src/cpu/x86/vm/stubGenerator_x86_32.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4037
da91efe96a93
child 4205
a3ecd773a7b9
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/method.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifdef COMPILER2
    54 #include "opto/runtime.hpp"
    55 #endif
    57 // Declaration and definition of StubGenerator (no .hpp file).
    58 // For a more detailed description of the stub routine structure
    59 // see the comment in stubRoutines.hpp
    61 #define __ _masm->
    62 #define a__ ((Assembler*)_masm)->
    64 #ifdef PRODUCT
    65 #define BLOCK_COMMENT(str) /* nothing */
    66 #else
    67 #define BLOCK_COMMENT(str) __ block_comment(str)
    68 #endif
    70 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    72 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    73 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    75 // -------------------------------------------------------------------------------------------------------------------------
    76 // Stub Code definitions
    78 static address handle_unsafe_access() {
    79   JavaThread* thread = JavaThread::current();
    80   address pc  = thread->saved_exception_pc();
    81   // pc is the instruction which we must emulate
    82   // doing a no-op is fine:  return garbage from the load
    83   // therefore, compute npc
    84   address npc = Assembler::locate_next_instruction(pc);
    86   // request an async exception
    87   thread->set_pending_unsafe_access_error();
    89   // return address of next instruction to execute
    90   return npc;
    91 }
    93 class StubGenerator: public StubCodeGenerator {
    94  private:
    96 #ifdef PRODUCT
    97 #define inc_counter_np(counter) (0)
    98 #else
    99   void inc_counter_np_(int& counter) {
   100     __ incrementl(ExternalAddress((address)&counter));
   101   }
   102 #define inc_counter_np(counter) \
   103   BLOCK_COMMENT("inc_counter " #counter); \
   104   inc_counter_np_(counter);
   105 #endif //PRODUCT
   107   void inc_copy_counter_np(BasicType t) {
   108 #ifndef PRODUCT
   109     switch (t) {
   110     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   111     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   112     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   113     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   114     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   115     }
   116     ShouldNotReachHere();
   117 #endif //PRODUCT
   118   }
   120   //------------------------------------------------------------------------------------------------------------------------
   121   // Call stubs are used to call Java from C
   122   //
   123   //    [ return_from_Java     ] <--- rsp
   124   //    [ argument word n      ]
   125   //      ...
   126   // -N [ argument word 1      ]
   127   // -7 [ Possible padding for stack alignment ]
   128   // -6 [ Possible padding for stack alignment ]
   129   // -5 [ Possible padding for stack alignment ]
   130   // -4 [ mxcsr save           ] <--- rsp_after_call
   131   // -3 [ saved rbx,            ]
   132   // -2 [ saved rsi            ]
   133   // -1 [ saved rdi            ]
   134   //  0 [ saved rbp,            ] <--- rbp,
   135   //  1 [ return address       ]
   136   //  2 [ ptr. to call wrapper ]
   137   //  3 [ result               ]
   138   //  4 [ result_type          ]
   139   //  5 [ method               ]
   140   //  6 [ entry_point          ]
   141   //  7 [ parameters           ]
   142   //  8 [ parameter_size       ]
   143   //  9 [ thread               ]
   146   address generate_call_stub(address& return_address) {
   147     StubCodeMark mark(this, "StubRoutines", "call_stub");
   148     address start = __ pc();
   150     // stub code parameters / addresses
   151     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   152     bool  sse_save = false;
   153     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   154     const int     locals_count_in_bytes  (4*wordSize);
   155     const Address mxcsr_save    (rbp, -4 * wordSize);
   156     const Address saved_rbx     (rbp, -3 * wordSize);
   157     const Address saved_rsi     (rbp, -2 * wordSize);
   158     const Address saved_rdi     (rbp, -1 * wordSize);
   159     const Address result        (rbp,  3 * wordSize);
   160     const Address result_type   (rbp,  4 * wordSize);
   161     const Address method        (rbp,  5 * wordSize);
   162     const Address entry_point   (rbp,  6 * wordSize);
   163     const Address parameters    (rbp,  7 * wordSize);
   164     const Address parameter_size(rbp,  8 * wordSize);
   165     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   166     sse_save =  UseSSE > 0;
   168     // stub code
   169     __ enter();
   170     __ movptr(rcx, parameter_size);              // parameter counter
   171     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   172     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   173     __ subptr(rsp, rcx);
   174     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   176     // save rdi, rsi, & rbx, according to C calling conventions
   177     __ movptr(saved_rdi, rdi);
   178     __ movptr(saved_rsi, rsi);
   179     __ movptr(saved_rbx, rbx);
   180     // save and initialize %mxcsr
   181     if (sse_save) {
   182       Label skip_ldmx;
   183       __ stmxcsr(mxcsr_save);
   184       __ movl(rax, mxcsr_save);
   185       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   186       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   187       __ cmp32(rax, mxcsr_std);
   188       __ jcc(Assembler::equal, skip_ldmx);
   189       __ ldmxcsr(mxcsr_std);
   190       __ bind(skip_ldmx);
   191     }
   193     // make sure the control word is correct.
   194     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   196 #ifdef ASSERT
   197     // make sure we have no pending exceptions
   198     { Label L;
   199       __ movptr(rcx, thread);
   200       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   201       __ jcc(Assembler::equal, L);
   202       __ stop("StubRoutines::call_stub: entered with pending exception");
   203       __ bind(L);
   204     }
   205 #endif
   207     // pass parameters if any
   208     BLOCK_COMMENT("pass parameters if any");
   209     Label parameters_done;
   210     __ movl(rcx, parameter_size);  // parameter counter
   211     __ testl(rcx, rcx);
   212     __ jcc(Assembler::zero, parameters_done);
   214     // parameter passing loop
   216     Label loop;
   217     // Copy Java parameters in reverse order (receiver last)
   218     // Note that the argument order is inverted in the process
   219     // source is rdx[rcx: N-1..0]
   220     // dest   is rsp[rbx: 0..N-1]
   222     __ movptr(rdx, parameters);          // parameter pointer
   223     __ xorptr(rbx, rbx);
   225     __ BIND(loop);
   227     // get parameter
   228     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   229     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   230                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   231     __ increment(rbx);
   232     __ decrement(rcx);
   233     __ jcc(Assembler::notZero, loop);
   235     // call Java function
   236     __ BIND(parameters_done);
   237     __ movptr(rbx, method);           // get Method*
   238     __ movptr(rax, entry_point);      // get entry_point
   239     __ mov(rsi, rsp);                 // set sender sp
   240     BLOCK_COMMENT("call Java function");
   241     __ call(rax);
   243     BLOCK_COMMENT("call_stub_return_address:");
   244     return_address = __ pc();
   246 #ifdef COMPILER2
   247     {
   248       Label L_skip;
   249       if (UseSSE >= 2) {
   250         __ verify_FPU(0, "call_stub_return");
   251       } else {
   252         for (int i = 1; i < 8; i++) {
   253           __ ffree(i);
   254         }
   256         // UseSSE <= 1 so double result should be left on TOS
   257         __ movl(rsi, result_type);
   258         __ cmpl(rsi, T_DOUBLE);
   259         __ jcc(Assembler::equal, L_skip);
   260         if (UseSSE == 0) {
   261           // UseSSE == 0 so float result should be left on TOS
   262           __ cmpl(rsi, T_FLOAT);
   263           __ jcc(Assembler::equal, L_skip);
   264         }
   265         __ ffree(0);
   266       }
   267       __ BIND(L_skip);
   268     }
   269 #endif // COMPILER2
   271     // store result depending on type
   272     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   273     __ movptr(rdi, result);
   274     Label is_long, is_float, is_double, exit;
   275     __ movl(rsi, result_type);
   276     __ cmpl(rsi, T_LONG);
   277     __ jcc(Assembler::equal, is_long);
   278     __ cmpl(rsi, T_FLOAT);
   279     __ jcc(Assembler::equal, is_float);
   280     __ cmpl(rsi, T_DOUBLE);
   281     __ jcc(Assembler::equal, is_double);
   283     // handle T_INT case
   284     __ movl(Address(rdi, 0), rax);
   285     __ BIND(exit);
   287     // check that FPU stack is empty
   288     __ verify_FPU(0, "generate_call_stub");
   290     // pop parameters
   291     __ lea(rsp, rsp_after_call);
   293     // restore %mxcsr
   294     if (sse_save) {
   295       __ ldmxcsr(mxcsr_save);
   296     }
   298     // restore rdi, rsi and rbx,
   299     __ movptr(rbx, saved_rbx);
   300     __ movptr(rsi, saved_rsi);
   301     __ movptr(rdi, saved_rdi);
   302     __ addptr(rsp, 4*wordSize);
   304     // return
   305     __ pop(rbp);
   306     __ ret(0);
   308     // handle return types different from T_INT
   309     __ BIND(is_long);
   310     __ movl(Address(rdi, 0 * wordSize), rax);
   311     __ movl(Address(rdi, 1 * wordSize), rdx);
   312     __ jmp(exit);
   314     __ BIND(is_float);
   315     // interpreter uses xmm0 for return values
   316     if (UseSSE >= 1) {
   317       __ movflt(Address(rdi, 0), xmm0);
   318     } else {
   319       __ fstp_s(Address(rdi, 0));
   320     }
   321     __ jmp(exit);
   323     __ BIND(is_double);
   324     // interpreter uses xmm0 for return values
   325     if (UseSSE >= 2) {
   326       __ movdbl(Address(rdi, 0), xmm0);
   327     } else {
   328       __ fstp_d(Address(rdi, 0));
   329     }
   330     __ jmp(exit);
   332     return start;
   333   }
   336   //------------------------------------------------------------------------------------------------------------------------
   337   // Return point for a Java call if there's an exception thrown in Java code.
