
   827 }
   829 void TemplateTable::istore() {
   830   transition(itos, vtos);
   831   locals_index(rbx);
   832   __ movl(iaddress(rbx), rax);
   833 }
   835 void TemplateTable::lstore() {
   836   transition(ltos, vtos);
   837   locals_index(rbx);
   838   __ movq(laddress(rbx), rax);
   839 }
   841 void TemplateTable::fstore() {
   842   transition(ftos, vtos);
   843   locals_index(rbx);
   844   __ movflt(faddress(rbx), xmm0);
   845 }
   847 void TemplateTable::dstore() {
   848   transition(dtos, vtos);
   849   locals_index(rbx);
   850   __ movdbl(daddress(rbx), xmm0);
   851 }
   853 void TemplateTable::astore() {
   854   transition(vtos, vtos);
   855   __ pop_ptr(rax);
   856   locals_index(rbx);
   857   __ movptr(aaddress(rbx), rax);
   858 }
   860 void TemplateTable::wide_istore() {
   861   transition(vtos, vtos);
   862   __ pop_i();
   863   locals_index_wide(rbx);
   864   __ movl(iaddress(rbx), rax);
   865 }
   867 void TemplateTable::wide_lstore() {
   868   transition(vtos, vtos);
   869   __ pop_l();
   870   locals_index_wide(rbx);
   871   __ movq(laddress(rbx), rax);
   872 }
   874 void TemplateTable::wide_fstore() {
   875   transition(vtos, vtos);
   876   __ pop_f();
   877   locals_index_wide(rbx);
   878   __ movflt(faddress(rbx), xmm0);
   879 }
   881 void TemplateTable::wide_dstore() {
   882   transition(vtos, vtos);
   883   __ pop_d();
   884   locals_index_wide(rbx);
   885   __ movdbl(daddress(rbx), xmm0);
   886 }
   888 void TemplateTable::wide_astore() {
   889   transition(vtos, vtos);
   890   __ pop_ptr(rax);
   891   locals_index_wide(rbx);
   892   __ movptr(aaddress(rbx), rax);
   893 }
   895 void TemplateTable::iastore() {
   896   transition(itos, vtos);
   897   __ pop_i(rbx);
   898   __ pop_ptr(rdx);
   899   // eax: value
   900   // ebx: index
   901   // rdx: array
   902   index_check(rdx, rbx); // prefer index in ebx
   903   __ movl(Address(rdx, rbx,
   904                   Address::times_4,
   905                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   906           rax);
   907 }
   909 void TemplateTable::lastore() {
   910   transition(ltos, vtos);
   911   __ pop_i(rbx);
   912   __ pop_ptr(rdx);
   913   // rax: value
   914   // ebx: index
   915   // rdx: array
   916   index_check(rdx, rbx); // prefer index in ebx
   917   __ movq(Address(rdx, rbx,
   918                   Address::times_8,
   919                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   920           rax);
   921 }
   923 void TemplateTable::fastore() {
   924   transition(ftos, vtos);
   925   __ pop_i(rbx);
   926   __ pop_ptr(rdx);
   927   // xmm0: value
   928   // ebx:  index
   929   // rdx:  array
   930   index_check(rdx, rbx); // prefer index in ebx
   931   __ movflt(Address(rdx, rbx,
   932                    Address::times_4,
   933                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   934            xmm0);
   935 }
   937 void TemplateTable::dastore() {
   938   transition(dtos, vtos);
   939   __ pop_i(rbx);
   940   __ pop_ptr(rdx);
   941   // xmm0: value
   942   // ebx:  index
   943   // rdx:  array
   944   index_check(rdx, rbx); // prefer index in ebx
   945   __ movdbl(Address(rdx, rbx,
   946                    Address::times_8,
   947                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   948            xmm0);
   949 }
   951 void TemplateTable::aastore() {
   952   Label is_null, ok_is_subtype, done;
   953   transition(vtos, vtos);
   954   // stack: ..., array, index, value
   955   __ movptr(rax, at_tos());    // value
   956   __ movl(rcx, at_tos_p1()); // index
   957   __ movptr(rdx, at_tos_p2()); // array
   959   Address element_address(rdx, rcx,
   960                           UseCompressedOops? Address::times_4 : Address::times_8,
   961                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   963   index_check(rdx, rcx);     // kills rbx
   964   // do array store check - check for NULL value first
   965   __ testptr(rax, rax);
   966   __ jcc(Assembler::zero, is_null);
   968   // Move subklass into rbx
   969   __ load_klass(rbx, rax);
   970   // Move superklass into rax
   971   __ load_klass(rax, rdx);
   972   __ movptr(rax, Address(rax,
   973                          ObjArrayKlass::element_klass_offset()));
   974   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   975   __ lea(rdx, element_address);
   977   // Generate subtype check.  Blows rcx, rdi
   978   // Superklass in rax.  Subklass in rbx.
   979   __ gen_subtype_check(rbx, ok_is_subtype);
   981   // Come here on failure
   982   // object is at TOS
   983   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   985   // Come here on success
   986   __ bind(ok_is_subtype);
   988   // Get the value we will store
   989   __ movptr(rax, at_tos());
   990   // Now store using the appropriate barrier
   991   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   992   __ jmp(done);
   994   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   995   __ bind(is_null);
   996   __ profile_null_seen(rbx);
   998   // Store a NULL
   999   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1001   // Pop stack arguments
  1002   __ bind(done);
  1003   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1006 void TemplateTable::bastore() {
  1007   transition(itos, vtos);
  1008   __ pop_i(rbx);
  1009   __ pop_ptr(rdx);
  1010   // eax: value
  1011   // ebx: index
  1012   // rdx: array
  1013   index_check(rdx, rbx); // prefer index in ebx
  1014   __ movb(Address(rdx, rbx,
  1015                   Address::times_1,
  1016                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1017           rax);
  1020 void TemplateTable::castore() {
  1021   transition(itos, vtos);
  1022   __ pop_i(rbx);
  1023   __ pop_ptr(rdx);
  1024   // eax: value
  1025   // ebx: index
  1026   // rdx: array
  1027   index_check(rdx, rbx);  // prefer index in ebx
  1028   __ movw(Address(rdx, rbx,
  1029                   Address::times_2,
  1030                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1031           rax);
  1034 void TemplateTable::sastore() {
  1035   castore();
  1038 void TemplateTable::istore(int n) {
  1039   transition(itos, vtos);
  1040   __ movl(iaddress(n), rax);
  1043 void TemplateTable::lstore(int n) {
  1044   transition(ltos, vtos);
  1045   __ movq(laddress(n), rax);
  1048 void TemplateTable::fstore(int n) {
  1049   transition(ftos, vtos);
  1050   __ movflt(faddress(n), xmm0);
  1053 void TemplateTable::dstore(int n) {
  1054   transition(dtos, vtos);
  1055   __ movdbl(daddress(n), xmm0);
  1058 void TemplateTable::astore(int n) {
  1059   transition(vtos, vtos);
  1060   __ pop_ptr(rax);
  1061   __ movptr(aaddress(n), rax);
  1064 void TemplateTable::pop() {
  1065   transition(vtos, vtos);
  1066   __ addptr(rsp, Interpreter::stackElementSize);
  1069 void TemplateTable::pop2() {
  1070   transition(vtos, vtos);
  1071   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1074 void TemplateTable::dup() {
  1075   transition(vtos, vtos);
  1076   __ load_ptr(0, rax);
  1077   __ push_ptr(rax);
  1078   // stack: ..., a, a
  1081 void TemplateTable::dup_x1() {
  1082   transition(vtos, vtos);
  1083   // stack: ..., a, b
  1084   __ load_ptr( 0, rax);  // load b
  1085   __ load_ptr( 1, rcx);  // load a
  1086   __ store_ptr(1, rax);  // store b
  1087   __ store_ptr(0, rcx);  // store a
  1088   __ push_ptr(rax);      // push b
  1089   // stack: ..., b, a, b
  1092 void TemplateTable::dup_x2() {
  1093   transition(vtos, vtos);
  1094   // stack: ..., a, b, c
  1095   __ load_ptr( 0, rax);  // load c
  1096   __ load_ptr( 2, rcx);  // load a
  1097   __ store_ptr(2, rax);  // store c in a
  1098   __ push_ptr(rax);      // push c
  1099   // stack: ..., c, b, c, c
  1100   __ load_ptr( 2, rax);  // load b
  1101   __ store_ptr(2, rcx);  // store a in b
  1102   // stack: ..., c, a, c, c
  1103   __ store_ptr(1, rax);  // store b in c
  1104   // stack: ..., c, a, b, c
  1107 void TemplateTable::dup2() {
  1108   transition(vtos, vtos);
  1109   // stack: ..., a, b
  1110   __ load_ptr(1, rax);  // load a
  1111   __ push_ptr(rax);     // push a
  1112   __ load_ptr(1, rax);  // load b
  1113   __ push_ptr(rax);     // push b
  1114   // stack: ..., a, b, a, b
  1117 void TemplateTable::dup2_x1() {
  1118   transition(vtos, vtos);
  1119   // stack: ..., a, b, c
  1120   __ load_ptr( 0, rcx);  // load c
  1121   __ load_ptr( 1, rax);  // load b
  1122   __ push_ptr(rax);      // push b
  1123   __ push_ptr(rcx);      // push c
  1124   // stack: ..., a, b, c, b, c
  1125   __ store_ptr(3, rcx);  // store c in b
  1126   // stack: ..., a, c, c, b, c
  1127   __ load_ptr( 4, rcx);  // load a
  1128   __ store_ptr(2, rcx);  // store a in 2nd c
  1129   // stack: ..., a, c, a, b, c
  1130   __ store_ptr(4, rax);  // store b in a
  1131   // stack: ..., b, c, a, b, c
  1134 void TemplateTable::dup2_x2() {
  1135   transition(vtos, vtos);
  1136   // stack: ..., a, b, c, d
  1137   __ load_ptr( 0, rcx);  // load d
  1138   __ load_ptr( 1, rax);  // load c
  1139   __ push_ptr(rax);      // push c
  1140   __ push_ptr(rcx);      // push d
  1141   // stack: ..., a, b, c, d, c, d
  1142   __ load_ptr( 4, rax);  // load b
  1143   __ store_ptr(2, rax);  // store b in d
  1144   __ store_ptr(4, rcx);  // store d in b
  1145   // stack: ..., a, d, c, b, c, d
  1146   __ load_ptr( 5, rcx);  // load a
  1147   __ load_ptr( 3, rax);  // load c
  1148   __ store_ptr(3, rcx);  // store a in c
  1149   __ store_ptr(5, rax);  // store c in a
  1150   // stack: ..., c, d, a, b, c, d
  1153 void TemplateTable::swap() {
  1154   transition(vtos, vtos);
  1155   // stack: ..., a, b
  1156   __ load_ptr( 1, rcx);  // load a
  1157   __ load_ptr( 0, rax);  // load b
  1158   __ store_ptr(0, rcx);  // store a in b
  1159   __ store_ptr(1, rax);  // store b in a
  1160   // stack: ..., b, a
  1163 void TemplateTable::iop2(Operation op) {
  1164   transition(itos, itos);
  1165   switch (op) {
  1166   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1167   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1168   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1169   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1170   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1171   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1172   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1173   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1174   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1175   default   : ShouldNotReachHere();
  1179 void TemplateTable::lop2(Operation op) {
  1180   transition(ltos, ltos);
  1181   switch (op) {
  1182   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1183   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1184   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1185   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1186   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1187   default   : ShouldNotReachHere();
  1191 void TemplateTable::idiv() {
  1192   transition(itos, itos);
  1193   __ movl(rcx, rax);
  1194   __ pop_i(rax);
  1195   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1196   //       they are not equal, one could do a normal division (no correction
  1197   //       needed), which may speed up this implementation for the common case.
