src/cpu/x86/vm/interp_masm_x86_32.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4037
da91efe96a93
child 4299
f34d701e952e
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_32.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/method.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "thread_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "thread_bsd.inline.hpp"
    50 #endif
    53 // Implementation of InterpreterMacroAssembler
    54 #ifdef CC_INTERP
    55 void InterpreterMacroAssembler::get_method(Register reg) {
    56   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    57   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    58 }
    59 #endif // CC_INTERP
    62 #ifndef CC_INTERP
    63 void InterpreterMacroAssembler::call_VM_leaf_base(
    64   address entry_point,
    65   int     number_of_arguments
    66 ) {
    67   // interpreter specific
    68   //
    69   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    70   //       since these are callee saved registers and no blocking/
    71   //       GC can happen in leaf calls.
    72   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    73   // already saved them so that it can use rsi/rdi as temporaries
    74   // then a save/restore here will DESTROY the copy the caller
    75   // saved! There used to be a save_bcp() that only happened in
    76   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    77   // when jvm built with ASSERTs.
    78 #ifdef ASSERT
    79   { Label L;
    80     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    81     jcc(Assembler::equal, L);
    82     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    83     bind(L);
    84   }
    85 #endif
    86   // super call
    87   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    88   // interpreter specific
    90   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    91   // but since they may not have been saved (and we don't want to
    92   // save them here (see note above) the assert is invalid.
    93 }
    96 void InterpreterMacroAssembler::call_VM_base(
    97   Register oop_result,
    98   Register java_thread,
    99   Register last_java_sp,
   100   address  entry_point,
   101   int      number_of_arguments,
   102   bool     check_exceptions
   103 ) {
   104 #ifdef ASSERT
   105   { Label L;
   106     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   107     jcc(Assembler::equal, L);
   108     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
   109     bind(L);
   110   }
   111 #endif /* ASSERT */
   112   // interpreter specific
   113   //
   114   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   115   //       really make a difference for these runtime calls, since they are
   116   //       slow anyway. Btw., bcp must be saved/restored since it may change
   117   //       due to GC.
   118   assert(java_thread == noreg , "not expecting a precomputed java thread");
   119   save_bcp();
   120   // super call
   121   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   122   // interpreter specific
   123   restore_bcp();
   124   restore_locals();
   125 }
   128 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   129   if (JvmtiExport::can_pop_frame()) {
   130     Label L;
   131     // Initiate popframe handling only if it is not already being processed.  If the flag
   132     // has the popframe_processing bit set, it means that this code is called *during* popframe
   133     // handling - we don't want to reenter.
   134     Register pop_cond = java_thread;  // Not clear if any other register is available...
   135     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   136     testl(pop_cond, JavaThread::popframe_pending_bit);
   137     jcc(Assembler::zero, L);
   138     testl(pop_cond, JavaThread::popframe_processing_bit);
   139     jcc(Assembler::notZero, L);
   140     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   141     // address of the same-named entrypoint in the generated interpreter code.
   142     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   143     jmp(rax);
   144     bind(L);
   145     get_thread(java_thread);
   146   }
   147 }
   150 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   151   get_thread(rcx);
   152   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   153   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   154   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   155   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   156   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   157                              + in_ByteSize(wordSize));
   158   switch (state) {
   159     case atos: movptr(rax, oop_addr);
   160                movptr(oop_addr, NULL_WORD);
   161                verify_oop(rax, state);                break;
   162     case ltos:
   163                movl(rdx, val_addr1);               // fall through
   164     case btos:                                     // fall through
   165     case ctos:                                     // fall through
   166     case stos:                                     // fall through
   167     case itos: movl(rax, val_addr);                   break;
   168     case ftos: fld_s(val_addr);                       break;
   169     case dtos: fld_d(val_addr);                       break;
   170     case vtos: /* nothing to do */                    break;
   171     default  : ShouldNotReachHere();
   172   }
   173   // Clean up tos value in the thread object
   174   movl(tos_addr,  (int32_t) ilgl);
   175   movptr(val_addr,  NULL_WORD);
   176   NOT_LP64(movptr(val_addr1, NULL_WORD));
   177 }
   180 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   181   if (JvmtiExport::can_force_early_return()) {
   182     Label L;
   183     Register tmp = java_thread;
   184     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   185     testptr(tmp, tmp);
   186     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   188     // Initiate earlyret handling only if it is not already being processed.
   189     // If the flag has the earlyret_processing bit set, it means that this code
   190     // is called *during* earlyret handling - we don't want to reenter.
   191     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   192     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   193     jcc(Assembler::notEqual, L);
   195     // Call Interpreter::remove_activation_early_entry() to get the address of the
   196     // same-named entrypoint in the generated interpreter code.
