src/cpu/x86/vm/assembler_x86.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4103
137868b7aa6f
child 4145
bacdc1d5c21c
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 #ifdef PRODUCT
    45 #define BLOCK_COMMENT(str) /* nothing */
    46 #define STOP(error) stop(error)
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #define STOP(error) block_comment(error); stop(error)
    50 #endif
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    53 // Implementation of AddressLiteral
    55 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    56   _is_lval = false;
    57   _target = target;
    58   switch (rtype) {
    59   case relocInfo::oop_type:
    60   case relocInfo::metadata_type:
    61     // Oops are a special case. Normally they would be their own section
    62     // but in cases like icBuffer they are literals in the code stream that
    63     // we don't have a section for. We use none so that we get a literal address
    64     // which is always patchable.
    65     break;
    66   case relocInfo::external_word_type:
    67     _rspec = external_word_Relocation::spec(target);
    68     break;
    69   case relocInfo::internal_word_type:
    70     _rspec = internal_word_Relocation::spec(target);
    71     break;
    72   case relocInfo::opt_virtual_call_type:
    73     _rspec = opt_virtual_call_Relocation::spec();
    74     break;
    75   case relocInfo::static_call_type:
    76     _rspec = static_call_Relocation::spec();
    77     break;
    78   case relocInfo::runtime_call_type:
    79     _rspec = runtime_call_Relocation::spec();
    80     break;
    81   case relocInfo::poll_type:
    82   case relocInfo::poll_return_type:
    83     _rspec = Relocation::spec_simple(rtype);
    84     break;
    85   case relocInfo::none:
    86     break;
    87   default:
    88     ShouldNotReachHere();
    89     break;
    90   }
    91 }
    93 // Implementation of Address
    95 #ifdef _LP64
    97 Address Address::make_array(ArrayAddress adr) {
    98   // Not implementable on 64bit machines
    99   // Should have been handled higher up the call chain.
   100   ShouldNotReachHere();
   101   return Address();
   102 }
   104 // exceedingly dangerous constructor
   105 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   106   _base  = noreg;
   107   _index = noreg;
   108   _scale = no_scale;
   109   _disp  = disp;
   110   switch (rtype) {
   111     case relocInfo::external_word_type:
   112       _rspec = external_word_Relocation::spec(loc);
   113       break;
   114     case relocInfo::internal_word_type:
   115       _rspec = internal_word_Relocation::spec(loc);
   116       break;
   117     case relocInfo::runtime_call_type:
   118       // HMM
   119       _rspec = runtime_call_Relocation::spec();
   120       break;
   121     case relocInfo::poll_type:
   122     case relocInfo::poll_return_type:
   123       _rspec = Relocation::spec_simple(rtype);
   124       break;
   125     case relocInfo::none:
   126       break;
   127     default:
   128       ShouldNotReachHere();
   129   }
   130 }
   131 #else // LP64
   133 Address Address::make_array(ArrayAddress adr) {
   134   AddressLiteral base = adr.base();
   135   Address index = adr.index();
   136   assert(index._disp == 0, "must not have disp"); // maybe it can?
   137   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   138   array._rspec = base._rspec;
   139   return array;
   140 }
   142 // exceedingly dangerous constructor
   143 Address::Address(address loc, RelocationHolder spec) {
   144   _base  = noreg;
   145   _index = noreg;
   146   _scale = no_scale;
   147   _disp  = (intptr_t) loc;
   148   _rspec = spec;
   149 }
   151 #endif // _LP64
   155 // Convert the raw encoding form into the form expected by the constructor for
   156 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   157 // that to noreg for the Address constructor.
   158 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   159   RelocationHolder rspec;
   160   if (disp_reloc != relocInfo::none) {
   161     rspec = Relocation::spec_simple(disp_reloc);
   162   }
   163   bool valid_index = index != rsp->encoding();
   164   if (valid_index) {
   165     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   166     madr._rspec = rspec;
   167     return madr;
   168   } else {
   169     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   170     madr._rspec = rspec;
   171     return madr;
   172   }
   173 }
   175 // Implementation of Assembler
   177 int AbstractAssembler::code_fill_byte() {
   178   return (u_char)'\xF4'; // hlt
   179 }
   181 // make this go away someday
   182 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   183   if (rtype == relocInfo::none)
   184         emit_long(data);
   185   else  emit_data(data, Relocation::spec_simple(rtype), format);
   186 }
   188 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   189   assert(imm_operand == 0, "default format must be immediate in this file");
   190   assert(inst_mark() != NULL, "must be inside InstructionMark");
   191   if (rspec.type() !=  relocInfo::none) {
   192     #ifdef ASSERT
   193       check_relocation(rspec, format);
   194     #endif
   195     // Do not use AbstractAssembler::relocate, which is not intended for
   196     // embedded words.  Instead, relocate to the enclosing instruction.
   198     // hack. call32 is too wide for mask so use disp32
   199     if (format == call32_operand)
   200       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   201     else
   202       code_section()->relocate(inst_mark(), rspec, format);
   203   }
   204   emit_long(data);
   205 }
   207 static int encode(Register r) {
   208   int enc = r->encoding();
   209   if (enc >= 8) {
   210     enc -= 8;
   211   }
   212   return enc;
   213 }
   215 static int encode(XMMRegister r) {
   216   int enc = r->encoding();
   217   if (enc >= 8) {
   218     enc -= 8;
   219   }
   220   return enc;
   221 }
   223 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   224   assert(dst->has_byte_register(), "must have byte register");
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert(isByte(imm8), "not a byte");
   227   assert((op1 & 0x01) == 0, "should be 8bit operation");
   228   emit_byte(op1);
   229   emit_byte(op2 | encode(dst));
   230   emit_byte(imm8);
   231 }
   234 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   235   assert(isByte(op1) && isByte(op2), "wrong opcode");
   236   assert((op1 & 0x01) == 1, "should be 32bit operation");
   237   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   238   if (is8bit(imm32)) {
   239     emit_byte(op1 | 0x02); // set sign bit
   240     emit_byte(op2 | encode(dst));
   241     emit_byte(imm32 & 0xFF);
   242   } else {
   243     emit_byte(op1);
   244     emit_byte(op2 | encode(dst));
   245     emit_long(imm32);
   246   }
   247 }
   249 // Force generation of a 4 byte immediate value even if it fits into 8bit
   250 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   assert((op1 & 0x01) == 1, "should be 32bit operation");
   253   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   254   emit_byte(op1);
   255   emit_byte(op2 | encode(dst));
   256   emit_long(imm32);
   257 }
   259 // immediate-to-memory forms
   260 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   261   assert((op1 & 0x01) == 1, "should be 32bit operation");
   262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   263   if (is8bit(imm32)) {
   264     emit_byte(op1 | 0x02); // set sign bit
   265     emit_operand(rm, adr, 1);
   266     emit_byte(imm32 & 0xFF);
   267   } else {
   268     emit_byte(op1);
   269     emit_operand(rm, adr, 4);
   270     emit_long(imm32);
   271   }
   272 }
   275 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   276   assert(isByte(op1) && isByte(op2), "wrong opcode");
   277   emit_byte(op1);
   278   emit_byte(op2 | encode(dst) << 3 | encode(src));
   279 }
   282 void Assembler::emit_operand(Register reg, Register base, Register index,
   283                              Address::ScaleFactor scale, int disp,
   284                              RelocationHolder const& rspec,
   285                              int rip_relative_correction) {
   286   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   288   // Encode the registers as needed in the fields they are used in
   290   int regenc = encode(reg) << 3;
   291   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   292   int baseenc = base->is_valid() ? encode(base) : 0;
   294   if (base->is_valid()) {
   295     if (index->is_valid()) {
   296       assert(scale != Address::no_scale, "inconsistent address");
   297       // [base + index*scale + disp]
   298       if (disp == 0 && rtype == relocInfo::none  &&
   299           base != rbp LP64_ONLY(&& base != r13)) {
   300         // [base + index*scale]
   301         // [00 reg 100][ss index base]
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_byte(0x04 | regenc);
   304         emit_byte(scale << 6 | indexenc | baseenc);
   305       } else if (is8bit(disp) && rtype == relocInfo::none) {
   306         // [base + index*scale + imm8]
   307         // [01 reg 100][ss index base] imm8
   308         assert(index != rsp, "illegal addressing mode");
   309         emit_byte(0x44 | regenc);
   310         emit_byte(scale << 6 | indexenc | baseenc);
   311         emit_byte(disp & 0xFF);
   312       } else {
   313         // [base + index*scale + disp32]
   314         // [10 reg 100][ss index base] disp32
   315         assert(index != rsp, "illegal addressing mode");
   316         emit_byte(0x84 | regenc);
   317         emit_byte(scale << 6 | indexenc | baseenc);
   318         emit_data(disp, rspec, disp32_operand);
   319       }
   320     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   321       // [rsp + disp]
   322       if (disp == 0 && rtype == relocInfo::none) {
   323         // [rsp]
   324         // [00 reg 100][00 100 100]
   325         emit_byte(0x04 | regenc);
   326         emit_byte(0x24);
   327       } else if (is8bit(disp) && rtype == relocInfo::none) {
   328         // [rsp + imm8]
   329         // [01 reg 100][00 100 100] disp8
   330         emit_byte(0x44 | regenc);
   331         emit_byte(0x24);
   332         emit_byte(disp & 0xFF);
   333       } else {
   334         // [rsp + imm32]
   335         // [10 reg 100][00 100 100] disp32
   336         emit_byte(0x84 | regenc);
   337         emit_byte(0x24);
   338         emit_data(disp, rspec, disp32_operand);
   339       }
   340     } else {
   341       // [base + disp]
   342       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   343       if (disp == 0 && rtype == relocInfo::none &&
   344           base != rbp LP64_ONLY(&& base != r13)) {
   345         // [base]
   346         // [00 reg base]
   347         emit_byte(0x00 | regenc | baseenc);
   348       } else if (is8bit(disp) && rtype == relocInfo::none) {
   349         // [base + disp8]
   350         // [01 reg base] disp8
   351         emit_byte(0x40 | regenc | baseenc);
   352         emit_byte(disp & 0xFF);
   353       } else {
   354         // [base + disp32]
   355         // [10 reg base] disp32
   356         emit_byte(0x80 | regenc | baseenc);
   357         emit_data(disp, rspec, disp32_operand);
   358       }
   359     }
   360   } else {
   361     if (index->is_valid()) {
   362       assert(scale != Address::no_scale, "inconsistent address");
   363       // [index*scale + disp]
   364       // [00 reg 100][ss index 101] disp32
   365       assert(index != rsp, "illegal addressing mode");
   366       emit_byte(0x04 | regenc);
   367       emit_byte(scale << 6 | indexenc | 0x05);
   368       emit_data(disp, rspec, disp32_operand);
   369     } else if (rtype != relocInfo::none ) {
   370       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   371       // [00 000 101] disp32
   373       emit_byte(0x05 | regenc);
   374       // Note that the RIP-rel. correction applies to the generated
   375       // disp field, but _not_ to the target address in the rspec.
   377       // disp was created by converting the target address minus the pc
   378       // at the start of the instruction. That needs more correction here.
   379       // intptr_t disp = target - next_ip;
   380       assert(inst_mark() != NULL, "must be inside InstructionMark");
   381       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   382       int64_t adjusted = disp;
   383       // Do rip-rel adjustment for 64bit
   384       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   385       assert(is_simm32(adjusted),
   386              "must be 32bit offset (RIP relative address)");
   387       emit_data((int32_t) adjusted, rspec, disp32_operand);
   389     } else {
   390       // 32bit never did this, did everything as the rip-rel/disp code above
   391       // [disp] ABSOLUTE
   392       // [00 reg 100][00 100 101] disp32
   393       emit_byte(0x04 | regenc);
   394       emit_byte(0x25);
   395       emit_data(disp, rspec, disp32_operand);
   396     }
   397   }
   398 }
   400 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   401                              Address::ScaleFactor scale, int disp,
   402                              RelocationHolder const& rspec) {
   403   emit_operand((Register)reg, base, index, scale, disp, rspec);
   404 }
   406 // Secret local extension to Assembler::WhichOperand:
   407 #define end_pc_operand (_WhichOperand_limit)
   409 address Assembler::locate_operand(address inst, WhichOperand which) {
   410   // Decode the given instruction, and return the address of
   411   // an embedded 32-bit operand word.
   413   // If "which" is disp32_operand, selects the displacement portion
   414   // of an effective address specifier.
   415   // If "which" is imm64_operand, selects the trailing immediate constant.
   416   // If "which" is call32_operand, selects the displacement of a call or jump.
   417   // Caller is responsible for ensuring that there is such an operand,
   418   // and that it is 32/64 bits wide.
   420   // If "which" is end_pc_operand, find the end of the instruction.
   422   address ip = inst;
   423   bool is_64bit = false;
   425   debug_only(bool has_disp32 = false);
   426   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   428   again_after_prefix:
   429   switch (0xFF & *ip++) {
   431   // These convenience macros generate groups of "case" labels for the switch.
   432 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   433 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   434              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   435 #define REP16(x) REP8((x)+0): \
   436               case REP8((x)+8)
   438   case CS_segment:
   439   case SS_segment:
   440   case DS_segment:
   441   case ES_segment:
   442   case FS_segment:
   443   case GS_segment:
   444     // Seems dubious
   445     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   446     assert(ip == inst+1, "only one prefix allowed");
   447     goto again_after_prefix;
   449   case 0x67:
   450   case REX:
   451   case REX_B:
   452   case REX_X:
   453   case REX_XB:
   454   case REX_R:
   455   case REX_RB:
   456   case REX_RX:
   457   case REX_RXB:
   458     NOT_LP64(assert(false, "64bit prefixes"));
   459     goto again_after_prefix;
   461   case REX_W:
   462   case REX_WB:
   463   case REX_WX:
   464   case REX_WXB:
   465   case REX_WR:
   466   case REX_WRB:
   467   case REX_WRX:
   468   case REX_WRXB:
   469     NOT_LP64(assert(false, "64bit prefixes"));
   470     is_64bit = true;
   471     goto again_after_prefix;
   473   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   474   case 0x88: // movb a, r
   475   case 0x89: // movl a, r
   476   case 0x8A: // movb r, a
   477   case 0x8B: // movl r, a
   478   case 0x8F: // popl a
   479     debug_only(has_disp32 = true);
   480     break;
   482   case 0x68: // pushq #32
   483     if (which == end_pc_operand) {
   484       return ip + 4;
   485     }
   486     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   487     return ip;                  // not produced by emit_operand
   489   case 0x66: // movw ... (size prefix)
   490     again_after_size_prefix2:
   491     switch (0xFF & *ip++) {
   492     case REX:
   493     case REX_B:
   494     case REX_X:
   495     case REX_XB:
   496     case REX_R:
   497     case REX_RB:
   498     case REX_RX:
   499     case REX_RXB:
   500     case REX_W:
   501     case REX_WB:
   502     case REX_WX:
   503     case REX_WXB:
   504     case REX_WR:
   505     case REX_WRB:
   506     case REX_WRX:
   507     case REX_WRXB:
   508       NOT_LP64(assert(false, "64bit prefix found"));
   509       goto again_after_size_prefix2;
   510     case 0x8B: // movw r, a
   511     case 0x89: // movw a, r
   512       debug_only(has_disp32 = true);
   513       break;
   514     case 0xC7: // movw a, #16
   515       debug_only(has_disp32 = true);
   516       tail_size = 2;  // the imm16
   517       break;
   518     case 0x0F: // several SSE/SSE2 variants
   519       ip--;    // reparse the 0x0F
   520       goto again_after_prefix;
   521     default:
   522       ShouldNotReachHere();
   523     }
   524     break;
   526   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   527     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   528     // these asserts are somewhat nonsensical
   529 #ifndef _LP64
   530     assert(which == imm_operand || which == disp32_operand,
   531            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   532 #else
   533     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   534            which == narrow_oop_operand && !is_64bit,
   535            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   536 #endif // _LP64
   537     return ip;
   539   case 0x69: // imul r, a, #32
   540   case 0xC7: // movl a, #32(oop?)
   541     tail_size = 4;
   542     debug_only(has_disp32 = true); // has both kinds of operands!
   543     break;
   545   case 0x0F: // movx..., etc.
   546     switch (0xFF & *ip++) {
   547     case 0x3A: // pcmpestri
   548       tail_size = 1;
   549     case 0x38: // ptest, pmovzxbw
   550       ip++; // skip opcode
   551       debug_only(has_disp32 = true); // has both kinds of operands!
   552       break;
   554     case 0x70: // pshufd r, r/a, #8
   555       debug_only(has_disp32 = true); // has both kinds of operands!
   556     case 0x73: // psrldq r, #8
   557       tail_size = 1;
   558       break;
   560     case 0x12: // movlps
   561     case 0x28: // movaps
   562     case 0x2E: // ucomiss
   563     case 0x2F: // comiss
   564     case 0x54: // andps
   565     case 0x55: // andnps
   566     case 0x56: // orps
   567     case 0x57: // xorps
   568     case 0x6E: // movd
   569     case 0x7E: // movd
   570     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   571       debug_only(has_disp32 = true);
   572       break;
   574     case 0xAD: // shrd r, a, %cl
   575     case 0xAF: // imul r, a
   576     case 0xBE: // movsbl r, a (movsxb)
   577     case 0xBF: // movswl r, a (movsxw)
   578     case 0xB6: // movzbl r, a (movzxb)
   579     case 0xB7: // movzwl r, a (movzxw)
   580     case REP16(0x40): // cmovl cc, r, a
   581     case 0xB0: // cmpxchgb
   582     case 0xB1: // cmpxchg
   583     case 0xC1: // xaddl
   584     case 0xC7: // cmpxchg8
   585     case REP16(0x90): // setcc a
   586       debug_only(has_disp32 = true);
   587       // fall out of the switch to decode the address
   588       break;
   590     case 0xC4: // pinsrw r, a, #8
   591       debug_only(has_disp32 = true);
   592     case 0xC5: // pextrw r, r, #8
   593       tail_size = 1;  // the imm8
   594       break;
   596     case 0xAC: // shrd r, a, #8
   597       debug_only(has_disp32 = true);
   598       tail_size = 1;  // the imm8
   599       break;
   601     case REP16(0x80): // jcc rdisp32
   602       if (which == end_pc_operand)  return ip + 4;
   603       assert(which == call32_operand, "jcc has no disp32 or imm");
   604       return ip;
   605     default:
   606       ShouldNotReachHere();
   607     }
   608     break;
   610   case 0x81: // addl a, #32; addl r, #32
   611     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   612     // on 32bit in the case of cmpl, the imm might be an oop
   613     tail_size = 4;
   614     debug_only(has_disp32 = true); // has both kinds of operands!
   615     break;
   617   case 0x83: // addl a, #8; addl r, #8
   618     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   619     debug_only(has_disp32 = true); // has both kinds of operands!
   620     tail_size = 1;
   621     break;
   623   case 0x9B:
   624     switch (0xFF & *ip++) {
   625     case 0xD9: // fnstcw a
   626       debug_only(has_disp32 = true);
   627       break;
   628     default:
   629       ShouldNotReachHere();
   630     }
   631     break;
   633   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   634   case REP4(0x10): // adc...
   635   case REP4(0x20): // and...
   636   case REP4(0x30): // xor...
   637   case REP4(0x08): // or...
   638   case REP4(0x18): // sbb...
   639   case REP4(0x28): // sub...
   640   case 0xF7: // mull a
   641   case 0x8D: // lea r, a
   642   case 0x87: // xchg r, a
   643   case REP4(0x38): // cmp...
   644   case 0x85: // test r, a
   645     debug_only(has_disp32 = true); // has both kinds of operands!
   646     break;
   648   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   649   case 0xC6: // movb a, #8
   650   case 0x80: // cmpb a, #8
   651   case 0x6B: // imul r, a, #8
   652     debug_only(has_disp32 = true); // has both kinds of operands!
   653     tail_size = 1; // the imm8
   654     break;
   656   case 0xC4: // VEX_3bytes
   657   case 0xC5: // VEX_2bytes
   658     assert((UseAVX > 0), "shouldn't have VEX prefix");
   659     assert(ip == inst+1, "no prefixes allowed");
   660     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   661     // but they have prefix 0x0F and processed when 0x0F processed above.
   662     //
   663     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   664     // instructions (these instructions are not supported in 64-bit mode).
   665     // To distinguish them bits [7:6] are set in the VEX second byte since
   666     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   667     // those VEX bits REX and vvvv bits are inverted.
   668     //
   669     // Fortunately C2 doesn't generate these instructions so we don't need
   670     // to check for them in product version.
   672     // Check second byte
   673     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   675     // First byte
   676     if ((0xFF & *inst) == VEX_3bytes) {
   677       ip++; // third byte
   678       is_64bit = ((VEX_W & *ip) == VEX_W);
   679     }
   680     ip++; // opcode
   681     // To find the end of instruction (which == end_pc_operand).
   682     switch (0xFF & *ip) {
   683     case 0x61: // pcmpestri r, r/a, #8
   684     case 0x70: // pshufd r, r/a, #8
   685     case 0x73: // psrldq r, #8
   686       tail_size = 1;  // the imm8
   687       break;
   688     default:
   689       break;
   690     }
   691     ip++; // skip opcode
   692     debug_only(has_disp32 = true); // has both kinds of operands!
   693     break;
   695   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   696   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   697   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   698   case 0xDD: // fld_d a; fst_d a; fstp_d a
   699   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   700   case 0xDF: // fild_d a; fistp_d a
   701   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   702   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   703   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   704     debug_only(has_disp32 = true);
   705     break;
   707   case 0xE8: // call rdisp32
   708   case 0xE9: // jmp  rdisp32
   709     if (which == end_pc_operand)  return ip + 4;
   710     assert(which == call32_operand, "call has no disp32 or imm");
   711     return ip;
   713   case 0xF0:                    // Lock
   714     assert(os::is_MP(), "only on MP");
   715     goto again_after_prefix;
   717   case 0xF3:                    // For SSE
   718   case 0xF2:                    // For SSE2
   719     switch (0xFF & *ip++) {
   720     case REX:
   721     case REX_B:
   722     case REX_X:
   723     case REX_XB:
   724     case REX_R:
   725     case REX_RB:
   726     case REX_RX:
   727     case REX_RXB:
   728     case REX_W:
   729     case REX_WB:
   730     case REX_WX:
   731     case REX_WXB:
   732     case REX_WR:
   733     case REX_WRB:
   734     case REX_WRX:
   735     case REX_WRXB:
   736       NOT_LP64(assert(false, "found 64bit prefix"));
   737       ip++;
   738     default:
   739       ip++;
   740     }
   741     debug_only(has_disp32 = true); // has both kinds of operands!