  1198   //       (see also JVM spec., p.243 & p.271)
  1199   __ corrected_idivl(rcx);
  1202 void TemplateTable::irem() {
  1203   transition(itos, itos);
  1204   __ movl(rcx, rax);
  1205   __ pop_i(rax);
  1206   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1207   //       they are not equal, one could do a normal division (no correction
  1208   //       needed), which may speed up this implementation for the common case.
  1209   //       (see also JVM spec., p.243 & p.271)
  1210   __ corrected_idivl(rcx);
  1211   __ movl(rax, rdx);
  1214 void TemplateTable::lmul() {
  1215   transition(ltos, ltos);
  1216   __ pop_l(rdx);
  1217   __ imulq(rax, rdx);
  1220 void TemplateTable::ldiv() {
  1221   transition(ltos, ltos);
  1222   __ mov(rcx, rax);
  1223   __ pop_l(rax);
  1224   // generate explicit div0 check
  1225   __ testq(rcx, rcx);
  1226   __ jump_cc(Assembler::zero,
  1227              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1228   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1229   //       they are not equal, one could do a normal division (no correction
  1230   //       needed), which may speed up this implementation for the common case.
  1231   //       (see also JVM spec., p.243 & p.271)
  1232   __ corrected_idivq(rcx); // kills rbx
  1235 void TemplateTable::lrem() {
  1236   transition(ltos, ltos);
  1237   __ mov(rcx, rax);
  1238   __ pop_l(rax);
  1239   __ testq(rcx, rcx);
  1240   __ jump_cc(Assembler::zero,
  1241              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1242   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1243   //       they are not equal, one could do a normal division (no correction
  1244   //       needed), which may speed up this implementation for the common case.
  1245   //       (see also JVM spec., p.243 & p.271)
  1246   __ corrected_idivq(rcx); // kills rbx
  1247   __ mov(rax, rdx);
  1250 void TemplateTable::lshl() {
  1251   transition(itos, ltos);
  1252   __ movl(rcx, rax);                             // get shift count
  1253   __ pop_l(rax);                                 // get shift value
  1254   __ shlq(rax);
  1257 void TemplateTable::lshr() {
  1258   transition(itos, ltos);
  1259   __ movl(rcx, rax);                             // get shift count
  1260   __ pop_l(rax);                                 // get shift value
  1261   __ sarq(rax);
  1264 void TemplateTable::lushr() {
  1265   transition(itos, ltos);
  1266   __ movl(rcx, rax);                             // get shift count
  1267   __ pop_l(rax);                                 // get shift value
  1268   __ shrq(rax);
  1271 void TemplateTable::fop2(Operation op) {
  1272   transition(ftos, ftos);
  1273   switch (op) {
  1274   case add:
  1275     __ addss(xmm0, at_rsp());
  1276     __ addptr(rsp, Interpreter::stackElementSize);
  1277     break;
  1278   case sub:
  1279     __ movflt(xmm1, xmm0);
  1280     __ pop_f(xmm0);
  1281     __ subss(xmm0, xmm1);
  1282     break;
  1283   case mul:
  1284     __ mulss(xmm0, at_rsp());
  1285     __ addptr(rsp, Interpreter::stackElementSize);
  1286     break;
  1287   case div:
  1288     __ movflt(xmm1, xmm0);
  1289     __ pop_f(xmm0);
  1290     __ divss(xmm0, xmm1);
  1291     break;
  1292   case rem:
  1293     __ movflt(xmm1, xmm0);
  1294     __ pop_f(xmm0);
  1295     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1296     break;
  1297   default:
  1298     ShouldNotReachHere();
  1299     break;
  1303 void TemplateTable::dop2(Operation op) {
  1304   transition(dtos, dtos);
  1305   switch (op) {
  1306   case add:
  1307     __ addsd(xmm0, at_rsp());
  1308     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1309     break;
  1310   case sub:
  1311     __ movdbl(xmm1, xmm0);
  1312     __ pop_d(xmm0);
  1313     __ subsd(xmm0, xmm1);
  1314     break;
  1315   case mul:
  1316     __ mulsd(xmm0, at_rsp());
  1317     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1318     break;
  1319   case div:
  1320     __ movdbl(xmm1, xmm0);
  1321     __ pop_d(xmm0);
  1322     __ divsd(xmm0, xmm1);
  1323     break;
  1324   case rem:
  1325     __ movdbl(xmm1, xmm0);
  1326     __ pop_d(xmm0);
  1327     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1328     break;
  1329   default:
  1330     ShouldNotReachHere();
  1331     break;
  1335 void TemplateTable::ineg() {
  1336   transition(itos, itos);
  1337   __ negl(rax);
  1340 void TemplateTable::lneg() {
  1341   transition(ltos, ltos);
  1342   __ negq(rax);
  1345 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1346 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1347   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1348   // of 128-bits operands for SSE instructions.
  1349   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1350   // Store the value to a 128-bits operand.
  1351   operand[0] = lo;
  1352   operand[1] = hi;
  1353   return operand;
  1356 // Buffer for 128-bits masks used by SSE instructions.
  1357 static jlong float_signflip_pool[2*2];
  1358 static jlong double_signflip_pool[2*2];
  1360 void TemplateTable::fneg() {
  1361   transition(ftos, ftos);
  1362   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1363   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1366 void TemplateTable::dneg() {
  1367   transition(dtos, dtos);
  1368   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1369   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1372 void TemplateTable::iinc() {
  1373   transition(vtos, vtos);
  1374   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1375   locals_index(rbx);
  1376   __ addl(iaddress(rbx), rdx);
  1379 void TemplateTable::wide_iinc() {
  1380   transition(vtos, vtos);
  1381   __ movl(rdx, at_bcp(4)); // get constant
  1382   locals_index_wide(rbx);
  1383   __ bswapl(rdx); // swap bytes & sign-extend constant
  1384   __ sarl(rdx, 16);
  1385   __ addl(iaddress(rbx), rdx);
  1386   // Note: should probably use only one movl to get both
  1387   //       the index and the constant -> fix this
  1390 void TemplateTable::convert() {
  1391   // Checking
  1392 #ifdef ASSERT
  1394     TosState tos_in  = ilgl;
  1395     TosState tos_out = ilgl;
  1396     switch (bytecode()) {
  1397     case Bytecodes::_i2l: // fall through
  1398     case Bytecodes::_i2f: // fall through
  1399     case Bytecodes::_i2d: // fall through
  1400     case Bytecodes::_i2b: // fall through
  1401     case Bytecodes::_i2c: // fall through
  1402     case Bytecodes::_i2s: tos_in = itos; break;
  1403     case Bytecodes::_l2i: // fall through
  1404     case Bytecodes::_l2f: // fall through
  1405     case Bytecodes::_l2d: tos_in = ltos; break;
  1406     case Bytecodes::_f2i: // fall through
  1407     case Bytecodes::_f2l: // fall through
  1408     case Bytecodes::_f2d: tos_in = ftos; break;
  1409     case Bytecodes::_d2i: // fall through
  1410     case Bytecodes::_d2l: // fall through
  1411     case Bytecodes::_d2f: tos_in = dtos; break;
  1412     default             : ShouldNotReachHere();
  1414     switch (bytecode()) {
  1415     case Bytecodes::_l2i: // fall through
  1416     case Bytecodes::_f2i: // fall through
  1417     case Bytecodes::_d2i: // fall through
  1418     case Bytecodes::_i2b: // fall through
  1419     case Bytecodes::_i2c: // fall through
  1420     case Bytecodes::_i2s: tos_out = itos; break;
  1421     case Bytecodes::_i2l: // fall through
  1422     case Bytecodes::_f2l: // fall through
  1423     case Bytecodes::_d2l: tos_out = ltos; break;
  1424     case Bytecodes::_i2f: // fall through
  1425     case Bytecodes::_l2f: // fall through
  1426     case Bytecodes::_d2f: tos_out = ftos; break;
  1427     case Bytecodes::_i2d: // fall through
  1428     case Bytecodes::_l2d: // fall through
  1429     case Bytecodes::_f2d: tos_out = dtos; break;
  1430     default             : ShouldNotReachHere();
  1432     transition(tos_in, tos_out);
  1434 #endif // ASSERT
  1436   static const int64_t is_nan = 0x8000000000000000L;
  1438   // Conversion
  1439   switch (bytecode()) {
  1440   case Bytecodes::_i2l:
  1441     __ movslq(rax, rax);
  1442     break;
  1443   case Bytecodes::_i2f:
  1444     __ cvtsi2ssl(xmm0, rax);
  1445     break;
  1446   case Bytecodes::_i2d:
  1447     __ cvtsi2sdl(xmm0, rax);
  1448     break;
  1449   case Bytecodes::_i2b:
  1450     __ movsbl(rax, rax);
  1451     break;
  1452   case Bytecodes::_i2c:
  1453     __ movzwl(rax, rax);
  1454     break;
  1455   case Bytecodes::_i2s:
  1456     __ movswl(rax, rax);
  1457     break;
  1458   case Bytecodes::_l2i:
  1459     __ movl(rax, rax);
  1460     break;
  1461   case Bytecodes::_l2f:
  1462     __ cvtsi2ssq(xmm0, rax);
  1463     break;
  1464   case Bytecodes::_l2d:
  1465     __ cvtsi2sdq(xmm0, rax);
  1466     break;
  1467   case Bytecodes::_f2i:
  1469     Label L;
  1470     __ cvttss2sil(rax, xmm0);
  1471     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1472     __ jcc(Assembler::notEqual, L);
  1473     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1474     __ bind(L);
  1476     break;
  1477   case Bytecodes::_f2l:
  1479     Label L;
  1480     __ cvttss2siq(rax, xmm0);
  1481     // NaN or overflow/underflow?
  1482     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1483     __ jcc(Assembler::notEqual, L);
  1484     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1485     __ bind(L);
  1487     break;
  1488   case Bytecodes::_f2d:
  1489     __ cvtss2sd(xmm0, xmm0);
  1490     break;
  1491   case Bytecodes::_d2i:
  1493     Label L;
  1494     __ cvttsd2sil(rax, xmm0);
  1495     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1496     __ jcc(Assembler::notEqual, L);
  1497     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1498     __ bind(L);
  1500     break;
  1501   case Bytecodes::_d2l:
  1503     Label L;
  1504     __ cvttsd2siq(rax, xmm0);
  1505     // NaN or overflow/underflow?