   197     get_thread(java_thread);
   198     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   199     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   200     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   201     jmp(rax);
   202     bind(L);
   203     get_thread(java_thread);
   204   }
   205 }
   208 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   209   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   210   movl(reg, Address(rsi, bcp_offset));
   211   bswapl(reg);
   212   shrl(reg, 16);
   213 }
   216 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
   217   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   218   if (index_size == sizeof(u2)) {
   219     load_unsigned_short(reg, Address(rsi, bcp_offset));
   220   } else if (index_size == sizeof(u4)) {
   221     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   222     movl(reg, Address(rsi, bcp_offset));
   223     // Check if the secondary index definition is still ~x, otherwise
   224     // we have to change the following assembler code to calculate the
   225     // plain index.
   226     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   227     notl(reg);  // convert to plain index
   228   } else if (index_size == sizeof(u1)) {
   229     load_unsigned_byte(reg, Address(rsi, bcp_offset));
   230   } else {
   231     ShouldNotReachHere();
   232   }
   233 }
   236 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   237                                                            int bcp_offset, size_t index_size) {
   238   assert_different_registers(cache, index);
   239   get_cache_index_at_bcp(index, bcp_offset, index_size);
   240   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   241   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   242   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
   243   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   244 }
   247 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
   248                                                                         Register index,
   249                                                                         Register bytecode,
   250                                                                         int byte_no,
   251                                                                         int bcp_offset,
   252                                                                         size_t index_size) {
   253   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
   254   movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   255   const int shift_count = (1 + byte_no) * BitsPerByte;
   256   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
   257          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
   258          "correct shift count");
   259   shrptr(bytecode, shift_count);
   260   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
   261   andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
   262 }
   265 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   266                                                                int bcp_offset, size_t index_size) {
   267   assert(cache != tmp, "must use different register");
   268   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   269   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   270                                // convert from field index to ConstantPoolCacheEntry index
   271                                // and from word offset to byte offset
   272   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
   273   shll(tmp, 2 + LogBytesPerWord);
   274   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   275                                // skip past the header
   276   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
   277   addptr(cache, tmp);            // construct pointer to cache entry
   278 }
   280 // Load object from cpool->resolved_references(index)
   281 void InterpreterMacroAssembler::load_resolved_reference_at_index(
   282                                            Register result, Register index) {
   283   assert_different_registers(result, index);
   284   // convert from field index to resolved_references() index and from
   285   // word index to byte offset. Since this is a java object, it can be compressed
   286   Register tmp = index;  // reuse
   287   shll(tmp, LogBytesPerHeapOop);
   289   get_constant_pool(result);
   290   // load pointer for resolved_references[] objArray
   291   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
   292   // JNIHandles::resolve(obj);
   293   movptr(result, Address(result, 0));
   294   // Add in the index
   295   addptr(result, tmp);
   296   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   297 }
   299   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   300   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   301   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   302 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   303   assert( Rsub_klass != rax, "rax, holds superklass" );
   304   assert( Rsub_klass != rcx, "used as a temp" );
   305   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   307   // Profile the not-null value's klass.
   308   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   310   // Do the check.
   311   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   313   // Profile the failure of the check.
   314   profile_typecheck_failed(rcx); // blows rcx
   315 }
   317 void InterpreterMacroAssembler::f2ieee() {
   318   if (IEEEPrecision) {
   319     fstp_s(Address(rsp, 0));
   320     fld_s(Address(rsp, 0));
   321   }
   322 }
   325 void InterpreterMacroAssembler::d2ieee() {
   326   if (IEEEPrecision) {
   327     fstp_d(Address(rsp, 0));
   328     fld_d(Address(rsp, 0));
   329   }
   330 }
   332 // Java Expression Stack
   334 void InterpreterMacroAssembler::pop_ptr(Register r) {
   335   pop(r);
   336 }
   338 void InterpreterMacroAssembler::pop_i(Register r) {
   339   pop(r);
   340 }
   342 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   343   pop(lo);
   344   pop(hi);
   345 }
   347 void InterpreterMacroAssembler::pop_f() {
   348   fld_s(Address(rsp, 0));
   349   addptr(rsp, 1 * wordSize);
   350 }
   352 void InterpreterMacroAssembler::pop_d() {
   353   fld_d(Address(rsp, 0));
   354   addptr(rsp, 2 * wordSize);
   355 }
   358 void InterpreterMacroAssembler::pop(TosState state) {
   359   switch (state) {
   360     case atos: pop_ptr(rax);                                 break;
   361     case btos:                                               // fall through
   362     case ctos:                                               // fall through
   363     case stos:                                               // fall through
   364     case itos: pop_i(rax);                                   break;
   365     case ltos: pop_l(rax, rdx);                              break;
   366     case ftos: pop_f();                                      break;
   367     case dtos: pop_d();                                      break;
   368     case vtos: /* nothing to do */                           break;
   369     default  : ShouldNotReachHere();
   370   }
   371   verify_oop(rax, state);
   372 }
   374 void InterpreterMacroAssembler::push_ptr(Register r) {
   375   push(r);
   376 }
   378 void InterpreterMacroAssembler::push_i(Register r) {
   379   push(r);
   380 }
   382 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   383   push(hi);
   384   push(lo);
   385 }
   387 void InterpreterMacroAssembler::push_f() {
   388   // Do not schedule for no AGI! Never write beyond rsp!