   742     break;
   744   default:
   745     ShouldNotReachHere();
   747 #undef REP8
   748 #undef REP16
   749   }
   751   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   752 #ifdef _LP64
   753   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   754 #else
   755   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   756   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   757 #endif // LP64
   758   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   760   // parse the output of emit_operand
   761   int op2 = 0xFF & *ip++;
   762   int base = op2 & 0x07;
   763   int op3 = -1;
   764   const int b100 = 4;
   765   const int b101 = 5;
   766   if (base == b100 && (op2 >> 6) != 3) {
   767     op3 = 0xFF & *ip++;
   768     base = op3 & 0x07;   // refetch the base
   769   }
   770   // now ip points at the disp (if any)
   772   switch (op2 >> 6) {
   773   case 0:
   774     // [00 reg  100][ss index base]
   775     // [00 reg  100][00   100  esp]
   776     // [00 reg base]
   777     // [00 reg  100][ss index  101][disp32]
   778     // [00 reg  101]               [disp32]
   780     if (base == b101) {
   781       if (which == disp32_operand)
   782         return ip;              // caller wants the disp32
   783       ip += 4;                  // skip the disp32
   784     }
   785     break;
   787   case 1:
   788     // [01 reg  100][ss index base][disp8]
   789     // [01 reg  100][00   100  esp][disp8]
   790     // [01 reg base]               [disp8]
   791     ip += 1;                    // skip the disp8
   792     break;
   794   case 2:
   795     // [10 reg  100][ss index base][disp32]
   796     // [10 reg  100][00   100  esp][disp32]
   797     // [10 reg base]               [disp32]
   798     if (which == disp32_operand)
   799       return ip;                // caller wants the disp32
   800     ip += 4;                    // skip the disp32
   801     break;
   803   case 3:
   804     // [11 reg base]  (not a memory addressing mode)
   805     break;
   806   }
   808   if (which == end_pc_operand) {
   809     return ip + tail_size;
   810   }
   812 #ifdef _LP64
   813   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   814 #else
   815   assert(which == imm_operand, "instruction has only an imm field");
   816 #endif // LP64
   817   return ip;
   818 }
   820 address Assembler::locate_next_instruction(address inst) {
   821   // Secretly share code with locate_operand:
   822   return locate_operand(inst, end_pc_operand);
   823 }
   826 #ifdef ASSERT
   827 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   828   address inst = inst_mark();
   829   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   830   address opnd;
   832   Relocation* r = rspec.reloc();
   833   if (r->type() == relocInfo::none) {
   834     return;
   835   } else if (r->is_call() || format == call32_operand) {
   836     // assert(format == imm32_operand, "cannot specify a nonzero format");
   837     opnd = locate_operand(inst, call32_operand);
   838   } else if (r->is_data()) {
   839     assert(format == imm_operand || format == disp32_operand
   840            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   841     opnd = locate_operand(inst, (WhichOperand)format);
   842   } else {
   843     assert(format == imm_operand, "cannot specify a format");
   844     return;
   845   }
   846   assert(opnd == pc(), "must put operand where relocs can find it");
   847 }
   848 #endif // ASSERT
   850 void Assembler::emit_operand32(Register reg, Address adr) {
   851   assert(reg->encoding() < 8, "no extended registers");
   852   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec);
   855 }
   857 void Assembler::emit_operand(Register reg, Address adr,
   858                              int rip_relative_correction) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec,
   861                rip_relative_correction);
   862 }
   864 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   865   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   866                adr._rspec);
   867 }
   869 // MMX operations
   870 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   875 // work around gcc (3.2.1-7a) bug
   876 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   877   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   878   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   879 }
   882 void Assembler::emit_farith(int b1, int b2, int i) {
   883   assert(isByte(b1) && isByte(b2), "wrong opcode");
   884   assert(0 <= i &&  i < 8, "illegal stack offset");
   885   emit_byte(b1);
   886   emit_byte(b2 + i);
   887 }
   890 // Now the Assembler instructions (identical for 32/64 bits)
   892 void Assembler::adcl(Address dst, int32_t imm32) {
   893   InstructionMark im(this);
   894   prefix(dst);
   895   emit_arith_operand(0x81, rdx, dst, imm32);
   896 }
   898 void Assembler::adcl(Address dst, Register src) {
   899   InstructionMark im(this);
   900   prefix(dst, src);
   901   emit_byte(0x11);
   902   emit_operand(src, dst);
   903 }
   905 void Assembler::adcl(Register dst, int32_t imm32) {
   906   prefix(dst);
   907   emit_arith(0x81, 0xD0, dst, imm32);
   908 }
   910 void Assembler::adcl(Register dst, Address src) {
   911   InstructionMark im(this);
   912   prefix(src, dst);
   913   emit_byte(0x13);
   914   emit_operand(dst, src);
   915 }
   917 void Assembler::adcl(Register dst, Register src) {
   918   (void) prefix_and_encode(dst->encoding(), src->encoding());
   919   emit_arith(0x13, 0xC0, dst, src);
   920 }
   922 void Assembler::addl(Address dst, int32_t imm32) {
   923   InstructionMark im(this);
   924   prefix(dst);
   925   emit_arith_operand(0x81, rax, dst, imm32);
   926 }
   928 void Assembler::addl(Address dst, Register src) {
   929   InstructionMark im(this);
   930   prefix(dst, src);
   931   emit_byte(0x01);
   932   emit_operand(src, dst);
   933 }
   935 void Assembler::addl(Register dst, int32_t imm32) {
   936   prefix(dst);
   937   emit_arith(0x81, 0xC0, dst, imm32);
   938 }
   940 void Assembler::addl(Register dst, Address src) {
   941   InstructionMark im(this);
   942   prefix(src, dst);
   943   emit_byte(0x03);
   944   emit_operand(dst, src);
   945 }
   947 void Assembler::addl(Register dst, Register src) {
   948   (void) prefix_and_encode(dst->encoding(), src->encoding());
   949   emit_arith(0x03, 0xC0, dst, src);
   950 }
   952 void Assembler::addr_nop_4() {
   953   assert(UseAddressNop, "no CPU support");
   954   // 4 bytes: NOP DWORD PTR [EAX+0]
   955   emit_byte(0x0F);
   956   emit_byte(0x1F);
   957   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   958   emit_byte(0);    // 8-bits offset (1 byte)
   959 }
   961 void Assembler::addr_nop_5() {
   962   assert(UseAddressNop, "no CPU support");
   963   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   964   emit_byte(0x0F);
   965   emit_byte(0x1F);
   966   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   967   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   968   emit_byte(0);    // 8-bits offset (1 byte)
   969 }
   971 void Assembler::addr_nop_7() {
   972   assert(UseAddressNop, "no CPU support");
   973   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   974   emit_byte(0x0F);
   975   emit_byte(0x1F);
   976   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   977   emit_long(0);    // 32-bits offset (4 bytes)
   978 }
   980 void Assembler::addr_nop_8() {
   981   assert(UseAddressNop, "no CPU support");
   982   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   983   emit_byte(0x0F);
   984   emit_byte(0x1F);
   985   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   986   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   987   emit_long(0);    // 32-bits offset (4 bytes)
   988 }
   990 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   991   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   992   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   993 }
   995 void Assembler::addsd(XMMRegister dst, Address src) {
   996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   997   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   998 }
  1000 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1001   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1002   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1005 void Assembler::addss(XMMRegister dst, Address src) {
  1006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1007   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1010 void Assembler::andl(Address dst, int32_t imm32) {
  1011   InstructionMark im(this);
  1012   prefix(dst);
  1013   emit_byte(0x81);
  1014   emit_operand(rsp, dst, 4);
  1015   emit_long(imm32);
  1018 void Assembler::andl(Register dst, int32_t imm32) {
  1019   prefix(dst);
  1020   emit_arith(0x81, 0xE0, dst, imm32);
  1023 void Assembler::andl(Register dst, Address src) {
  1024   InstructionMark im(this);
  1025   prefix(src, dst);
  1026   emit_byte(0x23);
  1027   emit_operand(dst, src);
  1030 void Assembler::andl(Register dst, Register src) {
  1031   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1032   emit_arith(0x23, 0xC0, dst, src);
  1035 void Assembler::bsfl(Register dst, Register src) {
  1036   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1037   emit_byte(0x0F);
  1038   emit_byte(0xBC);
  1039   emit_byte(0xC0 | encode);
  1042 void Assembler::bsrl(Register dst, Register src) {
  1043   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1044   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1045   emit_byte(0x0F);
  1046   emit_byte(0xBD);
  1047   emit_byte(0xC0 | encode);
  1050 void Assembler::bswapl(Register reg) { // bswap
  1051   int encode = prefix_and_encode(reg->encoding());
  1052   emit_byte(0x0F);
  1053   emit_byte(0xC8 | encode);
  1056 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1057   // suspect disp32 is always good
  1058   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1060   if (L.is_bound()) {
  1061     const int long_size = 5;
  1062     int offs = (int)( target(L) - pc() );
  1063     assert(offs <= 0, "assembler error");
  1064     InstructionMark im(this);
  1065     // 1110 1000 #32-bit disp
  1066     emit_byte(0xE8);
  1067     emit_data(offs - long_size, rtype, operand);
  1068   } else {
  1069     InstructionMark im(this);
  1070     // 1110 1000 #32-bit disp
  1071     L.add_patch_at(code(), locator());
  1073     emit_byte(0xE8);
  1074     emit_data(int(0), rtype, operand);
  1078 void Assembler::call(Register dst) {
  1079   int encode = prefix_and_encode(dst->encoding());
  1080   emit_byte(0xFF);
  1081   emit_byte(0xD0 | encode);
  1085 void Assembler::call(Address adr) {
  1086   InstructionMark im(this);
  1087   prefix(adr);
  1088   emit_byte(0xFF);
  1089   emit_operand(rdx, adr);
  1092 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1093   assert(entry != NULL, "call most probably wrong");
  1094   InstructionMark im(this);
  1095   emit_byte(0xE8);
  1096   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1097   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1098   // Technically, should use call32_operand, but this format is
  1099   // implied by the fact that we're emitting a call instruction.
  1101   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1102   emit_data((int) disp, rspec, operand);
  1105 void Assembler::cdql() {
  1106   emit_byte(0x99);
  1109 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1110   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1111   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1112   emit_byte(0x0F);
  1113   emit_byte(0x40 | cc);
  1114   emit_byte(0xC0 | encode);
  1118 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1119   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1120   prefix(src, dst);
  1121   emit_byte(0x0F);
  1122   emit_byte(0x40 | cc);
  1123   emit_operand(dst, src);
  1126 void Assembler::cmpb(Address dst, int imm8) {
  1127   InstructionMark im(this);
  1128   prefix(dst);
  1129   emit_byte(0x80);
  1130   emit_operand(rdi, dst, 1);
  1131   emit_byte(imm8);
  1134 void Assembler::cmpl(Address dst, int32_t imm32) {
  1135   InstructionMark im(this);
  1136   prefix(dst);
  1137   emit_byte(0x81);
  1138   emit_operand(rdi, dst, 4);
  1139   emit_long(imm32);
  1142 void Assembler::cmpl(Register dst, int32_t imm32) {
  1143   prefix(dst);
  1144   emit_arith(0x81, 0xF8, dst, imm32);
  1147 void Assembler::cmpl(Register dst, Register src) {
  1148   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1149   emit_arith(0x3B, 0xC0, dst, src);
  1153 void Assembler::cmpl(Register dst, Address  src) {
  1154   InstructionMark im(this);
  1155   prefix(src, dst);
  1156   emit_byte(0x3B);
  1157   emit_operand(dst, src);
  1160 void Assembler::cmpw(Address dst, int imm16) {
  1161   InstructionMark im(this);
  1162   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1163   emit_byte(0x66);
  1164   emit_byte(0x81);
  1165   emit_operand(rdi, dst, 2);
  1166   emit_word(imm16);
  1169 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1170 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1171 // The ZF is set if the compared values were equal, and cleared otherwise.
  1172 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1173   if (Atomics & 2) {
  1174      // caveat: no instructionmark, so this isn't relocatable.
  1175      // Emit a synthetic, non-atomic, CAS equivalent.
  1176      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1177      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1178      cmpl(rax, adr);
  1179      movl(rax, adr);
  1180      if (reg != rax) {
  1181         Label L ;
  1182         jcc(Assembler::notEqual, L);
  1183         movl(adr, reg);
  1184         bind(L);
  1186   } else {
  1187      InstructionMark im(this);
  1188      prefix(adr, reg);
  1189      emit_byte(0x0F);
  1190      emit_byte(0xB1);
  1191      emit_operand(reg, adr);
  1195 void Assembler::comisd(XMMRegister dst, Address src) {
  1196   // NOTE: dbx seems to decode this as comiss even though the
  1197   // 0x66 is there. Strangly ucomisd comes out correct
  1198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1199   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1202 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1203   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1204   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1207 void Assembler::comiss(XMMRegister dst, Address src) {
  1208   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1209   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1212 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1213   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1214   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1217 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1218   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1219   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1222 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1223   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1224   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1227 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1232 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1234   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1237 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1239   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1240   emit_byte(0x2A);
  1241   emit_byte(0xC0 | encode);
  1244 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1246   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1249 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1250   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1251   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1252   emit_byte(0x2A);
  1253   emit_byte(0xC0 | encode);
  1256 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1257   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1258   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1261 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1263   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1266 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1268   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1272 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1273   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1274   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1275   emit_byte(0x2C);
  1276   emit_byte(0xC0 | encode);
  1279 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1281   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1282   emit_byte(0x2C);
  1283   emit_byte(0xC0 | encode);
  1286 void Assembler::decl(Address dst) {
  1287   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1288   InstructionMark im(this);
  1289   prefix(dst);
  1290   emit_byte(0xFF);
  1291   emit_operand(rcx, dst);
  1294 void Assembler::divsd(XMMRegister dst, Address src) {
  1295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1296   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1299 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1300   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1301   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1304 void Assembler::divss(XMMRegister dst, Address src) {
  1305   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1306   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1309 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1310   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1311   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1314 void Assembler::emms() {
  1315   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1316   emit_byte(0x0F);
  1317   emit_byte(0x77);
  1320 void Assembler::hlt() {
  1321   emit_byte(0xF4);
  1324 void Assembler::idivl(Register src) {
  1325   int encode = prefix_and_encode(src->encoding());
  1326   emit_byte(0xF7);
  1327   emit_byte(0xF8 | encode);
  1330 void Assembler::divl(Register src) { // Unsigned
  1331   int encode = prefix_and_encode(src->encoding());
  1332   emit_byte(0xF7);
  1333   emit_byte(0xF0 | encode);
  1336 void Assembler::imull(Register dst, Register src) {
  1337   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1338   emit_byte(0x0F);
  1339   emit_byte(0xAF);
  1340   emit_byte(0xC0 | encode);
  1344 void Assembler::imull(Register dst, Register src, int value) {
  1345   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1346   if (is8bit(value)) {
  1347     emit_byte(0x6B);
  1348     emit_byte(0xC0 | encode);
  1349     emit_byte(value & 0xFF);
  1350   } else {
  1351     emit_byte(0x69);
  1352     emit_byte(0xC0 | encode);
  1353     emit_long(value);
  1357 void Assembler::incl(Address dst) {
  1358   // Don't use it directly. Use MacroAssembler::increment() instead.
  1359   InstructionMark im(this);
  1360   prefix(dst);
  1361   emit_byte(0xFF);
  1362   emit_operand(rax, dst);
  1365 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1366   InstructionMark im(this);
  1367   assert((0 <= cc) && (cc < 16), "illegal cc");
  1368   if (L.is_bound()) {
  1369     address dst = target(L);
  1370     assert(dst != NULL, "jcc most probably wrong");
  1372     const int short_size = 2;
  1373     const int long_size = 6;
  1374     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1375     if (maybe_short && is8bit(offs - short_size)) {
  1376       // 0111 tttn #8-bit disp
  1377       emit_byte(0x70 | cc);
  1378       emit_byte((offs - short_size) & 0xFF);
  1379     } else {
  1380       // 0000 1111 1000 tttn #32-bit disp
  1381       assert(is_simm32(offs - long_size),
  1382              "must be 32bit offset (call4)");
  1383       emit_byte(0x0F);
  1384       emit_byte(0x80 | cc);
  1385       emit_long(offs - long_size);
  1387   } else {
  1388     // Note: could eliminate cond. jumps to this jump if condition
  1389     //       is the same however, seems to be rather unlikely case.
  1390     // Note: use jccb() if label to be bound is very close to get
  1391     //       an 8-bit displacement
  1392     L.add_patch_at(code(), locator());
  1393     emit_byte(0x0F);
  1394     emit_byte(0x80 | cc);
  1395     emit_long(0);
  1399 void Assembler::jccb(Condition cc, Label& L) {
  1400   if (L.is_bound()) {
  1401     const int short_size = 2;
  1402     address entry = target(L);
  1403 #ifdef ASSERT
  1404     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1405     intptr_t delta = short_branch_delta();
  1406     if (delta != 0) {
  1407       dist += (dist < 0 ? (-delta) :delta);
  1409     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1410 #endif
  1411     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1412     // 0111 tttn #8-bit disp
  1413     emit_byte(0x70 | cc);
  1414     emit_byte((offs - short_size) & 0xFF);
  1415   } else {
  1416     InstructionMark im(this);
  1417     L.add_patch_at(code(), locator());
  1418     emit_byte(0x70 | cc);
  1419     emit_byte(0);
  1423 void Assembler::jmp(Address adr) {
  1424   InstructionMark im(this);
  1425   prefix(adr);
  1426   emit_byte(0xFF);
  1427   emit_operand(rsp, adr);
  1430 void Assembler::jmp(Label& L, bool maybe_short) {
  1431   if (L.is_bound()) {
  1432     address entry = target(L);
  1433     assert(entry != NULL, "jmp most probably wrong");
  1434     InstructionMark im(this);
  1435     const int short_size = 2;
  1436     const int long_size = 5;
  1437     intptr_t offs = entry - _code_pos;
  1438     if (maybe_short && is8bit(offs - short_size)) {
  1439       emit_byte(0xEB);
  1440       emit_byte((offs - short_size) & 0xFF);
  1441     } else {
  1442       emit_byte(0xE9);
  1443       emit_long(offs - long_size);
  1445   } else {
  1446     // By default, forward jumps are always 32-bit displacements, since
  1447     // we can't yet know where the label will be bound.  If you're sure that
  1448     // the forward jump will not run beyond 256 bytes, use jmpb to
  1449     // force an 8-bit displacement.
  1450     InstructionMark im(this);
  1451     L.add_patch_at(code(), locator());
  1452     emit_byte(0xE9);
  1453     emit_long(0);
  1457 void Assembler::jmp(Register entry) {
  1458   int encode = prefix_and_encode(entry->encoding());
  1459   emit_byte(0xFF);
  1460   emit_byte(0xE0 | encode);
  1463 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1464   InstructionMark im(this);
  1465   emit_byte(0xE9);
  1466   assert(dest != NULL, "must have a target");
  1467   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1468   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1469   emit_data(disp, rspec.reloc(), call32_operand);
  1472 void Assembler::jmpb(Label& L) {
  1473   if (L.is_bound()) {
  1474     const int short_size = 2;
  1475     address entry = target(L);
  1476     assert(entry != NULL, "jmp most probably wrong");
  1477 #ifdef ASSERT
  1478     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1479     intptr_t delta = short_branch_delta();
  1480     if (delta != 0) {
  1481       dist += (dist < 0 ? (-delta) :delta);
  1483     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1484 #endif
  1485     intptr_t offs = entry - _code_pos;
  1486     emit_byte(0xEB);
  1487     emit_byte((offs - short_size) & 0xFF);
  1488   } else {
  1489     InstructionMark im(this);
  1490     L.add_patch_at(code(), locator());
  1491     emit_byte(0xEB);
  1492     emit_byte(0);
  1496 void Assembler::ldmxcsr( Address src) {
  1497   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1498   InstructionMark im(this);
  1499   prefix(src);
  1500   emit_byte(0x0F);
  1501   emit_byte(0xAE);
  1502   emit_operand(as_Register(2), src);
  1505 void Assembler::leal(Register dst, Address src) {
  1506   InstructionMark im(this);
  1507 #ifdef _LP64
  1508   emit_byte(0x67); // addr32
  1509   prefix(src, dst);
  1510 #endif // LP64
  1511   emit_byte(0x8D);
  1512   emit_operand(dst, src);
  1515 void Assembler::lock() {
  1516   if (Atomics & 1) {
  1517      // Emit either nothing, a NOP, or a NOP: prefix
  1518      emit_byte(0x90) ;
  1519   } else {
  1520      emit_byte(0xF0);
  1524 void Assembler::lzcntl(Register dst, Register src) {
  1525   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1526   emit_byte(0xF3);
  1527   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1528   emit_byte(0x0F);
  1529   emit_byte(0xBD);
  1530   emit_byte(0xC0 | encode);
  1533 // Emit mfence instruction
  1534 void Assembler::mfence() {
  1535   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1536   emit_byte( 0x0F );
  1537   emit_byte( 0xAE );
  1538   emit_byte( 0xF0 );
  1541 void Assembler::mov(Register dst, Register src) {
  1542   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1545 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1547   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1550 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1551   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1552   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1555 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1556   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1557   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1558   emit_byte(0x16);
  1559   emit_byte(0xC0 | encode);
  1562 void Assembler::movb(Register dst, Address src) {
  1563   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1564   InstructionMark im(this);
  1565   prefix(src, dst, true);
  1566   emit_byte(0x8A);
  1567   emit_operand(dst, src);
  1571 void Assembler::movb(Address dst, int imm8) {
  1572   InstructionMark im(this);
  1573    prefix(dst);
  1574   emit_byte(0xC6);
  1575   emit_operand(rax, dst, 1);
  1576   emit_byte(imm8);
  1580 void Assembler::movb(Address dst, Register src) {
  1581   assert(src->has_byte_register(), "must have byte register");
  1582   InstructionMark im(this);
  1583   prefix(dst, src, true);
  1584   emit_byte(0x88);
  1585   emit_operand(src, dst);
  1588 void Assembler::movdl(XMMRegister dst, Register src) {
  1589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1590   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1591   emit_byte(0x6E);
  1592   emit_byte(0xC0 | encode);
  1595 void Assembler::movdl(Register dst, XMMRegister src) {
  1596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1597   // swap src/dst to get correct prefix
  1598   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1599   emit_byte(0x7E);
  1600   emit_byte(0xC0 | encode);
  1603 void Assembler::movdl(XMMRegister dst, Address src) {
  1604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1605   InstructionMark im(this);
  1606   simd_prefix(dst, src, VEX_SIMD_66);
  1607   emit_byte(0x6E);
  1608   emit_operand(dst, src);
  1611 void Assembler::movdl(Address dst, XMMRegister src) {
  1612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1613   InstructionMark im(this);
  1614   simd_prefix(dst, src, VEX_SIMD_66);
  1615   emit_byte(0x7E);
  1616   emit_operand(src, dst);
  1619 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1621   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1624 void Assembler::movdqu(XMMRegister dst, Address src) {
  1625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1626   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1629 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1631   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1634 void Assembler::movdqu(Address dst, XMMRegister src) {
  1635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1636   InstructionMark im(this);
  1637   simd_prefix(dst, src, VEX_SIMD_F3);
  1638   emit_byte(0x7F);
  1639   emit_operand(src, dst);
  1642 // Move Unaligned 256bit Vector
  1643 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1644   assert(UseAVX, "");
  1645   bool vector256 = true;
  1646   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1647   emit_byte(0x6F);
  1648   emit_byte(0xC0 | encode);
  1651 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1652   assert(UseAVX, "");
  1653   InstructionMark im(this);
  1654   bool vector256 = true;
  1655   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1656   emit_byte(0x6F);
  1657   emit_operand(dst, src);
  1660 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1661   assert(UseAVX, "");
  1662   InstructionMark im(this);
  1663   bool vector256 = true;
  1664   // swap src<->dst for encoding
  1665   assert(src != xnoreg, "sanity");
  1666   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1667   emit_byte(0x7F);
  1668   emit_operand(src, dst);
  1671 // Uses zero extension on 64bit
  1673 void Assembler::movl(Register dst, int32_t imm32) {
  1674   int encode = prefix_and_encode(dst->encoding());
  1675   emit_byte(0xB8 | encode);
  1676   emit_long(imm32);
  1679 void Assembler::movl(Register dst, Register src) {
  1680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1681   emit_byte(0x8B);
  1682   emit_byte(0xC0 | encode);
  1685 void Assembler::movl(Register dst, Address src) {
  1686   InstructionMark im(this);
  1687   prefix(src, dst);
  1688   emit_byte(0x8B);
  1689   emit_operand(dst, src);
  1692 void Assembler::movl(Address dst, int32_t imm32) {
  1693   InstructionMark im(this);
  1694   prefix(dst);
  1695   emit_byte(0xC7);
  1696   emit_operand(rax, dst, 4);
  1697   emit_long(imm32);
  1700 void Assembler::movl(Address dst, Register src) {
  1701   InstructionMark im(this);
  1702   prefix(dst, src);
  1703   emit_byte(0x89);
  1704   emit_operand(src, dst);
  1707 // New cpus require to use movsd and movss to avoid partial register stall
  1708 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1709 // The selection is done in MacroAssembler::movdbl() and movflt().
  1710 void Assembler::movlpd(XMMRegister dst, Address src) {
  1711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1712   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1715 void Assembler::movq( MMXRegister dst, Address src ) {
  1716   assert( VM_Version::supports_mmx(), "" );
  1717   emit_byte(0x0F);
  1718   emit_byte(0x6F);
  1719   emit_operand(dst, src);
  1722 void Assembler::movq( Address dst, MMXRegister src ) {
  1723   assert( VM_Version::supports_mmx(), "" );
  1724   emit_byte(0x0F);
  1725   emit_byte(0x7F);
  1726   // workaround gcc (3.2.1-7a) bug
  1727   // In that version of gcc with only an emit_operand(MMX, Address)
  1728   // gcc will tail jump and try and reverse the parameters completely
  1729   // obliterating dst in the process. By having a version available
  1730   // that doesn't need to swap the args at the tail jump the bug is
  1731   // avoided.
  1732   emit_operand(dst, src);
  1735 void Assembler::movq(XMMRegister dst, Address src) {
  1736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1737   InstructionMark im(this);
  1738   simd_prefix(dst, src, VEX_SIMD_F3);
  1739   emit_byte(0x7E);
  1740   emit_operand(dst, src);
  1743 void Assembler::movq(Address dst, XMMRegister src) {
  1744   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1745   InstructionMark im(this);
  1746   simd_prefix(dst, src, VEX_SIMD_66);
  1747   emit_byte(0xD6);
  1748   emit_operand(src, dst);
  1751 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1752   InstructionMark im(this);
  1753   prefix(src, dst);
  1754   emit_byte(0x0F);
  1755   emit_byte(0xBE);
  1756   emit_operand(dst, src);
  1759 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1760   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1761   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1762   emit_byte(0x0F);
  1763   emit_byte(0xBE);
  1764   emit_byte(0xC0 | encode);
  1767 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1769   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1772 void Assembler::movsd(XMMRegister dst, Address src) {
  1773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1774   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1777 void Assembler::movsd(Address dst, XMMRegister src) {
  1778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1779   InstructionMark im(this);
  1780   simd_prefix(dst, src, VEX_SIMD_F2);
  1781   emit_byte(0x11);
  1782   emit_operand(src, dst);
  1785 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1787   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1790 void Assembler::movss(XMMRegister dst, Address src) {
  1791   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1792   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1795 void Assembler::movss(Address dst, XMMRegister src) {
  1796   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1797   InstructionMark im(this);
  1798   simd_prefix(dst, src, VEX_SIMD_F3);
  1799   emit_byte(0x11);
  1800   emit_operand(src, dst);
  1803 void Assembler::movswl(Register dst, Address src) { // movsxw
  1804   InstructionMark im(this);
  1805   prefix(src, dst);
  1806   emit_byte(0x0F);
  1807   emit_byte(0xBF);
  1808   emit_operand(dst, src);
  1811 void Assembler::movswl(Register dst, Register src) { // movsxw
  1812   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1813   emit_byte(0x0F);
  1814   emit_byte(0xBF);
  1815   emit_byte(0xC0 | encode);
  1818 void Assembler::movw(Address dst, int imm16) {
  1819   InstructionMark im(this);
  1821   emit_byte(0x66); // switch to 16-bit mode
  1822   prefix(dst);
  1823   emit_byte(0xC7);
  1824   emit_operand(rax, dst, 2);
  1825   emit_word(imm16);
  1828 void Assembler::movw(Register dst, Address src) {
  1829   InstructionMark im(this);
  1830   emit_byte(0x66);
  1831   prefix(src, dst);
  1832   emit_byte(0x8B);
  1833   emit_operand(dst, src);
  1836 void Assembler::movw(Address dst, Register src) {
  1837   InstructionMark im(this);
  1838   emit_byte(0x66);
  1839   prefix(dst, src);
  1840   emit_byte(0x89);
  1841   emit_operand(src, dst);
  1844 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1845   InstructionMark im(this);
  1846   prefix(src, dst);
  1847   emit_byte(0x0F);
  1848   emit_byte(0xB6);
  1849   emit_operand(dst, src);
  1852 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1853   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1854   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1855   emit_byte(0x0F);
  1856   emit_byte(0xB6);
  1857   emit_byte(0xC0 | encode);
  1860 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1861   InstructionMark im(this);
  1862   prefix(src, dst);
  1863   emit_byte(0x0F);
  1864   emit_byte(0xB7);
  1865   emit_operand(dst, src);
  1868 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1870   emit_byte(0x0F);
  1871   emit_byte(0xB7);
  1872   emit_byte(0xC0 | encode);
  1875 void Assembler::mull(Address src) {
  1876   InstructionMark im(this);
  1877   prefix(src);
  1878   emit_byte(0xF7);
  1879   emit_operand(rsp, src);
  1882 void Assembler::mull(Register src) {
  1883   int encode = prefix_and_encode(src->encoding());
  1884   emit_byte(0xF7);
  1885   emit_byte(0xE0 | encode);
  1888 void Assembler::mulsd(XMMRegister dst, Address src) {
  1889   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1890   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1893 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1895   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1898 void Assembler::mulss(XMMRegister dst, Address src) {
  1899   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1900   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1903 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1904   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1905   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1908 void Assembler::negl(Register dst) {
  1909   int encode = prefix_and_encode(dst->encoding());
  1910   emit_byte(0xF7);
  1911   emit_byte(0xD8 | encode);
  1914 void Assembler::nop(int i) {
  1915 #ifdef ASSERT
  1916   assert(i > 0, " ");
  1917   // The fancy nops aren't currently recognized by debuggers making it a
  1918   // pain to disassemble code while debugging. If asserts are on clearly
  1919   // speed is not an issue so simply use the single byte traditional nop
  1920   // to do alignment.