  1506     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1507     __ jcc(Assembler::notEqual, L);
  1508     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1509     __ bind(L);
  1511     break;
  1512   case Bytecodes::_d2f:
  1513     __ cvtsd2ss(xmm0, xmm0);
  1514     break;
  1515   default:
  1516     ShouldNotReachHere();
  1520 void TemplateTable::lcmp() {
  1521   transition(ltos, itos);
  1522   Label done;
  1523   __ pop_l(rdx);
  1524   __ cmpq(rdx, rax);
  1525   __ movl(rax, -1);
  1526   __ jccb(Assembler::less, done);
  1527   __ setb(Assembler::notEqual, rax);
  1528   __ movzbl(rax, rax);
  1529   __ bind(done);
  1532 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1533   Label done;
  1534   if (is_float) {
  1535     // XXX get rid of pop here, use ... reg, mem32
  1536     __ pop_f(xmm1);
  1537     __ ucomiss(xmm1, xmm0);
  1538   } else {
  1539     // XXX get rid of pop here, use ... reg, mem64
  1540     __ pop_d(xmm1);
  1541     __ ucomisd(xmm1, xmm0);
  1543   if (unordered_result < 0) {
  1544     __ movl(rax, -1);
  1545     __ jccb(Assembler::parity, done);
  1546     __ jccb(Assembler::below, done);
  1547     __ setb(Assembler::notEqual, rdx);
  1548     __ movzbl(rax, rdx);
  1549   } else {
  1550     __ movl(rax, 1);
  1551     __ jccb(Assembler::parity, done);
  1552     __ jccb(Assembler::above, done);
  1553     __ movl(rax, 0);
  1554     __ jccb(Assembler::equal, done);
  1555     __ decrementl(rax);
  1557   __ bind(done);
  1560 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1561   __ get_method(rcx); // rcx holds method
  1562   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1563                                      // holds bumped taken count
  1565   const ByteSize be_offset = Method::backedge_counter_offset() +
  1566                              InvocationCounter::counter_offset();
  1567   const ByteSize inv_offset = Method::invocation_counter_offset() +
  1568                               InvocationCounter::counter_offset();
  1569   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1571   // Load up edx with the branch displacement
  1572   __ movl(rdx, at_bcp(1));
  1573   __ bswapl(rdx);
  1575   if (!is_wide) {
  1576     __ sarl(rdx, 16);
  1578   __ movl2ptr(rdx, rdx);
  1580   // Handle all the JSR stuff here, then exit.
  1581   // It's much shorter and cleaner than intermingling with the non-JSR
  1582   // normal-branch stuff occurring below.
  1583   if (is_jsr) {
  1584     // Pre-load the next target bytecode into rbx
  1585     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1587     // compute return address as bci in rax
  1588     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1589                         in_bytes(ConstMethod::codes_offset())));
  1590     __ subptr(rax, Address(rcx, Method::const_offset()));
  1591     // Adjust the bcp in r13 by the displacement in rdx
  1592     __ addptr(r13, rdx);
  1593     // jsr returns atos that is not an oop
  1594     __ push_i(rax);
  1595     __ dispatch_only(vtos);
  1596     return;
  1599   // Normal (non-jsr) branch handling
  1601   // Adjust the bcp in r13 by the displacement in rdx
  1602   __ addptr(r13, rdx);
  1604   assert(UseLoopCounter || !UseOnStackReplacement,
  1605          "on-stack-replacement requires loop counters");
  1606   Label backedge_counter_overflow;
  1607   Label profile_method;
  1608   Label dispatch;
  1609   if (UseLoopCounter) {
  1610     // increment backedge counter for backward branches
  1611     // rax: MDO
  1612     // ebx: MDO bumped taken-count
  1613     // rcx: method
  1614     // rdx: target offset
  1615     // r13: target bcp
  1616     // r14: locals pointer
  1617     __ testl(rdx, rdx);             // check if forward or backward branch
  1618     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1619     if (TieredCompilation) {
  1620       Label no_mdo;
  1621       int increment = InvocationCounter::count_increment;
  1622       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1623       if (ProfileInterpreter) {
  1624         // Are we profiling?
  1625         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1626         __ testptr(rbx, rbx);
  1627         __ jccb(Assembler::zero, no_mdo);
  1628         // Increment the MDO backedge counter
  1629         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1630                                            in_bytes(InvocationCounter::counter_offset()));
  1631         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1632                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1633         __ jmp(dispatch);
  1635       __ bind(no_mdo);
  1636       // Increment backedge counter in Method*
  1637       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1638                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1639     } else {
  1640       // increment counter
  1641       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1642       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1643       __ movl(Address(rcx, be_offset), rax);        // store counter
  1645       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1646       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1647       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1649       if (ProfileInterpreter) {
  1650         // Test to see if we should create a method data oop
  1651         __ cmp32(rax,
  1652                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1653         __ jcc(Assembler::less, dispatch);
  1655         // if no method data exists, go to profile method
  1656         __ test_method_data_pointer(rax, profile_method);
  1658         if (UseOnStackReplacement) {
  1659           // check for overflow against ebx which is the MDO taken count
  1660           __ cmp32(rbx,
  1661                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1662           __ jcc(Assembler::below, dispatch);
  1664           // When ProfileInterpreter is on, the backedge_count comes
  1665           // from the MethodData*, which value does not get reset on
  1666           // the call to frequency_counter_overflow().  To avoid
  1667           // excessive calls to the overflow routine while the method is
  1668           // being compiled, add a second test to make sure the overflow
  1669           // function is called only once every overflow_frequency.
  1670           const int overflow_frequency = 1024;
  1671           __ andl(rbx, overflow_frequency - 1);
  1672           __ jcc(Assembler::zero, backedge_counter_overflow);
  1675       } else {
  1676         if (UseOnStackReplacement) {
  1677           // check for overflow against eax, which is the sum of the
  1678           // counters
  1679           __ cmp32(rax,
  1680                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1681           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1686     __ bind(dispatch);
  1689   // Pre-load the next target bytecode into rbx
  1690   __ load_unsigned_byte(rbx, Address(r13, 0));
  1692   // continue with the bytecode @ target
  1693   // eax: return bci for jsr's, unused otherwise
  1694   // ebx: target bytecode
  1695   // r13: target bcp
  1696   __ dispatch_only(vtos);
  1698   if (UseLoopCounter) {
  1699     if (ProfileInterpreter) {
  1700       // Out-of-line code to allocate method data oop.
  1701       __ bind(profile_method);
  1702       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1703       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1704       __ set_method_data_pointer_for_bcp();
  1705       __ jmp(dispatch);
  1708     if (UseOnStackReplacement) {
  1709       // invocation counter overflow
  1710       __ bind(backedge_counter_overflow);
  1711       __ negptr(rdx);
  1712       __ addptr(rdx, r13); // branch bcp
  1713       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1714       __ call_VM(noreg,
  1715                  CAST_FROM_FN_PTR(address,
  1716                                   InterpreterRuntime::frequency_counter_overflow),
  1717                  rdx);
  1718       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1720       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1721       // ebx: target bytecode
  1722       // rdx: scratch
  1723       // r14: locals pointer
  1724       // r13: bcp
  1725       __ testptr(rax, rax);                        // test result
  1726       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1727       // nmethod may have been invalidated (VM may block upon call_VM return)
  1728       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1729       __ cmpl(rcx, InvalidOSREntryBci);
  1730       __ jcc(Assembler::equal, dispatch);
  1732       // We have the address of an on stack replacement routine in eax
  1733       // We need to prepare to execute the OSR method. First we must
  1734       // migrate the locals and monitors off of the stack.
  1736       __ mov(r13, rax);                             // save the nmethod
  1738       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1740       // eax is OSR buffer, move it to expected parameter location
  1741       __ mov(j_rarg0, rax);
  1743       // We use j_rarg definitions here so that registers don't conflict as parameter
  1744       // registers change across platforms as we are in the midst of a calling
  1745       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1747       const Register retaddr = j_rarg2;
  1748       const Register sender_sp = j_rarg1;
  1750       // pop the interpreter frame
  1751       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1752       __ leave();                                // remove frame anchor
  1753       __ pop(retaddr);                           // get return address
  1754       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1755       // Ensure compiled code always sees stack at proper alignment
  1756       __ andptr(rsp, -(StackAlignmentInBytes));
  1758       // unlike x86 we need no specialized return from compiled code
  1759       // to the interpreter or the call stub.
  1761       // push the return address
  1762       __ push(retaddr);
  1764       // and begin the OSR nmethod
  1765       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1771 void TemplateTable::if_0cmp(Condition cc) {
  1772   transition(itos, vtos);
  1773   // assume branch is more often taken than not (loops use backward branches)
  1774   Label not_taken;
  1775   __ testl(rax, rax);
  1776   __ jcc(j_not(cc), not_taken);
  1777   branch(false, false);
  1778   __ bind(not_taken);
  1779   __ profile_not_taken_branch(rax);
  1782 void TemplateTable::if_icmp(Condition cc) {
  1783   transition(itos, vtos);
  1784   // assume branch is more often taken than not (loops use backward branches)
  1785   Label not_taken;
  1786   __ pop_i(rdx);
  1787   __ cmpl(rdx, rax);
  1788   __ jcc(j_not(cc), not_taken);
  1789   branch(false, false);
  1790   __ bind(not_taken);
  1791   __ profile_not_taken_branch(rax);
  1794 void TemplateTable::if_nullcmp(Condition cc) {
  1795   transition(atos, vtos);
  1796   // assume branch is more often taken than not (loops use backward branches)
  1797   Label not_taken;
  1798   __ testptr(rax, rax);
  1799   __ jcc(j_not(cc), not_taken);
  1800   branch(false, false);
  1801   __ bind(not_taken);
  1802   __ profile_not_taken_branch(rax);
  1805 void TemplateTable::if_acmp(Condition cc) {
  1806   transition(atos, vtos);
  1807   // assume branch is more often taken than not (loops use backward branches)
  1808   Label not_taken;
  1809   __ pop_ptr(rdx);
  1810   __ cmpptr(rdx, rax);
  1811   __ jcc(j_not(cc), not_taken);
  1812   branch(false, false);
  1813   __ bind(not_taken);
  1814   __ profile_not_taken_branch(rax);
  1817 void TemplateTable::ret() {
  1818   transition(vtos, vtos);
  1819   locals_index(rbx);
  1820   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1821   __ profile_ret(rbx, rcx);
  1822   __ get_method(rax);
  1823   __ movptr(r13, Address(rax, Method::const_offset()));
  1824   __ lea(r13, Address(r13, rbx, Address::times_1,
  1825                       ConstMethod::codes_offset()));
  1826   __ dispatch_next(vtos);
  1829 void TemplateTable::wide_ret() {
  1830   transition(vtos, vtos);
  1831   locals_index_wide(rbx);
  1832   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1833   __ profile_ret(rbx, rcx);
  1834   __ get_method(rax);
  1835   __ movptr(r13, Address(rax, Method::const_offset()));
  1836   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
  1837   __ dispatch_next(vtos);
  1840 void TemplateTable::tableswitch() {
  1841   Label default_case, continue_execution;
  1842   transition(itos, vtos);
  1843   // align r13
  1844   __ lea(rbx, at_bcp(BytesPerInt));
  1845   __ andptr(rbx, -BytesPerInt);
  1846   // load lo & hi
  1847   __ movl(rcx, Address(rbx, BytesPerInt));
  1848   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1849   __ bswapl(rcx);
  1850   __ bswapl(rdx);
  1851   // check against lo & hi
  1852   __ cmpl(rax, rcx);
  1853   __ jcc(Assembler::less, default_case);
  1854   __ cmpl(rax, rdx);
  1855   __ jcc(Assembler::greater, default_case);
  1856   // lookup dispatch offset
  1857   __ subl(rax, rcx);
  1858   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1859   __ profile_switch_case(rax, rbx, rcx);
  1860   // continue execution
  1861   __ bind(continue_execution);
  1862   __ bswapl(rdx);
  1863   __ movl2ptr(rdx, rdx);
  1864   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1865   __ addptr(r13, rdx);
  1866   __ dispatch_only(vtos);
  1867   // handle default
  1868   __ bind(default_case);
  1869   __ profile_switch_default(rax);
  1870   __ movl(rdx, Address(rbx, 0));
  1871   __ jmp(continue_execution);
  1874 void TemplateTable::lookupswitch() {
  1875   transition(itos, itos);
  1876   __ stop("lookupswitch bytecode should have been rewritten");
  1879 void TemplateTable::fast_linearswitch() {
  1880   transition(itos, vtos);
  1881   Label loop_entry, loop, found, continue_execution;
  1882   // bswap rax so we can avoid bswapping the table entries
  1883   __ bswapl(rax);
  1884   // align r13
  1885   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1886                                     // this instruction (change offsets
  1887                                     // below)
  1888   __ andptr(rbx, -BytesPerInt);
  1889   // set counter
  1890   __ movl(rcx, Address(rbx, BytesPerInt));
  1891   __ bswapl(rcx);
  1892   __ jmpb(loop_entry);
  1893   // table search
  1894   __ bind(loop);
  1895   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1896   __ jcc(Assembler::equal, found);
  1897   __ bind(loop_entry);
  1898   __ decrementl(rcx);
  1899   __ jcc(Assembler::greaterEqual, loop);
  1900   // default case
  1901   __ profile_switch_default(rax);
  1902   __ movl(rdx, Address(rbx, 0));
  1903   __ jmp(continue_execution);
  1904   // entry found -> get offset
  1905   __ bind(found);
  1906   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1907   __ profile_switch_case(rcx, rax, rbx);
  1908   // continue execution
  1909   __ bind(continue_execution);
  1910   __ bswapl(rdx);
  1911   __ movl2ptr(rdx, rdx);
  1912   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1913   __ addptr(r13, rdx);
  1914   __ dispatch_only(vtos);
  1917 void TemplateTable::fast_binaryswitch() {
  1918   transition(itos, vtos);
  1919   // Implementation using the following core algorithm:
  1920   //
  1921   // int binary_search(int key, LookupswitchPair* array, int n) {
  1922   //   // Binary search according to "Methodik des Programmierens" by
  1923   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1924   //   int i = 0;
  1925   //   int j = n;
  1926   //   while (i+1 < j) {
  1927   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1928   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1929   //     // where a stands for the array and assuming that the (inexisting)
  1930   //     // element a[n] is infinitely big.