   389   subptr(rsp, 1 * wordSize);
   390   fstp_s(Address(rsp, 0));
   391 }
   393 void InterpreterMacroAssembler::push_d(Register r) {
   394   // Do not schedule for no AGI! Never write beyond rsp!
   395   subptr(rsp, 2 * wordSize);
   396   fstp_d(Address(rsp, 0));
   397 }
   400 void InterpreterMacroAssembler::push(TosState state) {
   401   verify_oop(rax, state);
   402   switch (state) {
   403     case atos: push_ptr(rax); break;
   404     case btos:                                               // fall through
   405     case ctos:                                               // fall through
   406     case stos:                                               // fall through
   407     case itos: push_i(rax);                                    break;
   408     case ltos: push_l(rax, rdx);                               break;
   409     case ftos: push_f();                                       break;
   410     case dtos: push_d(rax);                                    break;
   411     case vtos: /* nothing to do */                             break;
   412     default  : ShouldNotReachHere();
   413   }
   414 }
   417 // Helpers for swap and dup
   418 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   419   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   420 }
   422 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   423   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   424 }
   426 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   427   // set sender sp
   428   lea(rsi, Address(rsp, wordSize));
   429   // record last_sp
   430   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   431 }
   434 // Jump to from_interpreted entry of a call unless single stepping is possible
   435 // in this thread in which case we must call the i2i entry
   436 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   437   prepare_to_jump_from_interpreted();
   439   if (JvmtiExport::can_post_interpreter_events()) {
   440     Label run_compiled_code;
   441     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   442     // compiled code in threads for which the event is enabled.  Check here for
   443     // interp_only_mode if these events CAN be enabled.
   444     get_thread(temp);
   445     // interp_only is an int, on little endian it is sufficient to test the byte only
   446     // Is a cmpl faster?
   447     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   448     jccb(Assembler::zero, run_compiled_code);
   449     jmp(Address(method, Method::interpreter_entry_offset()));
   450     bind(run_compiled_code);
   451   }
   453   jmp(Address(method, Method::from_interpreted_offset()));
   455 }
   458 // The following two routines provide a hook so that an implementation
   459 // can schedule the dispatch in two parts.  Intel does not do this.
   460 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   461   // Nothing Intel-specific to be done here.
   462 }
   464 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   465   dispatch_next(state, step);
   466 }
   468 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   469                                               bool verifyoop) {
   470   verify_FPU(1, state);
   471   if (VerifyActivationFrameSize) {
   472     Label L;
   473     mov(rcx, rbp);
   474     subptr(rcx, rsp);
   475     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   476     cmpptr(rcx, min_frame_size);
   477     jcc(Assembler::greaterEqual, L);
   478     stop("broken stack frame");
   479     bind(L);
   480   }
   481   if (verifyoop) verify_oop(rax, state);
   482   Address index(noreg, rbx, Address::times_ptr);
   483   ExternalAddress tbl((address)table);
   484   ArrayAddress dispatch(tbl, index);
   485   jump(dispatch);
   486 }
   489 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   490   dispatch_base(state, Interpreter::dispatch_table(state));
   491 }
   494 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   495   dispatch_base(state, Interpreter::normal_table(state));
   496 }
   498 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   499   dispatch_base(state, Interpreter::normal_table(state), false);
   500 }
   503 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   504   // load next bytecode (load before advancing rsi to prevent AGI)
   505   load_unsigned_byte(rbx, Address(rsi, step));
   506   // advance rsi
   507   increment(rsi, step);
   508   dispatch_base(state, Interpreter::dispatch_table(state));
   509 }
   512 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   513   // load current bytecode
   514   load_unsigned_byte(rbx, Address(rsi, 0));
   515   dispatch_base(state, table);
   516 }
   518 // remove activation
   519 //
   520 // Unlock the receiver if this is a synchronized method.
   521 // Unlock any Java monitors from syncronized blocks.
   522 // Remove the activation from the stack.
   523 //
   524 // If there are locked Java monitors
   525 //    If throw_monitor_exception
   526 //       throws IllegalMonitorStateException
   527 //    Else if install_monitor_exception
   528 //       installs IllegalMonitorStateException
   529 //    Else
   530 //       no error processing
   531 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   532                                                   bool throw_monitor_exception,
   533                                                   bool install_monitor_exception,
   534                                                   bool notify_jvmdi) {
   535   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   536   // check if synchronized method
   537   Label unlocked, unlock, no_unlock;
   539   get_thread(rcx);
   540   const Address do_not_unlock_if_synchronized(rcx,
   541     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   543   movbool(rbx, do_not_unlock_if_synchronized);
   544   mov(rdi,rbx);
   545   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   547   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   548   movl(rcx, Address(rbx, Method::access_flags_offset()));
   550   testl(rcx, JVM_ACC_SYNCHRONIZED);
   551   jcc(Assembler::zero, unlocked);
   553   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   554   // is set.