  1922   for (; i > 0 ; i--) emit_byte(0x90);
  1923   return;
  1925 #endif // ASSERT
  1927   if (UseAddressNop && VM_Version::is_intel()) {
  1928     //
  1929     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1930     //  1: 0x90
  1931     //  2: 0x66 0x90
  1932     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1933     //  4: 0x0F 0x1F 0x40 0x00
  1934     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1935     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1936     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1937     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1938     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1939     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1940     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1942     // The rest coding is Intel specific - don't use consecutive address nops
  1944     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1945     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1946     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1947     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1949     while(i >= 15) {
  1950       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1951       i -= 15;
  1952       emit_byte(0x66);   // size prefix
  1953       emit_byte(0x66);   // size prefix
  1954       emit_byte(0x66);   // size prefix
  1955       addr_nop_8();
  1956       emit_byte(0x66);   // size prefix
  1957       emit_byte(0x66);   // size prefix
  1958       emit_byte(0x66);   // size prefix
  1959       emit_byte(0x90);   // nop
  1961     switch (i) {
  1962       case 14:
  1963         emit_byte(0x66); // size prefix
  1964       case 13:
  1965         emit_byte(0x66); // size prefix
  1966       case 12:
  1967         addr_nop_8();
  1968         emit_byte(0x66); // size prefix
  1969         emit_byte(0x66); // size prefix
  1970         emit_byte(0x66); // size prefix
  1971         emit_byte(0x90); // nop
  1972         break;
  1973       case 11:
  1974         emit_byte(0x66); // size prefix
  1975       case 10:
  1976         emit_byte(0x66); // size prefix
  1977       case 9:
  1978         emit_byte(0x66); // size prefix
  1979       case 8:
  1980         addr_nop_8();
  1981         break;
  1982       case 7:
  1983         addr_nop_7();
  1984         break;
  1985       case 6:
  1986         emit_byte(0x66); // size prefix
  1987       case 5:
  1988         addr_nop_5();
  1989         break;
  1990       case 4:
  1991         addr_nop_4();
  1992         break;
  1993       case 3:
  1994         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  1995         emit_byte(0x66); // size prefix
  1996       case 2:
  1997         emit_byte(0x66); // size prefix
  1998       case 1:
  1999         emit_byte(0x90); // nop
  2000         break;
  2001       default:
  2002         assert(i == 0, " ");
  2004     return;
  2006   if (UseAddressNop && VM_Version::is_amd()) {
  2007     //
  2008     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2009     //  1: 0x90
  2010     //  2: 0x66 0x90
  2011     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2012     //  4: 0x0F 0x1F 0x40 0x00
  2013     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2014     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2015     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2016     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2017     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2018     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2019     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2021     // The rest coding is AMD specific - use consecutive address nops
  2023     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2024     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2025     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2026     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2027     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2028     //     Size prefixes (0x66) are added for larger sizes
  2030     while(i >= 22) {
  2031       i -= 11;
  2032       emit_byte(0x66); // size prefix
  2033       emit_byte(0x66); // size prefix
  2034       emit_byte(0x66); // size prefix
  2035       addr_nop_8();
  2037     // Generate first nop for size between 21-12
  2038     switch (i) {
  2039       case 21:
  2040         i -= 1;
  2041         emit_byte(0x66); // size prefix
  2042       case 20:
  2043       case 19:
  2044         i -= 1;
  2045         emit_byte(0x66); // size prefix
  2046       case 18:
  2047       case 17:
  2048         i -= 1;
  2049         emit_byte(0x66); // size prefix
  2050       case 16:
  2051       case 15:
  2052         i -= 8;
  2053         addr_nop_8();
  2054         break;
  2055       case 14:
  2056       case 13:
  2057         i -= 7;
  2058         addr_nop_7();
  2059         break;
  2060       case 12:
  2061         i -= 6;
  2062         emit_byte(0x66); // size prefix
  2063         addr_nop_5();
  2064         break;
  2065       default:
  2066         assert(i < 12, " ");
  2069     // Generate second nop for size between 11-1
  2070     switch (i) {
  2071       case 11:
  2072         emit_byte(0x66); // size prefix
  2073       case 10:
  2074         emit_byte(0x66); // size prefix
  2075       case 9:
  2076         emit_byte(0x66); // size prefix
  2077       case 8:
  2078         addr_nop_8();
  2079         break;
  2080       case 7:
  2081         addr_nop_7();
  2082         break;
  2083       case 6:
  2084         emit_byte(0x66); // size prefix
  2085       case 5:
  2086         addr_nop_5();
  2087         break;
  2088       case 4:
  2089         addr_nop_4();
  2090         break;
  2091       case 3:
  2092         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2093         emit_byte(0x66); // size prefix
  2094       case 2:
  2095         emit_byte(0x66); // size prefix
  2096       case 1:
  2097         emit_byte(0x90); // nop
  2098         break;
  2099       default:
  2100         assert(i == 0, " ");
  2102     return;
  2105   // Using nops with size prefixes "0x66 0x90".
  2106   // From AMD Optimization Guide:
  2107   //  1: 0x90
  2108   //  2: 0x66 0x90
  2109   //  3: 0x66 0x66 0x90
  2110   //  4: 0x66 0x66 0x66 0x90
  2111   //  5: 0x66 0x66 0x90 0x66 0x90
  2112   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2113   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2114   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2115   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2116   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2117   //
  2118   while(i > 12) {
  2119     i -= 4;
  2120     emit_byte(0x66); // size prefix
  2121     emit_byte(0x66);
  2122     emit_byte(0x66);
  2123     emit_byte(0x90); // nop
  2125   // 1 - 12 nops
  2126   if(i > 8) {
  2127     if(i > 9) {
  2128       i -= 1;
  2129       emit_byte(0x66);
  2131     i -= 3;
  2132     emit_byte(0x66);
  2133     emit_byte(0x66);
  2134     emit_byte(0x90);
  2136   // 1 - 8 nops
  2137   if(i > 4) {
  2138     if(i > 6) {
  2139       i -= 1;
  2140       emit_byte(0x66);
  2142     i -= 3;
  2143     emit_byte(0x66);
  2144     emit_byte(0x66);
  2145     emit_byte(0x90);
  2147   switch (i) {
  2148     case 4:
  2149       emit_byte(0x66);
  2150     case 3:
  2151       emit_byte(0x66);
  2152     case 2:
  2153       emit_byte(0x66);
  2154     case 1:
  2155       emit_byte(0x90);
  2156       break;
  2157     default:
  2158       assert(i == 0, " ");
  2162 void Assembler::notl(Register dst) {
  2163   int encode = prefix_and_encode(dst->encoding());
  2164   emit_byte(0xF7);
  2165   emit_byte(0xD0 | encode );
  2168 void Assembler::orl(Address dst, int32_t imm32) {
  2169   InstructionMark im(this);
  2170   prefix(dst);
  2171   emit_arith_operand(0x81, rcx, dst, imm32);
  2174 void Assembler::orl(Register dst, int32_t imm32) {
  2175   prefix(dst);
  2176   emit_arith(0x81, 0xC8, dst, imm32);
  2179 void Assembler::orl(Register dst, Address src) {
  2180   InstructionMark im(this);
  2181   prefix(src, dst);
  2182   emit_byte(0x0B);
  2183   emit_operand(dst, src);
  2186 void Assembler::orl(Register dst, Register src) {
  2187   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2188   emit_arith(0x0B, 0xC0, dst, src);
  2191 void Assembler::packuswb(XMMRegister dst, Address src) {
  2192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2193   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2194   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2197 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2199   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2202 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2203   assert(VM_Version::supports_sse4_2(), "");
  2204   InstructionMark im(this);
  2205   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2206   emit_byte(0x61);
  2207   emit_operand(dst, src);
  2208   emit_byte(imm8);
  2211 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2212   assert(VM_Version::supports_sse4_2(), "");
  2213   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2214   emit_byte(0x61);
  2215   emit_byte(0xC0 | encode);
  2216   emit_byte(imm8);
  2219 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2220   assert(VM_Version::supports_sse4_1(), "");
  2221   InstructionMark im(this);
  2222   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2223   emit_byte(0x30);
  2224   emit_operand(dst, src);
  2227 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2228   assert(VM_Version::supports_sse4_1(), "");
  2229   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2230   emit_byte(0x30);
  2231   emit_byte(0xC0 | encode);
  2234 // generic
  2235 void Assembler::pop(Register dst) {
  2236   int encode = prefix_and_encode(dst->encoding());
  2237   emit_byte(0x58 | encode);
  2240 void Assembler::popcntl(Register dst, Address src) {
  2241   assert(VM_Version::supports_popcnt(), "must support");
  2242   InstructionMark im(this);
  2243   emit_byte(0xF3);
  2244   prefix(src, dst);
  2245   emit_byte(0x0F);
  2246   emit_byte(0xB8);
  2247   emit_operand(dst, src);
  2250 void Assembler::popcntl(Register dst, Register src) {
  2251   assert(VM_Version::supports_popcnt(), "must support");
  2252   emit_byte(0xF3);
  2253   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2254   emit_byte(0x0F);
  2255   emit_byte(0xB8);
  2256   emit_byte(0xC0 | encode);
  2259 void Assembler::popf() {
  2260   emit_byte(0x9D);
  2263 #ifndef _LP64 // no 32bit push/pop on amd64
  2264 void Assembler::popl(Address dst) {
  2265   // NOTE: this will adjust stack by 8byte on 64bits
  2266   InstructionMark im(this);
  2267   prefix(dst);
  2268   emit_byte(0x8F);
  2269   emit_operand(rax, dst);
  2271 #endif
  2273 void Assembler::prefetch_prefix(Address src) {
  2274   prefix(src);
  2275   emit_byte(0x0F);
  2278 void Assembler::prefetchnta(Address src) {
  2279   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2280   InstructionMark im(this);
  2281   prefetch_prefix(src);
  2282   emit_byte(0x18);
  2283   emit_operand(rax, src); // 0, src
  2286 void Assembler::prefetchr(Address src) {
  2287   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2288   InstructionMark im(this);
  2289   prefetch_prefix(src);
  2290   emit_byte(0x0D);
  2291   emit_operand(rax, src); // 0, src
  2294 void Assembler::prefetcht0(Address src) {
  2295   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2296   InstructionMark im(this);
  2297   prefetch_prefix(src);
  2298   emit_byte(0x18);
  2299   emit_operand(rcx, src); // 1, src
  2302 void Assembler::prefetcht1(Address src) {
  2303   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2304   InstructionMark im(this);
  2305   prefetch_prefix(src);
  2306   emit_byte(0x18);
  2307   emit_operand(rdx, src); // 2, src
  2310 void Assembler::prefetcht2(Address src) {
  2311   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2312   InstructionMark im(this);
  2313   prefetch_prefix(src);
  2314   emit_byte(0x18);
  2315   emit_operand(rbx, src); // 3, src
  2318 void Assembler::prefetchw(Address src) {
  2319   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2320   InstructionMark im(this);
  2321   prefetch_prefix(src);
  2322   emit_byte(0x0D);
  2323   emit_operand(rcx, src); // 1, src
  2326 void Assembler::prefix(Prefix p) {
  2327   a_byte(p);
  2330 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2331   assert(isByte(mode), "invalid value");
  2332   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2333   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2334   emit_byte(mode & 0xFF);
  2338 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2339   assert(isByte(mode), "invalid value");
  2340   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2341   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2342   InstructionMark im(this);
  2343   simd_prefix(dst, src, VEX_SIMD_66);
  2344   emit_byte(0x70);
  2345   emit_operand(dst, src);
  2346   emit_byte(mode & 0xFF);
  2349 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2350   assert(isByte(mode), "invalid value");
  2351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2352   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2353   emit_byte(mode & 0xFF);
  2356 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2357   assert(isByte(mode), "invalid value");
  2358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2359   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2360   InstructionMark im(this);
  2361   simd_prefix(dst, src, VEX_SIMD_F2);
  2362   emit_byte(0x70);
  2363   emit_operand(dst, src);
  2364   emit_byte(mode & 0xFF);
  2367 void Assembler::psrldq(XMMRegister dst, int shift) {
  2368   // Shift 128 bit value in xmm register by number of bytes.
  2369   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2370   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2371   emit_byte(0x73);
  2372   emit_byte(0xC0 | encode);
  2373   emit_byte(shift);
  2376 void Assembler::ptest(XMMRegister dst, Address src) {
  2377   assert(VM_Version::supports_sse4_1(), "");
  2378   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2379   InstructionMark im(this);
  2380   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2381   emit_byte(0x17);
  2382   emit_operand(dst, src);
  2385 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2386   assert(VM_Version::supports_sse4_1(), "");
  2387   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2388   emit_byte(0x17);
  2389   emit_byte(0xC0 | encode);
  2392 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2394   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2395   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2398 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2400   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2403 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2405   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2406   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2409 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2411   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2414 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2415   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2416   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2419 void Assembler::push(int32_t imm32) {
  2420   // in 64bits we push 64bits onto the stack but only
  2421   // take a 32bit immediate
  2422   emit_byte(0x68);
  2423   emit_long(imm32);
  2426 void Assembler::push(Register src) {
  2427   int encode = prefix_and_encode(src->encoding());
  2429   emit_byte(0x50 | encode);
  2432 void Assembler::pushf() {
  2433   emit_byte(0x9C);
  2436 #ifndef _LP64 // no 32bit push/pop on amd64
  2437 void Assembler::pushl(Address src) {
  2438   // Note this will push 64bit on 64bit
  2439   InstructionMark im(this);
  2440   prefix(src);
  2441   emit_byte(0xFF);
  2442   emit_operand(rsi, src);
  2444 #endif
  2446 void Assembler::rcll(Register dst, int imm8) {
  2447   assert(isShiftCount(imm8), "illegal shift count");
  2448   int encode = prefix_and_encode(dst->encoding());
  2449   if (imm8 == 1) {
  2450     emit_byte(0xD1);
  2451     emit_byte(0xD0 | encode);
  2452   } else {
  2453     emit_byte(0xC1);
  2454     emit_byte(0xD0 | encode);
  2455     emit_byte(imm8);
  2459 // copies data from [esi] to [edi] using rcx pointer sized words
  2460 // generic
  2461 void Assembler::rep_mov() {
  2462   emit_byte(0xF3);
  2463   // MOVSQ
  2464   LP64_ONLY(prefix(REX_W));
  2465   emit_byte(0xA5);
  2468 // sets rcx pointer sized words with rax, value at [edi]
  2469 // generic
  2470 void Assembler::rep_set() { // rep_set
  2471   emit_byte(0xF3);
  2472   // STOSQ
  2473   LP64_ONLY(prefix(REX_W));
  2474   emit_byte(0xAB);
  2477 // scans rcx pointer sized words at [edi] for occurance of rax,
  2478 // generic
  2479 void Assembler::repne_scan() { // repne_scan
  2480   emit_byte(0xF2);
  2481   // SCASQ
  2482   LP64_ONLY(prefix(REX_W));
  2483   emit_byte(0xAF);
  2486 #ifdef _LP64
  2487 // scans rcx 4 byte words at [edi] for occurance of rax,
  2488 // generic
  2489 void Assembler::repne_scanl() { // repne_scan
  2490   emit_byte(0xF2);
  2491   // SCASL
  2492   emit_byte(0xAF);
  2494 #endif
  2496 void Assembler::ret(int imm16) {
  2497   if (imm16 == 0) {
  2498     emit_byte(0xC3);
  2499   } else {
  2500     emit_byte(0xC2);
  2501     emit_word(imm16);
  2505 void Assembler::sahf() {
  2506 #ifdef _LP64
  2507   // Not supported in 64bit mode
  2508   ShouldNotReachHere();
  2509 #endif
  2510   emit_byte(0x9E);
  2513 void Assembler::sarl(Register dst, int imm8) {
  2514   int encode = prefix_and_encode(dst->encoding());
  2515   assert(isShiftCount(imm8), "illegal shift count");
  2516   if (imm8 == 1) {
  2517     emit_byte(0xD1);
  2518     emit_byte(0xF8 | encode);
  2519   } else {
  2520     emit_byte(0xC1);
  2521     emit_byte(0xF8 | encode);
  2522     emit_byte(imm8);
  2526 void Assembler::sarl(Register dst) {
  2527   int encode = prefix_and_encode(dst->encoding());
  2528   emit_byte(0xD3);
  2529   emit_byte(0xF8 | encode);
  2532 void Assembler::sbbl(Address dst, int32_t imm32) {
  2533   InstructionMark im(this);
  2534   prefix(dst);
  2535   emit_arith_operand(0x81, rbx, dst, imm32);
  2538 void Assembler::sbbl(Register dst, int32_t imm32) {
  2539   prefix(dst);
  2540   emit_arith(0x81, 0xD8, dst, imm32);
  2544 void Assembler::sbbl(Register dst, Address src) {
  2545   InstructionMark im(this);
  2546   prefix(src, dst);
  2547   emit_byte(0x1B);
  2548   emit_operand(dst, src);
  2551 void Assembler::sbbl(Register dst, Register src) {
  2552   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2553   emit_arith(0x1B, 0xC0, dst, src);
  2556 void Assembler::setb(Condition cc, Register dst) {
  2557   assert(0 <= cc && cc < 16, "illegal cc");
  2558   int encode = prefix_and_encode(dst->encoding(), true);
  2559   emit_byte(0x0F);
  2560   emit_byte(0x90 | cc);
  2561   emit_byte(0xC0 | encode);
  2564 void Assembler::shll(Register dst, int imm8) {
  2565   assert(isShiftCount(imm8), "illegal shift count");
  2566   int encode = prefix_and_encode(dst->encoding());
  2567   if (imm8 == 1 ) {
  2568     emit_byte(0xD1);
  2569     emit_byte(0xE0 | encode);
  2570   } else {
  2571     emit_byte(0xC1);
  2572     emit_byte(0xE0 | encode);
  2573     emit_byte(imm8);
  2577 void Assembler::shll(Register dst) {
  2578   int encode = prefix_and_encode(dst->encoding());
  2579   emit_byte(0xD3);
  2580   emit_byte(0xE0 | encode);
  2583 void Assembler::shrl(Register dst, int imm8) {
  2584   assert(isShiftCount(imm8), "illegal shift count");
  2585   int encode = prefix_and_encode(dst->encoding());
  2586   emit_byte(0xC1);
  2587   emit_byte(0xE8 | encode);
  2588   emit_byte(imm8);
  2591 void Assembler::shrl(Register dst) {
  2592   int encode = prefix_and_encode(dst->encoding());
  2593   emit_byte(0xD3);
  2594   emit_byte(0xE8 | encode);
  2597 // copies a single word from [esi] to [edi]
  2598 void Assembler::smovl() {
  2599   emit_byte(0xA5);
  2602 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2604   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2607 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2609   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2612 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2614   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2617 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2618   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2619   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2622 void Assembler::stmxcsr( Address dst) {
  2623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2624   InstructionMark im(this);
  2625   prefix(dst);
  2626   emit_byte(0x0F);
  2627   emit_byte(0xAE);
  2628   emit_operand(as_Register(3), dst);
  2631 void Assembler::subl(Address dst, int32_t imm32) {
  2632   InstructionMark im(this);
  2633   prefix(dst);
  2634   emit_arith_operand(0x81, rbp, dst, imm32);
  2637 void Assembler::subl(Address dst, Register src) {
  2638   InstructionMark im(this);
  2639   prefix(dst, src);
  2640   emit_byte(0x29);
  2641   emit_operand(src, dst);
  2644 void Assembler::subl(Register dst, int32_t imm32) {
  2645   prefix(dst);
  2646   emit_arith(0x81, 0xE8, dst, imm32);
  2649 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2650 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2651   prefix(dst);
  2652   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2655 void Assembler::subl(Register dst, Address src) {
  2656   InstructionMark im(this);
  2657   prefix(src, dst);
  2658   emit_byte(0x2B);
  2659   emit_operand(dst, src);
  2662 void Assembler::subl(Register dst, Register src) {
  2663   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2664   emit_arith(0x2B, 0xC0, dst, src);
  2667 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2669   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2672 void Assembler::subsd(XMMRegister dst, Address src) {
  2673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2674   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2677 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2678   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2679   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2682 void Assembler::subss(XMMRegister dst, Address src) {
  2683   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2684   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2687 void Assembler::testb(Register dst, int imm8) {
  2688   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2689   (void) prefix_and_encode(dst->encoding(), true);
  2690   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2693 void Assembler::testl(Register dst, int32_t imm32) {
  2694   // not using emit_arith because test
  2695   // doesn't support sign-extension of
  2696   // 8bit operands
  2697   int encode = dst->encoding();
  2698   if (encode == 0) {
  2699     emit_byte(0xA9);
  2700   } else {
  2701     encode = prefix_and_encode(encode);
  2702     emit_byte(0xF7);
  2703     emit_byte(0xC0 | encode);
  2705   emit_long(imm32);
  2708 void Assembler::testl(Register dst, Register src) {
  2709   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2710   emit_arith(0x85, 0xC0, dst, src);
  2713 void Assembler::testl(Register dst, Address  src) {
  2714   InstructionMark im(this);
  2715   prefix(src, dst);
  2716   emit_byte(0x85);
  2717   emit_operand(dst, src);
  2720 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2722   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2725 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2727   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2730 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2732   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2735 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2736   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2737   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2741 void Assembler::xaddl(Address dst, Register src) {
  2742   InstructionMark im(this);
  2743   prefix(dst, src);
  2744   emit_byte(0x0F);
  2745   emit_byte(0xC1);
  2746   emit_operand(src, dst);
  2749 void Assembler::xchgl(Register dst, Address src) { // xchg
  2750   InstructionMark im(this);
  2751   prefix(src, dst);
  2752   emit_byte(0x87);
  2753   emit_operand(dst, src);
  2756 void Assembler::xchgl(Register dst, Register src) {
  2757   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2758   emit_byte(0x87);
  2759   emit_byte(0xc0 | encode);
  2762 void Assembler::xorl(Register dst, int32_t imm32) {
  2763   prefix(dst);
  2764   emit_arith(0x81, 0xF0, dst, imm32);
  2767 void Assembler::xorl(Register dst, Address src) {
  2768   InstructionMark im(this);
  2769   prefix(src, dst);
  2770   emit_byte(0x33);
  2771   emit_operand(dst, src);
  2774 void Assembler::xorl(Register dst, Register src) {
  2775   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2776   emit_arith(0x33, 0xC0, dst, src);
  2780 // AVX 3-operands scalar float-point arithmetic instructions
  2782 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2783   assert(VM_Version::supports_avx(), "");
  2784   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2787 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2788   assert(VM_Version::supports_avx(), "");
  2789   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2792 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2793   assert(VM_Version::supports_avx(), "");
  2794   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2797 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2798   assert(VM_Version::supports_avx(), "");
  2799   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2802 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2803   assert(VM_Version::supports_avx(), "");
  2804   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2807 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2808   assert(VM_Version::supports_avx(), "");
  2809   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2812 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2813   assert(VM_Version::supports_avx(), "");
  2814   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2817 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2818   assert(VM_Version::supports_avx(), "");
  2819   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2822 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2823   assert(VM_Version::supports_avx(), "");
  2824   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2827 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2828   assert(VM_Version::supports_avx(), "");
  2829   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2832 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2833   assert(VM_Version::supports_avx(), "");
  2834   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2837 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2838   assert(VM_Version::supports_avx(), "");
  2839   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2842 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2843   assert(VM_Version::supports_avx(), "");
  2844   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2847 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2848   assert(VM_Version::supports_avx(), "");
  2849   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2852 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2853   assert(VM_Version::supports_avx(), "");
  2854   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2857 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2858   assert(VM_Version::supports_avx(), "");
  2859   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2862 //====================VECTOR ARITHMETIC=====================================
  2864 // Float-point vector arithmetic
  2866 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2867   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2868   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2871 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2873   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2876 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2877   assert(VM_Version::supports_avx(), "");
  2878   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2881 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2882   assert(VM_Version::supports_avx(), "");
  2883   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2886 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2887   assert(VM_Version::supports_avx(), "");
  2888   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2891 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2892   assert(VM_Version::supports_avx(), "");
  2893   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2896 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  2897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2898   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  2901 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  2902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2903   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  2906 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2907   assert(VM_Version::supports_avx(), "");
  2908   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2911 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2912   assert(VM_Version::supports_avx(), "");
  2913   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2916 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2917   assert(VM_Version::supports_avx(), "");
  2918   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2921 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2922   assert(VM_Version::supports_avx(), "");
  2923   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2926 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  2927   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2928   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  2931 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  2932   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2933   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  2936 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2937   assert(VM_Version::supports_avx(), "");
  2938   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2941 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2942   assert(VM_Version::supports_avx(), "");
  2943   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2946 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2947   assert(VM_Version::supports_avx(), "");
  2948   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2951 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2952   assert(VM_Version::supports_avx(), "");
  2953   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2956 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  2957   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2958   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  2961 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  2962   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2963   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  2966 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2967   assert(VM_Version::supports_avx(), "");
  2968   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2971 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2972   assert(VM_Version::supports_avx(), "");
  2973   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2976 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2977   assert(VM_Version::supports_avx(), "");
  2978   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2981 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2982   assert(VM_Version::supports_avx(), "");
  2983   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2986 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  2987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2988   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  2991 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  2992   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2993   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  2996 void Assembler::andps(XMMRegister dst, Address src) {
  2997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2998   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3001 void Assembler::andpd(XMMRegister dst, Address src) {
  3002   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3003   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3006 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3007   assert(VM_Version::supports_avx(), "");
  3008   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3011 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3012   assert(VM_Version::supports_avx(), "");
  3013   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3016 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3017   assert(VM_Version::supports_avx(), "");
  3018   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3021 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3022   assert(VM_Version::supports_avx(), "");
  3023   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3026 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3027   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3028   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3031 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3032   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3033   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3036 void Assembler::xorpd(XMMRegister dst, Address src) {
  3037   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3038   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3041 void Assembler::xorps(XMMRegister dst, Address src) {
  3042   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3043   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3046 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3047   assert(VM_Version::supports_avx(), "");
  3048   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3051 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3052   assert(VM_Version::supports_avx(), "");
  3053   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3056 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3057   assert(VM_Version::supports_avx(), "");
  3058   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3061 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3067 // Integer vector arithmetic
  3068 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3070   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3073 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3075   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3078 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3080   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3083 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3085   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3088 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3089   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3090   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3093 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3094   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3095   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3098 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3099   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3100   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3103 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3104   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3105   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3108 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3109   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3110   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3113 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3114   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3115   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3118 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3119   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3120   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3123 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3124   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3125   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3128 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3130   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3133 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3135   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3138 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3140   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3143 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3145   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3148 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3149   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3150   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3153 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3154   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3155   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3158 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3159   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3160   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3163 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3164   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3165   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3168 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3169   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3170   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3173 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3174   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3175   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3178 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3179   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3180   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3183 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3184   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3185   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3188 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3189   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3190   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3193 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3194   assert(VM_Version::supports_sse4_1(), "");
  3195   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3196   emit_byte(0x40);
  3197   emit_byte(0xC0 | encode);
  3200 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3201   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3202   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3205 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3206   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3207   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3208   emit_byte(0x40);
  3209   emit_byte(0xC0 | encode);
  3212 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3213   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3214   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3217 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3218   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3219   InstructionMark im(this);
  3220   int dst_enc = dst->encoding();
  3221   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3222   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3223   emit_byte(0x40);
  3224   emit_operand(dst, src);
  3227 // Shift packed integers left by specified number of bits.