  1931   //     int h = (i + j) >> 1;
  1932   //     // i < h < j
  1933   //     if (key < array[h].fast_match()) {
  1934   //       j = h;
  1935   //     } else {
  1936   //       i = h;
  1937   //     }
  1938   //   }
  1939   //   // R: a[i] <= key < a[i+1] or Q
  1940   //   // (i.e., if key is within array, i is the correct index)
  1941   //   return i;
  1942   // }
  1944   // Register allocation
  1945   const Register key   = rax; // already set (tosca)
  1946   const Register array = rbx;
  1947   const Register i     = rcx;
  1948   const Register j     = rdx;
  1949   const Register h     = rdi;
  1950   const Register temp  = rsi;
  1952   // Find array start
  1953   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1954                                           // get rid of this
  1955                                           // instruction (change
  1956                                           // offsets below)
  1957   __ andptr(array, -BytesPerInt);
  1959   // Initialize i & j
  1960   __ xorl(i, i);                            // i = 0;
  1961   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1963   // Convert j into native byteordering
  1964   __ bswapl(j);
  1966   // And start
  1967   Label entry;
  1968   __ jmp(entry);
  1970   // binary search loop
  1972     Label loop;
  1973     __ bind(loop);
  1974     // int h = (i + j) >> 1;
  1975     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1976     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1977     // if (key < array[h].fast_match()) {
  1978     //   j = h;
  1979     // } else {
  1980     //   i = h;
  1981     // }
  1982     // Convert array[h].match to native byte-ordering before compare
  1983     __ movl(temp, Address(array, h, Address::times_8));
  1984     __ bswapl(temp);
  1985     __ cmpl(key, temp);
  1986     // j = h if (key <  array[h].fast_match())
  1987     __ cmovl(Assembler::less, j, h);
  1988     // i = h if (key >= array[h].fast_match())
  1989     __ cmovl(Assembler::greaterEqual, i, h);
  1990     // while (i+1 < j)
  1991     __ bind(entry);
  1992     __ leal(h, Address(i, 1)); // i+1
  1993     __ cmpl(h, j);             // i+1 < j
  1994     __ jcc(Assembler::less, loop);
  1997   // end of binary search, result index is i (must check again!)
  1998   Label default_case;
  1999   // Convert array[i].match to native byte-ordering before compare
  2000   __ movl(temp, Address(array, i, Address::times_8));
  2001   __ bswapl(temp);
  2002   __ cmpl(key, temp);
  2003   __ jcc(Assembler::notEqual, default_case);
  2005   // entry found -> j = offset
  2006   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2007   __ profile_switch_case(i, key, array);
  2008   __ bswapl(j);
  2009   __ movl2ptr(j, j);
  2010   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2011   __ addptr(r13, j);
  2012   __ dispatch_only(vtos);
  2014   // default case -> j = default offset
  2015   __ bind(default_case);
  2016   __ profile_switch_default(i);
  2017   __ movl(j, Address(array, -2 * BytesPerInt));
  2018   __ bswapl(j);
  2019   __ movl2ptr(j, j);
  2020   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2021   __ addptr(r13, j);
  2022   __ dispatch_only(vtos);
  2026 void TemplateTable::_return(TosState state) {
  2027   transition(state, state);
  2028   assert(_desc->calls_vm(),
  2029          "inconsistent calls_vm information"); // call in remove_activation
  2031   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2032     assert(state == vtos, "only valid state");
  2033     __ movptr(c_rarg1, aaddress(0));
  2034     __ load_klass(rdi, c_rarg1);
  2035     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2036     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2037     Label skip_register_finalizer;
  2038     __ jcc(Assembler::zero, skip_register_finalizer);
  2040     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2042     __ bind(skip_register_finalizer);
  2045   __ remove_activation(state, r13);
  2046   __ jmp(r13);
  2049 // ----------------------------------------------------------------------------
  2050 // Volatile variables demand their effects be made known to all CPU's
  2051 // in order.  Store buffers on most chips allow reads & writes to
  2052 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2053 // without some kind of memory barrier (i.e., it's not sufficient that
  2054 // the interpreter does not reorder volatile references, the hardware
  2055 // also must not reorder them).
  2056 //
  2057 // According to the new Java Memory Model (JMM):
  2058 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2059 //     writes act as aquire & release, so:
  2060 // (2) A read cannot let unrelated NON-volatile memory refs that
  2061 //     happen after the read float up to before the read.  It's OK for
  2062 //     non-volatile memory refs that happen before the volatile read to
  2063 //     float down below it.
  2064 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2065 //     memory refs that happen BEFORE the write float down to after the
  2066 //     write.  It's OK for non-volatile memory refs that happen after the
  2067 //     volatile write to float up before it.
  2068 //
  2069 // We only put in barriers around volatile refs (they are expensive),
  2070 // not _between_ memory refs (that would require us to track the
  2071 // flavor of the previous memory refs).  Requirements (2) and (3)
  2072 // require some barriers before volatile stores and after volatile
  2073 // loads.  These nearly cover requirement (1) but miss the
  2074 // volatile-store-volatile-load case.  This final case is placed after
  2075 // volatile-stores although it could just as well go before
  2076 // volatile-loads.
  2077 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2078                                      order_constraint) {
  2079   // Helper function to insert a is-volatile test and memory barrier
  2080   if (os::is_MP()) { // Not needed on single CPU
  2081     __ membar(order_constraint);
  2085 void TemplateTable::resolve_cache_and_index(int byte_no,
  2086                                             Register Rcache,
  2087                                             Register index,
  2088                                             size_t index_size) {
  2089   const Register temp = rbx;
  2090   assert_different_registers(Rcache, index, temp);
  2092   Label resolved;
  2093     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2094     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2095     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2096     __ jcc(Assembler::equal, resolved);
  2098   // resolve first time through
  2099   address entry;
  2100   switch (bytecode()) {
  2101   case Bytecodes::_getstatic:
  2102   case Bytecodes::_putstatic:
  2103   case Bytecodes::_getfield:
  2104   case Bytecodes::_putfield:
  2105     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2106     break;
  2107   case Bytecodes::_invokevirtual:
  2108   case Bytecodes::_invokespecial:
  2109   case Bytecodes::_invokestatic:
  2110   case Bytecodes::_invokeinterface:
  2111     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2112     break;
  2113   case Bytecodes::_invokehandle:
  2114     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2115     break;
  2116   case Bytecodes::_invokedynamic:
  2117     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2118     break;
  2119   default:
  2120     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2121     break;
  2123   __ movl(temp, (int) bytecode());
  2124   __ call_VM(noreg, entry, temp);
  2126   // Update registers with resolved info
  2127   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2128   __ bind(resolved);
  2131 // The cache and index registers must be set before call
  2132 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2133                                               Register cache,
  2134                                               Register index,
  2135                                               Register off,
  2136                                               Register flags,
  2137                                               bool is_static = false) {
  2138   assert_different_registers(cache, index, flags, off);
  2140   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2141   // Field offset
  2142   __ movptr(off, Address(cache, index, Address::times_ptr,
  2143                          in_bytes(cp_base_offset +
  2144                                   ConstantPoolCacheEntry::f2_offset())));
  2145   // Flags
  2146   __ movl(flags, Address(cache, index, Address::times_ptr,
  2147                          in_bytes(cp_base_offset +
  2148                                   ConstantPoolCacheEntry::flags_offset())));
  2150   // klass overwrite register
  2151   if (is_static) {
  2152     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2153                            in_bytes(cp_base_offset +
  2154                                     ConstantPoolCacheEntry::f1_offset())));
  2155     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2156     __ movptr(obj, Address(obj, mirror_offset));
  2160 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2161                                                Register method,
  2162                                                Register itable_index,
  2163                                                Register flags,
  2164                                                bool is_invokevirtual,
  2165                                                bool is_invokevfinal, /*unused*/
  2166                                                bool is_invokedynamic) {
  2167   // setup registers
  2168   const Register cache = rcx;
  2169   const Register index = rdx;
  2170   assert_different_registers(method, flags);
  2171   assert_different_registers(method, cache, index);
  2172   assert_different_registers(itable_index, flags);
  2173   assert_different_registers(itable_index, cache, index);
  2174   // determine constant pool cache field offsets
  2175   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2176   const int method_offset = in_bytes(
  2177     ConstantPoolCache::base_offset() +
  2178       ((byte_no == f2_byte)
  2179        ? ConstantPoolCacheEntry::f2_offset()
  2180        : ConstantPoolCacheEntry::f1_offset()));
  2181   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2182                                     ConstantPoolCacheEntry::flags_offset());
  2183   // access constant pool cache fields
  2184   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2185                                     ConstantPoolCacheEntry::f2_offset());
  2187     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2188   resolve_cache_and_index(byte_no, cache, index, index_size);
  2189     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2191   if (itable_index != noreg) {
  2192     // pick up itable or appendix index from f2 also:
  2193     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2195   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2198 // Correct values of the cache and index registers are preserved.