   338   // The exception is caught and transformed into a pending exception stored in
   339   // JavaThread that can be tested from within the VM.
   340   //
   341   // Note: Usually the parameters are removed by the callee. In case of an exception
   342   //       crossing an activation frame boundary, that is not the case if the callee
   343   //       is compiled code => need to setup the rsp.
   344   //
   345   // rax,: exception oop
   347   address generate_catch_exception() {
   348     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   349     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   350     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   351     address start = __ pc();
   353     // get thread directly
   354     __ movptr(rcx, thread);
   355 #ifdef ASSERT
   356     // verify that threads correspond
   357     { Label L;
   358       __ get_thread(rbx);
   359       __ cmpptr(rbx, rcx);
   360       __ jcc(Assembler::equal, L);
   361       __ stop("StubRoutines::catch_exception: threads must correspond");
   362       __ bind(L);
   363     }
   364 #endif
   365     // set pending exception
   366     __ verify_oop(rax);
   367     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   368     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   369            ExternalAddress((address)__FILE__));
   370     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   371     // complete return to VM
   372     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   373     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   375     return start;
   376   }
   379   //------------------------------------------------------------------------------------------------------------------------
   380   // Continuation point for runtime calls returning with a pending exception.
   381   // The pending exception check happened in the runtime or native call stub.
   382   // The pending exception in Thread is converted into a Java-level exception.
   383   //
   384   // Contract with Java-level exception handlers:
   385   // rax: exception
   386   // rdx: throwing pc
   387   //
   388   // NOTE: At entry of this stub, exception-pc must be on stack !!
   390   address generate_forward_exception() {
   391     StubCodeMark mark(this, "StubRoutines", "forward exception");
   392     address start = __ pc();
   393     const Register thread = rcx;
   395     // other registers used in this stub
   396     const Register exception_oop = rax;
   397     const Register handler_addr  = rbx;
   398     const Register exception_pc  = rdx;
   400     // Upon entry, the sp points to the return address returning into Java
   401     // (interpreted or compiled) code; i.e., the return address becomes the
   402     // throwing pc.
   403     //
   404     // Arguments pushed before the runtime call are still on the stack but
   405     // the exception handler will reset the stack pointer -> ignore them.
   406     // A potential result in registers can be ignored as well.
   408 #ifdef ASSERT
   409     // make sure this code is only executed if there is a pending exception
   410     { Label L;
   411       __ get_thread(thread);
   412       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   413       __ jcc(Assembler::notEqual, L);
   414       __ stop("StubRoutines::forward exception: no pending exception (1)");
   415       __ bind(L);
   416     }
   417 #endif
   419     // compute exception handler into rbx,
   420     __ get_thread(thread);
   421     __ movptr(exception_pc, Address(rsp, 0));
   422     BLOCK_COMMENT("call exception_handler_for_return_address");
   423     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   424     __ mov(handler_addr, rax);
   426     // setup rax & rdx, remove return address & clear pending exception
   427     __ get_thread(thread);
   428     __ pop(exception_pc);
   429     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   430     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   432 #ifdef ASSERT
   433     // make sure exception is set
   434     { Label L;
   435       __ testptr(exception_oop, exception_oop);
   436       __ jcc(Assembler::notEqual, L);
   437       __ stop("StubRoutines::forward exception: no pending exception (2)");
   438       __ bind(L);
   439     }
   440 #endif
   442     // Verify that there is really a valid exception in RAX.
   443     __ verify_oop(exception_oop);
   445     // continue at exception handler (return address removed)
   446     // rax: exception
   447     // rbx: exception handler
   448     // rdx: throwing pc
   449     __ jmp(handler_addr);
   451     return start;
   452   }
   455   //----------------------------------------------------------------------------------------------------
   456   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   457   //
   458   // xchg exists as far back as 8086, lock needed for MP only
   459   // Stack layout immediately after call:
   460   //
   461   // 0 [ret addr ] <--- rsp
   462   // 1 [  ex     ]
   463   // 2 [  dest   ]
   464   //
   465   // Result:   *dest <- ex, return (old *dest)
   466   //
   467   // Note: win32 does not currently use this code
   469   address generate_atomic_xchg() {
   470     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   471     address start = __ pc();
   473     __ push(rdx);
   474     Address exchange(rsp, 2 * wordSize);
   475     Address dest_addr(rsp, 3 * wordSize);
   476     __ movl(rax, exchange);
   477     __ movptr(rdx, dest_addr);
   478     __ xchgl(rax, Address(rdx, 0));
   479     __ pop(rdx);
   480     __ ret(0);
   482     return start;
   483   }
   485   //----------------------------------------------------------------------------------------------------
   486   // Support for void verify_mxcsr()
   487   //
   488   // This routine is used with -Xcheck:jni to verify that native
   489   // JNI code does not return to Java code without restoring the
   490   // MXCSR register to our expected state.
   493   address generate_verify_mxcsr() {
   494     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   495     address start = __ pc();
   497     const Address mxcsr_save(rsp, 0);
   499     if (CheckJNICalls && UseSSE > 0 ) {
   500       Label ok_ret;
   501       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   502       __ push(rax);
   503       __ subptr(rsp, wordSize);      // allocate a temp location
   504       __ stmxcsr(mxcsr_save);
   505       __ movl(rax, mxcsr_save);
   506       __ andl(rax, MXCSR_MASK);
   507       __ cmp32(rax, mxcsr_std);
   508       __ jcc(Assembler::equal, ok_ret);
   510       __ warn("MXCSR changed by native JNI code.");
   512       __ ldmxcsr(mxcsr_std);
   514       __ bind(ok_ret);
   515       __ addptr(rsp, wordSize);
   516       __ pop(rax);
   517     }
   519     __ ret(0);
   521     return start;
   522   }
   525   //---------------------------------------------------------------------------
   526   // Support for void verify_fpu_cntrl_wrd()
   527   //
   528   // This routine is used with -Xcheck:jni to verify that native
   529   // JNI code does not return to Java code without restoring the
   530   // FP control word to our expected state.
   532   address generate_verify_fpu_cntrl_wrd() {
   533     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   534     address start = __ pc();
   536     const Address fpu_cntrl_wrd_save(rsp, 0);
   538     if (CheckJNICalls) {
   539       Label ok_ret;
   540       __ push(rax);
   541       __ subptr(rsp, wordSize);      // allocate a temp location
   542       __ fnstcw(fpu_cntrl_wrd_save);
   543       __ movl(rax, fpu_cntrl_wrd_save);
   544       __ andl(rax, FPU_CNTRL_WRD_MASK);
   545       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   546       __ cmp32(rax, fpu_std);
   547       __ jcc(Assembler::equal, ok_ret);
   549       __ warn("Floating point control word changed by native JNI code.");
   551       __ fldcw(fpu_std);
   553       __ bind(ok_ret);
   554       __ addptr(rsp, wordSize);
   555       __ pop(rax);
   556     }
   558     __ ret(0);
   560     return start;
   561   }
   563   //---------------------------------------------------------------------------
   564   // Wrapper for slow-case handling of double-to-integer conversion
   565   // d2i or f2i fast case failed either because it is nan or because
   566   // of under/overflow.
   567   // Input:  FPU TOS: float value
   568   // Output: rax, (rdx): integer (long) result
   570   address generate_d2i_wrapper(BasicType t, address fcn) {
   571     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   572     address start = __ pc();
   574   // Capture info about frame layout
   575   enum layout { FPUState_off         = 0,
   576                 rbp_off              = FPUStateSizeInWords,
   577                 rdi_off,
   578                 rsi_off,
   579                 rcx_off,
   580                 rbx_off,
   581                 saved_argument_off,
   582                 saved_argument_off2, // 2nd half of double
   583                 framesize
   584   };
   586   assert(FPUStateSizeInWords == 27, "update stack layout");
   588     // Save outgoing argument to stack across push_FPU_state()
   589     __ subptr(rsp, wordSize * 2);
   590     __ fstp_d(Address(rsp, 0));
   592     // Save CPU & FPU state
   593     __ push(rbx);
   594     __ push(rcx);
   595     __ push(rsi);
   596     __ push(rdi);
   597     __ push(rbp);
   598     __ push_FPU_state();
   600     // push_FPU_state() resets the FP top of stack
   601     // Load original double into FP top of stack
   602     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   603     // Store double into stack as outgoing argument
   604     __ subptr(rsp, wordSize*2);
   605     __ fst_d(Address(rsp, 0));
   607     // Prepare FPU for doing math in C-land
   608     __ empty_FPU_stack();
   609     // Call the C code to massage the double.  Result in EAX
   610     if (t == T_INT)
   611       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   612     else if (t == T_LONG)
   613       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   614     __ call_VM_leaf( fcn, 2 );
   616     // Restore CPU & FPU state
   617     __ pop_FPU_state();
   618     __ pop(rbp);
   619     __ pop(rdi);
   620     __ pop(rsi);
   621     __ pop(rcx);
   622     __ pop(rbx);
   623     __ addptr(rsp, wordSize * 2);
   625     __ ret(0);
   627     return start;
   628   }
   631   //---------------------------------------------------------------------------
   632   // The following routine generates a subroutine to throw an asynchronous
   633   // UnknownError when an unsafe access gets a fault that could not be
   634   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   635   address generate_handler_for_unsafe_access() {
   636     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   637     address start = __ pc();
   639     __ push(0);                       // hole for return address-to-be
   640     __ pusha();                       // push registers
   641     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   642     BLOCK_COMMENT("call handle_unsafe_access");
   643     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   644     __ movptr(next_pc, rax);          // stuff next address
   645     __ popa();
   646     __ ret(0);                        // jump to next address
   648     return start;
   649   }
   652   //----------------------------------------------------------------------------------------------------
   653   // Non-destructive plausibility checks for oops
   655   address generate_verify_oop() {
   656     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   657     address start = __ pc();
   659     // Incoming arguments on stack after saving rax,:
   660     //
   661     // [tos    ]: saved rdx
   662     // [tos + 1]: saved EFLAGS
   663     // [tos + 2]: return address
   664     // [tos + 3]: char* error message
   665     // [tos + 4]: oop   object to verify
   666     // [tos + 5]: saved rax, - saved by caller and bashed
   668     Label exit, error;
   669     __ pushf();
   670     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   671     __ push(rdx);                                // save rdx
   672     // make sure object is 'reasonable'
   673     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   674     __ testptr(rax, rax);
   675     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   677     // Check if the oop is in the right area of memory
   678     const int oop_mask = Universe::verify_oop_mask();
   679     const int oop_bits = Universe::verify_oop_bits();
   680     __ mov(rdx, rax);
   681     __ andptr(rdx, oop_mask);
   682     __ cmpptr(rdx, oop_bits);
   683     __ jcc(Assembler::notZero, error);
   685     // make sure klass is 'reasonable', which is not zero.