  3228 void Assembler::psllw(XMMRegister dst, int shift) {
  3229   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3230   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3231   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3232   emit_byte(0x71);
  3233   emit_byte(0xC0 | encode);
  3234   emit_byte(shift & 0xFF);
  3237 void Assembler::pslld(XMMRegister dst, int shift) {
  3238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3239   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3240   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3241   emit_byte(0x72);
  3242   emit_byte(0xC0 | encode);
  3243   emit_byte(shift & 0xFF);
  3246 void Assembler::psllq(XMMRegister dst, int shift) {
  3247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3248   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3249   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3250   emit_byte(0x73);
  3251   emit_byte(0xC0 | encode);
  3252   emit_byte(shift & 0xFF);
  3255 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3257   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3260 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3262   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3265 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3266   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3267   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3270 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3271   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3272   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3273   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3274   emit_byte(shift & 0xFF);
  3277 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3278   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3279   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3280   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3281   emit_byte(shift & 0xFF);
  3284 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3285   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3286   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3287   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3288   emit_byte(shift & 0xFF);
  3291 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3292   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3293   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3296 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3297   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3298   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3301 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3302   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3303   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3306 // Shift packed integers logically right by specified number of bits.
  3307 void Assembler::psrlw(XMMRegister dst, int shift) {
  3308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3309   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3310   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3311   emit_byte(0x71);
  3312   emit_byte(0xC0 | encode);
  3313   emit_byte(shift & 0xFF);
  3316 void Assembler::psrld(XMMRegister dst, int shift) {
  3317   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3318   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3319   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3320   emit_byte(0x72);
  3321   emit_byte(0xC0 | encode);
  3322   emit_byte(shift & 0xFF);
  3325 void Assembler::psrlq(XMMRegister dst, int shift) {
  3326   // Do not confuse it with psrldq SSE2 instruction which
  3327   // shifts 128 bit value in xmm register by number of bytes.
  3328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3329   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3330   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3331   emit_byte(0x73);
  3332   emit_byte(0xC0 | encode);
  3333   emit_byte(shift & 0xFF);
  3336 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3337   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3338   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3341 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3343   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3346 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3347   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3348   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3351 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3352   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3353   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3354   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3355   emit_byte(shift & 0xFF);
  3358 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3359   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3360   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3361   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3362   emit_byte(shift & 0xFF);
  3365 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3366   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3367   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3368   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3369   emit_byte(shift & 0xFF);
  3372 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3373   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3374   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3377 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3378   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3379   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3382 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3383   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3384   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3387 // Shift packed integers arithmetically right by specified number of bits.
  3388 void Assembler::psraw(XMMRegister dst, int shift) {
  3389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3390   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3391   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3392   emit_byte(0x71);
  3393   emit_byte(0xC0 | encode);
  3394   emit_byte(shift & 0xFF);
  3397 void Assembler::psrad(XMMRegister dst, int shift) {
  3398   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3399   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3400   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3401   emit_byte(0x72);
  3402   emit_byte(0xC0 | encode);
  3403   emit_byte(shift & 0xFF);
  3406 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3407   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3408   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3411 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3413   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3416 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3417   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3418   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3419   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3420   emit_byte(shift & 0xFF);
  3423 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3424   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3425   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3426   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3427   emit_byte(shift & 0xFF);
  3430 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3431   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3432   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3435 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3436   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3437   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3441 // AND packed integers
  3442 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3444   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3447 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3448   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3449   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3452 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3453   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3454   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3457 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3459   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3462 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3464   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3467 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3468   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3469   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3472 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3474   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3477 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3478   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3479   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3482 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3483   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3484   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3488 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3489   assert(VM_Version::supports_avx(), "");
  3490   bool vector256 = true;
  3491   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3492   emit_byte(0x18);
  3493   emit_byte(0xC0 | encode);
  3494   // 0x00 - insert into lower 128 bits
  3495   // 0x01 - insert into upper 128 bits
  3496   emit_byte(0x01);
  3499 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3500   assert(VM_Version::supports_avx(), "");
  3501   InstructionMark im(this);
  3502   bool vector256 = true;
  3503   assert(dst != xnoreg, "sanity");
  3504   int dst_enc = dst->encoding();
  3505   // swap src<->dst for encoding
  3506   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3507   emit_byte(0x18);
  3508   emit_operand(dst, src);
  3509   // 0x01 - insert into upper 128 bits
  3510   emit_byte(0x01);
  3513 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3514   assert(VM_Version::supports_avx(), "");
  3515   InstructionMark im(this);
  3516   bool vector256 = true;
  3517   assert(src != xnoreg, "sanity");
  3518   int src_enc = src->encoding();
  3519   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3520   emit_byte(0x19);
  3521   emit_operand(src, dst);
  3522   // 0x01 - extract from upper 128 bits
  3523   emit_byte(0x01);
  3526 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3527   assert(VM_Version::supports_avx2(), "");
  3528   bool vector256 = true;
  3529   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3530   emit_byte(0x38);
  3531   emit_byte(0xC0 | encode);
  3532   // 0x00 - insert into lower 128 bits
  3533   // 0x01 - insert into upper 128 bits
  3534   emit_byte(0x01);
  3537 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3538   assert(VM_Version::supports_avx2(), "");
  3539   InstructionMark im(this);
  3540   bool vector256 = true;
  3541   assert(dst != xnoreg, "sanity");
  3542   int dst_enc = dst->encoding();
  3543   // swap src<->dst for encoding
  3544   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3545   emit_byte(0x38);
  3546   emit_operand(dst, src);
  3547   // 0x01 - insert into upper 128 bits
  3548   emit_byte(0x01);
  3551 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3552   assert(VM_Version::supports_avx2(), "");
  3553   InstructionMark im(this);
  3554   bool vector256 = true;
  3555   assert(src != xnoreg, "sanity");
  3556   int src_enc = src->encoding();
  3557   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3558   emit_byte(0x39);
  3559   emit_operand(src, dst);
  3560   // 0x01 - extract from upper 128 bits
  3561   emit_byte(0x01);
  3564 void Assembler::vzeroupper() {
  3565   assert(VM_Version::supports_avx(), "");
  3566   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3567   emit_byte(0x77);
  3571 #ifndef _LP64
  3572 // 32bit only pieces of the assembler
  3574 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3575   // NO PREFIX AS NEVER 64BIT
  3576   InstructionMark im(this);
  3577   emit_byte(0x81);
  3578   emit_byte(0xF8 | src1->encoding());
  3579   emit_data(imm32, rspec, 0);
  3582 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3583   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3584   InstructionMark im(this);
  3585   emit_byte(0x81);
  3586   emit_operand(rdi, src1);
  3587   emit_data(imm32, rspec, 0);
  3590 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3591 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3592 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3593 void Assembler::cmpxchg8(Address adr) {
  3594   InstructionMark im(this);
  3595   emit_byte(0x0F);
  3596   emit_byte(0xc7);
  3597   emit_operand(rcx, adr);
  3600 void Assembler::decl(Register dst) {
  3601   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3602  emit_byte(0x48 | dst->encoding());
  3605 #endif // _LP64
  3607 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3609 void Assembler::fabs() {
  3610   emit_byte(0xD9);
  3611   emit_byte(0xE1);
  3614 void Assembler::fadd(int i) {
  3615   emit_farith(0xD8, 0xC0, i);
  3618 void Assembler::fadd_d(Address src) {
  3619   InstructionMark im(this);
  3620   emit_byte(0xDC);
  3621   emit_operand32(rax, src);
  3624 void Assembler::fadd_s(Address src) {
  3625   InstructionMark im(this);
  3626   emit_byte(0xD8);
  3627   emit_operand32(rax, src);
  3630 void Assembler::fadda(int i) {
  3631   emit_farith(0xDC, 0xC0, i);
  3634 void Assembler::faddp(int i) {
  3635   emit_farith(0xDE, 0xC0, i);
  3638 void Assembler::fchs() {
  3639   emit_byte(0xD9);
  3640   emit_byte(0xE0);
  3643 void Assembler::fcom(int i) {
  3644   emit_farith(0xD8, 0xD0, i);
  3647 void Assembler::fcomp(int i) {
  3648   emit_farith(0xD8, 0xD8, i);
  3651 void Assembler::fcomp_d(Address src) {
  3652   InstructionMark im(this);
  3653   emit_byte(0xDC);
  3654   emit_operand32(rbx, src);
  3657 void Assembler::fcomp_s(Address src) {
  3658   InstructionMark im(this);
  3659   emit_byte(0xD8);
  3660   emit_operand32(rbx, src);
  3663 void Assembler::fcompp() {
  3664   emit_byte(0xDE);
  3665   emit_byte(0xD9);
  3668 void Assembler::fcos() {
  3669   emit_byte(0xD9);
  3670   emit_byte(0xFF);
  3673 void Assembler::fdecstp() {
  3674   emit_byte(0xD9);
  3675   emit_byte(0xF6);
  3678 void Assembler::fdiv(int i) {
  3679   emit_farith(0xD8, 0xF0, i);
  3682 void Assembler::fdiv_d(Address src) {
  3683   InstructionMark im(this);
  3684   emit_byte(0xDC);
  3685   emit_operand32(rsi, src);
  3688 void Assembler::fdiv_s(Address src) {
  3689   InstructionMark im(this);
  3690   emit_byte(0xD8);
  3691   emit_operand32(rsi, src);
  3694 void Assembler::fdiva(int i) {
  3695   emit_farith(0xDC, 0xF8, i);
  3698 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3699 //       is erroneous for some of the floating-point instructions below.
  3701 void Assembler::fdivp(int i) {
  3702   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3705 void Assembler::fdivr(int i) {
  3706   emit_farith(0xD8, 0xF8, i);
  3709 void Assembler::fdivr_d(Address src) {
  3710   InstructionMark im(this);
  3711   emit_byte(0xDC);
  3712   emit_operand32(rdi, src);
  3715 void Assembler::fdivr_s(Address src) {
  3716   InstructionMark im(this);
  3717   emit_byte(0xD8);
  3718   emit_operand32(rdi, src);
  3721 void Assembler::fdivra(int i) {
  3722   emit_farith(0xDC, 0xF0, i);
  3725 void Assembler::fdivrp(int i) {
  3726   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3729 void Assembler::ffree(int i) {
  3730   emit_farith(0xDD, 0xC0, i);
  3733 void Assembler::fild_d(Address adr) {
  3734   InstructionMark im(this);
  3735   emit_byte(0xDF);
  3736   emit_operand32(rbp, adr);
  3739 void Assembler::fild_s(Address adr) {
  3740   InstructionMark im(this);
  3741   emit_byte(0xDB);
  3742   emit_operand32(rax, adr);
  3745 void Assembler::fincstp() {
  3746   emit_byte(0xD9);
  3747   emit_byte(0xF7);
  3750 void Assembler::finit() {
  3751   emit_byte(0x9B);
  3752   emit_byte(0xDB);
  3753   emit_byte(0xE3);
  3756 void Assembler::fist_s(Address adr) {
  3757   InstructionMark im(this);
  3758   emit_byte(0xDB);
  3759   emit_operand32(rdx, adr);
  3762 void Assembler::fistp_d(Address adr) {
  3763   InstructionMark im(this);
  3764   emit_byte(0xDF);
  3765   emit_operand32(rdi, adr);
  3768 void Assembler::fistp_s(Address adr) {
  3769   InstructionMark im(this);
  3770   emit_byte(0xDB);
  3771   emit_operand32(rbx, adr);
  3774 void Assembler::fld1() {
  3775   emit_byte(0xD9);
  3776   emit_byte(0xE8);
  3779 void Assembler::fld_d(Address adr) {
  3780   InstructionMark im(this);
  3781   emit_byte(0xDD);
  3782   emit_operand32(rax, adr);
  3785 void Assembler::fld_s(Address adr) {
  3786   InstructionMark im(this);
  3787   emit_byte(0xD9);
  3788   emit_operand32(rax, adr);
  3792 void Assembler::fld_s(int index) {
  3793   emit_farith(0xD9, 0xC0, index);
  3796 void Assembler::fld_x(Address adr) {
  3797   InstructionMark im(this);
  3798   emit_byte(0xDB);
  3799   emit_operand32(rbp, adr);
  3802 void Assembler::fldcw(Address src) {
  3803   InstructionMark im(this);
  3804   emit_byte(0xd9);
  3805   emit_operand32(rbp, src);
  3808 void Assembler::fldenv(Address src) {
  3809   InstructionMark im(this);
  3810   emit_byte(0xD9);
  3811   emit_operand32(rsp, src);
  3814 void Assembler::fldlg2() {
  3815   emit_byte(0xD9);
  3816   emit_byte(0xEC);
  3819 void Assembler::fldln2() {
  3820   emit_byte(0xD9);
  3821   emit_byte(0xED);
  3824 void Assembler::fldz() {
  3825   emit_byte(0xD9);
  3826   emit_byte(0xEE);
  3829 void Assembler::flog() {
  3830   fldln2();
  3831   fxch();
  3832   fyl2x();
  3835 void Assembler::flog10() {
  3836   fldlg2();
  3837   fxch();
  3838   fyl2x();
  3841 void Assembler::fmul(int i) {
  3842   emit_farith(0xD8, 0xC8, i);
  3845 void Assembler::fmul_d(Address src) {
  3846   InstructionMark im(this);
  3847   emit_byte(0xDC);
  3848   emit_operand32(rcx, src);
  3851 void Assembler::fmul_s(Address src) {
  3852   InstructionMark im(this);
  3853   emit_byte(0xD8);
  3854   emit_operand32(rcx, src);
  3857 void Assembler::fmula(int i) {
  3858   emit_farith(0xDC, 0xC8, i);
  3861 void Assembler::fmulp(int i) {
  3862   emit_farith(0xDE, 0xC8, i);
  3865 void Assembler::fnsave(Address dst) {
  3866   InstructionMark im(this);
  3867   emit_byte(0xDD);
  3868   emit_operand32(rsi, dst);
  3871 void Assembler::fnstcw(Address src) {
  3872   InstructionMark im(this);
  3873   emit_byte(0x9B);
  3874   emit_byte(0xD9);
  3875   emit_operand32(rdi, src);
  3878 void Assembler::fnstsw_ax() {
  3879   emit_byte(0xdF);
  3880   emit_byte(0xE0);
  3883 void Assembler::fprem() {
  3884   emit_byte(0xD9);
  3885   emit_byte(0xF8);
  3888 void Assembler::fprem1() {
  3889   emit_byte(0xD9);
  3890   emit_byte(0xF5);
  3893 void Assembler::frstor(Address src) {
  3894   InstructionMark im(this);
  3895   emit_byte(0xDD);
  3896   emit_operand32(rsp, src);
  3899 void Assembler::fsin() {
  3900   emit_byte(0xD9);
  3901   emit_byte(0xFE);
  3904 void Assembler::fsqrt() {
  3905   emit_byte(0xD9);
  3906   emit_byte(0xFA);
  3909 void Assembler::fst_d(Address adr) {
  3910   InstructionMark im(this);
  3911   emit_byte(0xDD);
  3912   emit_operand32(rdx, adr);
  3915 void Assembler::fst_s(Address adr) {
  3916   InstructionMark im(this);
  3917   emit_byte(0xD9);
  3918   emit_operand32(rdx, adr);
  3921 void Assembler::fstp_d(Address adr) {
  3922   InstructionMark im(this);
  3923   emit_byte(0xDD);
  3924   emit_operand32(rbx, adr);
  3927 void Assembler::fstp_d(int index) {
  3928   emit_farith(0xDD, 0xD8, index);
  3931 void Assembler::fstp_s(Address adr) {
  3932   InstructionMark im(this);
  3933   emit_byte(0xD9);
  3934   emit_operand32(rbx, adr);
  3937 void Assembler::fstp_x(Address adr) {
  3938   InstructionMark im(this);
  3939   emit_byte(0xDB);
  3940   emit_operand32(rdi, adr);
  3943 void Assembler::fsub(int i) {
  3944   emit_farith(0xD8, 0xE0, i);
  3947 void Assembler::fsub_d(Address src) {
  3948   InstructionMark im(this);
  3949   emit_byte(0xDC);
  3950   emit_operand32(rsp, src);
  3953 void Assembler::fsub_s(Address src) {
  3954   InstructionMark im(this);
  3955   emit_byte(0xD8);
  3956   emit_operand32(rsp, src);
  3959 void Assembler::fsuba(int i) {
  3960   emit_farith(0xDC, 0xE8, i);
  3963 void Assembler::fsubp(int i) {
  3964   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3967 void Assembler::fsubr(int i) {
  3968   emit_farith(0xD8, 0xE8, i);
  3971 void Assembler::fsubr_d(Address src) {
  3972   InstructionMark im(this);
  3973   emit_byte(0xDC);
  3974   emit_operand32(rbp, src);
  3977 void Assembler::fsubr_s(Address src) {
  3978   InstructionMark im(this);
  3979   emit_byte(0xD8);
  3980   emit_operand32(rbp, src);
  3983 void Assembler::fsubra(int i) {
  3984   emit_farith(0xDC, 0xE0, i);
  3987 void Assembler::fsubrp(int i) {
  3988   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3991 void Assembler::ftan() {
  3992   emit_byte(0xD9);
  3993   emit_byte(0xF2);
  3994   emit_byte(0xDD);
  3995   emit_byte(0xD8);
  3998 void Assembler::ftst() {
  3999   emit_byte(0xD9);
  4000   emit_byte(0xE4);
  4003 void Assembler::fucomi(int i) {
  4004   // make sure the instruction is supported (introduced for P6, together with cmov)
  4005   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4006   emit_farith(0xDB, 0xE8, i);
  4009 void Assembler::fucomip(int i) {
  4010   // make sure the instruction is supported (introduced for P6, together with cmov)
  4011   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4012   emit_farith(0xDF, 0xE8, i);
  4015 void Assembler::fwait() {
  4016   emit_byte(0x9B);
  4019 void Assembler::fxch(int i) {
  4020   emit_farith(0xD9, 0xC8, i);
  4023 void Assembler::fyl2x() {
  4024   emit_byte(0xD9);
  4025   emit_byte(0xF1);
  4028 void Assembler::frndint() {
  4029   emit_byte(0xD9);
  4030   emit_byte(0xFC);
  4033 void Assembler::f2xm1() {
  4034   emit_byte(0xD9);
  4035   emit_byte(0xF0);
  4038 void Assembler::fldl2e() {
  4039   emit_byte(0xD9);
  4040   emit_byte(0xEA);
  4043 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4044 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4045 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4046 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4048 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4049 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4050   if (pre > 0) {
  4051     emit_byte(simd_pre[pre]);
  4053   if (rex_w) {
  4054     prefixq(adr, xreg);
  4055   } else {
  4056     prefix(adr, xreg);
  4058   if (opc > 0) {
  4059     emit_byte(0x0F);
  4060     int opc2 = simd_opc[opc];
  4061     if (opc2 > 0) {
  4062       emit_byte(opc2);
  4067 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4068   if (pre > 0) {
  4069     emit_byte(simd_pre[pre]);
  4071   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4072                           prefix_and_encode(dst_enc, src_enc);
  4073   if (opc > 0) {
  4074     emit_byte(0x0F);
  4075     int opc2 = simd_opc[opc];
  4076     if (opc2 > 0) {
  4077       emit_byte(opc2);
  4080   return encode;
  4084 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4085   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4086     prefix(VEX_3bytes);
  4088     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4089     byte1 = (~byte1) & 0xE0;
  4090     byte1 |= opc;
  4091     a_byte(byte1);
  4093     int byte2 = ((~nds_enc) & 0xf) << 3;
  4094     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4095     emit_byte(byte2);
  4096   } else {
  4097     prefix(VEX_2bytes);
  4099     int byte1 = vex_r ? VEX_R : 0;
  4100     byte1 = (~byte1) & 0x80;
  4101     byte1 |= ((~nds_enc) & 0xf) << 3;
  4102     byte1 |= (vector256 ? 4 : 0) | pre;
  4103     emit_byte(byte1);
  4107 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4108   bool vex_r = (xreg_enc >= 8);
  4109   bool vex_b = adr.base_needs_rex();
  4110   bool vex_x = adr.index_needs_rex();
  4111   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4114 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4115   bool vex_r = (dst_enc >= 8);
  4116   bool vex_b = (src_enc >= 8);
  4117   bool vex_x = false;
  4118   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4119   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4123 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4124   if (UseAVX > 0) {
  4125     int xreg_enc = xreg->encoding();
  4126     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4127     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4128   } else {
  4129     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4130     rex_prefix(adr, xreg, pre, opc, rex_w);
  4134 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4135   int dst_enc = dst->encoding();
  4136   int src_enc = src->encoding();
  4137   if (UseAVX > 0) {
  4138     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4139     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4140   } else {
  4141     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4142     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4146 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4147   InstructionMark im(this);
  4148   simd_prefix(dst, dst, src, pre);
  4149   emit_byte(opcode);
  4150   emit_operand(dst, src);
  4153 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4154   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4155   emit_byte(opcode);
  4156   emit_byte(0xC0 | encode);
  4159 // Versions with no second source register (non-destructive source).
  4160 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4161   InstructionMark im(this);
  4162   simd_prefix(dst, xnoreg, src, pre);
  4163   emit_byte(opcode);
  4164   emit_operand(dst, src);
  4167 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4168   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4169   emit_byte(opcode);
  4170   emit_byte(0xC0 | encode);
  4173 // 3-operands AVX instructions
  4174 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4175                                Address src, VexSimdPrefix pre, bool vector256) {
  4176   InstructionMark im(this);
  4177   vex_prefix(dst, nds, src, pre, vector256);
  4178   emit_byte(opcode);
  4179   emit_operand(dst, src);
  4182 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4183                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4184   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4185   emit_byte(opcode);
  4186   emit_byte(0xC0 | encode);
  4189 #ifndef _LP64
  4191 void Assembler::incl(Register dst) {
  4192   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4193   emit_byte(0x40 | dst->encoding());
  4196 void Assembler::lea(Register dst, Address src) {
  4197   leal(dst, src);
  4200 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4201   InstructionMark im(this);
  4202   emit_byte(0xC7);
  4203   emit_operand(rax, dst);
  4204   emit_data((int)imm32, rspec, 0);
  4207 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4208   InstructionMark im(this);
  4209   int encode = prefix_and_encode(dst->encoding());
  4210   emit_byte(0xB8 | encode);
  4211   emit_data((int)imm32, rspec, 0);
  4214 void Assembler::popa() { // 32bit
  4215   emit_byte(0x61);
  4218 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4219   InstructionMark im(this);
  4220   emit_byte(0x68);
  4221   emit_data(imm32, rspec, 0);
  4224 void Assembler::pusha() { // 32bit
  4225   emit_byte(0x60);
  4228 void Assembler::set_byte_if_not_zero(Register dst) {
  4229   emit_byte(0x0F);
  4230   emit_byte(0x95);
  4231   emit_byte(0xE0 | dst->encoding());
  4234 void Assembler::shldl(Register dst, Register src) {
  4235   emit_byte(0x0F);
  4236   emit_byte(0xA5);
  4237   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4240 void Assembler::shrdl(Register dst, Register src) {
  4241   emit_byte(0x0F);
  4242   emit_byte(0xAD);
  4243   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4246 #else // LP64
  4248 void Assembler::set_byte_if_not_zero(Register dst) {
  4249   int enc = prefix_and_encode(dst->encoding(), true);
  4250   emit_byte(0x0F);
  4251   emit_byte(0x95);
  4252   emit_byte(0xE0 | enc);
  4255 // 64bit only pieces of the assembler
  4256 // This should only be used by 64bit instructions that can use rip-relative
  4257 // it cannot be used by instructions that want an immediate value.