  2199 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2200                                             bool is_static, bool has_tos) {
  2201   // do the JVMTI work here to avoid disturbing the register state below
  2202   // We use c_rarg registers here because we want to use the register used in
  2203   // the call to the VM
  2204   if (JvmtiExport::can_post_field_access()) {
  2205     // Check to see if a field access watch has been set before we
  2206     // take the time to call into the VM.
  2207     Label L1;
  2208     assert_different_registers(cache, index, rax);
  2209     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2210     __ testl(rax, rax);
  2211     __ jcc(Assembler::zero, L1);
  2213     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2215     // cache entry pointer
  2216     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
  2217     __ shll(c_rarg3, LogBytesPerWord);
  2218     __ addptr(c_rarg2, c_rarg3);
  2219     if (is_static) {
  2220       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2221     } else {
  2222       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2223       __ verify_oop(c_rarg1);
  2225     // c_rarg1: object pointer or NULL
  2226     // c_rarg2: cache entry pointer
  2227     // c_rarg3: jvalue object on the stack
  2228     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2229                                        InterpreterRuntime::post_field_access),
  2230                c_rarg1, c_rarg2, c_rarg3);
  2231     __ get_cache_and_index_at_bcp(cache, index, 1);
  2232     __ bind(L1);
  2236 void TemplateTable::pop_and_check_object(Register r) {
  2237   __ pop_ptr(r);
  2238   __ null_check(r);  // for field access must check obj.
  2239   __ verify_oop(r);
  2242 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2243   transition(vtos, vtos);
  2245   const Register cache = rcx;
  2246   const Register index = rdx;
  2247   const Register obj   = c_rarg3;
  2248   const Register off   = rbx;
  2249   const Register flags = rax;
  2250   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2252   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2253   jvmti_post_field_access(cache, index, is_static, false);
  2254   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2256   if (!is_static) {
  2257     // obj is on the stack
  2258     pop_and_check_object(obj);
  2261   const Address field(obj, off, Address::times_1);
  2263   Label Done, notByte, notInt, notShort, notChar,
  2264               notLong, notFloat, notObj, notDouble;
  2266   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2267   // Make sure we don't need to mask edx after the above shift
  2268   assert(btos == 0, "change code, btos != 0");
  2270   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2271   __ jcc(Assembler::notZero, notByte);
  2272   // btos
  2273   __ load_signed_byte(rax, field);
  2274   __ push(btos);
  2275   // Rewrite bytecode to be faster
  2276   if (!is_static) {
  2277     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2279   __ jmp(Done);
  2281   __ bind(notByte);
  2282   __ cmpl(flags, atos);
  2283   __ jcc(Assembler::notEqual, notObj);
  2284   // atos
  2285   __ load_heap_oop(rax, field);
  2286   __ push(atos);
  2287   if (!is_static) {
  2288     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2290   __ jmp(Done);
  2292   __ bind(notObj);
  2293   __ cmpl(flags, itos);
  2294   __ jcc(Assembler::notEqual, notInt);
  2295   // itos
  2296   __ movl(rax, field);
  2297   __ push(itos);
  2298   // Rewrite bytecode to be faster
  2299   if (!is_static) {
  2300     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2302   __ jmp(Done);
  2304   __ bind(notInt);
  2305   __ cmpl(flags, ctos);
  2306   __ jcc(Assembler::notEqual, notChar);
  2307   // ctos
  2308   __ load_unsigned_short(rax, field);
  2309   __ push(ctos);
  2310   // Rewrite bytecode to be faster
  2311   if (!is_static) {
  2312     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2314   __ jmp(Done);
  2316   __ bind(notChar);
  2317   __ cmpl(flags, stos);
  2318   __ jcc(Assembler::notEqual, notShort);
  2319   // stos
  2320   __ load_signed_short(rax, field);
  2321   __ push(stos);
  2322   // Rewrite bytecode to be faster
  2323   if (!is_static) {
  2324     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2326   __ jmp(Done);
  2328   __ bind(notShort);
  2329   __ cmpl(flags, ltos);
  2330   __ jcc(Assembler::notEqual, notLong);
  2331   // ltos
  2332   __ movq(rax, field);
  2333   __ push(ltos);
  2334   // Rewrite bytecode to be faster
  2335   if (!is_static) {
  2336     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2338   __ jmp(Done);
  2340   __ bind(notLong);
  2341   __ cmpl(flags, ftos);
  2342   __ jcc(Assembler::notEqual, notFloat);
  2343   // ftos
  2344   __ movflt(xmm0, field);
  2345   __ push(ftos);
  2346   // Rewrite bytecode to be faster
  2347   if (!is_static) {
  2348     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2350   __ jmp(Done);
  2352   __ bind(notFloat);
  2353 #ifdef ASSERT
  2354   __ cmpl(flags, dtos);
  2355   __ jcc(Assembler::notEqual, notDouble);
  2356 #endif
  2357   // dtos
  2358   __ movdbl(xmm0, field);
  2359   __ push(dtos);
  2360   // Rewrite bytecode to be faster
  2361   if (!is_static) {
  2362     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2364 #ifdef ASSERT
  2365   __ jmp(Done);
  2367   __ bind(notDouble);
  2368   __ stop("Bad state");
  2369 #endif
  2371   __ bind(Done);
  2372   // [jk] not needed currently
  2373   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2374   //                                              Assembler::LoadStore));
  2378 void TemplateTable::getfield(int byte_no) {
  2379   getfield_or_static(byte_no, false);
  2382 void TemplateTable::getstatic(int byte_no) {
  2383   getfield_or_static(byte_no, true);
  2386 // The registers cache and index expected to be set before call.
  2387 // The function may destroy various registers, just not the cache and index registers.
  2388 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2389   transition(vtos, vtos);
  2391   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2393   if (JvmtiExport::can_post_field_modification()) {
  2394     // Check to see if a field modification watch has been set before
  2395     // we take the time to call into the VM.
  2396     Label L1;
  2397     assert_different_registers(cache, index, rax);
  2398     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2399     __ testl(rax, rax);
  2400     __ jcc(Assembler::zero, L1);
  2402     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2404     if (is_static) {
  2405       // Life is simple.  Null out the object pointer.
  2406       __ xorl(c_rarg1, c_rarg1);
  2407     } else {
  2408       // Life is harder. The stack holds the value on top, followed by
  2409       // the object.  We don't know the size of the value, though; it
  2410       // could be one or two words depending on its type. As a result,
  2411       // we must find the type to determine where the object is.
  2412       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2413                            Address::times_8,
  2414                            in_bytes(cp_base_offset +
  2415                                      ConstantPoolCacheEntry::flags_offset())));
  2416       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2417       // Make sure we don't need to mask rcx after the above shift
  2418       ConstantPoolCacheEntry::verify_tos_state_shift();
  2419       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2420       __ cmpl(c_rarg3, ltos);
  2421       __ cmovptr(Assembler::equal,
  2422                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2423       __ cmpl(c_rarg3, dtos);
  2424       __ cmovptr(Assembler::equal,
  2425                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2427     // cache entry pointer
  2428     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2429     __ shll(rscratch1, LogBytesPerWord);
  2430     __ addptr(c_rarg2, rscratch1);
  2431     // object (tos)
  2432     __ mov(c_rarg3, rsp);
  2433     // c_rarg1: object pointer set up above (NULL if static)
  2434     // c_rarg2: cache entry pointer
  2435     // c_rarg3: jvalue object on the stack
  2436     __ call_VM(noreg,
  2437                CAST_FROM_FN_PTR(address,
  2438                                 InterpreterRuntime::post_field_modification),
  2439                c_rarg1, c_rarg2, c_rarg3);
  2440     __ get_cache_and_index_at_bcp(cache, index, 1);
  2441     __ bind(L1);
  2445 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2446   transition(vtos, vtos);
  2448   const Register cache = rcx;
  2449   const Register index = rdx;
  2450   const Register obj   = rcx;
  2451   const Register off   = rbx;
  2452   const Register flags = rax;
  2453   const Register bc    = c_rarg3;
  2455   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2456   jvmti_post_field_mod(cache, index, is_static);
  2457   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2459   // [jk] not needed currently
  2460   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2461   //                                              Assembler::StoreStore));
  2463   Label notVolatile, Done;
  2464   __ movl(rdx, flags);
  2465   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2466   __ andl(rdx, 0x1);
  2468   // field address
  2469   const Address field(obj, off, Address::times_1);
  2471   Label notByte, notInt, notShort, notChar,
  2472         notLong, notFloat, notObj, notDouble;
  2474   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2476   assert(btos == 0, "change code, btos != 0");
  2477   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2478   __ jcc(Assembler::notZero, notByte);
  2480   // btos
  2482     __ pop(btos);
  2483     if (!is_static) pop_and_check_object(obj);
  2484     __ movb(field, rax);
  2485     if (!is_static) {
  2486       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2488     __ jmp(Done);
  2491   __ bind(notByte);
  2492   __ cmpl(flags, atos);
  2493   __ jcc(Assembler::notEqual, notObj);
  2495   // atos
  2497     __ pop(atos);
  2498     if (!is_static) pop_and_check_object(obj);
  2499     // Store into the field
  2500     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2501     if (!is_static) {
  2502       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2504     __ jmp(Done);
  2507   __ bind(notObj);
  2508   __ cmpl(flags, itos);
  2509   __ jcc(Assembler::notEqual, notInt);
  2511   // itos
  2513     __ pop(itos);
  2514     if (!is_static) pop_and_check_object(obj);
  2515     __ movl(field, rax);
  2516     if (!is_static) {
  2517       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2519     __ jmp(Done);
  2522   __ bind(notInt);
  2523   __ cmpl(flags, ctos);
  2524   __ jcc(Assembler::notEqual, notChar);
  2526   // ctos
  2528     __ pop(ctos);
  2529     if (!is_static) pop_and_check_object(obj);
  2530     __ movw(field, rax);
  2531     if (!is_static) {
  2532       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2534     __ jmp(Done);
  2537   __ bind(notChar);
  2538   __ cmpl(flags, stos);
  2539   __ jcc(Assembler::notEqual, notShort);
  2541   // stos
  2543     __ pop(stos);
  2544     if (!is_static) pop_and_check_object(obj);
  2545     __ movw(field, rax);
  2546     if (!is_static) {
  2547       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2549     __ jmp(Done);
  2552   __ bind(notShort);
  2553   __ cmpl(flags, ltos);
  2554   __ jcc(Assembler::notEqual, notLong);
  2556   // ltos
  2558     __ pop(ltos);
  2559     if (!is_static) pop_and_check_object(obj);
  2560     __ movq(field, rax);
  2561     if (!is_static) {
  2562       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2564     __ jmp(Done);
  2567   __ bind(notLong);
  2568   __ cmpl(flags, ftos);
  2569   __ jcc(Assembler::notEqual, notFloat);
  2571   // ftos
  2573     __ pop(ftos);
  2574     if (!is_static) pop_and_check_object(obj);
  2575     __ movflt(field, xmm0);
  2576     if (!is_static) {
  2577       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2579     __ jmp(Done);
  2582   __ bind(notFloat);
  2583 #ifdef ASSERT
  2584   __ cmpl(flags, dtos);
  2585   __ jcc(Assembler::notEqual, notDouble);
  2586 #endif
  2588   // dtos
  2590     __ pop(dtos);
  2591     if (!is_static) pop_and_check_object(obj);
  2592     __ movdbl(field, xmm0);
  2593     if (!is_static) {
  2594       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2598 #ifdef ASSERT
  2599   __ jmp(Done);
  2601   __ bind(notDouble);
  2602   __ stop("Bad state");
  2603 #endif
  2605   __ bind(Done);
  2607   // Check for volatile store
  2608   __ testl(rdx, rdx);
  2609   __ jcc(Assembler::zero, notVolatile);
  2610   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2611                                                Assembler::StoreStore));
  2612   __ bind(notVolatile);
  2615 void TemplateTable::putfield(int byte_no) {
  2616   putfield_or_static(byte_no, false);
  2619 void TemplateTable::putstatic(int byte_no) {
  2620   putfield_or_static(byte_no, true);
  2623 void TemplateTable::jvmti_post_fast_field_mod() {
  2624   if (JvmtiExport::can_post_field_modification()) {
  2625     // Check to see if a field modification watch has been set before
  2626     // we take the time to call into the VM.