   555   mov(rcx,rdi);
   556   testbool(rcx);
   557   jcc(Assembler::notZero, no_unlock);
   559   // unlock monitor
   560   push(state);                                   // save result
   562   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   563   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   564   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   565   lea   (rdx, monitor);                          // address of first monitor
   567   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   568   testptr(rax, rax);
   569   jcc    (Assembler::notZero, unlock);
   571   pop(state);
   572   if (throw_monitor_exception) {
   573     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   575     // Entry already unlocked, need to throw exception
   576     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   577     should_not_reach_here();
   578   } else {
   579     // Monitor already unlocked during a stack unroll.
   580     // If requested, install an illegal_monitor_state_exception.
   581     // Continue with stack unrolling.
   582     if (install_monitor_exception) {
   583       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   584       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   585     }
   586     jmp(unlocked);
   587   }
   589   bind(unlock);
   590   unlock_object(rdx);
   591   pop(state);
   593   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   594   bind(unlocked);
   596   // rax, rdx: Might contain return value
   598   // Check that all monitors are unlocked
   599   {
   600     Label loop, exception, entry, restart;
   601     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   602     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   603     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   605     bind(restart);
   606     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   607     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   608     jmp(entry);
   610     // Entry already locked, need to throw exception
   611     bind(exception);
   613     if (throw_monitor_exception) {
   614       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   616       // Throw exception
   617       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   618       should_not_reach_here();
   619     } else {
   620       // Stack unrolling. Unlock object and install illegal_monitor_exception
   621       // Unlock does not block, so don't have to worry about the frame
   623       push(state);
   624       mov(rdx, rcx);
   625       unlock_object(rdx);
   626       pop(state);
   628       if (install_monitor_exception) {
   629         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   630         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   631       }
   633       jmp(restart);
   634     }
   636     bind(loop);
   637     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   638     jcc(Assembler::notEqual, exception);
   640     addptr(rcx, entry_size);                     // otherwise advance to next entry
   641     bind(entry);
   642     cmpptr(rcx, rbx);                            // check if bottom reached
   643     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   644   }
   646   bind(no_unlock);
   648   // jvmti support
   649   if (notify_jvmdi) {
   650     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   651   } else {
   652     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   653   }
   655   // remove activation
   656   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   657   leave();                                     // remove frame anchor
   658   pop(ret_addr);                               // get return address
   659   mov(rsp, rbx);                               // set sp to sender sp
   660   if (UseSSE) {
   661     // float and double are returned in xmm register in SSE-mode
   662     if (state == ftos && UseSSE >= 1) {
   663       subptr(rsp, wordSize);
   664       fstp_s(Address(rsp, 0));
   665       movflt(xmm0, Address(rsp, 0));
   666       addptr(rsp, wordSize);
   667     } else if (state == dtos && UseSSE >= 2) {
   668       subptr(rsp, 2*wordSize);
   669       fstp_d(Address(rsp, 0));
   670       movdbl(xmm0, Address(rsp, 0));
   671       addptr(rsp, 2*wordSize);
   672     }
   673   }
   674 }
   676 #endif /* !CC_INTERP */
   679 // Lock object
   680 //
   681 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   682 // be initialized with object to lock
   683 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   684   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   686   if (UseHeavyMonitors) {
   687     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   688   } else {
   690     Label done;
   692     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   693     const Register obj_reg  = rcx;  // Will contain the oop
   695     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   696     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   697     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   699     Label slow_case;
   701     // Load object pointer into obj_reg %rcx
   702     movptr(obj_reg, Address(lock_reg, obj_offset));
   704     if (UseBiasedLocking) {
   705       // Note: we use noreg for the temporary register since it's hard
   706       // to come up with a free register on all incoming code paths
   707       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   708     }
   710     // Load immediate 1 into swap_reg %rax,
   711     movptr(swap_reg, (int32_t)1);
   713     // Load (object->mark() | 1) into swap_reg %rax,
   714     orptr(swap_reg, Address(obj_reg, 0));
   716     // Save (object->mark() | 1) into BasicLock's displaced header
   717     movptr(Address(lock_reg, mark_offset), swap_reg);
   719     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   720     if (os::is_MP()) {
   721       lock();
   722     }
   723     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   724     if (PrintBiasedLockingStatistics) {
   725       cond_inc32(Assembler::zero,
   726                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   727     }
   728     jcc(Assembler::zero, done);
   730     // Test if the oopMark is an obvious stack pointer, i.e.,
   731     //  1) (mark & 3) == 0, and
   732     //  2) rsp <= mark < mark + os::pagesize()
   733     //
   734     // These 3 tests can be done by evaluating the following
   735     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   736     // assuming both stack pointer and pagesize have their
   737     // least significant 2 bits clear.