  4259 bool Assembler::reachable(AddressLiteral adr) {
  4260   int64_t disp;
  4261   // None will force a 64bit literal to the code stream. Likely a placeholder
  4262   // for something that will be patched later and we need to certain it will
  4263   // always be reachable.
  4264   if (adr.reloc() == relocInfo::none) {
  4265     return false;
  4267   if (adr.reloc() == relocInfo::internal_word_type) {
  4268     // This should be rip relative and easily reachable.
  4269     return true;
  4271   if (adr.reloc() == relocInfo::virtual_call_type ||
  4272       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4273       adr.reloc() == relocInfo::static_call_type ||
  4274       adr.reloc() == relocInfo::static_stub_type ) {
  4275     // This should be rip relative within the code cache and easily
  4276     // reachable until we get huge code caches. (At which point
  4277     // ic code is going to have issues).
  4278     return true;
  4280   if (adr.reloc() != relocInfo::external_word_type &&
  4281       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4282       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4283       adr.reloc() != relocInfo::runtime_call_type ) {
  4284     return false;
  4287   // Stress the correction code
  4288   if (ForceUnreachable) {
  4289     // Must be runtimecall reloc, see if it is in the codecache
  4290     // Flipping stuff in the codecache to be unreachable causes issues
  4291     // with things like inline caches where the additional instructions
  4292     // are not handled.
  4293     if (CodeCache::find_blob(adr._target) == NULL) {
  4294       return false;
  4297   // For external_word_type/runtime_call_type if it is reachable from where we
  4298   // are now (possibly a temp buffer) and where we might end up
  4299   // anywhere in the codeCache then we are always reachable.
  4300   // This would have to change if we ever save/restore shared code
  4301   // to be more pessimistic.
  4302   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4303   if (!is_simm32(disp)) return false;
  4304   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4305   if (!is_simm32(disp)) return false;
  4307   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  4309   // Because rip relative is a disp + address_of_next_instruction and we
  4310   // don't know the value of address_of_next_instruction we apply a fudge factor
  4311   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4312   // We don't have to fudge the checks above here because they are already worst case.
  4314   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4315   // + 4 because better safe than sorry.
  4316   const int fudge = 12 + 4;
  4317   if (disp < 0) {
  4318     disp -= fudge;
  4319   } else {
  4320     disp += fudge;
  4322   return is_simm32(disp);
  4325 // Check if the polling page is not reachable from the code cache using rip-relative
  4326 // addressing.
  4327 bool Assembler::is_polling_page_far() {
  4328   intptr_t addr = (intptr_t)os::get_polling_page();
  4329   return ForceUnreachable ||
  4330          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4331          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4334 void Assembler::emit_data64(jlong data,
  4335                             relocInfo::relocType rtype,
  4336                             int format) {
  4337   if (rtype == relocInfo::none) {
  4338     emit_long64(data);
  4339   } else {
  4340     emit_data64(data, Relocation::spec_simple(rtype), format);
  4344 void Assembler::emit_data64(jlong data,
  4345                             RelocationHolder const& rspec,
  4346                             int format) {
  4347   assert(imm_operand == 0, "default format must be immediate in this file");
  4348   assert(imm_operand == format, "must be immediate");
  4349   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4350   // Do not use AbstractAssembler::relocate, which is not intended for
  4351   // embedded words.  Instead, relocate to the enclosing instruction.
  4352   code_section()->relocate(inst_mark(), rspec, format);
  4353 #ifdef ASSERT
  4354   check_relocation(rspec, format);
  4355 #endif
  4356   emit_long64(data);
  4359 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4360   if (reg_enc >= 8) {
  4361     prefix(REX_B);
  4362     reg_enc -= 8;
  4363   } else if (byteinst && reg_enc >= 4) {
  4364     prefix(REX);
  4366   return reg_enc;
  4369 int Assembler::prefixq_and_encode(int reg_enc) {
  4370   if (reg_enc < 8) {
  4371     prefix(REX_W);
  4372   } else {
  4373     prefix(REX_WB);
  4374     reg_enc -= 8;
  4376   return reg_enc;
  4379 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4380   if (dst_enc < 8) {
  4381     if (src_enc >= 8) {
  4382       prefix(REX_B);
  4383       src_enc -= 8;
  4384     } else if (byteinst && src_enc >= 4) {
  4385       prefix(REX);
  4387   } else {
  4388     if (src_enc < 8) {
  4389       prefix(REX_R);
  4390     } else {
  4391       prefix(REX_RB);
  4392       src_enc -= 8;
  4394     dst_enc -= 8;
  4396   return dst_enc << 3 | src_enc;
  4399 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4400   if (dst_enc < 8) {
  4401     if (src_enc < 8) {
  4402       prefix(REX_W);
  4403     } else {
  4404       prefix(REX_WB);
  4405       src_enc -= 8;
  4407   } else {
  4408     if (src_enc < 8) {
  4409       prefix(REX_WR);
  4410     } else {
  4411       prefix(REX_WRB);
  4412       src_enc -= 8;
  4414     dst_enc -= 8;
  4416   return dst_enc << 3 | src_enc;
  4419 void Assembler::prefix(Register reg) {
  4420   if (reg->encoding() >= 8) {
  4421     prefix(REX_B);
  4425 void Assembler::prefix(Address adr) {
  4426   if (adr.base_needs_rex()) {
  4427     if (adr.index_needs_rex()) {
  4428       prefix(REX_XB);
  4429     } else {
  4430       prefix(REX_B);
  4432   } else {
  4433     if (adr.index_needs_rex()) {
  4434       prefix(REX_X);
  4439 void Assembler::prefixq(Address adr) {
  4440   if (adr.base_needs_rex()) {
  4441     if (adr.index_needs_rex()) {
  4442       prefix(REX_WXB);
  4443     } else {
  4444       prefix(REX_WB);
  4446   } else {
  4447     if (adr.index_needs_rex()) {
  4448       prefix(REX_WX);
  4449     } else {
  4450       prefix(REX_W);
  4456 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4457   if (reg->encoding() < 8) {
  4458     if (adr.base_needs_rex()) {
  4459       if (adr.index_needs_rex()) {
  4460         prefix(REX_XB);
  4461       } else {
  4462         prefix(REX_B);
  4464     } else {
  4465       if (adr.index_needs_rex()) {
  4466         prefix(REX_X);
  4467       } else if (byteinst && reg->encoding() >= 4 ) {
  4468         prefix(REX);
  4471   } else {
  4472     if (adr.base_needs_rex()) {
  4473       if (adr.index_needs_rex()) {
  4474         prefix(REX_RXB);
  4475       } else {
  4476         prefix(REX_RB);
  4478     } else {
  4479       if (adr.index_needs_rex()) {
  4480         prefix(REX_RX);
  4481       } else {
  4482         prefix(REX_R);
  4488 void Assembler::prefixq(Address adr, Register src) {
  4489   if (src->encoding() < 8) {
  4490     if (adr.base_needs_rex()) {
  4491       if (adr.index_needs_rex()) {
  4492         prefix(REX_WXB);
  4493       } else {
  4494         prefix(REX_WB);
  4496     } else {
  4497       if (adr.index_needs_rex()) {
  4498         prefix(REX_WX);
  4499       } else {
  4500         prefix(REX_W);
  4503   } else {
  4504     if (adr.base_needs_rex()) {
  4505       if (adr.index_needs_rex()) {
  4506         prefix(REX_WRXB);
  4507       } else {
  4508         prefix(REX_WRB);
  4510     } else {
  4511       if (adr.index_needs_rex()) {
  4512         prefix(REX_WRX);
  4513       } else {
  4514         prefix(REX_WR);
  4520 void Assembler::prefix(Address adr, XMMRegister reg) {
  4521   if (reg->encoding() < 8) {
  4522     if (adr.base_needs_rex()) {
  4523       if (adr.index_needs_rex()) {
  4524         prefix(REX_XB);
  4525       } else {
  4526         prefix(REX_B);
  4528     } else {
  4529       if (adr.index_needs_rex()) {
  4530         prefix(REX_X);
  4533   } else {
  4534     if (adr.base_needs_rex()) {
  4535       if (adr.index_needs_rex()) {
  4536         prefix(REX_RXB);
  4537       } else {
  4538         prefix(REX_RB);
  4540     } else {
  4541       if (adr.index_needs_rex()) {
  4542         prefix(REX_RX);
  4543       } else {
  4544         prefix(REX_R);
  4550 void Assembler::prefixq(Address adr, XMMRegister src) {
  4551   if (src->encoding() < 8) {
  4552     if (adr.base_needs_rex()) {
  4553       if (adr.index_needs_rex()) {
  4554         prefix(REX_WXB);
  4555       } else {
  4556         prefix(REX_WB);
  4558     } else {
  4559       if (adr.index_needs_rex()) {
  4560         prefix(REX_WX);
  4561       } else {
  4562         prefix(REX_W);
  4565   } else {
  4566     if (adr.base_needs_rex()) {
  4567       if (adr.index_needs_rex()) {
  4568         prefix(REX_WRXB);
  4569       } else {
  4570         prefix(REX_WRB);
  4572     } else {
  4573       if (adr.index_needs_rex()) {
  4574         prefix(REX_WRX);
  4575       } else {
  4576         prefix(REX_WR);
  4582 void Assembler::adcq(Register dst, int32_t imm32) {
  4583   (void) prefixq_and_encode(dst->encoding());
  4584   emit_arith(0x81, 0xD0, dst, imm32);
  4587 void Assembler::adcq(Register dst, Address src) {
  4588   InstructionMark im(this);
  4589   prefixq(src, dst);
  4590   emit_byte(0x13);
  4591   emit_operand(dst, src);
  4594 void Assembler::adcq(Register dst, Register src) {
  4595   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4596   emit_arith(0x13, 0xC0, dst, src);
  4599 void Assembler::addq(Address dst, int32_t imm32) {
  4600   InstructionMark im(this);
  4601   prefixq(dst);
  4602   emit_arith_operand(0x81, rax, dst,imm32);
  4605 void Assembler::addq(Address dst, Register src) {
  4606   InstructionMark im(this);
  4607   prefixq(dst, src);
  4608   emit_byte(0x01);
  4609   emit_operand(src, dst);
  4612 void Assembler::addq(Register dst, int32_t imm32) {
  4613   (void) prefixq_and_encode(dst->encoding());
  4614   emit_arith(0x81, 0xC0, dst, imm32);
  4617 void Assembler::addq(Register dst, Address src) {
  4618   InstructionMark im(this);
  4619   prefixq(src, dst);
  4620   emit_byte(0x03);
  4621   emit_operand(dst, src);
  4624 void Assembler::addq(Register dst, Register src) {
  4625   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4626   emit_arith(0x03, 0xC0, dst, src);
  4629 void Assembler::andq(Address dst, int32_t imm32) {
  4630   InstructionMark im(this);
  4631   prefixq(dst);
  4632   emit_byte(0x81);
  4633   emit_operand(rsp, dst, 4);
  4634   emit_long(imm32);
  4637 void Assembler::andq(Register dst, int32_t imm32) {
  4638   (void) prefixq_and_encode(dst->encoding());
  4639   emit_arith(0x81, 0xE0, dst, imm32);
  4642 void Assembler::andq(Register dst, Address src) {
  4643   InstructionMark im(this);
  4644   prefixq(src, dst);
  4645   emit_byte(0x23);
  4646   emit_operand(dst, src);
  4649 void Assembler::andq(Register dst, Register src) {
  4650   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4651   emit_arith(0x23, 0xC0, dst, src);
  4654 void Assembler::bsfq(Register dst, Register src) {
  4655   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4656   emit_byte(0x0F);
  4657   emit_byte(0xBC);
  4658   emit_byte(0xC0 | encode);
  4661 void Assembler::bsrq(Register dst, Register src) {
  4662   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4663   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4664   emit_byte(0x0F);
  4665   emit_byte(0xBD);
  4666   emit_byte(0xC0 | encode);
  4669 void Assembler::bswapq(Register reg) {
  4670   int encode = prefixq_and_encode(reg->encoding());
  4671   emit_byte(0x0F);
  4672   emit_byte(0xC8 | encode);
  4675 void Assembler::cdqq() {
  4676   prefix(REX_W);
  4677   emit_byte(0x99);
  4680 void Assembler::clflush(Address adr) {
  4681   prefix(adr);
  4682   emit_byte(0x0F);
  4683   emit_byte(0xAE);
  4684   emit_operand(rdi, adr);
  4687 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4688   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4689   emit_byte(0x0F);
  4690   emit_byte(0x40 | cc);
  4691   emit_byte(0xC0 | encode);
  4694 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4695   InstructionMark im(this);
  4696   prefixq(src, dst);
  4697   emit_byte(0x0F);
  4698   emit_byte(0x40 | cc);
  4699   emit_operand(dst, src);
  4702 void Assembler::cmpq(Address dst, int32_t imm32) {
  4703   InstructionMark im(this);
  4704   prefixq(dst);
  4705   emit_byte(0x81);
  4706   emit_operand(rdi, dst, 4);
  4707   emit_long(imm32);
  4710 void Assembler::cmpq(Register dst, int32_t imm32) {
  4711   (void) prefixq_and_encode(dst->encoding());
  4712   emit_arith(0x81, 0xF8, dst, imm32);
  4715 void Assembler::cmpq(Address dst, Register src) {
  4716   InstructionMark im(this);
  4717   prefixq(dst, src);
  4718   emit_byte(0x3B);
  4719   emit_operand(src, dst);
  4722 void Assembler::cmpq(Register dst, Register src) {
  4723   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4724   emit_arith(0x3B, 0xC0, dst, src);
  4727 void Assembler::cmpq(Register dst, Address  src) {
  4728   InstructionMark im(this);
  4729   prefixq(src, dst);
  4730   emit_byte(0x3B);
  4731   emit_operand(dst, src);
  4734 void Assembler::cmpxchgq(Register reg, Address adr) {
  4735   InstructionMark im(this);
  4736   prefixq(adr, reg);
  4737   emit_byte(0x0F);
  4738   emit_byte(0xB1);
  4739   emit_operand(reg, adr);
  4742 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4744   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4745   emit_byte(0x2A);
  4746   emit_byte(0xC0 | encode);
  4749 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4751   InstructionMark im(this);
  4752   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4753   emit_byte(0x2A);
  4754   emit_operand(dst, src);
  4757 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4758   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4759   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4760   emit_byte(0x2A);
  4761   emit_byte(0xC0 | encode);
  4764 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4765   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4766   InstructionMark im(this);
  4767   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4768   emit_byte(0x2A);
  4769   emit_operand(dst, src);
  4772 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4774   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4775   emit_byte(0x2C);
  4776   emit_byte(0xC0 | encode);
  4779 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4780   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4781   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4782   emit_byte(0x2C);
  4783   emit_byte(0xC0 | encode);
  4786 void Assembler::decl(Register dst) {
  4787   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4788   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4789   int encode = prefix_and_encode(dst->encoding());
  4790   emit_byte(0xFF);
  4791   emit_byte(0xC8 | encode);
  4794 void Assembler::decq(Register dst) {
  4795   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4796   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4797   int encode = prefixq_and_encode(dst->encoding());
  4798   emit_byte(0xFF);
  4799   emit_byte(0xC8 | encode);
  4802 void Assembler::decq(Address dst) {
  4803   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4804   InstructionMark im(this);
  4805   prefixq(dst);
  4806   emit_byte(0xFF);
  4807   emit_operand(rcx, dst);
  4810 void Assembler::fxrstor(Address src) {
  4811   prefixq(src);
  4812   emit_byte(0x0F);
  4813   emit_byte(0xAE);
  4814   emit_operand(as_Register(1), src);
  4817 void Assembler::fxsave(Address dst) {
  4818   prefixq(dst);
  4819   emit_byte(0x0F);
  4820   emit_byte(0xAE);
  4821   emit_operand(as_Register(0), dst);
  4824 void Assembler::idivq(Register src) {
  4825   int encode = prefixq_and_encode(src->encoding());
  4826   emit_byte(0xF7);
  4827   emit_byte(0xF8 | encode);
  4830 void Assembler::imulq(Register dst, Register src) {
  4831   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4832   emit_byte(0x0F);
  4833   emit_byte(0xAF);
  4834   emit_byte(0xC0 | encode);
  4837 void Assembler::imulq(Register dst, Register src, int value) {
  4838   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4839   if (is8bit(value)) {
  4840     emit_byte(0x6B);
  4841     emit_byte(0xC0 | encode);
  4842     emit_byte(value & 0xFF);
  4843   } else {
  4844     emit_byte(0x69);
  4845     emit_byte(0xC0 | encode);
  4846     emit_long(value);
  4850 void Assembler::incl(Register dst) {
  4851   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4852   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4853   int encode = prefix_and_encode(dst->encoding());
  4854   emit_byte(0xFF);
  4855   emit_byte(0xC0 | encode);
  4858 void Assembler::incq(Register dst) {
  4859   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4860   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4861   int encode = prefixq_and_encode(dst->encoding());
  4862   emit_byte(0xFF);
  4863   emit_byte(0xC0 | encode);
  4866 void Assembler::incq(Address dst) {
  4867   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4868   InstructionMark im(this);
  4869   prefixq(dst);
  4870   emit_byte(0xFF);
  4871   emit_operand(rax, dst);
  4874 void Assembler::lea(Register dst, Address src) {
  4875   leaq(dst, src);
  4878 void Assembler::leaq(Register dst, Address src) {
  4879   InstructionMark im(this);
  4880   prefixq(src, dst);
  4881   emit_byte(0x8D);
  4882   emit_operand(dst, src);
  4885 void Assembler::mov64(Register dst, int64_t imm64) {
  4886   InstructionMark im(this);
  4887   int encode = prefixq_and_encode(dst->encoding());
  4888   emit_byte(0xB8 | encode);
  4889   emit_long64(imm64);
  4892 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4893   InstructionMark im(this);
  4894   int encode = prefixq_and_encode(dst->encoding());
  4895   emit_byte(0xB8 | encode);
  4896   emit_data64(imm64, rspec);
  4899 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4900   InstructionMark im(this);
  4901   int encode = prefix_and_encode(dst->encoding());
  4902   emit_byte(0xB8 | encode);
  4903   emit_data((int)imm32, rspec, narrow_oop_operand);
  4906 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4907   InstructionMark im(this);
  4908   prefix(dst);
  4909   emit_byte(0xC7);
  4910   emit_operand(rax, dst, 4);
  4911   emit_data((int)imm32, rspec, narrow_oop_operand);
  4914 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4915   InstructionMark im(this);
  4916   int encode = prefix_and_encode(src1->encoding());
  4917   emit_byte(0x81);
  4918   emit_byte(0xF8 | encode);
  4919   emit_data((int)imm32, rspec, narrow_oop_operand);
  4922 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4923   InstructionMark im(this);
  4924   prefix(src1);
  4925   emit_byte(0x81);
  4926   emit_operand(rax, src1, 4);
  4927   emit_data((int)imm32, rspec, narrow_oop_operand);
  4930 void Assembler::lzcntq(Register dst, Register src) {
  4931   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4932   emit_byte(0xF3);
  4933   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4934   emit_byte(0x0F);
  4935   emit_byte(0xBD);
  4936   emit_byte(0xC0 | encode);
  4939 void Assembler::movdq(XMMRegister dst, Register src) {
  4940   // table D-1 says MMX/SSE2
  4941   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4942   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4943   emit_byte(0x6E);
  4944   emit_byte(0xC0 | encode);
  4947 void Assembler::movdq(Register dst, XMMRegister src) {
  4948   // table D-1 says MMX/SSE2
  4949   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4950   // swap src/dst to get correct prefix
  4951   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4952   emit_byte(0x7E);
  4953   emit_byte(0xC0 | encode);
  4956 void Assembler::movq(Register dst, Register src) {
  4957   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4958   emit_byte(0x8B);
  4959   emit_byte(0xC0 | encode);
  4962 void Assembler::movq(Register dst, Address src) {
  4963   InstructionMark im(this);
  4964   prefixq(src, dst);
  4965   emit_byte(0x8B);
  4966   emit_operand(dst, src);
  4969 void Assembler::movq(Address dst, Register src) {
  4970   InstructionMark im(this);
  4971   prefixq(dst, src);
  4972   emit_byte(0x89);
  4973   emit_operand(src, dst);
  4976 void Assembler::movsbq(Register dst, Address src) {
  4977   InstructionMark im(this);
  4978   prefixq(src, dst);
  4979   emit_byte(0x0F);
  4980   emit_byte(0xBE);
  4981   emit_operand(dst, src);
  4984 void Assembler::movsbq(Register dst, Register src) {
  4985   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4986   emit_byte(0x0F);
  4987   emit_byte(0xBE);
  4988   emit_byte(0xC0 | encode);
  4991 void Assembler::movslq(Register dst, int32_t imm32) {
  4992   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4993   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4994   // as a result we shouldn't use until tested at runtime...
  4995   ShouldNotReachHere();
  4996   InstructionMark im(this);
  4997   int encode = prefixq_and_encode(dst->encoding());
  4998   emit_byte(0xC7 | encode);
  4999   emit_long(imm32);
  5002 void Assembler::movslq(Address dst, int32_t imm32) {
  5003   assert(is_simm32(imm32), "lost bits");
  5004   InstructionMark im(this);
  5005   prefixq(dst);
  5006   emit_byte(0xC7);
  5007   emit_operand(rax, dst, 4);
  5008   emit_long(imm32);
  5011 void Assembler::movslq(Register dst, Address src) {
  5012   InstructionMark im(this);
  5013   prefixq(src, dst);
  5014   emit_byte(0x63);
  5015   emit_operand(dst, src);
  5018 void Assembler::movslq(Register dst, Register src) {
  5019   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5020   emit_byte(0x63);
  5021   emit_byte(0xC0 | encode);
  5024 void Assembler::movswq(Register dst, Address src) {
  5025   InstructionMark im(this);
  5026   prefixq(src, dst);
  5027   emit_byte(0x0F);
  5028   emit_byte(0xBF);
  5029   emit_operand(dst, src);
  5032 void Assembler::movswq(Register dst, Register src) {
  5033   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5034   emit_byte(0x0F);
  5035   emit_byte(0xBF);
  5036   emit_byte(0xC0 | encode);
  5039 void Assembler::movzbq(Register dst, Address src) {
  5040   InstructionMark im(this);
  5041   prefixq(src, dst);
  5042   emit_byte(0x0F);
  5043   emit_byte(0xB6);
  5044   emit_operand(dst, src);
  5047 void Assembler::movzbq(Register dst, Register src) {
  5048   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5049   emit_byte(0x0F);
  5050   emit_byte(0xB6);
  5051   emit_byte(0xC0 | encode);
  5054 void Assembler::movzwq(Register dst, Address src) {
  5055   InstructionMark im(this);
  5056   prefixq(src, dst);
  5057   emit_byte(0x0F);
  5058   emit_byte(0xB7);
  5059   emit_operand(dst, src);
  5062 void Assembler::movzwq(Register dst, Register src) {
  5063   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5064   emit_byte(0x0F);
  5065   emit_byte(0xB7);
  5066   emit_byte(0xC0 | encode);
  5069 void Assembler::negq(Register dst) {
  5070   int encode = prefixq_and_encode(dst->encoding());
  5071   emit_byte(0xF7);
  5072   emit_byte(0xD8 | encode);
  5075 void Assembler::notq(Register dst) {
  5076   int encode = prefixq_and_encode(dst->encoding());
  5077   emit_byte(0xF7);
  5078   emit_byte(0xD0 | encode);
  5081 void Assembler::orq(Address dst, int32_t imm32) {
  5082   InstructionMark im(this);
  5083   prefixq(dst);
  5084   emit_byte(0x81);
  5085   emit_operand(rcx, dst, 4);
  5086   emit_long(imm32);
  5089 void Assembler::orq(Register dst, int32_t imm32) {
  5090   (void) prefixq_and_encode(dst->encoding());
  5091   emit_arith(0x81, 0xC8, dst, imm32);
  5094 void Assembler::orq(Register dst, Address src) {
  5095   InstructionMark im(this);
  5096   prefixq(src, dst);
  5097   emit_byte(0x0B);
  5098   emit_operand(dst, src);
  5101 void Assembler::orq(Register dst, Register src) {
  5102   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5103   emit_arith(0x0B, 0xC0, dst, src);
  5106 void Assembler::popa() { // 64bit
  5107   movq(r15, Address(rsp, 0));
  5108   movq(r14, Address(rsp, wordSize));
  5109   movq(r13, Address(rsp, 2 * wordSize));
  5110   movq(r12, Address(rsp, 3 * wordSize));
  5111   movq(r11, Address(rsp, 4 * wordSize));
  5112   movq(r10, Address(rsp, 5 * wordSize));
  5113   movq(r9,  Address(rsp, 6 * wordSize));
  5114   movq(r8,  Address(rsp, 7 * wordSize));
  5115   movq(rdi, Address(rsp, 8 * wordSize));
  5116   movq(rsi, Address(rsp, 9 * wordSize));
  5117   movq(rbp, Address(rsp, 10 * wordSize));
  5118   // skip rsp
  5119   movq(rbx, Address(rsp, 12 * wordSize));
  5120   movq(rdx, Address(rsp, 13 * wordSize));
  5121   movq(rcx, Address(rsp, 14 * wordSize));
  5122   movq(rax, Address(rsp, 15 * wordSize));
  5124   addq(rsp, 16 * wordSize);
  5127 void Assembler::popcntq(Register dst, Address src) {
  5128   assert(VM_Version::supports_popcnt(), "must support");
  5129   InstructionMark im(this);
  5130   emit_byte(0xF3);
  5131   prefixq(src, dst);
  5132   emit_byte(0x0F);
  5133   emit_byte(0xB8);
  5134   emit_operand(dst, src);
  5137 void Assembler::popcntq(Register dst, Register src) {
  5138   assert(VM_Version::supports_popcnt(), "must support");
  5139   emit_byte(0xF3);
  5140   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5141   emit_byte(0x0F);
  5142   emit_byte(0xB8);
  5143   emit_byte(0xC0 | encode);
  5146 void Assembler::popq(Address dst) {
  5147   InstructionMark im(this);
  5148   prefixq(dst);
  5149   emit_byte(0x8F);
  5150   emit_operand(rax, dst);
  5153 void Assembler::pusha() { // 64bit
  5154   // we have to store original rsp.  ABI says that 128 bytes
  5155   // below rsp are local scratch.