  2627     Label L2;
  2628     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2629     __ testl(c_rarg3, c_rarg3);
  2630     __ jcc(Assembler::zero, L2);
  2631     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2632     __ verify_oop(rbx);
  2633     __ push_ptr(rbx);                 // put the object pointer back on tos
  2634     // Save tos values before call_VM() clobbers them. Since we have
  2635     // to do it for every data type, we use the saved values as the
  2636     // jvalue object.
  2637     switch (bytecode()) {          // load values into the jvalue object
  2638     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2639     case Bytecodes::_fast_bputfield: // fall through
  2640     case Bytecodes::_fast_sputfield: // fall through
  2641     case Bytecodes::_fast_cputfield: // fall through
  2642     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2643     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2644     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2645     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2647     default:
  2648       ShouldNotReachHere();
  2650     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2651     // access constant pool cache entry
  2652     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2653     __ verify_oop(rbx);
  2654     // rbx: object pointer copied above
  2655     // c_rarg2: cache entry pointer
  2656     // c_rarg3: jvalue object on the stack
  2657     __ call_VM(noreg,
  2658                CAST_FROM_FN_PTR(address,
  2659                                 InterpreterRuntime::post_field_modification),
  2660                rbx, c_rarg2, c_rarg3);
  2662     switch (bytecode()) {             // restore tos values
  2663     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2664     case Bytecodes::_fast_bputfield: // fall through
  2665     case Bytecodes::_fast_sputfield: // fall through
  2666     case Bytecodes::_fast_cputfield: // fall through
  2667     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2668     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2669     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2670     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2672     __ bind(L2);
  2676 void TemplateTable::fast_storefield(TosState state) {
  2677   transition(state, vtos);
  2679   ByteSize base = ConstantPoolCache::base_offset();
  2681   jvmti_post_fast_field_mod();
  2683   // access constant pool cache
  2684   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2686   // test for volatile with rdx
  2687   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2688                        in_bytes(base +
  2689                                 ConstantPoolCacheEntry::flags_offset())));
  2691   // replace index with field offset from cache entry
  2692   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2693                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2695   // [jk] not needed currently
  2696   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2697   //                                              Assembler::StoreStore));
  2699   Label notVolatile;
  2700   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2701   __ andl(rdx, 0x1);
  2703   // Get object from stack
  2704   pop_and_check_object(rcx);
  2706   // field address
  2707   const Address field(rcx, rbx, Address::times_1);
  2709   // access field
  2710   switch (bytecode()) {
  2711   case Bytecodes::_fast_aputfield:
  2712     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2713     break;
  2714   case Bytecodes::_fast_lputfield:
  2715     __ movq(field, rax);
  2716     break;
  2717   case Bytecodes::_fast_iputfield:
  2718     __ movl(field, rax);
  2719     break;
  2720   case Bytecodes::_fast_bputfield:
  2721     __ movb(field, rax);
  2722     break;
  2723   case Bytecodes::_fast_sputfield:
  2724     // fall through
  2725   case Bytecodes::_fast_cputfield:
  2726     __ movw(field, rax);
  2727     break;
  2728   case Bytecodes::_fast_fputfield:
  2729     __ movflt(field, xmm0);
  2730     break;
  2731   case Bytecodes::_fast_dputfield:
  2732     __ movdbl(field, xmm0);
  2733     break;
  2734   default:
  2735     ShouldNotReachHere();
  2738   // Check for volatile store
  2739   __ testl(rdx, rdx);
  2740   __ jcc(Assembler::zero, notVolatile);
  2741   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2742                                                Assembler::StoreStore));
  2743   __ bind(notVolatile);
  2747 void TemplateTable::fast_accessfield(TosState state) {
  2748   transition(atos, state);
  2750   // Do the JVMTI work here to avoid disturbing the register state below
  2751   if (JvmtiExport::can_post_field_access()) {
  2752     // Check to see if a field access watch has been set before we
  2753     // take the time to call into the VM.
  2754     Label L1;
  2755     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2756     __ testl(rcx, rcx);
  2757     __ jcc(Assembler::zero, L1);
  2758     // access constant pool cache entry
  2759     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2760     __ verify_oop(rax);
  2761     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2762     __ mov(c_rarg1, rax);
  2763     // c_rarg1: object pointer copied above
  2764     // c_rarg2: cache entry pointer
  2765     __ call_VM(noreg,
  2766                CAST_FROM_FN_PTR(address,
  2767                                 InterpreterRuntime::post_field_access),
  2768                c_rarg1, c_rarg2);
  2769     __ pop_ptr(rax); // restore object pointer
  2770     __ bind(L1);
  2773   // access constant pool cache
  2774   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2775   // replace index with field offset from cache entry
  2776   // [jk] not needed currently
  2777   // if (os::is_MP()) {
  2778   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2779   //                        in_bytes(ConstantPoolCache::base_offset() +
  2780   //                                 ConstantPoolCacheEntry::flags_offset())));
  2781   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2782   //   __ andl(rdx, 0x1);
  2783   // }
  2784   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2785                          in_bytes(ConstantPoolCache::base_offset() +
  2786                                   ConstantPoolCacheEntry::f2_offset())));
  2788   // rax: object
  2789   __ verify_oop(rax);
  2790   __ null_check(rax);
  2791   Address field(rax, rbx, Address::times_1);
  2793   // access field
  2794   switch (bytecode()) {
  2795   case Bytecodes::_fast_agetfield:
  2796     __ load_heap_oop(rax, field);
  2797     __ verify_oop(rax);
  2798     break;
  2799   case Bytecodes::_fast_lgetfield:
  2800     __ movq(rax, field);
  2801     break;
  2802   case Bytecodes::_fast_igetfield:
  2803     __ movl(rax, field);
  2804     break;
  2805   case Bytecodes::_fast_bgetfield:
  2806     __ movsbl(rax, field);
  2807     break;
  2808   case Bytecodes::_fast_sgetfield:
  2809     __ load_signed_short(rax, field);
  2810     break;
  2811   case Bytecodes::_fast_cgetfield:
  2812     __ load_unsigned_short(rax, field);
  2813     break;
  2814   case Bytecodes::_fast_fgetfield:
  2815     __ movflt(xmm0, field);
  2816     break;
  2817   case Bytecodes::_fast_dgetfield:
  2818     __ movdbl(xmm0, field);
  2819     break;
  2820   default:
  2821     ShouldNotReachHere();
  2823   // [jk] not needed currently
  2824   // if (os::is_MP()) {
  2825   //   Label notVolatile;
  2826   //   __ testl(rdx, rdx);
  2827   //   __ jcc(Assembler::zero, notVolatile);
  2828   //   __ membar(Assembler::LoadLoad);
  2829   //   __ bind(notVolatile);
  2830   //};
  2833 void TemplateTable::fast_xaccess(TosState state) {
  2834   transition(vtos, state);
  2836   // get receiver
  2837   __ movptr(rax, aaddress(0));
  2838   // access constant pool cache
  2839   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2840   __ movptr(rbx,
  2841             Address(rcx, rdx, Address::times_8,
  2842                     in_bytes(ConstantPoolCache::base_offset() +
  2843                              ConstantPoolCacheEntry::f2_offset())));
  2844   // make sure exception is reported in correct bcp range (getfield is
  2845   // next instruction)
  2846   __ increment(r13);
  2847   __ null_check(rax);
  2848   switch (state) {
  2849   case itos:
  2850     __ movl(rax, Address(rax, rbx, Address::times_1));
  2851     break;
  2852   case atos:
  2853     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2854     __ verify_oop(rax);
  2855     break;
  2856   case ftos:
  2857     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2858     break;
  2859   default:
  2860     ShouldNotReachHere();
  2863   // [jk] not needed currently
  2864   // if (os::is_MP()) {
  2865   //   Label notVolatile;
  2866   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2867   //                        in_bytes(ConstantPoolCache::base_offset() +
  2868   //                                 ConstantPoolCacheEntry::flags_offset())));
  2869   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2870   //   __ testl(rdx, 0x1);
  2871   //   __ jcc(Assembler::zero, notVolatile);
  2872   //   __ membar(Assembler::LoadLoad);
  2873   //   __ bind(notVolatile);
  2874   // }
  2876   __ decrement(r13);
  2881 //-----------------------------------------------------------------------------
  2882 // Calls
  2884 void TemplateTable::count_calls(Register method, Register temp) {
  2885   // implemented elsewhere
  2886   ShouldNotReachHere();
  2889 void TemplateTable::prepare_invoke(int byte_no,
  2890                                    Register method,  // linked method (or i-klass)
  2891                                    Register index,   // itable index, MethodType, etc.
  2892                                    Register recv,    // if caller wants to see it
  2893                                    Register flags    // if caller wants to test it
  2894                                    ) {
  2895   // determine flags
  2896   const Bytecodes::Code code = bytecode();
  2897   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2898   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2899   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2900   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2901   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2902   const bool load_receiver       = (recv  != noreg);
  2903   const bool save_flags          = (flags != noreg);
  2904   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2905   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2906   assert(flags == noreg || flags == rdx, "");
  2907   assert(recv  == noreg || recv  == rcx, "");
  2909   // setup registers & access constant pool cache
  2910   if (recv  == noreg)  recv  = rcx;
  2911   if (flags == noreg)  flags = rdx;
  2912   assert_different_registers(method, index, recv, flags);
  2914   // save 'interpreter return address'
  2915   __ save_bcp();
  2917   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2919   // maybe push appendix to arguments (just before return address)
  2920   if (is_invokedynamic || is_invokehandle) {
  2921     Label L_no_push;
  2922     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2923     __ jcc(Assembler::zero, L_no_push);
  2924     // Push the appendix as a trailing parameter.
  2925     // This must be done before we get the receiver,
  2926     // since the parameter_size includes it.