   686     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   687     __ testptr(rax, rax);
   688     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   689     // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
   691     // return if everything seems ok
   692     __ bind(exit);
   693     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   694     __ pop(rdx);                                 // restore rdx
   695     __ popf();                                   // restore EFLAGS
   696     __ ret(3 * wordSize);                        // pop arguments
   698     // handle errors
   699     __ bind(error);
   700     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   701     __ pop(rdx);                                 // get saved rdx back
   702     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   703     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   704     BLOCK_COMMENT("call MacroAssembler::debug");
   705     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   706     __ popa();
   707     __ ret(3 * wordSize);                        // pop arguments
   708     return start;
   709   }
   711   //
   712   //  Generate pre-barrier for array stores
   713   //
   714   //  Input:
   715   //     start   -  starting address
   716   //     count   -  element count
   717   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   718     assert_different_registers(start, count);
   719     BarrierSet* bs = Universe::heap()->barrier_set();
   720     switch (bs->kind()) {
   721       case BarrierSet::G1SATBCT:
   722       case BarrierSet::G1SATBCTLogging:
   723         // With G1, don't generate the call if we statically know that the target in uninitialized
   724         if (!uninitialized_target) {
   725            __ pusha();                      // push registers
   726            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   727                            start, count);
   728            __ popa();
   729          }
   730         break;
   731       case BarrierSet::CardTableModRef:
   732       case BarrierSet::CardTableExtension:
   733       case BarrierSet::ModRef:
   734         break;
   735       default      :
   736         ShouldNotReachHere();
   738     }
   739   }
   742   //
   743   // Generate a post-barrier for an array store
   744   //
   745   //     start    -  starting address
   746   //     count    -  element count
   747   //
   748   //  The two input registers are overwritten.
   749   //
   750   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   751     BarrierSet* bs = Universe::heap()->barrier_set();
   752     assert_different_registers(start, count);
   753     switch (bs->kind()) {
   754       case BarrierSet::G1SATBCT:
   755       case BarrierSet::G1SATBCTLogging:
   756         {
   757           __ pusha();                      // push registers
   758           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   759                           start, count);
   760           __ popa();
   761         }
   762         break;
   764       case BarrierSet::CardTableModRef:
   765       case BarrierSet::CardTableExtension:
   766         {
   767           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   768           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   770           Label L_loop;
   771           const Register end = count;  // elements count; end == start+count-1
   772           assert_different_registers(start, end);
   774           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   775           __ shrptr(start, CardTableModRefBS::card_shift);
   776           __ shrptr(end,   CardTableModRefBS::card_shift);
   777           __ subptr(end, start); // end --> count
   778         __ BIND(L_loop);
   779           intptr_t disp = (intptr_t) ct->byte_map_base;
   780           Address cardtable(start, count, Address::times_1, disp);
   781           __ movb(cardtable, 0);
   782           __ decrement(count);
   783           __ jcc(Assembler::greaterEqual, L_loop);
   784         }
   785         break;
   786       case BarrierSet::ModRef:
   787         break;
   788       default      :
   789         ShouldNotReachHere();
   791     }
   792   }
   795   // Copy 64 bytes chunks
   796   //
   797   // Inputs:
   798   //   from        - source array address
   799   //   to_from     - destination array address - from
   800   //   qword_count - 8-bytes element count, negative
   801   //
   802   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   803     assert( UseSSE >= 2, "supported cpu only" );
   804     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   805     // Copy 64-byte chunks
   806     __ jmpb(L_copy_64_bytes);
   807     __ align(OptoLoopAlignment);
   808   __ BIND(L_copy_64_bytes_loop);
   810     if(UseUnalignedLoadStores) {
   811       __ movdqu(xmm0, Address(from, 0));
   812       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   813       __ movdqu(xmm1, Address(from, 16));
   814       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   815       __ movdqu(xmm2, Address(from, 32));
   816       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   817       __ movdqu(xmm3, Address(from, 48));
   818       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   820     } else {
   821       __ movq(xmm0, Address(from, 0));
   822       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   823       __ movq(xmm1, Address(from, 8));
   824       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   825       __ movq(xmm2, Address(from, 16));
   826       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   827       __ movq(xmm3, Address(from, 24));
   828       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   829       __ movq(xmm4, Address(from, 32));
   830       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   831       __ movq(xmm5, Address(from, 40));
   832       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   833       __ movq(xmm6, Address(from, 48));
   834       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   835       __ movq(xmm7, Address(from, 56));
   836       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   837     }
   839     __ addl(from, 64);
   840   __ BIND(L_copy_64_bytes);
   841     __ subl(qword_count, 8);
   842     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   843     __ addl(qword_count, 8);
   844     __ jccb(Assembler::zero, L_exit);
   845     //
   846     // length is too short, just copy qwords
   847     //
   848   __ BIND(L_copy_8_bytes);
   849     __ movq(xmm0, Address(from, 0));
   850     __ movq(Address(from, to_from, Address::times_1), xmm0);
   851     __ addl(from, 8);
   852     __ decrement(qword_count);
   853     __ jcc(Assembler::greater, L_copy_8_bytes);
   854   __ BIND(L_exit);
   855   }
   857   // Copy 64 bytes chunks
   858   //
   859   // Inputs:
   860   //   from        - source array address
   861   //   to_from     - destination array address - from
   862   //   qword_count - 8-bytes element count, negative
   863   //
   864   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   865     assert( VM_Version::supports_mmx(), "supported cpu only" );
   866     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   867     // Copy 64-byte chunks
   868     __ jmpb(L_copy_64_bytes);
   869     __ align(OptoLoopAlignment);
   870   __ BIND(L_copy_64_bytes_loop);
   871     __ movq(mmx0, Address(from, 0));
   872     __ movq(mmx1, Address(from, 8));
   873     __ movq(mmx2, Address(from, 16));
   874     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   875     __ movq(mmx3, Address(from, 24));
   876     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   877     __ movq(mmx4, Address(from, 32));
   878     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   879     __ movq(mmx5, Address(from, 40));
   880     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   881     __ movq(mmx6, Address(from, 48));
   882     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   883     __ movq(mmx7, Address(from, 56));
   884     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   885     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   886     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   887     __ addptr(from, 64);
   888   __ BIND(L_copy_64_bytes);
   889     __ subl(qword_count, 8);
   890     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   891     __ addl(qword_count, 8);
   892     __ jccb(Assembler::zero, L_exit);
   893     //
   894     // length is too short, just copy qwords
   895     //
   896   __ BIND(L_copy_8_bytes);
   897     __ movq(mmx0, Address(from, 0));
   898     __ movq(Address(from, to_from, Address::times_1), mmx0);
   899     __ addptr(from, 8);
   900     __ decrement(qword_count);
   901     __ jcc(Assembler::greater, L_copy_8_bytes);
   902   __ BIND(L_exit);
   903     __ emms();
   904   }
   906   address generate_disjoint_copy(BasicType t, bool aligned,
   907                                  Address::ScaleFactor sf,
   908                                  address* entry, const char *name,
   909                                  bool dest_uninitialized = false) {
   910     __ align(CodeEntryAlignment);
   911     StubCodeMark mark(this, "StubRoutines", name);
   912     address start = __ pc();
   914     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   915     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   917     int shift = Address::times_ptr - sf;
   919     const Register from     = rsi;  // source array address
   920     const Register to       = rdi;  // destination array address
   921     const Register count    = rcx;  // elements count
   922     const Register to_from  = to;   // (to - from)
   923     const Register saved_to = rdx;  // saved destination array address
   925     __ enter(); // required for proper stackwalking of RuntimeStub frame
   926     __ push(rsi);
   927     __ push(rdi);
   928     __ movptr(from , Address(rsp, 12+ 4));
   929     __ movptr(to   , Address(rsp, 12+ 8));
   930     __ movl(count, Address(rsp, 12+ 12));
   932     if (entry != NULL) {
   933       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   934       BLOCK_COMMENT("Entry:");