  5156   movq(Address(rsp, -5 * wordSize), rsp);
  5158   subq(rsp, 16 * wordSize);
  5160   movq(Address(rsp, 15 * wordSize), rax);
  5161   movq(Address(rsp, 14 * wordSize), rcx);
  5162   movq(Address(rsp, 13 * wordSize), rdx);
  5163   movq(Address(rsp, 12 * wordSize), rbx);
  5164   // skip rsp
  5165   movq(Address(rsp, 10 * wordSize), rbp);
  5166   movq(Address(rsp, 9 * wordSize), rsi);
  5167   movq(Address(rsp, 8 * wordSize), rdi);
  5168   movq(Address(rsp, 7 * wordSize), r8);
  5169   movq(Address(rsp, 6 * wordSize), r9);
  5170   movq(Address(rsp, 5 * wordSize), r10);
  5171   movq(Address(rsp, 4 * wordSize), r11);
  5172   movq(Address(rsp, 3 * wordSize), r12);
  5173   movq(Address(rsp, 2 * wordSize), r13);
  5174   movq(Address(rsp, wordSize), r14);
  5175   movq(Address(rsp, 0), r15);
  5178 void Assembler::pushq(Address src) {
  5179   InstructionMark im(this);
  5180   prefixq(src);
  5181   emit_byte(0xFF);
  5182   emit_operand(rsi, src);
  5185 void Assembler::rclq(Register dst, int imm8) {
  5186   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5187   int encode = prefixq_and_encode(dst->encoding());
  5188   if (imm8 == 1) {
  5189     emit_byte(0xD1);
  5190     emit_byte(0xD0 | encode);
  5191   } else {
  5192     emit_byte(0xC1);
  5193     emit_byte(0xD0 | encode);
  5194     emit_byte(imm8);
  5197 void Assembler::sarq(Register dst, int imm8) {
  5198   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5199   int encode = prefixq_and_encode(dst->encoding());
  5200   if (imm8 == 1) {
  5201     emit_byte(0xD1);
  5202     emit_byte(0xF8 | encode);
  5203   } else {
  5204     emit_byte(0xC1);
  5205     emit_byte(0xF8 | encode);
  5206     emit_byte(imm8);
  5210 void Assembler::sarq(Register dst) {
  5211   int encode = prefixq_and_encode(dst->encoding());
  5212   emit_byte(0xD3);
  5213   emit_byte(0xF8 | encode);
  5216 void Assembler::sbbq(Address dst, int32_t imm32) {
  5217   InstructionMark im(this);
  5218   prefixq(dst);
  5219   emit_arith_operand(0x81, rbx, dst, imm32);
  5222 void Assembler::sbbq(Register dst, int32_t imm32) {
  5223   (void) prefixq_and_encode(dst->encoding());
  5224   emit_arith(0x81, 0xD8, dst, imm32);
  5227 void Assembler::sbbq(Register dst, Address src) {
  5228   InstructionMark im(this);
  5229   prefixq(src, dst);
  5230   emit_byte(0x1B);
  5231   emit_operand(dst, src);
  5234 void Assembler::sbbq(Register dst, Register src) {
  5235   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5236   emit_arith(0x1B, 0xC0, dst, src);
  5239 void Assembler::shlq(Register dst, int imm8) {
  5240   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5241   int encode = prefixq_and_encode(dst->encoding());
  5242   if (imm8 == 1) {
  5243     emit_byte(0xD1);
  5244     emit_byte(0xE0 | encode);
  5245   } else {
  5246     emit_byte(0xC1);
  5247     emit_byte(0xE0 | encode);
  5248     emit_byte(imm8);
  5252 void Assembler::shlq(Register dst) {
  5253   int encode = prefixq_and_encode(dst->encoding());
  5254   emit_byte(0xD3);
  5255   emit_byte(0xE0 | encode);
  5258 void Assembler::shrq(Register dst, int imm8) {
  5259   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5260   int encode = prefixq_and_encode(dst->encoding());
  5261   emit_byte(0xC1);
  5262   emit_byte(0xE8 | encode);
  5263   emit_byte(imm8);
  5266 void Assembler::shrq(Register dst) {
  5267   int encode = prefixq_and_encode(dst->encoding());
  5268   emit_byte(0xD3);
  5269   emit_byte(0xE8 | encode);
  5272 void Assembler::subq(Address dst, int32_t imm32) {
  5273   InstructionMark im(this);
  5274   prefixq(dst);
  5275   emit_arith_operand(0x81, rbp, dst, imm32);
  5278 void Assembler::subq(Address dst, Register src) {
  5279   InstructionMark im(this);
  5280   prefixq(dst, src);
  5281   emit_byte(0x29);
  5282   emit_operand(src, dst);
  5285 void Assembler::subq(Register dst, int32_t imm32) {
  5286   (void) prefixq_and_encode(dst->encoding());
  5287   emit_arith(0x81, 0xE8, dst, imm32);
  5290 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5291 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5292   (void) prefixq_and_encode(dst->encoding());
  5293   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5296 void Assembler::subq(Register dst, Address src) {
  5297   InstructionMark im(this);
  5298   prefixq(src, dst);
  5299   emit_byte(0x2B);
  5300   emit_operand(dst, src);
  5303 void Assembler::subq(Register dst, Register src) {
  5304   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5305   emit_arith(0x2B, 0xC0, dst, src);
  5308 void Assembler::testq(Register dst, int32_t imm32) {
  5309   // not using emit_arith because test
  5310   // doesn't support sign-extension of
  5311   // 8bit operands
  5312   int encode = dst->encoding();
  5313   if (encode == 0) {
  5314     prefix(REX_W);
  5315     emit_byte(0xA9);
  5316   } else {
  5317     encode = prefixq_and_encode(encode);
  5318     emit_byte(0xF7);
  5319     emit_byte(0xC0 | encode);
  5321   emit_long(imm32);
  5324 void Assembler::testq(Register dst, Register src) {
  5325   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5326   emit_arith(0x85, 0xC0, dst, src);
  5329 void Assembler::xaddq(Address dst, Register src) {
  5330   InstructionMark im(this);
  5331   prefixq(dst, src);
  5332   emit_byte(0x0F);
  5333   emit_byte(0xC1);
  5334   emit_operand(src, dst);
  5337 void Assembler::xchgq(Register dst, Address src) {
  5338   InstructionMark im(this);
  5339   prefixq(src, dst);
  5340   emit_byte(0x87);
  5341   emit_operand(dst, src);
  5344 void Assembler::xchgq(Register dst, Register src) {
  5345   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5346   emit_byte(0x87);
  5347   emit_byte(0xc0 | encode);
  5350 void Assembler::xorq(Register dst, Register src) {
  5351   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5352   emit_arith(0x33, 0xC0, dst, src);
  5355 void Assembler::xorq(Register dst, Address src) {
  5356   InstructionMark im(this);
  5357   prefixq(src, dst);
  5358   emit_byte(0x33);
  5359   emit_operand(dst, src);
  5362 #endif // !LP64
  5364 static Assembler::Condition reverse[] = {
  5365     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  5366     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  5367     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  5368     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  5369     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  5370     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  5371     Assembler::above          /* belowEqual    = 0x6 */ ,
  5372     Assembler::belowEqual     /* above         = 0x7 */ ,
  5373     Assembler::positive       /* negative      = 0x8 */ ,
  5374     Assembler::negative       /* positive      = 0x9 */ ,
  5375     Assembler::noParity       /* parity        = 0xa */ ,
  5376     Assembler::parity         /* noParity      = 0xb */ ,
  5377     Assembler::greaterEqual   /* less          = 0xc */ ,
  5378     Assembler::less           /* greaterEqual  = 0xd */ ,
  5379     Assembler::greater        /* lessEqual     = 0xe */ ,
  5380     Assembler::lessEqual      /* greater       = 0xf, */
  5382 };
  5385 // Implementation of MacroAssembler
  5387 // First all the versions that have distinct versions depending on 32/64 bit
  5388 // Unless the difference is trivial (1 line or so).
  5390 #ifndef _LP64
  5392 // 32bit versions
  5394 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5395   return Address(adr.target(), adr.rspec());
  5398 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5399   return Address::make_array(adr);
  5402 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5403                                          Register obj_reg,
  5404                                          Register swap_reg,
  5405                                          Register tmp_reg,
  5406                                          bool swap_reg_contains_mark,
  5407                                          Label& done,
  5408                                          Label* slow_case,
  5409                                          BiasedLockingCounters* counters) {
  5410   assert(UseBiasedLocking, "why call this otherwise?");
  5411   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5412   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5414   if (PrintBiasedLockingStatistics && counters == NULL)
  5415     counters = BiasedLocking::counters();
  5417   bool need_tmp_reg = false;
  5418   if (tmp_reg == noreg) {
  5419     need_tmp_reg = true;
  5420     tmp_reg = lock_reg;
  5421   } else {
  5422     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5424   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5425   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5426   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5427   Address saved_mark_addr(lock_reg, 0);
  5429   // Biased locking
  5430   // See whether the lock is currently biased toward our thread and
  5431   // whether the epoch is still valid
  5432   // Note that the runtime guarantees sufficient alignment of JavaThread
  5433   // pointers to allow age to be placed into low bits
  5434   // First check to see whether biasing is even enabled for this object
  5435   Label cas_label;
  5436   int null_check_offset = -1;
  5437   if (!swap_reg_contains_mark) {
  5438     null_check_offset = offset();
  5439     movl(swap_reg, mark_addr);
  5441   if (need_tmp_reg) {
  5442     push(tmp_reg);
  5444   movl(tmp_reg, swap_reg);
  5445   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5446   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5447   if (need_tmp_reg) {
  5448     pop(tmp_reg);
  5450   jcc(Assembler::notEqual, cas_label);
  5451   // The bias pattern is present in the object's header. Need to check
  5452   // whether the bias owner and the epoch are both still current.
  5453   // Note that because there is no current thread register on x86 we
  5454   // need to store off the mark word we read out of the object to
  5455   // avoid reloading it and needing to recheck invariants below. This
  5456   // store is unfortunate but it makes the overall code shorter and
  5457   // simpler.
  5458   movl(saved_mark_addr, swap_reg);
  5459   if (need_tmp_reg) {
  5460     push(tmp_reg);
  5462   get_thread(tmp_reg);
  5463   xorl(swap_reg, tmp_reg);
  5464   if (swap_reg_contains_mark) {
  5465     null_check_offset = offset();
  5467   movl(tmp_reg, klass_addr);
  5468   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5469   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5470   if (need_tmp_reg) {
  5471     pop(tmp_reg);
  5473   if (counters != NULL) {
  5474     cond_inc32(Assembler::zero,
  5475                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5477   jcc(Assembler::equal, done);
  5479   Label try_revoke_bias;
  5480   Label try_rebias;
  5482   // At this point we know that the header has the bias pattern and
  5483   // that we are not the bias owner in the current epoch. We need to
  5484   // figure out more details about the state of the header in order to
  5485   // know what operations can be legally performed on the object's
  5486   // header.
  5488   // If the low three bits in the xor result aren't clear, that means
  5489   // the prototype header is no longer biased and we have to revoke
  5490   // the bias on this object.
  5491   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5492   jcc(Assembler::notZero, try_revoke_bias);
  5494   // Biasing is still enabled for this data type. See whether the
  5495   // epoch of the current bias is still valid, meaning that the epoch
  5496   // bits of the mark word are equal to the epoch bits of the
  5497   // prototype header. (Note that the prototype header's epoch bits
  5498   // only change at a safepoint.) If not, attempt to rebias the object
  5499   // toward the current thread. Note that we must be absolutely sure
  5500   // that the current epoch is invalid in order to do this because
  5501   // otherwise the manipulations it performs on the mark word are
  5502   // illegal.
  5503   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5504   jcc(Assembler::notZero, try_rebias);
  5506   // The epoch of the current bias is still valid but we know nothing
  5507   // about the owner; it might be set or it might be clear. Try to
  5508   // acquire the bias of the object using an atomic operation. If this
  5509   // fails we will go in to the runtime to revoke the object's bias.
  5510   // Note that we first construct the presumed unbiased header so we
  5511   // don't accidentally blow away another thread's valid bias.
  5512   movl(swap_reg, saved_mark_addr);
  5513   andl(swap_reg,
  5514        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5515   if (need_tmp_reg) {
  5516     push(tmp_reg);
  5518   get_thread(tmp_reg);
  5519   orl(tmp_reg, swap_reg);
  5520   if (os::is_MP()) {
  5521     lock();
  5523   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5524   if (need_tmp_reg) {
  5525     pop(tmp_reg);
  5527   // If the biasing toward our thread failed, this means that
  5528   // another thread succeeded in biasing it toward itself and we
  5529   // need to revoke that bias. The revocation will occur in the
  5530   // interpreter runtime in the slow case.
  5531   if (counters != NULL) {
  5532     cond_inc32(Assembler::zero,
  5533                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5535   if (slow_case != NULL) {
  5536     jcc(Assembler::notZero, *slow_case);
  5538   jmp(done);
  5540   bind(try_rebias);
  5541   // At this point we know the epoch has expired, meaning that the
  5542   // current "bias owner", if any, is actually invalid. Under these
  5543   // circumstances _only_, we are allowed to use the current header's
  5544   // value as the comparison value when doing the cas to acquire the
  5545   // bias in the current epoch. In other words, we allow transfer of
  5546   // the bias from one thread to another directly in this situation.
  5547   //
  5548   // FIXME: due to a lack of registers we currently blow away the age
  5549   // bits in this situation. Should attempt to preserve them.
  5550   if (need_tmp_reg) {
  5551     push(tmp_reg);
  5553   get_thread(tmp_reg);
  5554   movl(swap_reg, klass_addr);
  5555   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5556   movl(swap_reg, saved_mark_addr);
  5557   if (os::is_MP()) {
  5558     lock();
  5560   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5561   if (need_tmp_reg) {
  5562     pop(tmp_reg);
  5564   // If the biasing toward our thread failed, then another thread
  5565   // succeeded in biasing it toward itself and we need to revoke that
  5566   // bias. The revocation will occur in the runtime in the slow case.
  5567   if (counters != NULL) {
  5568     cond_inc32(Assembler::zero,
  5569                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5571   if (slow_case != NULL) {
  5572     jcc(Assembler::notZero, *slow_case);
  5574   jmp(done);
  5576   bind(try_revoke_bias);
  5577   // The prototype mark in the klass doesn't have the bias bit set any
  5578   // more, indicating that objects of this data type are not supposed
  5579   // to be biased any more. We are going to try to reset the mark of
  5580   // this object to the prototype value and fall through to the
  5581   // CAS-based locking scheme. Note that if our CAS fails, it means
  5582   // that another thread raced us for the privilege of revoking the
  5583   // bias of this particular object, so it's okay to continue in the
  5584   // normal locking code.
  5585   //
  5586   // FIXME: due to a lack of registers we currently blow away the age
  5587   // bits in this situation. Should attempt to preserve them.
  5588   movl(swap_reg, saved_mark_addr);
  5589   if (need_tmp_reg) {
  5590     push(tmp_reg);
  5592   movl(tmp_reg, klass_addr);
  5593   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5594   if (os::is_MP()) {
  5595     lock();
  5597   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5598   if (need_tmp_reg) {
  5599     pop(tmp_reg);
  5601   // Fall through to the normal CAS-based lock, because no matter what
  5602   // the result of the above CAS, some thread must have succeeded in
  5603   // removing the bias bit from the object's header.
  5604   if (counters != NULL) {
  5605     cond_inc32(Assembler::zero,
  5606                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5609   bind(cas_label);
  5611   return null_check_offset;
  5613 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5614                                        int number_of_arguments) {
  5615   call(RuntimeAddress(entry_point));
  5616   increment(rsp, number_of_arguments * wordSize);
  5619 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  5620   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5623 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  5624   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5627 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5628   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5631 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5632   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5635 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5636   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5637   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5638     cdql();
  5639   } else {
  5640     movl(hi, lo);
  5641     sarl(hi, 31);
  5645 void MacroAssembler::jC2(Register tmp, Label& L) {
  5646   // set parity bit if FPU flag C2 is set (via rax)
  5647   save_rax(tmp);
  5648   fwait(); fnstsw_ax();
  5649   sahf();
  5650   restore_rax(tmp);
  5651   // branch
  5652   jcc(Assembler::parity, L);
  5655 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5656   // set parity bit if FPU flag C2 is set (via rax)
  5657   save_rax(tmp);
  5658   fwait(); fnstsw_ax();
  5659   sahf();
  5660   restore_rax(tmp);
  5661   // branch
  5662   jcc(Assembler::noParity, L);
  5665 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5666 // to be installed in the Address class
  5667 void MacroAssembler::jump(ArrayAddress entry) {
  5668   jmp(as_Address(entry));
  5671 // Note: y_lo will be destroyed
  5672 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5673   // Long compare for Java (semantics as described in JVM spec.)
  5674   Label high, low, done;
  5676   cmpl(x_hi, y_hi);
  5677   jcc(Assembler::less, low);
  5678   jcc(Assembler::greater, high);
  5679   // x_hi is the return register
  5680   xorl(x_hi, x_hi);
  5681   cmpl(x_lo, y_lo);
  5682   jcc(Assembler::below, low);
  5683   jcc(Assembler::equal, done);
  5685   bind(high);
  5686   xorl(x_hi, x_hi);
  5687   increment(x_hi);
  5688   jmp(done);
  5690   bind(low);
  5691   xorl(x_hi, x_hi);
  5692   decrementl(x_hi);
  5694   bind(done);
  5697 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5698     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5701 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5702   // leal(dst, as_Address(adr));
  5703   // see note in movl as to why we must use a move
  5704   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5707 void MacroAssembler::leave() {
  5708   mov(rsp, rbp);
  5709   pop(rbp);
  5712 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5713   // Multiplication of two Java long values stored on the stack
  5714   // as illustrated below. Result is in rdx:rax.
  5715   //
  5716   // rsp ---> [  ??  ] \               \
  5717   //            ....    | y_rsp_offset  |
  5718   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5719   //          [ y_hi ]                  | (in bytes)
  5720   //            ....                    |
  5721   //          [ x_lo ]                 /
  5722   //          [ x_hi ]
  5723   //            ....
  5724   //
  5725   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5726   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5727   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5728   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5729   Label quick;
  5730   // load x_hi, y_hi and check if quick
  5731   // multiplication is possible
  5732   movl(rbx, x_hi);
  5733   movl(rcx, y_hi);
  5734   movl(rax, rbx);
  5735   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5736   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5737   // do full multiplication
  5738   // 1st step
  5739   mull(y_lo);                                    // x_hi * y_lo
  5740   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5741   // 2nd step
  5742   movl(rax, x_lo);
  5743   mull(rcx);                                     // x_lo * y_hi
  5744   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5745   // 3rd step
  5746   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5747   movl(rax, x_lo);
  5748   mull(y_lo);                                    // x_lo * y_lo
  5749   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5752 void MacroAssembler::lneg(Register hi, Register lo) {
  5753   negl(lo);
  5754   adcl(hi, 0);
  5755   negl(hi);
  5758 void MacroAssembler::lshl(Register hi, Register lo) {
  5759   // Java shift left long support (semantics as described in JVM spec., p.305)
  5760   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5761   // shift value is in rcx !
  5762   assert(hi != rcx, "must not use rcx");
  5763   assert(lo != rcx, "must not use rcx");
  5764   const Register s = rcx;                        // shift count
  5765   const int      n = BitsPerWord;
  5766   Label L;
  5767   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5768   cmpl(s, n);                                    // if (s < n)
  5769   jcc(Assembler::less, L);                       // else (s >= n)
  5770   movl(hi, lo);                                  // x := x << n
  5771   xorl(lo, lo);
  5772   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5773   bind(L);                                       // s (mod n) < n
  5774   shldl(hi, lo);                                 // x := x << s
  5775   shll(lo);
  5779 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5780   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5781   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5782   assert(hi != rcx, "must not use rcx");
  5783   assert(lo != rcx, "must not use rcx");
  5784   const Register s = rcx;                        // shift count
  5785   const int      n = BitsPerWord;
  5786   Label L;
  5787   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5788   cmpl(s, n);                                    // if (s < n)
  5789   jcc(Assembler::less, L);                       // else (s >= n)
  5790   movl(lo, hi);                                  // x := x >> n
  5791   if (sign_extension) sarl(hi, 31);
  5792   else                xorl(hi, hi);
  5793   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5794   bind(L);                                       // s (mod n) < n
  5795   shrdl(lo, hi);                                 // x := x >> s
  5796   if (sign_extension) sarl(hi);
  5797   else                shrl(hi);
  5800 void MacroAssembler::movoop(Register dst, jobject obj) {
  5801   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5804 void MacroAssembler::movoop(Address dst, jobject obj) {
  5805   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5808 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  5809   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5812 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  5813   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5816 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5817   if (src.is_lval()) {
  5818     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5819   } else {
  5820     movl(dst, as_Address(src));
  5824 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5825   movl(as_Address(dst), src);
  5828 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5829   movl(dst, as_Address(src));
  5832 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5833 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5834   movl(dst, src);
  5838 void MacroAssembler::pop_callee_saved_registers() {
  5839   pop(rcx);
  5840   pop(rdx);
  5841   pop(rdi);
  5842   pop(rsi);
  5845 void MacroAssembler::pop_fTOS() {
  5846   fld_d(Address(rsp, 0));
  5847   addl(rsp, 2 * wordSize);
  5850 void MacroAssembler::push_callee_saved_registers() {
  5851   push(rsi);
  5852   push(rdi);
  5853   push(rdx);
  5854   push(rcx);
  5857 void MacroAssembler::push_fTOS() {
  5858   subl(rsp, 2 * wordSize);
  5859   fstp_d(Address(rsp, 0));
  5863 void MacroAssembler::pushoop(jobject obj) {
  5864   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5867 void MacroAssembler::pushklass(Metadata* obj) {
  5868   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  5871 void MacroAssembler::pushptr(AddressLiteral src) {
  5872   if (src.is_lval()) {
  5873     push_literal32((int32_t)src.target(), src.rspec());
  5874   } else {
  5875     pushl(as_Address(src));
  5879 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5880   xorl(dst, dst);
  5881   set_byte_if_not_zero(dst);
  5884 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5885   masm->push(arg);
  5888 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5889   masm->push(arg);
  5892 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5893   masm->push(arg);
  5896 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5897   masm->push(arg);
  5900 #ifndef PRODUCT
  5901 extern "C" void findpc(intptr_t x);
  5902 #endif
  5904 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5905   // In order to get locks to work, we need to fake a in_VM state
  5906   JavaThread* thread = JavaThread::current();
  5907   JavaThreadState saved_state = thread->thread_state();
  5908   thread->set_thread_state(_thread_in_vm);
  5909   if (ShowMessageBoxOnError) {
  5910     JavaThread* thread = JavaThread::current();
  5911     JavaThreadState saved_state = thread->thread_state();
  5912     thread->set_thread_state(_thread_in_vm);
  5913     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5914       ttyLocker ttyl;
  5915       BytecodeCounter::print();
  5917     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5918     // This is the value of eip which points to where verify_oop will return.
  5919     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5920       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  5921       BREAKPOINT;
  5923   } else {
  5924     ttyLocker ttyl;
  5925     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5927   // Don't assert holding the ttyLock
  5928     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5929   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5932 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  5933   ttyLocker ttyl;
  5934   FlagSetting fs(Debugging, true);
  5935   tty->print_cr("eip = 0x%08x", eip);
  5936 #ifndef PRODUCT
  5937   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5938     tty->cr();
  5939     findpc(eip);
  5940     tty->cr();
  5942 #endif
  5943 #define PRINT_REG(rax) \
  5944   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  5945   PRINT_REG(rax);
  5946   PRINT_REG(rbx);
  5947   PRINT_REG(rcx);
  5948   PRINT_REG(rdx);
  5949   PRINT_REG(rdi);
  5950   PRINT_REG(rsi);
  5951   PRINT_REG(rbp);
  5952   PRINT_REG(rsp);
  5953 #undef PRINT_REG
  5954   // Print some words near top of staack.