  2927     __ push(rbx);
  2928     __ mov(rbx, index);
  2929     __ load_resolved_reference_at_index(index, rbx);
  2930     __ pop(rbx);
  2931     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2932     __ bind(L_no_push);
  2935   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2936   // Note: no return address pushed yet
  2937   if (load_receiver) {
  2938     __ movl(recv, flags);
  2939     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2940     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2941     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2942     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2943     __ movptr(recv, recv_addr);
  2944     __ verify_oop(recv);
  2947   if (save_flags) {
  2948     __ movl(r13, flags);
  2951   // compute return type
  2952   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2953   // Make sure we don't need to mask flags after the above shift
  2954   ConstantPoolCacheEntry::verify_tos_state_shift();
  2955   // load return address
  2957     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2958         (address)Interpreter::return_5_addrs_by_index_table() :
  2959         (address)Interpreter::return_3_addrs_by_index_table();
  2960     ExternalAddress table(table_addr);
  2961     __ lea(rscratch1, table);
  2962     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2965   // push return address
  2966   __ push(flags);
  2968   // Restore flags value from the constant pool cache, and restore rsi
  2969   // for later null checks.  r13 is the bytecode pointer
  2970   if (save_flags) {
  2971     __ movl(flags, r13);
  2972     __ restore_bcp();
  2977 void TemplateTable::invokevirtual_helper(Register index,
  2978                                          Register recv,
  2979                                          Register flags) {
  2980   // Uses temporary registers rax, rdx
  2981   assert_different_registers(index, recv, rax, rdx);
  2982   assert(index == rbx, "");
  2983   assert(recv  == rcx, "");
  2985   // Test for an invoke of a final method
  2986   Label notFinal;
  2987   __ movl(rax, flags);
  2988   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2989   __ jcc(Assembler::zero, notFinal);
  2991   const Register method = index;  // method must be rbx
  2992   assert(method == rbx,
  2993          "Method* must be rbx for interpreter calling convention");
  2995   // do the call - the index is actually the method to call
  2996   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  2998   // It's final, need a null check here!
  2999   __ null_check(recv);
  3001   // profile this call
  3002   __ profile_final_call(rax);
  3004   __ jump_from_interpreted(method, rax);
  3006   __ bind(notFinal);
  3008   // get receiver klass
  3009   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3010   __ load_klass(rax, recv);
  3012   // profile this call
  3013   __ profile_virtual_call(rax, r14, rdx);
  3015   // get target Method* & entry point
  3016   __ lookup_virtual_method(rax, index, method);
  3017   __ jump_from_interpreted(method, rdx);
  3021 void TemplateTable::invokevirtual(int byte_no) {
  3022   transition(vtos, vtos);
  3023   assert(byte_no == f2_byte, "use this argument");
  3024   prepare_invoke(byte_no,
  3025                  rbx,    // method or vtable index
  3026                  noreg,  // unused itable index
  3027                  rcx, rdx); // recv, flags
  3029   // rbx: index
  3030   // rcx: receiver
  3031   // rdx: flags
  3033   invokevirtual_helper(rbx, rcx, rdx);
  3037 void TemplateTable::invokespecial(int byte_no) {
  3038   transition(vtos, vtos);
  3039   assert(byte_no == f1_byte, "use this argument");
  3040   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3041                  rcx);  // get receiver also for null check
  3042   __ verify_oop(rcx);
  3043   __ null_check(rcx);
  3044   // do the call
  3045   __ profile_call(rax);
  3046   __ jump_from_interpreted(rbx, rax);
  3050 void TemplateTable::invokestatic(int byte_no) {
  3051   transition(vtos, vtos);
  3052   assert(byte_no == f1_byte, "use this argument");
  3053   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3054   // do the call
  3055   __ profile_call(rax);
  3056   __ jump_from_interpreted(rbx, rax);
  3059 void TemplateTable::fast_invokevfinal(int byte_no) {
  3060   transition(vtos, vtos);
  3061   assert(byte_no == f2_byte, "use this argument");
  3062   __ stop("fast_invokevfinal not used on amd64");
  3065 void TemplateTable::invokeinterface(int byte_no) {
  3066   transition(vtos, vtos);
  3067   assert(byte_no == f1_byte, "use this argument");
  3068   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3069                  rcx, rdx); // recv, flags
  3071   // rax: interface klass (from f1)
  3072   // rbx: itable index (from f2)
  3073   // rcx: receiver
  3074   // rdx: flags
  3076   // Special case of invokeinterface called for virtual method of
  3077   // java.lang.Object.  See cpCacheOop.cpp for details.
  3078   // This code isn't produced by javac, but could be produced by
  3079   // another compliant java compiler.
  3080   Label notMethod;
  3081   __ movl(r14, rdx);
  3082   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3083   __ jcc(Assembler::zero, notMethod);
  3085   invokevirtual_helper(rbx, rcx, rdx);
  3086   __ bind(notMethod);
  3088   // Get receiver klass into rdx - also a null check
  3089   __ restore_locals();  // restore r14
  3090   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3091   __ load_klass(rdx, rcx);
  3093   // profile this call
  3094   __ profile_virtual_call(rdx, r13, r14);
  3096   Label no_such_interface, no_such_method;
  3098   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3099                              rdx, rax, rbx,
  3100                              // outputs: method, scan temp. reg
  3101                              rbx, r13,
  3102                              no_such_interface);
  3104   // rbx: Method* to call
  3105   // rcx: receiver
  3106   // Check for abstract method error
  3107   // Note: This should be done more efficiently via a throw_abstract_method_error
  3108   //       interpreter entry point and a conditional jump to it in case of a null
  3109   //       method.
  3110   __ testptr(rbx, rbx);
  3111   __ jcc(Assembler::zero, no_such_method);
  3113   // do the call
  3114   // rcx: receiver
  3115   // rbx,: Method*
  3116   __ jump_from_interpreted(rbx, rdx);
  3117   __ should_not_reach_here();
  3119   // exception handling code follows...
  3120   // note: must restore interpreter registers to canonical
  3121   //       state for exception handling to work correctly!
  3123   __ bind(no_such_method);
  3124   // throw exception
  3125   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3126   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3127   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3128   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3129   // the call_VM checks for exception, so we should never return here.
  3130   __ should_not_reach_here();
  3132   __ bind(no_such_interface);
  3133   // throw exception
  3134   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3135   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3136   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3137   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3138                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3139   // the call_VM checks for exception, so we should never return here.
  3140   __ should_not_reach_here();
  3144 void TemplateTable::invokehandle(int byte_no) {
  3145   transition(vtos, vtos);
  3146   assert(byte_no == f1_byte, "use this argument");
  3147   const Register rbx_method = rbx;  // f2
  3148   const Register rax_mtype  = rax;  // f1
  3149   const Register rcx_recv   = rcx;
  3150   const Register rdx_flags  = rdx;
  3152   if (!EnableInvokeDynamic) {
  3153     // rewriter does not generate this bytecode
  3154     __ should_not_reach_here();
  3155     return;
  3158   prepare_invoke(byte_no,
  3159                  rbx_method, rax_mtype,  // get f2 Method*, f1 MethodType
  3160                  rcx_recv);
  3161   __ verify_method_ptr(rbx_method);
  3162   __ verify_oop(rcx_recv);
  3163   __ null_check(rcx_recv);
  3165   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3167   // FIXME: profile the LambdaForm also
  3168   __ profile_final_call(rax);
  3170   __ jump_from_interpreted(rbx_method, rdx);
  3174 void TemplateTable::invokedynamic(int byte_no) {
  3175   transition(vtos, vtos);
  3176   assert(byte_no == f1_byte, "use this argument");
  3178   if (!EnableInvokeDynamic) {
  3179     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3180     // The verifier will stop it.  However, if we get past the verifier,
  3181     // this will stop the thread in a reasonable way, without crashing the JVM.
  3182     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3183                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3184     // the call_VM checks for exception, so we should never return here.
  3185     __ should_not_reach_here();
  3186     return;
  3189   const Register rbx_method   = rbx;
  3190   const Register rax_callsite = rax;
  3192   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3194   // rax: CallSite object (from cpool->resolved_references[])
  3195   // rbx: MH.linkToCallSite method (from f2)
  3197   // Note:  rax_callsite is already pushed by prepare_invoke
  3199   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3200   // profile this call
  3201   __ profile_call(r13);
  3203   __ verify_oop(rax_callsite);
  3205   __ jump_from_interpreted(rbx_method, rdx);
  3209 //-----------------------------------------------------------------------------
  3210 // Allocation
  3212 void TemplateTable::_new() {
  3213   transition(vtos, atos);
  3214   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3215   Label slow_case;
  3216   Label done;
  3217   Label initialize_header;
  3218   Label initialize_object; // including clearing the fields
  3219   Label allocate_shared;
  3221   __ get_cpool_and_tags(rsi, rax);
  3222   // Make sure the class we're about to instantiate has been resolved.
  3223   // This is done before loading InstanceKlass to be consistent with the order
  3224   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3225   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3226   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3227           JVM_CONSTANT_Class);
  3228   __ jcc(Assembler::notEqual, slow_case);
  3230   // get InstanceKlass
  3231   __ movptr(rsi, Address(rsi, rdx,
  3232             Address::times_8, sizeof(ConstantPool)));
  3234   // make sure klass is initialized & doesn't have finalizer
  3235   // make sure klass is fully initialized
  3236   __ cmpb(Address(rsi,
  3237                   InstanceKlass::init_state_offset()),
  3238           InstanceKlass::fully_initialized);
  3239   __ jcc(Assembler::notEqual, slow_case);
  3241   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3242   __ movl(rdx,
  3243           Address(rsi,
  3244                   Klass::layout_helper_offset()));
  3245   // test to see if it has a finalizer or is malformed in some way
  3246   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3247   __ jcc(Assembler::notZero, slow_case);
  3249   // Allocate the instance
  3250   // 1) Try to allocate in the TLAB
  3251   // 2) if fail and the object is large allocate in the shared Eden
  3252   // 3) if the above fails (or is not applicable), go to a slow case
  3253   // (creates a new TLAB, etc.)
  3255   const bool allow_shared_alloc =
  3256     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3258   if (UseTLAB) {
  3259     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3260     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3261     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3262     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3263     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3264     if (ZeroTLAB) {
  3265       // the fields have been already cleared
  3266       __ jmp(initialize_header);
  3267     } else {
  3268       // initialize both the header and fields
  3269       __ jmp(initialize_object);
  3273   // Allocation in the shared Eden, if allowed.
  3274   //
  3275   // rdx: instance size in bytes
  3276   if (allow_shared_alloc) {
  3277     __ bind(allocate_shared);
  3279     ExternalAddress top((address)Universe::heap()->top_addr());
  3280     ExternalAddress end((address)Universe::heap()->end_addr());
  3282     const Register RtopAddr = rscratch1;
  3283     const Register RendAddr = rscratch2;
  3285     __ lea(RtopAddr, top);
  3286     __ lea(RendAddr, end);
  3287     __ movptr(rax, Address(RtopAddr, 0));
  3289     // For retries rax gets set by cmpxchgq
  3290     Label retry;
  3291     __ bind(retry);
  3292     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3293     __ cmpptr(rbx, Address(RendAddr, 0));
  3294     __ jcc(Assembler::above, slow_case);
  3296     // Compare rax with the top addr, and if still equal, store the new
  3297     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3298     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3299     //
  3300     // rax: object begin
  3301     // rbx: object end
  3302     // rdx: instance size in bytes
  3303     if (os::is_MP()) {
  3304       __ lock();
  3306     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3308     // if someone beat us on the allocation, try again, otherwise continue
  3309     __ jcc(Assembler::notEqual, retry);
  3311     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3314   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3315     // The object is initialized before the header.  If the object size is
  3316     // zero, go directly to the header initialization.
  3317     __ bind(initialize_object);
  3318     __ decrementl(rdx, sizeof(oopDesc));
  3319     __ jcc(Assembler::zero, initialize_header);
  3321     // Initialize object fields
  3322     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3323     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3325       Label loop;
  3326       __ bind(loop);
  3327       __ movq(Address(rax, rdx, Address::times_8,
  3328                       sizeof(oopDesc) - oopSize),
  3329               rcx);
  3330       __ decrementl(rdx);
  3331       __ jcc(Assembler::notZero, loop);
  3334     // initialize object header only.