   935     }
   937     if (t == T_OBJECT) {
   938       __ testl(count, count);
   939       __ jcc(Assembler::zero, L_0_count);
   940       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   941       __ mov(saved_to, to);          // save 'to'
   942     }
   944     __ subptr(to, from); // to --> to_from
   945     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   946     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   947     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   948       // align source address at 4 bytes address boundary
   949       if (t == T_BYTE) {
   950         // One byte misalignment happens only for byte arrays
   951         __ testl(from, 1);
   952         __ jccb(Assembler::zero, L_skip_align1);
   953         __ movb(rax, Address(from, 0));
   954         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   955         __ increment(from);
   956         __ decrement(count);
   957       __ BIND(L_skip_align1);
   958       }
   959       // Two bytes misalignment happens only for byte and short (char) arrays
   960       __ testl(from, 2);
   961       __ jccb(Assembler::zero, L_skip_align2);
   962       __ movw(rax, Address(from, 0));
   963       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   964       __ addptr(from, 2);
   965       __ subl(count, 1<<(shift-1));
   966     __ BIND(L_skip_align2);
   967     }
   968     if (!VM_Version::supports_mmx()) {
   969       __ mov(rax, count);      // save 'count'
   970       __ shrl(count, shift); // bytes count
   971       __ addptr(to_from, from);// restore 'to'
   972       __ rep_mov();
   973       __ subptr(to_from, from);// restore 'to_from'
   974       __ mov(count, rax);      // restore 'count'
   975       __ jmpb(L_copy_2_bytes); // all dwords were copied
   976     } else {
   977       if (!UseUnalignedLoadStores) {
   978         // align to 8 bytes, we know we are 4 byte aligned to start
   979         __ testptr(from, 4);
   980         __ jccb(Assembler::zero, L_copy_64_bytes);
   981         __ movl(rax, Address(from, 0));
   982         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   983         __ addptr(from, 4);
   984         __ subl(count, 1<<shift);
   985       }
   986     __ BIND(L_copy_64_bytes);
   987       __ mov(rax, count);
   988       __ shrl(rax, shift+1);  // 8 bytes chunk count
   989       //
   990       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   991       //
   992       if (UseXMMForArrayCopy) {
   993         xmm_copy_forward(from, to_from, rax);
   994       } else {
   995         mmx_copy_forward(from, to_from, rax);
   996       }
   997     }
   998     // copy tailing dword
   999   __ BIND(L_copy_4_bytes);
  1000     __ testl(count, 1<<shift);
  1001     __ jccb(Assembler::zero, L_copy_2_bytes);
  1002     __ movl(rax, Address(from, 0));
  1003     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1004     if (t == T_BYTE || t == T_SHORT) {
  1005       __ addptr(from, 4);
  1006     __ BIND(L_copy_2_bytes);
  1007       // copy tailing word
  1008       __ testl(count, 1<<(shift-1));
  1009       __ jccb(Assembler::zero, L_copy_byte);
  1010       __ movw(rax, Address(from, 0));
  1011       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1012       if (t == T_BYTE) {
  1013         __ addptr(from, 2);
  1014       __ BIND(L_copy_byte);
  1015         // copy tailing byte
  1016         __ testl(count, 1);
  1017         __ jccb(Assembler::zero, L_exit);
  1018         __ movb(rax, Address(from, 0));
  1019         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1020       __ BIND(L_exit);
  1021       } else {
  1022       __ BIND(L_copy_byte);
  1024     } else {
  1025     __ BIND(L_copy_2_bytes);
  1028     if (t == T_OBJECT) {
  1029       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1030       __ mov(to, saved_to); // restore 'to'
  1031       gen_write_ref_array_post_barrier(to, count);
  1032     __ BIND(L_0_count);
  1034     inc_copy_counter_np(t);
  1035     __ pop(rdi);
  1036     __ pop(rsi);
  1037     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1038     __ xorptr(rax, rax); // return 0
  1039     __ ret(0);
  1040     return start;
  1044   address generate_fill(BasicType t, bool aligned, const char *name) {
  1045     __ align(CodeEntryAlignment);
  1046     StubCodeMark mark(this, "StubRoutines", name);
  1047     address start = __ pc();
  1049     BLOCK_COMMENT("Entry:");
  1051     const Register to       = rdi;  // source array address
  1052     const Register value    = rdx;  // value
  1053     const Register count    = rsi;  // elements count
  1055     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1056     __ push(rsi);
  1057     __ push(rdi);
  1058     __ movptr(to   , Address(rsp, 12+ 4));
  1059     __ movl(value, Address(rsp, 12+ 8));
  1060     __ movl(count, Address(rsp, 12+ 12));
  1062     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1064     __ pop(rdi);
  1065     __ pop(rsi);
  1066     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1067     __ ret(0);
  1068     return start;
  1071   address generate_conjoint_copy(BasicType t, bool aligned,
  1072                                  Address::ScaleFactor sf,
  1073                                  address nooverlap_target,
  1074                                  address* entry, const char *name,
  1075                                  bool dest_uninitialized = false) {
  1076     __ align(CodeEntryAlignment);
  1077     StubCodeMark mark(this, "StubRoutines", name);
  1078     address start = __ pc();
  1080     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1081     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1083     int shift = Address::times_ptr - sf;
  1085     const Register src   = rax;  // source array address
  1086     const Register dst   = rdx;  // destination array address
  1087     const Register from  = rsi;  // source array address
  1088     const Register to    = rdi;  // destination array address
  1089     const Register count = rcx;  // elements count
  1090     const Register end   = rax;  // array end address
  1092     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1093     __ push(rsi);
  1094     __ push(rdi);
  1095     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1096     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1097     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1099     if (entry != NULL) {
  1100       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1101       BLOCK_COMMENT("Entry:");
  1104     // nooverlap_target expects arguments in rsi and rdi.
  1105     __ mov(from, src);
  1106     __ mov(to  , dst);
  1108     // arrays overlap test: dispatch to disjoint stub if necessary.
  1109     RuntimeAddress nooverlap(nooverlap_target);
  1110     __ cmpptr(dst, src);
  1111     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1112     __ jump_cc(Assembler::belowEqual, nooverlap);
  1113     __ cmpptr(dst, end);
  1114     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1116     if (t == T_OBJECT) {
  1117       __ testl(count, count);
  1118       __ jcc(Assembler::zero, L_0_count);
  1119       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1122     // copy from high to low
  1123     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1124     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1125     if (t == T_BYTE || t == T_SHORT) {
  1126       // Align the end of destination array at 4 bytes address boundary
  1127       __ lea(end, Address(dst, count, sf, 0));
  1128       if (t == T_BYTE) {
  1129         // One byte misalignment happens only for byte arrays
  1130         __ testl(end, 1);
  1131         __ jccb(Assembler::zero, L_skip_align1);
  1132         __ decrement(count);
  1133         __ movb(rdx, Address(from, count, sf, 0));
  1134         __ movb(Address(to, count, sf, 0), rdx);
  1135       __ BIND(L_skip_align1);
  1137       // Two bytes misalignment happens only for byte and short (char) arrays
  1138       __ testl(end, 2);
  1139       __ jccb(Assembler::zero, L_skip_align2);
  1140       __ subptr(count, 1<<(shift-1));
  1141       __ movw(rdx, Address(from, count, sf, 0));
  1142       __ movw(Address(to, count, sf, 0), rdx);
  1143     __ BIND(L_skip_align2);
  1144       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1145       __ jcc(Assembler::below, L_copy_4_bytes);
  1148     if (!VM_Version::supports_mmx()) {
  1149       __ std();
  1150       __ mov(rax, count); // Save 'count'
  1151       __ mov(rdx, to);    // Save 'to'
  1152       __ lea(rsi, Address(from, count, sf, -4));
  1153       __ lea(rdi, Address(to  , count, sf, -4));
  1154       __ shrptr(count, shift); // bytes count
  1155       __ rep_mov();
  1156       __ cld();
  1157       __ mov(count, rax); // restore 'count'
  1158       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1159       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1160       __ mov(to, rdx);   // restore 'to'
  1161       __ jmpb(L_copy_2_bytes); // all dword were copied
  1162    } else {
  1163       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1164       __ testptr(end, 4);
  1165       __ jccb(Assembler::zero, L_copy_8_bytes);
  1166       __ subl(count, 1<<shift);
  1167       __ movl(rdx, Address(from, count, sf, 0));
  1168       __ movl(Address(to, count, sf, 0), rdx);
  1169       __ jmpb(L_copy_8_bytes);
  1171       __ align(OptoLoopAlignment);
  1172       // Move 8 bytes
  1173     __ BIND(L_copy_8_bytes_loop);
  1174       if (UseXMMForArrayCopy) {
  1175         __ movq(xmm0, Address(from, count, sf, 0));
  1176         __ movq(Address(to, count, sf, 0), xmm0);
  1177       } else {
  1178         __ movq(mmx0, Address(from, count, sf, 0));
  1179         __ movq(Address(to, count, sf, 0), mmx0);
  1181     __ BIND(L_copy_8_bytes);
  1182       __ subl(count, 2<<shift);
  1183       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1184       __ addl(count, 2<<shift);
  1185       if (!UseXMMForArrayCopy) {
  1186         __ emms();
  1189   __ BIND(L_copy_4_bytes);
  1190     // copy prefix qword
  1191     __ testl(count, 1<<shift);
  1192     __ jccb(Assembler::zero, L_copy_2_bytes);
  1193     __ movl(rdx, Address(from, count, sf, -4));