  5955   int* dump_sp = (int*) rsp;
  5956   for (int col1 = 0; col1 < 8; col1++) {
  5957     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5958     os::print_location(tty, *dump_sp++);
  5960   for (int row = 0; row < 16; row++) {
  5961     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5962     for (int col = 0; col < 8; col++) {
  5963       tty->print(" 0x%08x", *dump_sp++);
  5965     tty->cr();
  5967   // Print some instructions around pc:
  5968   Disassembler::decode((address)eip-64, (address)eip);
  5969   tty->print_cr("--------");
  5970   Disassembler::decode((address)eip, (address)eip+32);
  5973 void MacroAssembler::stop(const char* msg) {
  5974   ExternalAddress message((address)msg);
  5975   // push address of message
  5976   pushptr(message.addr());
  5977   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5978   pusha();                                            // push registers
  5979   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5980   hlt();
  5983 void MacroAssembler::warn(const char* msg) {
  5984   push_CPU_state();
  5986   ExternalAddress message((address) msg);
  5987   // push address of message
  5988   pushptr(message.addr());
  5990   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5991   addl(rsp, wordSize);       // discard argument
  5992   pop_CPU_state();
  5995 void MacroAssembler::print_state() {
  5996   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5997   pusha();                                            // push registers
  5999   push_CPU_state();
  6000   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  6001   pop_CPU_state();
  6003   popa();
  6004   addl(rsp, wordSize);
  6007 #else // _LP64
  6009 // 64 bit versions
  6011 Address MacroAssembler::as_Address(AddressLiteral adr) {
  6012   // amd64 always does this as a pc-rel
  6013   // we can be absolute or disp based on the instruction type
  6014   // jmp/call are displacements others are absolute
  6015   assert(!adr.is_lval(), "must be rval");
  6016   assert(reachable(adr), "must be");
  6017   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  6021 Address MacroAssembler::as_Address(ArrayAddress adr) {
  6022   AddressLiteral base = adr.base();
  6023   lea(rscratch1, base);
  6024   Address index = adr.index();
  6025   assert(index._disp == 0, "must not have disp"); // maybe it can?
  6026   Address array(rscratch1, index._index, index._scale, index._disp);
  6027   return array;
  6030 int MacroAssembler::biased_locking_enter(Register lock_reg,
  6031                                          Register obj_reg,
  6032                                          Register swap_reg,
  6033                                          Register tmp_reg,
  6034                                          bool swap_reg_contains_mark,
  6035                                          Label& done,
  6036                                          Label* slow_case,
  6037                                          BiasedLockingCounters* counters) {
  6038   assert(UseBiasedLocking, "why call this otherwise?");
  6039   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  6040   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  6041   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  6042   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  6043   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  6044   Address saved_mark_addr(lock_reg, 0);
  6046   if (PrintBiasedLockingStatistics && counters == NULL)
  6047     counters = BiasedLocking::counters();
  6049   // Biased locking
  6050   // See whether the lock is currently biased toward our thread and
  6051   // whether the epoch is still valid
  6052   // Note that the runtime guarantees sufficient alignment of JavaThread
  6053   // pointers to allow age to be placed into low bits
  6054   // First check to see whether biasing is even enabled for this object
  6055   Label cas_label;
  6056   int null_check_offset = -1;
  6057   if (!swap_reg_contains_mark) {
  6058     null_check_offset = offset();
  6059     movq(swap_reg, mark_addr);
  6061   movq(tmp_reg, swap_reg);
  6062   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6063   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  6064   jcc(Assembler::notEqual, cas_label);
  6065   // The bias pattern is present in the object's header. Need to check
  6066   // whether the bias owner and the epoch are both still current.
  6067   load_prototype_header(tmp_reg, obj_reg);
  6068   orq(tmp_reg, r15_thread);
  6069   xorq(tmp_reg, swap_reg);
  6070   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  6071   if (counters != NULL) {
  6072     cond_inc32(Assembler::zero,
  6073                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6075   jcc(Assembler::equal, done);
  6077   Label try_revoke_bias;
  6078   Label try_rebias;
  6080   // At this point we know that the header has the bias pattern and
  6081   // that we are not the bias owner in the current epoch. We need to
  6082   // figure out more details about the state of the header in order to
  6083   // know what operations can be legally performed on the object's
  6084   // header.
  6086   // If the low three bits in the xor result aren't clear, that means
  6087   // the prototype header is no longer biased and we have to revoke
  6088   // the bias on this object.
  6089   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6090   jcc(Assembler::notZero, try_revoke_bias);
  6092   // Biasing is still enabled for this data type. See whether the
  6093   // epoch of the current bias is still valid, meaning that the epoch
  6094   // bits of the mark word are equal to the epoch bits of the
  6095   // prototype header. (Note that the prototype header's epoch bits
  6096   // only change at a safepoint.) If not, attempt to rebias the object
  6097   // toward the current thread. Note that we must be absolutely sure
  6098   // that the current epoch is invalid in order to do this because
  6099   // otherwise the manipulations it performs on the mark word are
  6100   // illegal.
  6101   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  6102   jcc(Assembler::notZero, try_rebias);
  6104   // The epoch of the current bias is still valid but we know nothing
  6105   // about the owner; it might be set or it might be clear. Try to
  6106   // acquire the bias of the object using an atomic operation. If this
  6107   // fails we will go in to the runtime to revoke the object's bias.
  6108   // Note that we first construct the presumed unbiased header so we
  6109   // don't accidentally blow away another thread's valid bias.
  6110   andq(swap_reg,
  6111        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  6112   movq(tmp_reg, swap_reg);
  6113   orq(tmp_reg, r15_thread);
  6114   if (os::is_MP()) {
  6115     lock();
  6117   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6118   // If the biasing toward our thread failed, this means that
  6119   // another thread succeeded in biasing it toward itself and we
  6120   // need to revoke that bias. The revocation will occur in the
  6121   // interpreter runtime in the slow case.
  6122   if (counters != NULL) {
  6123     cond_inc32(Assembler::zero,
  6124                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6126   if (slow_case != NULL) {
  6127     jcc(Assembler::notZero, *slow_case);
  6129   jmp(done);
  6131   bind(try_rebias);
  6132   // At this point we know the epoch has expired, meaning that the
  6133   // current "bias owner", if any, is actually invalid. Under these
  6134   // circumstances _only_, we are allowed to use the current header's
  6135   // value as the comparison value when doing the cas to acquire the
  6136   // bias in the current epoch. In other words, we allow transfer of
  6137   // the bias from one thread to another directly in this situation.
  6138   //
  6139   // FIXME: due to a lack of registers we currently blow away the age
  6140   // bits in this situation. Should attempt to preserve them.
  6141   load_prototype_header(tmp_reg, obj_reg);
  6142   orq(tmp_reg, r15_thread);
  6143   if (os::is_MP()) {
  6144     lock();
  6146   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6147   // If the biasing toward our thread failed, then another thread
  6148   // succeeded in biasing it toward itself and we need to revoke that
  6149   // bias. The revocation will occur in the runtime in the slow case.
  6150   if (counters != NULL) {
  6151     cond_inc32(Assembler::zero,
  6152                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  6154   if (slow_case != NULL) {
  6155     jcc(Assembler::notZero, *slow_case);
  6157   jmp(done);
  6159   bind(try_revoke_bias);
  6160   // The prototype mark in the klass doesn't have the bias bit set any
  6161   // more, indicating that objects of this data type are not supposed
  6162   // to be biased any more. We are going to try to reset the mark of
  6163   // this object to the prototype value and fall through to the
  6164   // CAS-based locking scheme. Note that if our CAS fails, it means
  6165   // that another thread raced us for the privilege of revoking the
  6166   // bias of this particular object, so it's okay to continue in the
  6167   // normal locking code.
  6168   //
  6169   // FIXME: due to a lack of registers we currently blow away the age
  6170   // bits in this situation. Should attempt to preserve them.
  6171   load_prototype_header(tmp_reg, obj_reg);
  6172   if (os::is_MP()) {
  6173     lock();
  6175   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6176   // Fall through to the normal CAS-based lock, because no matter what
  6177   // the result of the above CAS, some thread must have succeeded in
  6178   // removing the bias bit from the object's header.
  6179   if (counters != NULL) {
  6180     cond_inc32(Assembler::zero,
  6181                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  6184   bind(cas_label);
  6186   return null_check_offset;
  6189 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  6190   Label L, E;
  6192 #ifdef _WIN64
  6193   // Windows always allocates space for it's register args
  6194   assert(num_args <= 4, "only register arguments supported");
  6195   subq(rsp,  frame::arg_reg_save_area_bytes);
  6196 #endif
  6198   // Align stack if necessary
  6199   testl(rsp, 15);
  6200   jcc(Assembler::zero, L);
  6202   subq(rsp, 8);
  6204     call(RuntimeAddress(entry_point));
  6206   addq(rsp, 8);
  6207   jmp(E);
  6209   bind(L);
  6211     call(RuntimeAddress(entry_point));
  6214   bind(E);
  6216 #ifdef _WIN64
  6217   // restore stack pointer
  6218   addq(rsp, frame::arg_reg_save_area_bytes);
  6219 #endif
  6223 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  6224   assert(!src2.is_lval(), "should use cmpptr");
  6226   if (reachable(src2)) {
  6227     cmpq(src1, as_Address(src2));
  6228   } else {
  6229     lea(rscratch1, src2);
  6230     Assembler::cmpq(src1, Address(rscratch1, 0));
  6234 int MacroAssembler::corrected_idivq(Register reg) {
  6235   // Full implementation of Java ldiv and lrem; checks for special
  6236   // case as described in JVM spec., p.243 & p.271.  The function
  6237   // returns the (pc) offset of the idivl instruction - may be needed
  6238   // for implicit exceptions.
  6239   //
  6240   //         normal case                           special case
  6241   //
  6242   // input : rax: dividend                         min_long
  6243   //         reg: divisor   (may not be eax/edx)   -1
  6244   //
  6245   // output: rax: quotient  (= rax idiv reg)       min_long
  6246   //         rdx: remainder (= rax irem reg)       0
  6247   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  6248   static const int64_t min_long = 0x8000000000000000;
  6249   Label normal_case, special_case;
  6251   // check for special case
  6252   cmp64(rax, ExternalAddress((address) &min_long));
  6253   jcc(Assembler::notEqual, normal_case);
  6254   xorl(rdx, rdx); // prepare rdx for possible special case (where
  6255                   // remainder = 0)
  6256   cmpq(reg, -1);
  6257   jcc(Assembler::equal, special_case);
  6259   // handle normal case
  6260   bind(normal_case);
  6261   cdqq();
  6262   int idivq_offset = offset();
  6263   idivq(reg);
  6265   // normal and special case exit
  6266   bind(special_case);
  6268   return idivq_offset;
  6271 void MacroAssembler::decrementq(Register reg, int value) {
  6272   if (value == min_jint) { subq(reg, value); return; }
  6273   if (value <  0) { incrementq(reg, -value); return; }
  6274   if (value == 0) {                        ; return; }
  6275   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  6276   /* else */      { subq(reg, value)       ; return; }
  6279 void MacroAssembler::decrementq(Address dst, int value) {
  6280   if (value == min_jint) { subq(dst, value); return; }
  6281   if (value <  0) { incrementq(dst, -value); return; }
  6282   if (value == 0) {                        ; return; }
  6283   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  6284   /* else */      { subq(dst, value)       ; return; }
  6287 void MacroAssembler::incrementq(Register reg, int value) {
  6288   if (value == min_jint) { addq(reg, value); return; }
  6289   if (value <  0) { decrementq(reg, -value); return; }
  6290   if (value == 0) {                        ; return; }
  6291   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  6292   /* else */      { addq(reg, value)       ; return; }
  6295 void MacroAssembler::incrementq(Address dst, int value) {
  6296   if (value == min_jint) { addq(dst, value); return; }
  6297   if (value <  0) { decrementq(dst, -value); return; }
  6298   if (value == 0) {                        ; return; }
  6299   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  6300   /* else */      { addq(dst, value)       ; return; }
  6303 // 32bit can do a case table jump in one instruction but we no longer allow the base
  6304 // to be installed in the Address class
  6305 void MacroAssembler::jump(ArrayAddress entry) {
  6306   lea(rscratch1, entry.base());
  6307   Address dispatch = entry.index();
  6308   assert(dispatch._base == noreg, "must be");
  6309   dispatch._base = rscratch1;
  6310   jmp(dispatch);
  6313 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  6314   ShouldNotReachHere(); // 64bit doesn't use two regs
  6315   cmpq(x_lo, y_lo);
  6318 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  6319     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6322 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  6323   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  6324   movptr(dst, rscratch1);
  6327 void MacroAssembler::leave() {
  6328   // %%% is this really better? Why not on 32bit too?
  6329   emit_byte(0xC9); // LEAVE
  6332 void MacroAssembler::lneg(Register hi, Register lo) {
  6333   ShouldNotReachHere(); // 64bit doesn't use two regs
  6334   negq(lo);
  6337 void MacroAssembler::movoop(Register dst, jobject obj) {
  6338   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6341 void MacroAssembler::movoop(Address dst, jobject obj) {
  6342   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6343   movq(dst, rscratch1);
  6346 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  6347   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6350 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  6351   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6352   movq(dst, rscratch1);
  6355 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  6356   if (src.is_lval()) {
  6357     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6358   } else {
  6359     if (reachable(src)) {
  6360       movq(dst, as_Address(src));
  6361     } else {
  6362       lea(rscratch1, src);
  6363       movq(dst, Address(rscratch1,0));
  6368 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  6369   movq(as_Address(dst), src);
  6372 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  6373   movq(dst, as_Address(src));
  6376 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6377 void MacroAssembler::movptr(Address dst, intptr_t src) {
  6378   mov64(rscratch1, src);
  6379   movq(dst, rscratch1);
  6382 // These are mostly for initializing NULL
  6383 void MacroAssembler::movptr(Address dst, int32_t src) {
  6384   movslq(dst, src);
  6387 void MacroAssembler::movptr(Register dst, int32_t src) {
  6388   mov64(dst, (intptr_t)src);
  6391 void MacroAssembler::pushoop(jobject obj) {
  6392   movoop(rscratch1, obj);
  6393   push(rscratch1);
  6396 void MacroAssembler::pushklass(Metadata* obj) {
  6397   mov_metadata(rscratch1, obj);
  6398   push(rscratch1);
  6401 void MacroAssembler::pushptr(AddressLiteral src) {
  6402   lea(rscratch1, src);
  6403   if (src.is_lval()) {
  6404     push(rscratch1);
  6405   } else {
  6406     pushq(Address(rscratch1, 0));
  6410 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  6411                                            bool clear_pc) {
  6412   // we must set sp to zero to clear frame
  6413   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6414   // must clear fp, so that compiled frames are not confused; it is
  6415   // possible that we need it only for debugging
  6416   if (clear_fp) {
  6417     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6420   if (clear_pc) {
  6421     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6425 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  6426                                          Register last_java_fp,
  6427                                          address  last_java_pc) {
  6428   // determine last_java_sp register
  6429   if (!last_java_sp->is_valid()) {
  6430     last_java_sp = rsp;
  6433   // last_java_fp is optional
  6434   if (last_java_fp->is_valid()) {
  6435     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  6436            last_java_fp);
  6439   // last_java_pc is optional
  6440   if (last_java_pc != NULL) {
  6441     Address java_pc(r15_thread,
  6442                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  6443     lea(rscratch1, InternalAddress(last_java_pc));
  6444     movptr(java_pc, rscratch1);
  6447   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6450 static void pass_arg0(MacroAssembler* masm, Register arg) {
  6451   if (c_rarg0 != arg ) {
  6452     masm->mov(c_rarg0, arg);
  6456 static void pass_arg1(MacroAssembler* masm, Register arg) {
  6457   if (c_rarg1 != arg ) {
  6458     masm->mov(c_rarg1, arg);
  6462 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6463   if (c_rarg2 != arg ) {
  6464     masm->mov(c_rarg2, arg);
  6468 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6469   if (c_rarg3 != arg ) {
  6470     masm->mov(c_rarg3, arg);
  6474 void MacroAssembler::stop(const char* msg) {
  6475   address rip = pc();
  6476   pusha(); // get regs on stack
  6477   lea(c_rarg0, ExternalAddress((address) msg));
  6478   lea(c_rarg1, InternalAddress(rip));
  6479   movq(c_rarg2, rsp); // pass pointer to regs array
  6480   andq(rsp, -16); // align stack as required by ABI
  6481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6482   hlt();
  6485 void MacroAssembler::warn(const char* msg) {
  6486   push(rbp);
  6487   movq(rbp, rsp);
  6488   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6489   push_CPU_state();   // keeps alignment at 16 bytes
  6490   lea(c_rarg0, ExternalAddress((address) msg));
  6491   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6492   pop_CPU_state();
  6493   mov(rsp, rbp);
  6494   pop(rbp);
  6497 void MacroAssembler::print_state() {
  6498   address rip = pc();
  6499   pusha();            // get regs on stack
  6500   push(rbp);
  6501   movq(rbp, rsp);
  6502   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6503   push_CPU_state();   // keeps alignment at 16 bytes
  6505   lea(c_rarg0, InternalAddress(rip));
  6506   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  6507   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  6509   pop_CPU_state();
  6510   mov(rsp, rbp);
  6511   pop(rbp);
  6512   popa();
  6515 #ifndef PRODUCT
  6516 extern "C" void findpc(intptr_t x);
  6517 #endif
  6519 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6520   // In order to get locks to work, we need to fake a in_VM state
  6521   if (ShowMessageBoxOnError) {
  6522     JavaThread* thread = JavaThread::current();
  6523     JavaThreadState saved_state = thread->thread_state();
  6524     thread->set_thread_state(_thread_in_vm);
  6525 #ifndef PRODUCT
  6526     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6527       ttyLocker ttyl;
  6528       BytecodeCounter::print();
  6530 #endif
  6531     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6532     // XXX correct this offset for amd64
  6533     // This is the value of eip which points to where verify_oop will return.
  6534     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6535       print_state64(pc, regs);
  6536       BREAKPOINT;
  6537       assert(false, "start up GDB");
  6539     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6540   } else {
  6541     ttyLocker ttyl;
  6542     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6543                     msg);
  6544     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6548 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  6549   ttyLocker ttyl;
  6550   FlagSetting fs(Debugging, true);
  6551   tty->print_cr("rip = 0x%016lx", pc);
  6552 #ifndef PRODUCT
  6553   tty->cr();
  6554   findpc(pc);
  6555   tty->cr();
  6556 #endif
  6557 #define PRINT_REG(rax, value) \
  6558   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  6559   PRINT_REG(rax, regs[15]);
  6560   PRINT_REG(rbx, regs[12]);
  6561   PRINT_REG(rcx, regs[14]);
  6562   PRINT_REG(rdx, regs[13]);
  6563   PRINT_REG(rdi, regs[8]);
  6564   PRINT_REG(rsi, regs[9]);
  6565   PRINT_REG(rbp, regs[10]);
  6566   PRINT_REG(rsp, regs[11]);
  6567   PRINT_REG(r8 , regs[7]);
  6568   PRINT_REG(r9 , regs[6]);
  6569   PRINT_REG(r10, regs[5]);
  6570   PRINT_REG(r11, regs[4]);
  6571   PRINT_REG(r12, regs[3]);
  6572   PRINT_REG(r13, regs[2]);
  6573   PRINT_REG(r14, regs[1]);
  6574   PRINT_REG(r15, regs[0]);
  6575 #undef PRINT_REG
  6576   // Print some words near top of staack.
  6577   int64_t* rsp = (int64_t*) regs[11];
  6578   int64_t* dump_sp = rsp;
  6579   for (int col1 = 0; col1 < 8; col1++) {
  6580     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6581     os::print_location(tty, *dump_sp++);
  6583   for (int row = 0; row < 25; row++) {
  6584     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6585     for (int col = 0; col < 4; col++) {
  6586       tty->print(" 0x%016lx", *dump_sp++);
  6588     tty->cr();
  6590   // Print some instructions around pc:
  6591   Disassembler::decode((address)pc-64, (address)pc);
  6592   tty->print_cr("--------");
  6593   Disassembler::decode((address)pc, (address)pc+32);
  6596 #endif // _LP64
  6598 // Now versions that are common to 32/64 bit
  6600 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6601   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6604 void MacroAssembler::addptr(Register dst, Register src) {
  6605   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6608 void MacroAssembler::addptr(Address dst, Register src) {
  6609   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6612 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6613   if (reachable(src)) {
  6614     Assembler::addsd(dst, as_Address(src));
  6615   } else {
  6616     lea(rscratch1, src);
  6617     Assembler::addsd(dst, Address(rscratch1, 0));
  6621 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6622   if (reachable(src)) {
  6623     addss(dst, as_Address(src));
  6624   } else {
  6625     lea(rscratch1, src);
  6626     addss(dst, Address(rscratch1, 0));
  6630 void MacroAssembler::align(int modulus) {
  6631   if (offset() % modulus != 0) {
  6632     nop(modulus - (offset() % modulus));
  6636 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6637   // Used in sign-masking with aligned address.
  6638   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6639   if (reachable(src)) {
  6640     Assembler::andpd(dst, as_Address(src));
  6641   } else {
  6642     lea(rscratch1, src);
  6643     Assembler::andpd(dst, Address(rscratch1, 0));
  6647 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6648   // Used in sign-masking with aligned address.
  6649   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6650   if (reachable(src)) {
  6651     Assembler::andps(dst, as_Address(src));
  6652   } else {
  6653     lea(rscratch1, src);
  6654     Assembler::andps(dst, Address(rscratch1, 0));
  6658 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6659   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6662 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6663   pushf();
  6664   if (os::is_MP())
  6665     lock();
  6666   incrementl(counter_addr);
  6667   popf();
  6670 // Writes to stack successive pages until offset reached to check for
  6671 // stack overflow + shadow pages.  This clobbers tmp.
  6672 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6673   movptr(tmp, rsp);
  6674   // Bang stack for total size given plus shadow page size.
  6675   // Bang one page at a time because large size can bang beyond yellow and
  6676   // red zones.
  6677   Label loop;
  6678   bind(loop);
  6679   movl(Address(tmp, (-os::vm_page_size())), size );
  6680   subptr(tmp, os::vm_page_size());
  6681   subl(size, os::vm_page_size());
  6682   jcc(Assembler::greater, loop);
  6684   // Bang down shadow pages too.
  6685   // The -1 because we already subtracted 1 page.
  6686   for (int i = 0; i< StackShadowPages-1; i++) {
  6687     // this could be any sized move but this is can be a debugging crumb
  6688     // so the bigger the better.
  6689     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6693 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6694   assert(UseBiasedLocking, "why call this otherwise?");
  6696   // Check for biased locking unlock case, which is a no-op
  6697   // Note: we do not have to check the thread ID for two reasons.
  6698   // First, the interpreter checks for IllegalMonitorStateException at
  6699   // a higher level. Second, if the bias was revoked while we held the
  6700   // lock, the object could not be rebiased toward another thread, so
  6701   // the bias bit would be clear.
  6702   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6703   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6704   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6705   jcc(Assembler::equal, done);
  6708 void MacroAssembler::c2bool(Register x) {
  6709   // implements x == 0 ? 0 : 1
  6710   // note: must only look at least-significant byte of x
  6711   //       since C-style booleans are stored in one byte
  6712   //       only! (was bug)
  6713   andl(x, 0xFF);
  6714   setb(Assembler::notZero, x);
  6717 // Wouldn't need if AddressLiteral version had new name
  6718 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6719   Assembler::call(L, rtype);
  6722 void MacroAssembler::call(Register entry) {
  6723   Assembler::call(entry);
  6726 void MacroAssembler::call(AddressLiteral entry) {
  6727   if (reachable(entry)) {
  6728     Assembler::call_literal(entry.target(), entry.rspec());
  6729   } else {
  6730     lea(rscratch1, entry);
  6731     Assembler::call(rscratch1);
  6735 void MacroAssembler::ic_call(address entry) {
  6736   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  6737   movptr(rax, (intptr_t)Universe::non_oop_word());
  6738   call(AddressLiteral(entry, rh));
  6741 // Implementation of call_VM versions
  6743 void MacroAssembler::call_VM(Register oop_result,
  6744                              address entry_point,
  6745                              bool check_exceptions) {
  6746   Label C, E;
  6747   call(C, relocInfo::none);
  6748   jmp(E);
  6750   bind(C);
  6751   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6752   ret(0);
  6754   bind(E);
  6757 void MacroAssembler::call_VM(Register oop_result,
  6758                              address entry_point,
  6759                              Register arg_1,
  6760                              bool check_exceptions) {
  6761   Label C, E;
  6762   call(C, relocInfo::none);
  6763   jmp(E);
  6765   bind(C);
  6766   pass_arg1(this, arg_1);
  6767   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6768   ret(0);
  6770   bind(E);
  6773 void MacroAssembler::call_VM(Register oop_result,
  6774                              address entry_point,
  6775                              Register arg_1,
  6776                              Register arg_2,
  6777                              bool check_exceptions) {
  6778   Label C, E;
  6779   call(C, relocInfo::none);
  6780   jmp(E);
  6782   bind(C);
  6784   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6786   pass_arg2(this, arg_2);
  6787   pass_arg1(this, arg_1);
  6788   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6789   ret(0);
  6791   bind(E);
  6794 void MacroAssembler::call_VM(Register oop_result,
  6795                              address entry_point,
  6796                              Register arg_1,
  6797                              Register arg_2,
  6798                              Register arg_3,
  6799                              bool check_exceptions) {
  6800   Label C, E;
  6801   call(C, relocInfo::none);
  6802   jmp(E);
  6804   bind(C);
  6806   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6807   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6808   pass_arg3(this, arg_3);
  6810   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6811   pass_arg2(this, arg_2);
  6813   pass_arg1(this, arg_1);
  6814   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6815   ret(0);
  6817   bind(E);
  6820 void MacroAssembler::call_VM(Register oop_result,
  6821                              Register last_java_sp,
  6822                              address entry_point,
  6823                              int number_of_arguments,
  6824                              bool check_exceptions) {
  6825   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6826   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6829 void MacroAssembler::call_VM(Register oop_result,
  6830                              Register last_java_sp,
  6831                              address entry_point,
  6832                              Register arg_1,
  6833                              bool check_exceptions) {
  6834   pass_arg1(this, arg_1);
  6835   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6838 void MacroAssembler::call_VM(Register oop_result,
  6839                              Register last_java_sp,
  6840                              address entry_point,
  6841                              Register arg_1,
  6842                              Register arg_2,
  6843                              bool check_exceptions) {
  6845   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6846   pass_arg2(this, arg_2);
  6847   pass_arg1(this, arg_1);
  6848   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6851 void MacroAssembler::call_VM(Register oop_result,
  6852                              Register last_java_sp,
  6853                              address entry_point,
  6854                              Register arg_1,
  6855                              Register arg_2,
  6856                              Register arg_3,
  6857                              bool check_exceptions) {
  6858   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6859   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6860   pass_arg3(this, arg_3);
  6861   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6862   pass_arg2(this, arg_2);
  6863   pass_arg1(this, arg_1);
  6864   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6867 void MacroAssembler::super_call_VM(Register oop_result,
  6868                                    Register last_java_sp,
  6869                                    address entry_point,
  6870                                    int number_of_arguments,
  6871                                    bool check_exceptions) {
  6872   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6873   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6876 void MacroAssembler::super_call_VM(Register oop_result,
  6877                                    Register last_java_sp,
  6878                                    address entry_point,
  6879                                    Register arg_1,
  6880                                    bool check_exceptions) {
  6881   pass_arg1(this, arg_1);
  6882   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6885 void MacroAssembler::super_call_VM(Register oop_result,
  6886                                    Register last_java_sp,
  6887                                    address entry_point,
  6888                                    Register arg_1,
  6889                                    Register arg_2,
  6890                                    bool check_exceptions) {
  6892   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6893   pass_arg2(this, arg_2);
  6894   pass_arg1(this, arg_1);
  6895   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6898 void MacroAssembler::super_call_VM(Register oop_result,
  6899                                    Register last_java_sp,
  6900                                    address entry_point,
  6901                                    Register arg_1,
  6902                                    Register arg_2,
  6903                                    Register arg_3,
  6904                                    bool check_exceptions) {
  6905   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6906   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6907   pass_arg3(this, arg_3);
  6908   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6909   pass_arg2(this, arg_2);
  6910   pass_arg1(this, arg_1);
  6911   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6914 void MacroAssembler::call_VM_base(Register oop_result,
  6915                                   Register java_thread,
  6916                                   Register last_java_sp,
  6917                                   address  entry_point,
  6918                                   int      number_of_arguments,
  6919                                   bool     check_exceptions) {
  6920   // determine java_thread register
  6921   if (!java_thread->is_valid()) {
  6922 #ifdef _LP64
  6923     java_thread = r15_thread;
  6924 #else
  6925     java_thread = rdi;
  6926     get_thread(java_thread);
  6927 #endif // LP64
  6929   // determine last_java_sp register
  6930   if (!last_java_sp->is_valid()) {
  6931     last_java_sp = rsp;
  6933   // debugging support
  6934   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6935   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6936 #ifdef ASSERT
  6937   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6938   // r12 is the heapbase.