  3335     __ bind(initialize_header);
  3336     if (UseBiasedLocking) {
  3337       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3338       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3339     } else {
  3340       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3341                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3343     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3344     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3345     __ store_klass(rax, rsi);      // store klass last
  3348       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3349       // Trigger dtrace event for fastpath
  3350       __ push(atos); // save the return value
  3351       __ call_VM_leaf(
  3352            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3353       __ pop(atos); // restore the return value
  3356     __ jmp(done);
  3360   // slow case
  3361   __ bind(slow_case);
  3362   __ get_constant_pool(c_rarg1);
  3363   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3364   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3365   __ verify_oop(rax);
  3367   // continue
  3368   __ bind(done);
  3371 void TemplateTable::newarray() {
  3372   transition(itos, atos);
  3373   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3374   __ movl(c_rarg2, rax);
  3375   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3376           c_rarg1, c_rarg2);
  3379 void TemplateTable::anewarray() {
  3380   transition(itos, atos);
  3381   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3382   __ get_constant_pool(c_rarg1);
  3383   __ movl(c_rarg3, rax);
  3384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3385           c_rarg1, c_rarg2, c_rarg3);
  3388 void TemplateTable::arraylength() {
  3389   transition(atos, itos);
  3390   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3391   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3394 void TemplateTable::checkcast() {
  3395   transition(atos, atos);
  3396   Label done, is_null, ok_is_subtype, quicked, resolved;
  3397   __ testptr(rax, rax); // object is in rax
  3398   __ jcc(Assembler::zero, is_null);
  3400   // Get cpool & tags index
  3401   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3402   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3403   // See if bytecode has already been quicked
  3404   __ cmpb(Address(rdx, rbx,
  3405                   Address::times_1,
  3406                   Array<u1>::base_offset_in_bytes()),
  3407           JVM_CONSTANT_Class);
  3408   __ jcc(Assembler::equal, quicked);
  3409   __ push(atos); // save receiver for result, and for GC
  3410   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3411   // vm_result_2 has metadata result
  3412   __ get_vm_result_2(rax, r15_thread);
  3413   __ pop_ptr(rdx); // restore receiver
  3414   __ jmpb(resolved);
  3416   // Get superklass in rax and subklass in rbx
  3417   __ bind(quicked);
  3418   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3419   __ movptr(rax, Address(rcx, rbx,
  3420                        Address::times_8, sizeof(ConstantPool)));
  3422   __ bind(resolved);
  3423   __ load_klass(rbx, rdx);
  3425   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3426   // Superklass in rax.  Subklass in rbx.
  3427   __ gen_subtype_check(rbx, ok_is_subtype);
  3429   // Come here on failure
  3430   __ push_ptr(rdx);
  3431   // object is at TOS
  3432   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3434   // Come here on success
  3435   __ bind(ok_is_subtype);
  3436   __ mov(rax, rdx); // Restore object in rdx
  3438   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3439   if (ProfileInterpreter) {
  3440     __ jmp(done);
  3441     __ bind(is_null);
  3442     __ profile_null_seen(rcx);
  3443   } else {
  3444     __ bind(is_null);   // same as 'done'
  3446   __ bind(done);
  3449 void TemplateTable::instanceof() {
  3450   transition(atos, itos);
  3451   Label done, is_null, ok_is_subtype, quicked, resolved;
  3452   __ testptr(rax, rax);
  3453   __ jcc(Assembler::zero, is_null);
  3455   // Get cpool & tags index
  3456   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3457   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3458   // See if bytecode has already been quicked
  3459   __ cmpb(Address(rdx, rbx,
  3460                   Address::times_1,
  3461                   Array<u1>::base_offset_in_bytes()),
  3462           JVM_CONSTANT_Class);
  3463   __ jcc(Assembler::equal, quicked);
  3465   __ push(atos); // save receiver for result, and for GC
  3466   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3467   // vm_result_2 has metadata result
  3468   __ get_vm_result_2(rax, r15_thread);
  3469   __ pop_ptr(rdx); // restore receiver
  3470   __ verify_oop(rdx);
  3471   __ load_klass(rdx, rdx);
  3472   __ jmpb(resolved);
  3474   // Get superklass in rax and subklass in rdx
  3475   __ bind(quicked);
  3476   __ load_klass(rdx, rax);
  3477   __ movptr(rax, Address(rcx, rbx,
  3478                          Address::times_8, sizeof(ConstantPool)));
  3480   __ bind(resolved);
  3482   // Generate subtype check.  Blows rcx, rdi
  3483   // Superklass in rax.  Subklass in rdx.
  3484   __ gen_subtype_check(rdx, ok_is_subtype);
  3486   // Come here on failure
  3487   __ xorl(rax, rax);
  3488   __ jmpb(done);
  3489   // Come here on success
  3490   __ bind(ok_is_subtype);
  3491   __ movl(rax, 1);
  3493   // Collect counts on whether this test sees NULLs a lot or not.
  3494   if (ProfileInterpreter) {
  3495     __ jmp(done);
  3496     __ bind(is_null);
  3497     __ profile_null_seen(rcx);
  3498   } else {
  3499     __ bind(is_null);   // same as 'done'
  3501   __ bind(done);
  3502   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3503   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3506 //-----------------------------------------------------------------------------
  3507 // Breakpoints
  3508 void TemplateTable::_breakpoint() {
  3509   // Note: We get here even if we are single stepping..
  3510   // jbug inists on setting breakpoints at every bytecode
  3511   // even if we are in single step mode.
  3513   transition(vtos, vtos);
  3515   // get the unpatched byte code
  3516   __ get_method(c_rarg1);
  3517   __ call_VM(noreg,
  3518              CAST_FROM_FN_PTR(address,
  3519                               InterpreterRuntime::get_original_bytecode_at),
  3520              c_rarg1, r13);
  3521   __ mov(rbx, rax);
  3523   // post the breakpoint event
  3524   __ get_method(c_rarg1);
  3525   __ call_VM(noreg,
  3526              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3527              c_rarg1, r13);
  3529   // complete the execution of original bytecode
  3530   __ dispatch_only_normal(vtos);
  3533 //-----------------------------------------------------------------------------
  3534 // Exceptions
  3536 void TemplateTable::athrow() {
  3537   transition(atos, vtos);
  3538   __ null_check(rax);
  3539   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3542 //-----------------------------------------------------------------------------
  3543 // Synchronization
  3544 //
  3545 // Note: monitorenter & exit are symmetric routines; which is reflected
  3546 //       in the assembly code structure as well
  3547 //
  3548 // Stack layout:
  3549 //
  3550 // [expressions  ] <--- rsp               = expression stack top
  3551 // ..
  3552 // [expressions  ]
  3553 // [monitor entry] <--- monitor block top = expression stack bot
  3554 // ..
  3555 // [monitor entry]
  3556 // [frame data   ] <--- monitor block bot
  3557 // ...
  3558 // [saved rbp    ] <--- rbp
  3559 void TemplateTable::monitorenter() {
  3560   transition(atos, vtos);
  3562   // check for NULL object
  3563   __ null_check(rax);
  3565   const Address monitor_block_top(
  3566         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3567   const Address monitor_block_bot(
  3568         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3569   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3571   Label allocated;
  3573   // initialize entry pointer
  3574   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3576   // find a free slot in the monitor block (result in c_rarg1)
  3578     Label entry, loop, exit;
  3579     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3580                                      // starting with top-most entry
  3581     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3582                                      // of monitor block
  3583     __ jmpb(entry);
  3585     __ bind(loop);
  3586     // check if current entry is used
  3587     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3588     // if not used then remember entry in c_rarg1
  3589     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3590     // check if current entry is for same object
  3591     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3592     // if same object then stop searching
  3593     __ jccb(Assembler::equal, exit);
  3594     // otherwise advance to next entry
  3595     __ addptr(c_rarg3, entry_size);
  3596     __ bind(entry);
  3597     // check if bottom reached
  3598     __ cmpptr(c_rarg3, c_rarg2);
  3599     // if not at bottom then check this entry
  3600     __ jcc(Assembler::notEqual, loop);
  3601     __ bind(exit);
  3604   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3605   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3607   // allocate one if there's no free slot
  3609     Label entry, loop;
  3610     // 1. compute new pointers             // rsp: old expression stack top
  3611     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3612     __ subptr(rsp, entry_size);            // move expression stack top
  3613     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3614     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3615     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3616     __ jmp(entry);
  3617     // 2. move expression stack contents
  3618     __ bind(loop);
  3619     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3620                                                       // word from old location
  3621     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3622     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3623     __ bind(entry);
  3624     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3625     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3626                                             // copy next word
  3629   // call run-time routine
  3630   // c_rarg1: points to monitor entry
  3631   __ bind(allocated);
  3633   // Increment bcp to point to the next bytecode, so exception
  3634   // handling for async. exceptions work correctly.
  3635   // The object has already been poped from the stack, so the
  3636   // expression stack looks correct.
  3637   __ increment(r13);
  3639   // store object
  3640   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3641   __ lock_object(c_rarg1);
  3643   // check to make sure this monitor doesn't cause stack overflow after locking
  3644   __ save_bcp();  // in case of exception
  3645   __ generate_stack_overflow_check(0);
  3647   // The bcp has already been incremented. Just need to dispatch to
  3648   // next instruction.
  3649   __ dispatch_next(vtos);
  3653 void TemplateTable::monitorexit() {
  3654   transition(atos, vtos);
  3656   // check for NULL object
  3657   __ null_check(rax);
  3659   const Address monitor_block_top(
  3660         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3661   const Address monitor_block_bot(
  3662         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3663   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3665   Label found;
  3667   // find matching slot
  3669     Label entry, loop;
  3670     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3671                                      // starting with top-most entry
  3672     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3673                                      // of monitor block
  3674     __ jmpb(entry);
  3676     __ bind(loop);
  3677     // check if current entry is for same object
  3678     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3679     // if same object then stop searching
  3680     __ jcc(Assembler::equal, found);
  3681     // otherwise advance to next entry
  3682     __ addptr(c_rarg1, entry_size);
  3683     __ bind(entry);
  3684     // check if bottom reached
  3685     __ cmpptr(c_rarg1, c_rarg2);
  3686     // if not at bottom then check this entry
  3687     __ jcc(Assembler::notEqual, loop);
  3690   // error handling. Unlocking was not block-structured
  3691   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3692                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3693   __ should_not_reach_here();
  3695   // call run-time routine
  3696   // rsi: points to monitor entry
  3697   __ bind(found);
  3698   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3699   __ unlock_object(c_rarg1);
  3700   __ pop_ptr(rax); // discard object
  3704 // Wide instructions
  3705 void TemplateTable::wide() {
  3706   transition(vtos, vtos);
  3707   __ load_unsigned_byte(rbx, at_bcp(1));
  3708   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3709   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3710   // Note: the r13 increment step is part of the individual wide
  3711   // bytecode implementations
  3715 // Multi arrays
  3716 void TemplateTable::multianewarray() {
  3717   transition(vtos, atos);
  3718   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3719   // last dim is on top of stack; we want address of first one:
  3720   // first_addr = last_addr + (ndims - 1) * wordSize
  3721   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3722   call_VM(rax,
  3723           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3724           c_rarg1);
  3725   __ load_unsigned_byte(rbx, at_bcp(3));
  3726   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3728 #endif // !CC_INTERP

mercurial