  1194     __ movl(Address(to, count, sf, -4), rdx);
  1196     if (t == T_BYTE || t == T_SHORT) {
  1197         __ subl(count, (1<<shift));
  1198       __ BIND(L_copy_2_bytes);
  1199         // copy prefix dword
  1200         __ testl(count, 1<<(shift-1));
  1201         __ jccb(Assembler::zero, L_copy_byte);
  1202         __ movw(rdx, Address(from, count, sf, -2));
  1203         __ movw(Address(to, count, sf, -2), rdx);
  1204         if (t == T_BYTE) {
  1205           __ subl(count, 1<<(shift-1));
  1206         __ BIND(L_copy_byte);
  1207           // copy prefix byte
  1208           __ testl(count, 1);
  1209           __ jccb(Assembler::zero, L_exit);
  1210           __ movb(rdx, Address(from, 0));
  1211           __ movb(Address(to, 0), rdx);
  1212         __ BIND(L_exit);
  1213         } else {
  1214         __ BIND(L_copy_byte);
  1216     } else {
  1217     __ BIND(L_copy_2_bytes);
  1219     if (t == T_OBJECT) {
  1220       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1221       gen_write_ref_array_post_barrier(to, count);
  1222     __ BIND(L_0_count);
  1224     inc_copy_counter_np(t);
  1225     __ pop(rdi);
  1226     __ pop(rsi);
  1227     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1228     __ xorptr(rax, rax); // return 0
  1229     __ ret(0);
  1230     return start;
  1234   address generate_disjoint_long_copy(address* entry, const char *name) {
  1235     __ align(CodeEntryAlignment);
  1236     StubCodeMark mark(this, "StubRoutines", name);
  1237     address start = __ pc();
  1239     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1240     const Register from       = rax;  // source array address
  1241     const Register to         = rdx;  // destination array address
  1242     const Register count      = rcx;  // elements count
  1243     const Register to_from    = rdx;  // (to - from)
  1245     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1246     __ movptr(from , Address(rsp, 8+0));       // from
  1247     __ movptr(to   , Address(rsp, 8+4));       // to
  1248     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1250     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1251     BLOCK_COMMENT("Entry:");
  1253     __ subptr(to, from); // to --> to_from
  1254     if (VM_Version::supports_mmx()) {
  1255       if (UseXMMForArrayCopy) {
  1256         xmm_copy_forward(from, to_from, count);
  1257       } else {
  1258         mmx_copy_forward(from, to_from, count);
  1260     } else {
  1261       __ jmpb(L_copy_8_bytes);
  1262       __ align(OptoLoopAlignment);
  1263     __ BIND(L_copy_8_bytes_loop);
  1264       __ fild_d(Address(from, 0));
  1265       __ fistp_d(Address(from, to_from, Address::times_1));
  1266       __ addptr(from, 8);
  1267     __ BIND(L_copy_8_bytes);
  1268       __ decrement(count);
  1269       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1271     inc_copy_counter_np(T_LONG);
  1272     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1273     __ xorptr(rax, rax); // return 0
  1274     __ ret(0);
  1275     return start;
  1278   address generate_conjoint_long_copy(address nooverlap_target,
  1279                                       address* entry, const char *name) {
  1280     __ align(CodeEntryAlignment);
  1281     StubCodeMark mark(this, "StubRoutines", name);
  1282     address start = __ pc();
  1284     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1285     const Register from       = rax;  // source array address
  1286     const Register to         = rdx;  // destination array address
  1287     const Register count      = rcx;  // elements count
  1288     const Register end_from   = rax;  // source array end address
  1290     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1291     __ movptr(from , Address(rsp, 8+0));       // from
  1292     __ movptr(to   , Address(rsp, 8+4));       // to
  1293     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1295     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1296     BLOCK_COMMENT("Entry:");
  1298     // arrays overlap test
  1299     __ cmpptr(to, from);
  1300     RuntimeAddress nooverlap(nooverlap_target);
  1301     __ jump_cc(Assembler::belowEqual, nooverlap);
  1302     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1303     __ cmpptr(to, end_from);
  1304     __ movptr(from, Address(rsp, 8));  // from
  1305     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1307     __ jmpb(L_copy_8_bytes);
  1309     __ align(OptoLoopAlignment);
  1310   __ BIND(L_copy_8_bytes_loop);
  1311     if (VM_Version::supports_mmx()) {
  1312       if (UseXMMForArrayCopy) {
  1313         __ movq(xmm0, Address(from, count, Address::times_8));
  1314         __ movq(Address(to, count, Address::times_8), xmm0);
  1315       } else {
  1316         __ movq(mmx0, Address(from, count, Address::times_8));
  1317         __ movq(Address(to, count, Address::times_8), mmx0);
  1319     } else {
  1320       __ fild_d(Address(from, count, Address::times_8));
  1321       __ fistp_d(Address(to, count, Address::times_8));
  1323   __ BIND(L_copy_8_bytes);
  1324     __ decrement(count);
  1325     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1327     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1328       __ emms();
  1330     inc_copy_counter_np(T_LONG);
  1331     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1332     __ xorptr(rax, rax); // return 0
  1333     __ ret(0);
  1334     return start;
  1338   // Helper for generating a dynamic type check.
  1339   // The sub_klass must be one of {rbx, rdx, rsi}.
  1340   // The temp is killed.
  1341   void generate_type_check(Register sub_klass,
  1342                            Address& super_check_offset_addr,
  1343                            Address& super_klass_addr,
  1344                            Register temp,
  1345                            Label* L_success, Label* L_failure) {
  1346     BLOCK_COMMENT("type_check:");
  1348     Label L_fallthrough;
  1349 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1350     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1351     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1353     // The following is a strange variation of the fast path which requires
  1354     // one less register, because needed values are on the argument stack.
  1355     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1356     //                                  L_success, L_failure, NULL);
  1357     assert_different_registers(sub_klass, temp);
  1359     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  1361     // if the pointers are equal, we are done (e.g., String[] elements)
  1362     __ cmpptr(sub_klass, super_klass_addr);
  1363     LOCAL_JCC(Assembler::equal, L_success);
  1365     // check the supertype display:
  1366     __ movl2ptr(temp, super_check_offset_addr);
  1367     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1368     __ movptr(temp, super_check_addr); // load displayed supertype
  1369     __ cmpptr(temp, super_klass_addr); // test the super type
  1370     LOCAL_JCC(Assembler::equal, L_success);
  1372     // if it was a primary super, we can just fail immediately
  1373     __ cmpl(super_check_offset_addr, sc_offset);
  1374     LOCAL_JCC(Assembler::notEqual, L_failure);
  1376     // The repne_scan instruction uses fixed registers, which will get spilled.
  1377     // We happen to know this works best when super_klass is in rax.
  1378     Register super_klass = temp;
  1379     __ movptr(super_klass, super_klass_addr);
  1380     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1381                                      L_success, L_failure);
  1383     __ bind(L_fallthrough);
  1385     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1386     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1388 #undef LOCAL_JCC
  1391   //
  1392   //  Generate checkcasting array copy stub
  1393   //
  1394   //  Input:
  1395   //    4(rsp)   - source array address
  1396   //    8(rsp)   - destination array address
  1397   //   12(rsp)   - element count, can be zero
  1398   //   16(rsp)   - size_t ckoff (super_check_offset)
  1399   //   20(rsp)   - oop ckval (super_klass)
  1400   //
  1401   //  Output:
  1402   //    rax, ==  0  -  success
  1403   //    rax, == -1^K - failure, where K is partial transfer count
  1404   //
  1405   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1406     __ align(CodeEntryAlignment);
  1407     StubCodeMark mark(this, "StubRoutines", name);
  1408     address start = __ pc();
  1410     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1412     // register use:
  1413     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1414     //  rdi, rsi      -- element access (oop, klass)
  1415     //  rbx,           -- temp
  1416     const Register from       = rax;    // source array address
  1417     const Register to         = rdx;    // destination array address
  1418     const Register length     = rcx;    // elements count
  1419     const Register elem       = rdi;    // each oop copied
  1420     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1421     const Register temp       = rbx;    // lone remaining temp
  1423     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1425     __ push(rsi);
  1426     __ push(rdi);
  1427     __ push(rbx);
  1429     Address   from_arg(rsp, 16+ 4);     // from
  1430     Address     to_arg(rsp, 16+ 8);     // to
  1431     Address length_arg(rsp, 16+12);     // elements count
  1432     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1433     Address  ckval_arg(rsp, 16+20);     // super_klass
  1435     // Load up:
  1436     __ movptr(from,     from_arg);
  1437     __ movptr(to,         to_arg);
  1438     __ movl2ptr(length, length_arg);
  1440     if (entry != NULL) {
  1441       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1442       BLOCK_COMMENT("Entry:");
  1445     //---------------------------------------------------------------
  1446     // Assembler stub will be used for this call to arraycopy
  1447     // if the two arrays are subtypes of Object[] but the
  1448     // destination array type is not equal to or a supertype
  1449     // of the source type.  Each element must be separately
  1450     // checked.