   738     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   739     subptr(swap_reg, rsp);
   740     andptr(swap_reg, 3 - os::vm_page_size());
   742     // Save the test result, for recursive case, the result is zero
   743     movptr(Address(lock_reg, mark_offset), swap_reg);
   745     if (PrintBiasedLockingStatistics) {
   746       cond_inc32(Assembler::zero,
   747                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   748     }
   749     jcc(Assembler::zero, done);
   751     bind(slow_case);
   753     // Call the runtime routine for slow case
   754     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   756     bind(done);
   757   }
   758 }
   761 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   762 //
   763 // Argument: rdx : Points to BasicObjectLock structure for lock
   764 // Throw an IllegalMonitorException if object is not locked by current thread
   765 //
   766 // Uses: rax, rbx, rcx, rdx
   767 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   768   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   770   if (UseHeavyMonitors) {
   771     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   772   } else {
   773     Label done;
   775     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   776     const Register header_reg = rbx;  // Will contain the old oopMark
   777     const Register obj_reg    = rcx;  // Will contain the oop
   779     save_bcp(); // Save in case of exception
   781     // Convert from BasicObjectLock structure to object and BasicLock structure
   782     // Store the BasicLock address into %rax,
   783     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   785     // Load oop into obj_reg(%rcx)
   786     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   788     // Free entry
   789     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   791     if (UseBiasedLocking) {
   792       biased_locking_exit(obj_reg, header_reg, done);
   793     }
   795     // Load the old header from BasicLock structure
   796     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   798     // Test for recursion
   799     testptr(header_reg, header_reg);
   801     // zero for recursive case
   802     jcc(Assembler::zero, done);
   804     // Atomic swap back the old header
   805     if (os::is_MP()) lock();
   806     cmpxchgptr(header_reg, Address(obj_reg, 0));
   808     // zero for recursive case
   809     jcc(Assembler::zero, done);
   811     // Call the runtime routine for slow case.
   812     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   813     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   815     bind(done);
   817     restore_bcp();
   818   }
   819 }
   822 #ifndef CC_INTERP
   824 // Test ImethodDataPtr.  If it is null, continue at the specified label
   825 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   826   assert(ProfileInterpreter, "must be profiling interpreter");
   827   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   828   testptr(mdp, mdp);
   829   jcc(Assembler::zero, zero_continue);
   830 }
   833 // Set the method data pointer for the current bcp.
   834 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   835   assert(ProfileInterpreter, "must be profiling interpreter");
   836   Label set_mdp;
   837   push(rax);
   838   push(rbx);
   840   get_method(rbx);
   841   // Test MDO to avoid the call if it is NULL.
   842   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
   843   testptr(rax, rax);
   844   jcc(Assembler::zero, set_mdp);
   845   // rbx,: method
   846   // rsi: bcp
   847   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   848   // rax,: mdi
   849   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   850   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
   851   addptr(rbx, in_bytes(MethodData::data_offset()));
   852   addptr(rax, rbx);
   853   bind(set_mdp);
   854   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   855   pop(rbx);
   856   pop(rax);
   857 }
   859 void InterpreterMacroAssembler::verify_method_data_pointer() {
   860   assert(ProfileInterpreter, "must be profiling interpreter");
   861 #ifdef ASSERT
   862   Label verify_continue;
   863   push(rax);
   864   push(rbx);
   865   push(rcx);
   866   push(rdx);
   867   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   868   get_method(rbx);
   870   // If the mdp is valid, it will point to a DataLayout header which is
   871   // consistent with the bcp.  The converse is highly probable also.
   872   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
   873   addptr(rdx, Address(rbx, Method::const_offset()));
   874   lea(rdx, Address(rdx, ConstMethod::codes_offset()));
   875   cmpptr(rdx, rsi);
   876   jcc(Assembler::equal, verify_continue);
   877   // rbx,: method
   878   // rsi: bcp
   879   // rcx: mdp
   880   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
   881   bind(verify_continue);
   882   pop(rdx);
   883   pop(rcx);
   884   pop(rbx);
   885   pop(rax);
   886 #endif // ASSERT
   887 }
   890 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
   891   // %%% this seems to be used to store counter data which is surely 32bits
   892   // however 64bit side stores 64 bits which seems wrong
   893   assert(ProfileInterpreter, "must be profiling interpreter");
   894   Address data(mdp_in, constant);
   895   movptr(data, value);
   896 }
   899 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   900                                                       int constant,
   901                                                       bool decrement) {
   902   // Counter address
   903   Address data(mdp_in, constant);
   905   increment_mdp_data_at(data, decrement);
   906 }
   909 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   910                                                       bool decrement) {
   912   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   913   assert(ProfileInterpreter, "must be profiling interpreter");
   915   // %%% 64bit treats this as 64 bit which seems unlikely
   916   if (decrement) {
   917     // Decrement the register.  Set condition codes.