  1452     // Loop-invariant addresses.  They are exclusive end pointers.
  1453     Address end_from_addr(from, length, Address::times_ptr, 0);
  1454     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1456     Register end_from = from;           // re-use
  1457     Register end_to   = to;             // re-use
  1458     Register count    = length;         // re-use
  1460     // Loop-variant addresses.  They assume post-incremented count < 0.
  1461     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1462     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1463     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1465     // Copy from low to high addresses, indexed from the end of each array.
  1466     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1467     __ lea(end_from, end_from_addr);
  1468     __ lea(end_to,   end_to_addr);
  1469     assert(length == count, "");        // else fix next line:
  1470     __ negptr(count);                   // negate and test the length
  1471     __ jccb(Assembler::notZero, L_load_element);
  1473     // Empty array:  Nothing to do.
  1474     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1475     __ jmp(L_done);
  1477     // ======== begin loop ========
  1478     // (Loop is rotated; its entry is L_load_element.)
  1479     // Loop control:
  1480     //   for (count = -count; count != 0; count++)
  1481     // Base pointers src, dst are biased by 8*count,to last element.
  1482     __ align(OptoLoopAlignment);
  1484     __ BIND(L_store_element);
  1485     __ movptr(to_element_addr, elem);     // store the oop
  1486     __ increment(count);                // increment the count toward zero
  1487     __ jccb(Assembler::zero, L_do_card_marks);
  1489     // ======== loop entry is here ========
  1490     __ BIND(L_load_element);
  1491     __ movptr(elem, from_element_addr);   // load the oop
  1492     __ testptr(elem, elem);
  1493     __ jccb(Assembler::zero, L_store_element);
  1495     // (Could do a trick here:  Remember last successful non-null
  1496     // element stored and make a quick oop equality check on it.)
  1498     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1499     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1500                         &L_store_element, NULL);
  1501       // (On fall-through, we have failed the element type check.)
  1502     // ======== end loop ========
  1504     // It was a real error; we must depend on the caller to finish the job.
  1505     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1506     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1507     // and report their number to the caller.
  1508     __ addl(count, length_arg);         // transfers = (length - remaining)
  1509     __ movl2ptr(rax, count);            // save the value
  1510     __ notptr(rax);                     // report (-1^K) to caller
  1511     __ movptr(to, to_arg);              // reload
  1512     assert_different_registers(to, count, rax);
  1513     gen_write_ref_array_post_barrier(to, count);
  1514     __ jmpb(L_done);
  1516     // Come here on success only.
  1517     __ BIND(L_do_card_marks);
  1518     __ movl2ptr(count, length_arg);
  1519     __ movptr(to, to_arg);                // reload
  1520     gen_write_ref_array_post_barrier(to, count);
  1521     __ xorptr(rax, rax);                  // return 0 on success
  1523     // Common exit point (success or failure).
  1524     __ BIND(L_done);
  1525     __ pop(rbx);
  1526     __ pop(rdi);
  1527     __ pop(rsi);
  1528     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1529     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1530     __ ret(0);
  1532     return start;
  1535   //
  1536   //  Generate 'unsafe' array copy stub
  1537   //  Though just as safe as the other stubs, it takes an unscaled
  1538   //  size_t argument instead of an element count.
  1539   //
  1540   //  Input:
  1541   //    4(rsp)   - source array address
  1542   //    8(rsp)   - destination array address
  1543   //   12(rsp)   - byte count, can be zero
  1544   //
  1545   //  Output:
  1546   //    rax, ==  0  -  success
  1547   //    rax, == -1  -  need to call System.arraycopy
  1548   //
  1549   // Examines the alignment of the operands and dispatches
  1550   // to a long, int, short, or byte copy loop.
  1551   //
  1552   address generate_unsafe_copy(const char *name,
  1553                                address byte_copy_entry,
  1554                                address short_copy_entry,
  1555                                address int_copy_entry,
  1556                                address long_copy_entry) {
  1558     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1560     __ align(CodeEntryAlignment);
  1561     StubCodeMark mark(this, "StubRoutines", name);
  1562     address start = __ pc();
  1564     const Register from       = rax;  // source array address
  1565     const Register to         = rdx;  // destination array address
  1566     const Register count      = rcx;  // elements count
  1568     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1569     __ push(rsi);
  1570     __ push(rdi);
  1571     Address  from_arg(rsp, 12+ 4);      // from
  1572     Address    to_arg(rsp, 12+ 8);      // to
  1573     Address count_arg(rsp, 12+12);      // byte count
  1575     // Load up:
  1576     __ movptr(from ,  from_arg);
  1577     __ movptr(to   ,    to_arg);
  1578     __ movl2ptr(count, count_arg);
  1580     // bump this on entry, not on exit:
  1581     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1583     const Register bits = rsi;
  1584     __ mov(bits, from);
  1585     __ orptr(bits, to);
  1586     __ orptr(bits, count);
  1588     __ testl(bits, BytesPerLong-1);
  1589     __ jccb(Assembler::zero, L_long_aligned);
  1591     __ testl(bits, BytesPerInt-1);
  1592     __ jccb(Assembler::zero, L_int_aligned);
  1594     __ testl(bits, BytesPerShort-1);
  1595     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1597     __ BIND(L_short_aligned);
  1598     __ shrptr(count, LogBytesPerShort); // size => short_count
  1599     __ movl(count_arg, count);          // update 'count'
  1600     __ jump(RuntimeAddress(short_copy_entry));
  1602     __ BIND(L_int_aligned);
  1603     __ shrptr(count, LogBytesPerInt); // size => int_count
  1604     __ movl(count_arg, count);          // update 'count'
  1605     __ jump(RuntimeAddress(int_copy_entry));
  1607     __ BIND(L_long_aligned);
  1608     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1609     __ movl(count_arg, count);          // update 'count'
  1610     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1611     __ pop(rsi);
  1612     __ jump(RuntimeAddress(long_copy_entry));
  1614     return start;
  1618   // Perform range checks on the proposed arraycopy.
  1619   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1620   void arraycopy_range_checks(Register src,
  1621                               Register src_pos,
  1622                               Register dst,
  1623                               Register dst_pos,
  1624                               Address& length,
  1625                               Label& L_failed) {
  1626     BLOCK_COMMENT("arraycopy_range_checks:");
  1627     const Register src_end = src_pos;   // source array end position
  1628     const Register dst_end = dst_pos;   // destination array end position
  1629     __ addl(src_end, length); // src_pos + length
  1630     __ addl(dst_end, length); // dst_pos + length
  1632     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1633     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1634     __ jcc(Assembler::above, L_failed);
  1636     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1637     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1638     __ jcc(Assembler::above, L_failed);
  1640     BLOCK_COMMENT("arraycopy_range_checks done");
  1644   //
  1645   //  Generate generic array copy stubs
  1646   //
  1647   //  Input:
  1648   //     4(rsp)    -  src oop
  1649   //     8(rsp)    -  src_pos
  1650   //    12(rsp)    -  dst oop
  1651   //    16(rsp)    -  dst_pos
  1652   //    20(rsp)    -  element count
  1653   //
  1654   //  Output:
  1655   //    rax, ==  0  -  success
  1656   //    rax, == -1^K - failure, where K is partial transfer count
  1657   //
  1658   address generate_generic_copy(const char *name,
  1659                                 address entry_jbyte_arraycopy,
  1660                                 address entry_jshort_arraycopy,
  1661                                 address entry_jint_arraycopy,
  1662                                 address entry_oop_arraycopy,
  1663                                 address entry_jlong_arraycopy,
  1664                                 address entry_checkcast_arraycopy) {
  1665     Label L_failed, L_failed_0, L_objArray;
  1667     { int modulus = CodeEntryAlignment;
  1668       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1669       int advance = target - (__ offset() % modulus);
  1670       if (advance < 0)  advance += modulus;
  1671       if (advance > 0)  __ nop(advance);
  1673     StubCodeMark mark(this, "StubRoutines", name);
  1675     // Short-hop target to L_failed.  Makes for denser prologue code.
  1676     __ BIND(L_failed_0);
  1677     __ jmp(L_failed);
  1678     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1680     __ align(CodeEntryAlignment);
  1681     address start = __ pc();
  1683     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1684     __ push(rsi);
  1685     __ push(rdi);
  1687     // bump this on entry, not on exit:
  1688     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1690     // Input values
  1691     Address SRC     (rsp, 12+ 4);
  1692     Address SRC_POS (rsp, 12+ 8);
  1693     Address DST     (rsp, 12+12);
  1694     Address DST_POS (rsp, 12+16);
  1695     Address LENGTH  (rsp, 12+20);
  1697     //-----------------------------------------------------------------------
  1698     // Assembler stub will be used for this call to arraycopy
  1699     // if the following conditions are met:
  1700     //
  1701     // (1) src and dst must not be null.
  1702     // (2) src_pos must not be negative.
  1703     // (3) dst_pos must not be negative.
  1704     // (4) length  must not be negative.
  1705     // (5) src klass and dst klass should be the same and not NULL.
  1706     // (6) src and dst should be arrays.
  1707     // (7) src_pos + length must not exceed length of src.
  1708     // (8) dst_pos + length must not exceed length of dst.
  1709     //
  1711     const Register src     = rax;       // source array oop
  1712     const Register src_pos = rsi;
  1713     const Register dst     = rdx;       // destination array oop
  1714     const Register dst_pos = rdi;
  1715     const Register length  = rcx;       // transfer count
  1717     //  if (src == NULL) return -1;
  1718     __ movptr(src, SRC);      // src oop
  1719     __ testptr(src, src);
  1720     __ jccb(Assembler::zero, L_failed_0);
  1722     //  if (src_pos < 0) return -1;
  1723     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1724     __ testl(src_pos, src_pos);
  1725     __ jccb(Assembler::negative, L_failed_0);
  1727     //  if (dst == NULL) return -1;
  1728     __ movptr(dst, DST);      // dst oop
  1729     __ testptr(dst, dst);
  1730     __ jccb(Assembler::zero, L_failed_0);
  1732     //  if (dst_pos < 0) return -1;
  1733     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1734     __ testl(dst_pos, dst_pos);
  1735     __ jccb(Assembler::negative, L_failed_0);
  1737     //  if (length < 0) return -1;
  1738     __ movl2ptr(length, LENGTH);   // length
  1739     __ testl(length, length);
  1740     __ jccb(Assembler::negative, L_failed_0);
  1742     //  if (src->klass() == NULL) return -1;
  1743     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1744     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1745     const Register rcx_src_klass = rcx;    // array klass
  1746     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1748 #ifdef ASSERT
  1749     //  assert(src->klass() != NULL);
  1750     BLOCK_COMMENT("assert klasses not null");
  1751     { Label L1, L2;
  1752       __ testptr(rcx_src_klass, rcx_src_klass);
  1753       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1754       __ bind(L1);
  1755       __ stop("broken null klass");
  1756       __ bind(L2);
  1757       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1758       __ jccb(Assembler::equal, L1);      // this would be broken also
  1759       BLOCK_COMMENT("assert done");
  1761 #endif //ASSERT
  1763     // Load layout helper (32-bits)
  1764     //
  1765     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1766     // 32        30    24            16              8     2                 0
  1767     //
  1768     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1769     //
  1771     int lh_offset = in_bytes(Klass::layout_helper_offset());
  1772     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1774     // Handle objArrays completely differently...
  1775     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1776     __ cmpl(src_klass_lh_addr, objArray_lh);
  1777     __ jcc(Assembler::equal, L_objArray);
  1779     //  if (src->klass() != dst->klass()) return -1;
  1780     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1781     __ jccb(Assembler::notEqual, L_failed_0);
  1783     const Register rcx_lh = rcx;  // layout helper
  1784     assert(rcx_lh == rcx_src_klass, "known alias");
  1785     __ movl(rcx_lh, src_klass_lh_addr);
  1787     //  if (!src->is_Array()) return -1;
  1788     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1789     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1791     // At this point, it is known to be a typeArray (array_tag 0x3).
  1792 #ifdef ASSERT
  1793     { Label L;
  1794       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1795       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1796       __ stop("must be a primitive array");
  1797       __ bind(L);
  1799 #endif
  1801     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1802     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1804     // TypeArrayKlass
  1805     //
  1806     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1807     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1808     //
  1809     const Register rsi_offset = rsi; // array offset
  1810     const Register src_array  = src; // src array offset
  1811     const Register dst_array  = dst; // dst array offset
  1812     const Register rdi_elsize = rdi; // log2 element size
  1814     __ mov(rsi_offset, rcx_lh);
  1815     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1816     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1817     __ addptr(src_array, rsi_offset);  // src array offset
  1818     __ addptr(dst_array, rsi_offset);  // dst array offset
  1819     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1821     // next registers should be set before the jump to corresponding stub
  1822     const Register from       = src; // source array address
  1823     const Register to         = dst; // destination array address
  1824     const Register count      = rcx; // elements count
  1825     // some of them should be duplicated on stack
  1826 #define FROM   Address(rsp, 12+ 4)
  1827 #define TO     Address(rsp, 12+ 8)   // Not used now
  1828 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1830     BLOCK_COMMENT("scale indexes to element size");
  1831     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1832     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1833     assert(src_array == from, "");
  1834     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1835     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1836     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1837     assert(dst_array == to, "");
  1838     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1839     __ movptr(FROM, from);      // src_addr
  1840     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1841     __ movl2ptr(count, LENGTH); // elements count
  1843     BLOCK_COMMENT("choose copy loop based on element size");
  1844     __ cmpl(rdi_elsize, 0);
  1846     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1847     __ cmpl(rdi_elsize, LogBytesPerShort);
  1848     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1849     __ cmpl(rdi_elsize, LogBytesPerInt);
  1850     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1851 #ifdef ASSERT
  1852     __ cmpl(rdi_elsize, LogBytesPerLong);
  1853     __ jccb(Assembler::notEqual, L_failed);
  1854 #endif
  1855     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1856     __ pop(rsi);
  1857     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1859   __ BIND(L_failed);
  1860     __ xorptr(rax, rax);
  1861     __ notptr(rax); // return -1
  1862     __ pop(rdi);
  1863     __ pop(rsi);
  1864     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1865     __ ret(0);
  1867     // ObjArrayKlass
  1868   __ BIND(L_objArray);
  1869     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1871     Label L_plain_copy, L_checkcast_copy;
  1872     //  test array classes for subtyping
  1873     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1874     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1876     // Identically typed arrays can be copied without element-wise checks.
  1877     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1878     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1880   __ BIND(L_plain_copy);
  1881     __ movl2ptr(count, LENGTH); // elements count
  1882     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1883     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1884                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1885     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1886     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1887                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1888     __ movptr(FROM,  from);   // src_addr
  1889     __ movptr(TO,    to);     // dst_addr
  1890     __ movl(COUNT, count);  // count
  1891     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1893   __ BIND(L_checkcast_copy);
  1894     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1896       // Handy offsets:
  1897       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1898       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1900       Register rsi_dst_klass = rsi;
  1901       Register rdi_temp      = rdi;
  1902       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1903       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1904       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1906       // Before looking at dst.length, make sure dst is also an objArray.
  1907       __ movptr(rsi_dst_klass, dst_klass_addr);
  1908       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1909       __ jccb(Assembler::notEqual, L_failed);
  1911       // It is safe to examine both src.length and dst.length.
  1912       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1913       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1914       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1916       // We'll need this temp (don't forget to pop it after the type check).
  1917       __ push(rbx);
  1918       Register rbx_src_klass = rbx;
  1920       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1921       __ movptr(rsi_dst_klass, dst_klass_addr);
  1922       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1923       Label L_fail_array_check;
  1924       generate_type_check(rbx_src_klass,
  1925                           super_check_offset_addr, dst_klass_addr,
  1926                           rdi_temp, NULL, &L_fail_array_check);
  1927       // (On fall-through, we have passed the array type check.)
  1928       __ pop(rbx);
  1929       __ jmp(L_plain_copy);
  1931       __ BIND(L_fail_array_check);
  1932       // Reshuffle arguments so we can call checkcast_arraycopy:
  1934       // match initial saves for checkcast_arraycopy
  1935       // push(rsi);    // already done; see above
  1936       // push(rdi);    // already done; see above
  1937       // push(rbx);    // already done; see above
  1939       // Marshal outgoing arguments now, freeing registers.
  1940       Address   from_arg(rsp, 16+ 4);   // from
  1941       Address     to_arg(rsp, 16+ 8);   // to
  1942       Address length_arg(rsp, 16+12);   // elements count
  1943       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1944       Address  ckval_arg(rsp, 16+20);   // super_klass
  1946       Address SRC_POS_arg(rsp, 16+ 8);
  1947       Address DST_POS_arg(rsp, 16+16);
  1948       Address  LENGTH_arg(rsp, 16+20);
  1949       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1950       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1952       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1953       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1954       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1955       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1957       __ movptr(ckval_arg, rbx);          // destination element type
  1958       __ movl(rbx, Address(rbx, sco_offset));
  1959       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1961       __ movl(length_arg, length);      // outgoing length argument
  1963       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1964                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1965       __ movptr(from_arg, from);
  1967       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1968                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1969       __ movptr(to_arg, to);
  1970       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1973     return start;
  1976   void generate_arraycopy_stubs() {
  1977     address entry;
  1978     address entry_jbyte_arraycopy;
  1979     address entry_jshort_arraycopy;
  1980     address entry_jint_arraycopy;
  1981     address entry_oop_arraycopy;
  1982     address entry_jlong_arraycopy;
  1983     address entry_checkcast_arraycopy;
  1985     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1986         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1987                                "arrayof_jbyte_disjoint_arraycopy");
  1988     StubRoutines::_arrayof_jbyte_arraycopy =
  1989         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1990                                NULL, "arrayof_jbyte_arraycopy");
  1991     StubRoutines::_jbyte_disjoint_arraycopy =
  1992         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1993                                "jbyte_disjoint_arraycopy");
  1994     StubRoutines::_jbyte_arraycopy =
  1995         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1996                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1998     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1999         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2000                                "arrayof_jshort_disjoint_arraycopy");
  2001     StubRoutines::_arrayof_jshort_arraycopy =
  2002         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2003                                NULL, "arrayof_jshort_arraycopy");
  2004     StubRoutines::_jshort_disjoint_arraycopy =
  2005         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2006                                "jshort_disjoint_arraycopy");
  2007     StubRoutines::_jshort_arraycopy =
  2008         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2009                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2011     // Next arrays are always aligned on 4 bytes at least.