   918     addl(data, -DataLayout::counter_increment);
   919     // If the decrement causes the counter to overflow, stay negative
   920     Label L;
   921     jcc(Assembler::negative, L);
   922     addl(data, DataLayout::counter_increment);
   923     bind(L);
   924   } else {
   925     assert(DataLayout::counter_increment == 1,
   926            "flow-free idiom only works with 1");
   927     // Increment the register.  Set carry flag.
   928     addl(data, DataLayout::counter_increment);
   929     // If the increment causes the counter to overflow, pull back by 1.
   930     sbbl(data, 0);
   931   }
   932 }
   935 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   936                                                       Register reg,
   937                                                       int constant,
   938                                                       bool decrement) {
   939   Address data(mdp_in, reg, Address::times_1, constant);
   941   increment_mdp_data_at(data, decrement);
   942 }
   945 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
   946   assert(ProfileInterpreter, "must be profiling interpreter");
   947   int header_offset = in_bytes(DataLayout::header_offset());
   948   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   949   // Set the flag
   950   orl(Address(mdp_in, header_offset), header_bits);
   951 }
   955 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   956                                                  int offset,
   957                                                  Register value,
   958                                                  Register test_value_out,
   959                                                  Label& not_equal_continue) {
   960   assert(ProfileInterpreter, "must be profiling interpreter");
   961   if (test_value_out == noreg) {
   962     cmpptr(value, Address(mdp_in, offset));
   963   } else {
   964     // Put the test value into a register, so caller can use it:
   965     movptr(test_value_out, Address(mdp_in, offset));
   966     cmpptr(test_value_out, value);
   967   }
   968   jcc(Assembler::notEqual, not_equal_continue);
   969 }
   972 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
   973   assert(ProfileInterpreter, "must be profiling interpreter");
   974   Address disp_address(mdp_in, offset_of_disp);
   975   addptr(mdp_in,disp_address);
   976   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   977 }
   980 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
   981   assert(ProfileInterpreter, "must be profiling interpreter");
   982   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   983   addptr(mdp_in, disp_address);
   984   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   985 }
   988 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
   989   assert(ProfileInterpreter, "must be profiling interpreter");
   990   addptr(mdp_in, constant);
   991   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   992 }
   995 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
   996   assert(ProfileInterpreter, "must be profiling interpreter");
   997   push(return_bci);             // save/restore across call_VM
   998   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
   999   pop(return_bci);
  1003 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
  1004   if (ProfileInterpreter) {
  1005     Label profile_continue;
  1007     // If no method data exists, go to profile_continue.
  1008     // Otherwise, assign to mdp
  1009     test_method_data_pointer(mdp, profile_continue);
  1011     // We are taking a branch.  Increment the taken count.
  1012     // We inline increment_mdp_data_at to return bumped_count in a register
  1013     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1014     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1016     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1017     movl(bumped_count,data);
  1018     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1019     addl(bumped_count, DataLayout::counter_increment);
  1020     sbbl(bumped_count, 0);
  1021     movl(data,bumped_count);    // Store back out
  1023     // The method data pointer needs to be updated to reflect the new target.
  1024     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1025     bind (profile_continue);
  1030 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1031   if (ProfileInterpreter) {
  1032     Label profile_continue;
  1034     // If no method data exists, go to profile_continue.
  1035     test_method_data_pointer(mdp, profile_continue);
  1037     // We are taking a branch.  Increment the not taken count.
  1038     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1040     // The method data pointer needs to be updated to correspond to the next bytecode
  1041     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1042     bind (profile_continue);
  1047 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1048   if (ProfileInterpreter) {
  1049     Label profile_continue;
  1051     // If no method data exists, go to profile_continue.
  1052     test_method_data_pointer(mdp, profile_continue);
  1054     // We are making a call.  Increment the count.
  1055     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1057     // The method data pointer needs to be updated to reflect the new target.
  1058     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1059     bind (profile_continue);
  1064 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1065   if (ProfileInterpreter) {
  1066     Label profile_continue;
  1068     // If no method data exists, go to profile_continue.
  1069     test_method_data_pointer(mdp, profile_continue);
  1071     // We are making a call.  Increment the count.
  1072     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1074     // The method data pointer needs to be updated to reflect the new target.
  1075     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1076     bind (profile_continue);
  1081 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1082                                                      Register reg2,
  1083                                                      bool receiver_can_be_null) {
  1084   if (ProfileInterpreter) {
  1085     Label profile_continue;
  1087     // If no method data exists, go to profile_continue.
  1088     test_method_data_pointer(mdp, profile_continue);
  1090     Label skip_receiver_profile;
  1091     if (receiver_can_be_null) {
  1092       Label not_null;
  1093       testptr(receiver, receiver);
  1094       jccb(Assembler::notZero, not_null);
  1095       // We are making a call.  Increment the count for null receiver.
  1096       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1097       jmp(skip_receiver_profile);
  1098       bind(not_null);
  1101     // Record the receiver type.
  1102     record_klass_in_profile(receiver, mdp, reg2, true);
  1103     bind(skip_receiver_profile);
  1105     // The method data pointer needs to be updated to reflect the new target.
  1106     update_mdp_by_constant(mdp,
  1107                            in_bytes(VirtualCallData::
  1108                                     virtual_call_data_size()));
  1109     bind(profile_continue);
  1114 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1115                                         Register receiver, Register mdp,
  1116                                         Register reg2, int start_row,
  1117                                         Label& done, bool is_virtual_call) {
  1118   if (TypeProfileWidth == 0) {
  1119     if (is_virtual_call) {
  1120       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1122     return;
  1125   int last_row = VirtualCallData::row_limit() - 1;
  1126   assert(start_row <= last_row, "must be work left to do");
  1127   // Test this row for both the receiver and for null.
  1128   // Take any of three different outcomes:
  1129   //   1. found receiver => increment count and goto done
  1130   //   2. found null => keep looking for case 1, maybe allocate this cell
  1131   //   3. found something else => keep looking for cases 1 and 2
  1132   // Case 3 is handled by a recursive call.
  1133   for (int row = start_row; row <= last_row; row++) {
  1134     Label next_test;
  1135     bool test_for_null_also = (row == start_row);
  1137     // See if the receiver is receiver[n].
  1138     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1139     test_mdp_data_at(mdp, recvr_offset, receiver,
  1140                      (test_for_null_also ? reg2 : noreg),
  1141                      next_test);
  1142     // (Reg2 now contains the receiver from the CallData.)
  1144     // The receiver is receiver[n].  Increment count[n].
  1145     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1146     increment_mdp_data_at(mdp, count_offset);
  1147     jmp(done);
  1148     bind(next_test);
  1150     if (row == start_row) {
  1151       Label found_null;
  1152       // Failed the equality check on receiver[n]...  Test for null.
  1153       testptr(reg2, reg2);
  1154       if (start_row == last_row) {
  1155         // The only thing left to do is handle the null case.
  1156         if (is_virtual_call) {
  1157           jccb(Assembler::zero, found_null);
  1158           // Receiver did not match any saved receiver and there is no empty row for it.
  1159           // Increment total counter to indicate polymorphic case.
  1160           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1161           jmp(done);
  1162           bind(found_null);
  1163         } else {
  1164           jcc(Assembler::notZero, done);
  1166         break;
  1168       // Since null is rare, make it be the branch-taken case.
  1169       jcc(Assembler::zero, found_null);
  1171       // Put all the "Case 3" tests here.
  1172       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1174       // Found a null.  Keep searching for a matching receiver,
  1175       // but remember that this is an empty (unused) slot.
  1176       bind(found_null);
  1180   // In the fall-through case, we found no matching receiver, but we
  1181   // observed the receiver[start_row] is NULL.
  1183   // Fill in the receiver field and increment the count.
  1184   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1185   set_mdp_data_at(mdp, recvr_offset, receiver);
  1186   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1187   movptr(reg2, (intptr_t)DataLayout::counter_increment);
  1188   set_mdp_data_at(mdp, count_offset, reg2);
  1189   if (start_row > 0) {
  1190     jmp(done);
  1194 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1195                                                         Register mdp, Register reg2,
  1196                                                         bool is_virtual_call) {
  1197   assert(ProfileInterpreter, "must be profiling");
  1198   Label done;
  1200   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1202   bind (done);
  1205 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1206   if (ProfileInterpreter) {
  1207     Label profile_continue;
  1208     uint row;
  1210     // If no method data exists, go to profile_continue.
  1211     test_method_data_pointer(mdp, profile_continue);
  1213     // Update the total ret count.
  1214     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1216     for (row = 0; row < RetData::row_limit(); row++) {
  1217       Label next_test;
  1219       // See if return_bci is equal to bci[n]:
  1220       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1221                        noreg, next_test);
  1223       // return_bci is equal to bci[n].  Increment the count.
  1224       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1226       // The method data pointer needs to be updated to reflect the new target.
  1227       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1228       jmp(profile_continue);
  1229       bind(next_test);
  1232     update_mdp_for_ret(return_bci);
  1234     bind (profile_continue);
  1239 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1240   if (ProfileInterpreter) {
  1241     Label profile_continue;
  1243     // If no method data exists, go to profile_continue.
  1244     test_method_data_pointer(mdp, profile_continue);
  1246     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1248     // The method data pointer needs to be updated.