  2012     StubRoutines::_jint_disjoint_arraycopy =
  2013         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2014                                "jint_disjoint_arraycopy");
  2015     StubRoutines::_jint_arraycopy =
  2016         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2017                                &entry_jint_arraycopy, "jint_arraycopy");
  2019     StubRoutines::_oop_disjoint_arraycopy =
  2020         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2021                                "oop_disjoint_arraycopy");
  2022     StubRoutines::_oop_arraycopy =
  2023         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2024                                &entry_oop_arraycopy, "oop_arraycopy");
  2026     StubRoutines::_oop_disjoint_arraycopy_uninit =
  2027         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2028                                "oop_disjoint_arraycopy_uninit",
  2029                                /*dest_uninitialized*/true);
  2030     StubRoutines::_oop_arraycopy_uninit =
  2031         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2032                                NULL, "oop_arraycopy_uninit",
  2033                                /*dest_uninitialized*/true);
  2035     StubRoutines::_jlong_disjoint_arraycopy =
  2036         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2037     StubRoutines::_jlong_arraycopy =
  2038         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2039                                     "jlong_arraycopy");
  2041     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2042     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2043     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2044     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2045     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2046     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2048     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  2049     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  2050     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2051     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  2053     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  2054     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  2055     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  2056     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  2058     StubRoutines::_checkcast_arraycopy =
  2059         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2060     StubRoutines::_checkcast_arraycopy_uninit =
  2061         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  2063     StubRoutines::_unsafe_arraycopy =
  2064         generate_unsafe_copy("unsafe_arraycopy",
  2065                                entry_jbyte_arraycopy,
  2066                                entry_jshort_arraycopy,
  2067                                entry_jint_arraycopy,
  2068                                entry_jlong_arraycopy);
  2070     StubRoutines::_generic_arraycopy =
  2071         generate_generic_copy("generic_arraycopy",
  2072                                entry_jbyte_arraycopy,
  2073                                entry_jshort_arraycopy,
  2074                                entry_jint_arraycopy,
  2075                                entry_oop_arraycopy,
  2076                                entry_jlong_arraycopy,
  2077                                entry_checkcast_arraycopy);
  2080   void generate_math_stubs() {
  2082       StubCodeMark mark(this, "StubRoutines", "log");
  2083       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2085       __ fld_d(Address(rsp, 4));
  2086       __ flog();
  2087       __ ret(0);
  2090       StubCodeMark mark(this, "StubRoutines", "log10");
  2091       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2093       __ fld_d(Address(rsp, 4));
  2094       __ flog10();
  2095       __ ret(0);
  2098       StubCodeMark mark(this, "StubRoutines", "sin");
  2099       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2101       __ fld_d(Address(rsp, 4));
  2102       __ trigfunc('s');
  2103       __ ret(0);
  2106       StubCodeMark mark(this, "StubRoutines", "cos");
  2107       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2109       __ fld_d(Address(rsp, 4));
  2110       __ trigfunc('c');
  2111       __ ret(0);
  2114       StubCodeMark mark(this, "StubRoutines", "tan");
  2115       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2117       __ fld_d(Address(rsp, 4));
  2118       __ trigfunc('t');
  2119       __ ret(0);
  2122       StubCodeMark mark(this, "StubRoutines", "exp");
  2123       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
  2125       __ fld_d(Address(rsp, 4));
  2126       __ exp_with_fallback(0);
  2127       __ ret(0);
  2130       StubCodeMark mark(this, "StubRoutines", "pow");
  2131       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
  2133       __ fld_d(Address(rsp, 12));
  2134       __ fld_d(Address(rsp, 4));
  2135       __ pow_with_fallback(0);
  2136       __ ret(0);
  2140  public:
  2141   // Information about frame layout at time of blocking runtime call.
  2142   // Note that we only have to preserve callee-saved registers since
  2143   // the compilers are responsible for supplying a continuation point
  2144   // if they expect all registers to be preserved.
  2145   enum layout {
  2146     thread_off,    // last_java_sp
  2147     arg1_off,
  2148     arg2_off,
  2149     rbp_off,       // callee saved register
  2150     ret_pc,
  2151     framesize
  2152   };
  2154  private:
  2156 #undef  __
  2157 #define __ masm->
  2159   //------------------------------------------------------------------------------------------------------------------------
  2160   // Continuation point for throwing of implicit exceptions that are not handled in
  2161   // the current activation. Fabricates an exception oop and initiates normal
  2162   // exception dispatching in this frame.
  2163   //
  2164   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2165   // This is no longer true after adapter frames were removed but could possibly
  2166   // be brought back in the future if the interpreter code was reworked and it
  2167   // was deemed worthwhile. The comment below was left to describe what must
  2168   // happen here if callee saves were resurrected. As it stands now this stub
  2169   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2170   // Since it doesn't make much difference we've chosen to leave it the
  2171   // way it was in the callee save days and keep the comment.
  2173   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2174   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2175   // If the compiler needs all registers to be preserved between the fault
  2176   // point and the exception handler then it must assume responsibility for that in
  2177   // AbstractCompiler::continuation_for_implicit_null_exception or
  2178   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2179   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2180   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2181   // so caller saved registers were assumed volatile in the compiler.
  2182   address generate_throw_exception(const char* name, address runtime_entry,
  2183                                    Register arg1 = noreg, Register arg2 = noreg) {
  2185     int insts_size = 256;
  2186     int locs_size  = 32;
  2188     CodeBuffer code(name, insts_size, locs_size);
  2189     OopMapSet* oop_maps  = new OopMapSet();
  2190     MacroAssembler* masm = new MacroAssembler(&code);
  2192     address start = __ pc();
  2194     // This is an inlined and slightly modified version of call_VM
  2195     // which has the ability to fetch the return PC out of
  2196     // thread-local storage and also sets up last_Java_sp slightly
  2197     // differently than the real call_VM
  2198     Register java_thread = rbx;
  2199     __ get_thread(java_thread);
  2201     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2203     // pc and rbp, already pushed
  2204     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2206     // Frame is now completed as far as size and linkage.
  2208     int frame_complete = __ pc() - start;
  2210     // push java thread (becomes first argument of C function)
  2211     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2212     if (arg1 != noreg) {
  2213       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  2215     if (arg2 != noreg) {
  2216       assert(arg1 != noreg, "missing reg arg");
  2217       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  2220     // Set up last_Java_sp and last_Java_fp
  2221     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2223     // Call runtime
  2224     BLOCK_COMMENT("call runtime_entry");
  2225     __ call(RuntimeAddress(runtime_entry));
  2226     // Generate oop map
  2227     OopMap* map =  new OopMap(framesize, 0);
  2228     oop_maps->add_gc_map(__ pc() - start, map);
  2230     // restore the thread (cannot use the pushed argument since arguments
  2231     // may be overwritten by C code generated by an optimizing compiler);
  2232     // however can use the register value directly if it is callee saved.
  2233     __ get_thread(java_thread);
  2235     __ reset_last_Java_frame(java_thread, true, false);
  2237     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2239     // check for pending exceptions
  2240 #ifdef ASSERT
  2241     Label L;
  2242     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2243     __ jcc(Assembler::notEqual, L);
  2244     __ should_not_reach_here();
  2245     __ bind(L);
  2246 #endif /* ASSERT */
  2247     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2250     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2251     return stub->entry_point();
  2255   void create_control_words() {
  2256     // Round to nearest, 53-bit mode, exceptions masked
  2257     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2258     // Round to zero, 53-bit mode, exception mased
  2259     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2260     // Round to nearest, 24-bit mode, exceptions masked
  2261     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2262     // Round to nearest, 64-bit mode, exceptions masked
  2263     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2264     // Round to nearest, 64-bit mode, exceptions masked
  2265     StubRoutines::_mxcsr_std           = 0x1F80;
  2266     // Note: the following two constants are 80-bit values
  2267     //       layout is critical for correct loading by FPU.
  2268     // Bias for strict fp multiply/divide
  2269     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2270     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2271     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2272     // Un-Bias for strict fp multiply/divide
  2273     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2274     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2275     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2278   //---------------------------------------------------------------------------
  2279   // Initialization
  2281   void generate_initial() {
  2282     // Generates all stubs and initializes the entry points
  2284     //------------------------------------------------------------------------------------------------------------------------
  2285     // entry points that exist in all platforms
  2286     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2287     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2288     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2290     StubRoutines::_call_stub_entry              =
  2291       generate_call_stub(StubRoutines::_call_stub_return_address);
  2292     // is referenced by megamorphic call
  2293     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2295     // These are currently used by Solaris/Intel
  2296     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2298     StubRoutines::_handler_for_unsafe_access_entry =
  2299       generate_handler_for_unsafe_access();
  2301     // platform dependent
  2302     create_control_words();
  2304     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2305     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2306     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2307                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2308     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2309                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2311     // Build this early so it's available for the interpreter
  2312     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  2316   void generate_all() {
  2317     // Generates all stubs and initializes the entry points
  2319     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2320     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2321     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  2322     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  2323     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  2325     //------------------------------------------------------------------------------------------------------------------------
  2326     // entry points that are platform specific
  2328     // support for verify_oop (must happen after universe_init)
  2329     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2331     // arraycopy stubs used by compilers
  2332     generate_arraycopy_stubs();
  2334     generate_math_stubs();
  2338  public:
  2339   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2340     if (all) {
  2341       generate_all();
  2342     } else {
  2343       generate_initial();
  2346 }; // end class declaration
  2349 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2350   StubGenerator g(code, all);

mercurial