  1249     int mdp_delta = in_bytes(BitData::bit_data_size());
  1250     if (TypeProfileCasts) {
  1251       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1253     update_mdp_by_constant(mdp, mdp_delta);
  1255     bind (profile_continue);
  1260 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1261   if (ProfileInterpreter && TypeProfileCasts) {
  1262     Label profile_continue;
  1264     // If no method data exists, go to profile_continue.
  1265     test_method_data_pointer(mdp, profile_continue);
  1267     int count_offset = in_bytes(CounterData::count_offset());
  1268     // Back up the address, since we have already bumped the mdp.
  1269     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1271     // *Decrement* the counter.  We expect to see zero or small negatives.
  1272     increment_mdp_data_at(mdp, count_offset, true);
  1274     bind (profile_continue);
  1279 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1281   if (ProfileInterpreter) {
  1282     Label profile_continue;
  1284     // If no method data exists, go to profile_continue.
  1285     test_method_data_pointer(mdp, profile_continue);
  1287     // The method data pointer needs to be updated.
  1288     int mdp_delta = in_bytes(BitData::bit_data_size());
  1289     if (TypeProfileCasts) {
  1290       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1292       // Record the object type.
  1293       record_klass_in_profile(klass, mdp, reg2, false);
  1294       assert(reg2 == rdi, "we know how to fix this blown reg");
  1295       restore_locals();         // Restore EDI
  1297     update_mdp_by_constant(mdp, mdp_delta);
  1299     bind(profile_continue);
  1304 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1305   if (ProfileInterpreter) {
  1306     Label profile_continue;
  1308     // If no method data exists, go to profile_continue.
  1309     test_method_data_pointer(mdp, profile_continue);
  1311     // Update the default case count
  1312     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1314     // The method data pointer needs to be updated.
  1315     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1317     bind (profile_continue);
  1322 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1323   if (ProfileInterpreter) {
  1324     Label profile_continue;
  1326     // If no method data exists, go to profile_continue.
  1327     test_method_data_pointer(mdp, profile_continue);
  1329     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1330     movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size()));
  1331     // index is positive and so should have correct value if this code were
  1332     // used on 64bits
  1333     imulptr(index, reg2);
  1334     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1336     // Update the case count
  1337     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1339     // The method data pointer needs to be updated.
  1340     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1342     bind (profile_continue);
  1346 #endif // !CC_INTERP
  1350 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1351   if (state == atos) MacroAssembler::verify_oop(reg);
  1355 #ifndef CC_INTERP
  1356 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1357   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1360 #endif /* CC_INTERP */
  1363 void InterpreterMacroAssembler::notify_method_entry() {
  1364   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1365   // track stack depth.  If it is possible to enter interp_only_mode we add
  1366   // the code to check if the event should be sent.
  1367   if (JvmtiExport::can_post_interpreter_events()) {
  1368     Label L;
  1369     get_thread(rcx);
  1370     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1371     testl(rcx,rcx);
  1372     jcc(Assembler::zero, L);
  1373     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1374     bind(L);
  1378     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1379     get_thread(rcx);
  1380     get_method(rbx);
  1381     call_VM_leaf(
  1382       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1385   // RedefineClasses() tracing support for obsolete method entry
  1386   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1387     get_thread(rcx);
  1388     get_method(rbx);
  1389     call_VM_leaf(
  1390       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1391       rcx, rbx);
  1396 void InterpreterMacroAssembler::notify_method_exit(
  1397     TosState state, NotifyMethodExitMode mode) {
  1398   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1399   // track stack depth.  If it is possible to enter interp_only_mode we add
  1400   // the code to check if the event should be sent.
  1401   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1402     Label L;
  1403     // Note: frame::interpreter_frame_result has a dependency on how the
  1404     // method result is saved across the call to post_method_exit. If this
  1405     // is changed then the interpreter_frame_result implementation will
  1406     // need to be updated too.
  1408     // For c++ interpreter the result is always stored at a known location in the frame
  1409     // template interpreter will leave it on the top of the stack.
  1410     NOT_CC_INTERP(push(state);)
  1411     get_thread(rcx);
  1412     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1413     testl(rcx,rcx);
  1414     jcc(Assembler::zero, L);
  1415     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1416     bind(L);
  1417     NOT_CC_INTERP(pop(state);)
  1421     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1422     NOT_CC_INTERP(push(state));
  1423     get_thread(rbx);
  1424     get_method(rcx);
  1425     call_VM_leaf(
  1426       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1427       rbx, rcx);
  1428     NOT_CC_INTERP(pop(state));
  1432 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1433 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1434                                                         int increment, int mask,
  1435                                                         Register scratch, bool preloaded,
  1436                                                         Condition cond, Label* where) {
  1437   if (!preloaded) {
  1438     movl(scratch, counter_addr);
  1440   incrementl(scratch, increment);
  1441   movl(counter_addr, scratch);
  1442   andl(scratch, mask);
  1443   jcc(cond, *where);

mercurial