  6939   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6940 #endif // ASSERT
  6942   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6943   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6945   // push java thread (becomes first argument of C function)
  6947   NOT_LP64(push(java_thread); number_of_arguments++);
  6948   LP64_ONLY(mov(c_rarg0, r15_thread));
  6950   // set last Java frame before call
  6951   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6953   // Only interpreter should have to set fp
  6954   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6956   // do the call, remove parameters
  6957   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6959   // restore the thread (cannot use the pushed argument since arguments
  6960   // may be overwritten by C code generated by an optimizing compiler);
  6961   // however can use the register value directly if it is callee saved.
  6962   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6963     // rdi & rsi (also r15) are callee saved -> nothing to do
  6964 #ifdef ASSERT
  6965     guarantee(java_thread != rax, "change this code");
  6966     push(rax);
  6967     { Label L;
  6968       get_thread(rax);
  6969       cmpptr(java_thread, rax);
  6970       jcc(Assembler::equal, L);
  6971       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  6972       bind(L);
  6974     pop(rax);
  6975 #endif
  6976   } else {
  6977     get_thread(java_thread);
  6979   // reset last Java frame
  6980   // Only interpreter should have to clear fp
  6981   reset_last_Java_frame(java_thread, true, false);
  6983 #ifndef CC_INTERP
  6984    // C++ interp handles this in the interpreter
  6985   check_and_handle_popframe(java_thread);
  6986   check_and_handle_earlyret(java_thread);
  6987 #endif /* CC_INTERP */
  6989   if (check_exceptions) {
  6990     // check for pending exceptions (java_thread is set upon return)
  6991     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6992 #ifndef _LP64
  6993     jump_cc(Assembler::notEqual,
  6994             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6995 #else
  6996     // This used to conditionally jump to forward_exception however it is
  6997     // possible if we relocate that the branch will not reach. So we must jump
  6998     // around so we can always reach
  7000     Label ok;
  7001     jcc(Assembler::equal, ok);
  7002     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  7003     bind(ok);
  7004 #endif // LP64
  7007   // get oop result if there is one and reset the value in the thread
  7008   if (oop_result->is_valid()) {
  7009     get_vm_result(oop_result, java_thread);
  7013 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  7015   // Calculate the value for last_Java_sp
  7016   // somewhat subtle. call_VM does an intermediate call
  7017   // which places a return address on the stack just under the
  7018   // stack pointer as the user finsihed with it. This allows
  7019   // use to retrieve last_Java_pc from last_Java_sp[-1].
  7020   // On 32bit we then have to push additional args on the stack to accomplish
  7021   // the actual requested call. On 64bit call_VM only can use register args
  7022   // so the only extra space is the return address that call_VM created.
  7023   // This hopefully explains the calculations here.
  7025 #ifdef _LP64
  7026   // We've pushed one address, correct last_Java_sp
  7027   lea(rax, Address(rsp, wordSize));
  7028 #else
  7029   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  7030 #endif // LP64
  7032   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  7036 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  7037   call_VM_leaf_base(entry_point, number_of_arguments);
  7040 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  7041   pass_arg0(this, arg_0);
  7042   call_VM_leaf(entry_point, 1);
  7045 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  7047   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7048   pass_arg1(this, arg_1);
  7049   pass_arg0(this, arg_0);
  7050   call_VM_leaf(entry_point, 2);
  7053 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7054   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7055   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7056   pass_arg2(this, arg_2);
  7057   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7058   pass_arg1(this, arg_1);
  7059   pass_arg0(this, arg_0);
  7060   call_VM_leaf(entry_point, 3);
  7063 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  7064   pass_arg0(this, arg_0);
  7065   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  7068 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  7070   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7071   pass_arg1(this, arg_1);
  7072   pass_arg0(this, arg_0);
  7073   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  7076 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7077   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7078   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7079   pass_arg2(this, arg_2);
  7080   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7081   pass_arg1(this, arg_1);
  7082   pass_arg0(this, arg_0);
  7083   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  7086 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  7087   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  7088   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  7089   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  7090   pass_arg3(this, arg_3);
  7091   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7092   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7093   pass_arg2(this, arg_2);
  7094   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7095   pass_arg1(this, arg_1);
  7096   pass_arg0(this, arg_0);
  7097   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  7100 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  7101   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  7102   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  7103   verify_oop(oop_result, "broken oop in call_VM_base");
  7106 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  7107   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  7108   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  7111 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  7114 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  7117 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  7118   if (reachable(src1)) {
  7119     cmpl(as_Address(src1), imm);
  7120   } else {
  7121     lea(rscratch1, src1);
  7122     cmpl(Address(rscratch1, 0), imm);
  7126 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  7127   assert(!src2.is_lval(), "use cmpptr");
  7128   if (reachable(src2)) {
  7129     cmpl(src1, as_Address(src2));
  7130   } else {
  7131     lea(rscratch1, src2);
  7132     cmpl(src1, Address(rscratch1, 0));
  7136 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  7137   Assembler::cmpl(src1, imm);
  7140 void MacroAssembler::cmp32(Register src1, Address src2) {
  7141   Assembler::cmpl(src1, src2);
  7144 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7145   ucomisd(opr1, opr2);
  7147   Label L;
  7148   if (unordered_is_less) {
  7149     movl(dst, -1);
  7150     jcc(Assembler::parity, L);
  7151     jcc(Assembler::below , L);
  7152     movl(dst, 0);
  7153     jcc(Assembler::equal , L);
  7154     increment(dst);
  7155   } else { // unordered is greater
  7156     movl(dst, 1);
  7157     jcc(Assembler::parity, L);
  7158     jcc(Assembler::above , L);
  7159     movl(dst, 0);
  7160     jcc(Assembler::equal , L);
  7161     decrementl(dst);
  7163   bind(L);
  7166 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7167   ucomiss(opr1, opr2);
  7169   Label L;
  7170   if (unordered_is_less) {
  7171     movl(dst, -1);
  7172     jcc(Assembler::parity, L);
  7173     jcc(Assembler::below , L);
  7174     movl(dst, 0);
  7175     jcc(Assembler::equal , L);
  7176     increment(dst);
  7177   } else { // unordered is greater
  7178     movl(dst, 1);
  7179     jcc(Assembler::parity, L);
  7180     jcc(Assembler::above , L);
  7181     movl(dst, 0);
  7182     jcc(Assembler::equal , L);
  7183     decrementl(dst);
  7185   bind(L);
  7189 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  7190   if (reachable(src1)) {
  7191     cmpb(as_Address(src1), imm);
  7192   } else {
  7193     lea(rscratch1, src1);
  7194     cmpb(Address(rscratch1, 0), imm);
  7198 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  7199 #ifdef _LP64
  7200   if (src2.is_lval()) {
  7201     movptr(rscratch1, src2);
  7202     Assembler::cmpq(src1, rscratch1);
  7203   } else if (reachable(src2)) {
  7204     cmpq(src1, as_Address(src2));
  7205   } else {
  7206     lea(rscratch1, src2);
  7207     Assembler::cmpq(src1, Address(rscratch1, 0));
  7209 #else
  7210   if (src2.is_lval()) {
  7211     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7212   } else {
  7213     cmpl(src1, as_Address(src2));
  7215 #endif // _LP64
  7218 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  7219   assert(src2.is_lval(), "not a mem-mem compare");
  7220 #ifdef _LP64
  7221   // moves src2's literal address
  7222   movptr(rscratch1, src2);
  7223   Assembler::cmpq(src1, rscratch1);
  7224 #else
  7225   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7226 #endif // _LP64
  7229 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  7230   if (reachable(adr)) {
  7231     if (os::is_MP())
  7232       lock();
  7233     cmpxchgptr(reg, as_Address(adr));
  7234   } else {
  7235     lea(rscratch1, adr);
  7236     if (os::is_MP())
  7237       lock();
  7238     cmpxchgptr(reg, Address(rscratch1, 0));
  7242 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  7243   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  7246 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  7247   if (reachable(src)) {
  7248     Assembler::comisd(dst, as_Address(src));
  7249   } else {
  7250     lea(rscratch1, src);
  7251     Assembler::comisd(dst, Address(rscratch1, 0));
  7255 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  7256   if (reachable(src)) {
  7257     Assembler::comiss(dst, as_Address(src));
  7258   } else {
  7259     lea(rscratch1, src);
  7260     Assembler::comiss(dst, Address(rscratch1, 0));
  7265 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  7266   Condition negated_cond = negate_condition(cond);
  7267   Label L;
  7268   jcc(negated_cond, L);
  7269   atomic_incl(counter_addr);
  7270   bind(L);
  7273 int MacroAssembler::corrected_idivl(Register reg) {
  7274   // Full implementation of Java idiv and irem; checks for
  7275   // special case as described in JVM spec., p.243 & p.271.
  7276   // The function returns the (pc) offset of the idivl
  7277   // instruction - may be needed for implicit exceptions.
  7278   //
  7279   //         normal case                           special case
  7280   //
  7281   // input : rax,: dividend                         min_int
  7282   //         reg: divisor   (may not be rax,/rdx)   -1
  7283   //
  7284   // output: rax,: quotient  (= rax, idiv reg)       min_int
  7285   //         rdx: remainder (= rax, irem reg)       0
  7286   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  7287   const int min_int = 0x80000000;
  7288   Label normal_case, special_case;
  7290   // check for special case
  7291   cmpl(rax, min_int);
  7292   jcc(Assembler::notEqual, normal_case);
  7293   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  7294   cmpl(reg, -1);
  7295   jcc(Assembler::equal, special_case);
  7297   // handle normal case
  7298   bind(normal_case);
  7299   cdql();
  7300   int idivl_offset = offset();
  7301   idivl(reg);
  7303   // normal and special case exit
  7304   bind(special_case);
  7306   return idivl_offset;
  7311 void MacroAssembler::decrementl(Register reg, int value) {
  7312   if (value == min_jint) {subl(reg, value) ; return; }
  7313   if (value <  0) { incrementl(reg, -value); return; }
  7314   if (value == 0) {                        ; return; }
  7315   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  7316   /* else */      { subl(reg, value)       ; return; }
  7319 void MacroAssembler::decrementl(Address dst, int value) {
  7320   if (value == min_jint) {subl(dst, value) ; return; }
  7321   if (value <  0) { incrementl(dst, -value); return; }
  7322   if (value == 0) {                        ; return; }
  7323   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  7324   /* else */      { subl(dst, value)       ; return; }
  7327 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  7328   assert (shift_value > 0, "illegal shift value");
  7329   Label _is_positive;
  7330   testl (reg, reg);
  7331   jcc (Assembler::positive, _is_positive);
  7332   int offset = (1 << shift_value) - 1 ;
  7334   if (offset == 1) {
  7335     incrementl(reg);
  7336   } else {
  7337     addl(reg, offset);
  7340   bind (_is_positive);
  7341   sarl(reg, shift_value);
  7344 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  7345   if (reachable(src)) {
  7346     Assembler::divsd(dst, as_Address(src));
  7347   } else {
  7348     lea(rscratch1, src);
  7349     Assembler::divsd(dst, Address(rscratch1, 0));
  7353 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  7354   if (reachable(src)) {
  7355     Assembler::divss(dst, as_Address(src));
  7356   } else {
  7357     lea(rscratch1, src);
  7358     Assembler::divss(dst, Address(rscratch1, 0));
  7362 // !defined(COMPILER2) is because of stupid core builds
  7363 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  7364 void MacroAssembler::empty_FPU_stack() {
  7365   if (VM_Version::supports_mmx()) {
  7366     emms();
  7367   } else {
  7368     for (int i = 8; i-- > 0; ) ffree(i);
  7371 #endif // !LP64 || C1 || !C2
  7374 // Defines obj, preserves var_size_in_bytes
  7375 void MacroAssembler::eden_allocate(Register obj,
  7376                                    Register var_size_in_bytes,
  7377                                    int con_size_in_bytes,
  7378                                    Register t1,
  7379                                    Label& slow_case) {
  7380   assert(obj == rax, "obj must be in rax, for cmpxchg");
  7381   assert_different_registers(obj, var_size_in_bytes, t1);
  7382   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7383     jmp(slow_case);
  7384   } else {
  7385     Register end = t1;
  7386     Label retry;
  7387     bind(retry);
  7388     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  7389     movptr(obj, heap_top);
  7390     if (var_size_in_bytes == noreg) {
  7391       lea(end, Address(obj, con_size_in_bytes));
  7392     } else {
  7393       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7395     // if end < obj then we wrapped around => object too long => slow case
  7396     cmpptr(end, obj);
  7397     jcc(Assembler::below, slow_case);
  7398     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  7399     jcc(Assembler::above, slow_case);
  7400     // Compare obj with the top addr, and if still equal, store the new top addr in
  7401     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  7402     // it otherwise. Use lock prefix for atomicity on MPs.
  7403     locked_cmpxchgptr(end, heap_top);
  7404     jcc(Assembler::notEqual, retry);
  7408 void MacroAssembler::enter() {
  7409   push(rbp);
  7410   mov(rbp, rsp);
  7413 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  7414 void MacroAssembler::fat_nop() {
  7415   if (UseAddressNop) {
  7416     addr_nop_5();
  7417   } else {
  7418     emit_byte(0x26); // es:
  7419     emit_byte(0x2e); // cs:
  7420     emit_byte(0x64); // fs:
  7421     emit_byte(0x65); // gs:
  7422     emit_byte(0x90);
  7426 void MacroAssembler::fcmp(Register tmp) {
  7427   fcmp(tmp, 1, true, true);
  7430 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  7431   assert(!pop_right || pop_left, "usage error");
  7432   if (VM_Version::supports_cmov()) {
  7433     assert(tmp == noreg, "unneeded temp");
  7434     if (pop_left) {
  7435       fucomip(index);
  7436     } else {
  7437       fucomi(index);
  7439     if (pop_right) {
  7440       fpop();
  7442   } else {
  7443     assert(tmp != noreg, "need temp");
  7444     if (pop_left) {
  7445       if (pop_right) {
  7446         fcompp();
  7447       } else {
  7448         fcomp(index);
  7450     } else {
  7451       fcom(index);
  7453     // convert FPU condition into eflags condition via rax,
  7454     save_rax(tmp);
  7455     fwait(); fnstsw_ax();
  7456     sahf();
  7457     restore_rax(tmp);
  7459   // condition codes set as follows:
  7460   //
  7461   // CF (corresponds to C0) if x < y
  7462   // PF (corresponds to C2) if unordered
  7463   // ZF (corresponds to C3) if x = y
  7466 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  7467   fcmp2int(dst, unordered_is_less, 1, true, true);
  7470 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  7471   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  7472   Label L;
  7473   if (unordered_is_less) {
  7474     movl(dst, -1);
  7475     jcc(Assembler::parity, L);
  7476     jcc(Assembler::below , L);
  7477     movl(dst, 0);
  7478     jcc(Assembler::equal , L);
  7479     increment(dst);
  7480   } else { // unordered is greater
  7481     movl(dst, 1);
  7482     jcc(Assembler::parity, L);
  7483     jcc(Assembler::above , L);
  7484     movl(dst, 0);
  7485     jcc(Assembler::equal , L);
  7486     decrementl(dst);
  7488   bind(L);
  7491 void MacroAssembler::fld_d(AddressLiteral src) {
  7492   fld_d(as_Address(src));
  7495 void MacroAssembler::fld_s(AddressLiteral src) {
  7496   fld_s(as_Address(src));
  7499 void MacroAssembler::fld_x(AddressLiteral src) {
  7500   Assembler::fld_x(as_Address(src));
  7503 void MacroAssembler::fldcw(AddressLiteral src) {
  7504   Assembler::fldcw(as_Address(src));
  7507 void MacroAssembler::pow_exp_core_encoding() {
  7508   // kills rax, rcx, rdx
  7509   subptr(rsp,sizeof(jdouble));
  7510   // computes 2^X. Stack: X ...
  7511   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  7512   // keep it on the thread's stack to compute 2^int(X) later
  7513   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  7514   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  7515   fld_s(0);                 // Stack: X X ...
  7516   frndint();                // Stack: int(X) X ...
  7517   fsuba(1);                 // Stack: int(X) X-int(X) ...
  7518   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  7519   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  7520   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7521   faddp(1);                 // Stack: 2^(X-int(X))
  7522   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7523   // shift int(X)+1023 to exponent position.
  7524   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7525   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7526   // values so detect them and set result to NaN.
  7527   movl(rax,Address(rsp,0));
  7528   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7529   addl(rax, 1023);
  7530   movl(rdx,rax);
  7531   shll(rax,20);
  7532   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7533   addl(rdx,1);
  7534   // Check that 1 < int(X)+1023+1 < 2048
  7535   // in 3 steps:
  7536   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7537   // 2- (int(X)+1023+1)&-2048 != 0
  7538   // 3- (int(X)+1023+1)&-2048 != 1
  7539   // Do 2- first because addl just updated the flags.
  7540   cmov32(Assembler::equal,rax,rcx);
  7541   cmpl(rdx,1);
  7542   cmov32(Assembler::equal,rax,rcx);
  7543   testl(rdx,rcx);
  7544   cmov32(Assembler::notEqual,rax,rcx);
  7545   movl(Address(rsp,4),rax);
  7546   movl(Address(rsp,0),0);
  7547   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7548   addptr(rsp,sizeof(jdouble));
  7551 void MacroAssembler::increase_precision() {
  7552   subptr(rsp, BytesPerWord);
  7553   fnstcw(Address(rsp, 0));
  7554   movl(rax, Address(rsp, 0));
  7555   orl(rax, 0x300);
  7556   push(rax);
  7557   fldcw(Address(rsp, 0));
  7558   pop(rax);
  7561 void MacroAssembler::restore_precision() {
  7562   fldcw(Address(rsp, 0));
  7563   addptr(rsp, BytesPerWord);
  7566 void MacroAssembler::fast_pow() {
  7567   // computes X^Y = 2^(Y * log2(X))
  7568   // if fast computation is not possible, result is NaN. Requires
  7569   // fallback from user of this macro.
  7570   // increase precision for intermediate steps of the computation
  7571   increase_precision();
  7572   fyl2x();                 // Stack: (Y*log2(X)) ...
  7573   pow_exp_core_encoding(); // Stack: exp(X) ...
  7574   restore_precision();
  7577 void MacroAssembler::fast_exp() {
  7578   // computes exp(X) = 2^(X * log2(e))
  7579   // if fast computation is not possible, result is NaN. Requires
  7580   // fallback from user of this macro.
  7581   // increase precision for intermediate steps of the computation
  7582   increase_precision();
  7583   fldl2e();                // Stack: log2(e) X ...
  7584   fmulp(1);                // Stack: (X*log2(e)) ...
  7585   pow_exp_core_encoding(); // Stack: exp(X) ...
  7586   restore_precision();
  7589 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7590   // kills rax, rcx, rdx
  7591   // pow and exp needs 2 extra registers on the fpu stack.
  7592   Label slow_case, done;
  7593   Register tmp = noreg;
  7594   if (!VM_Version::supports_cmov()) {
  7595     // fcmp needs a temporary so preserve rdx,
  7596     tmp = rdx;
  7598   Register tmp2 = rax;
  7599   Register tmp3 = rcx;
  7601   if (is_exp) {
  7602     // Stack: X
  7603     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7604     fast_exp();                 // Stack: exp(X) X
  7605     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7606     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7607     jcc(Assembler::parity, slow_case);
  7608     // get rid of duplicate argument. Stack: exp(X)
  7609     if (num_fpu_regs_in_use > 0) {
  7610       fxch();
  7611       fpop();
  7612     } else {
  7613       ffree(1);
  7615     jmp(done);
  7616   } else {
  7617     // Stack: X Y
  7618     Label x_negative, y_odd;
  7620     fldz();                     // Stack: 0 X Y
  7621     fcmp(tmp, 1, true, false);  // Stack: X Y
  7622     jcc(Assembler::above, x_negative);
  7624     // X >= 0
  7626     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7627     fld_s(1);                   // Stack: X Y X Y
  7628     fast_pow();                 // Stack: X^Y X Y
  7629     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7630     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7631     jcc(Assembler::parity, slow_case);
  7632     // get rid of duplicate arguments. Stack: X^Y
  7633     if (num_fpu_regs_in_use > 0) {
  7634       fxch(); fpop();
  7635       fxch(); fpop();
  7636     } else {
  7637       ffree(2);
  7638       ffree(1);
  7640     jmp(done);
  7642     // X <= 0
  7643     bind(x_negative);
  7645     fld_s(1);                   // Stack: Y X Y
  7646     frndint();                  // Stack: int(Y) X Y
  7647     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7648     jcc(Assembler::notEqual, slow_case);
  7650     subptr(rsp, 8);
  7652     // For X^Y, when X < 0, Y has to be an integer and the final
  7653     // result depends on whether it's odd or even. We just checked
  7654     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7655     // integer to test its parity. If int(Y) is huge and doesn't fit
  7656     // in the 64 bit integer range, the integer indefinite value will
  7657     // end up in the gp registers. Huge numbers are all even, the
  7658     // integer indefinite number is even so it's fine.
  7660 #ifdef ASSERT
  7661     // Let's check we don't end up with an integer indefinite number
  7662     // when not expected. First test for huge numbers: check whether
  7663     // int(Y)+1 == int(Y) which is true for very large numbers and
  7664     // those are all even. A 64 bit integer is guaranteed to not
  7665     // overflow for numbers where y+1 != y (when precision is set to
  7666     // double precision).
  7667     Label y_not_huge;
  7669     fld1();                     // Stack: 1 int(Y) X Y
  7670     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7672 #ifdef _LP64
  7673     // trip to memory to force the precision down from double extended
  7674     // precision
  7675     fstp_d(Address(rsp, 0));
  7676     fld_d(Address(rsp, 0));
  7677 #endif
  7679     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7680 #endif
  7682     // move int(Y) as 64 bit integer to thread's stack
  7683     fistp_d(Address(rsp,0));    // Stack: X Y
  7685 #ifdef ASSERT
  7686     jcc(Assembler::notEqual, y_not_huge);
  7688     // Y is huge so we know it's even. It may not fit in a 64 bit
  7689     // integer and we don't want the debug code below to see the
  7690     // integer indefinite value so overwrite int(Y) on the thread's
  7691     // stack with 0.
  7692     movl(Address(rsp, 0), 0);
  7693     movl(Address(rsp, 4), 0);
  7695     bind(y_not_huge);
  7696 #endif
  7698     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7699     fld_s(1);                   // Stack: X Y X Y
  7700     fabs();                     // Stack: abs(X) Y X Y
  7701     fast_pow();                 // Stack: abs(X)^Y X Y
  7702     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7703     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7705     pop(tmp2);
  7706     NOT_LP64(pop(tmp3));
  7707     jcc(Assembler::parity, slow_case);
  7709 #ifdef ASSERT
  7710     // Check that int(Y) is not integer indefinite value (int
  7711     // overflow). Shouldn't happen because for values that would
  7712     // overflow, 1+int(Y)==Y which was tested earlier.
  7713 #ifndef _LP64
  7715       Label integer;
  7716       testl(tmp2, tmp2);
  7717       jcc(Assembler::notZero, integer);
  7718       cmpl(tmp3, 0x80000000);
  7719       jcc(Assembler::notZero, integer);
  7720       STOP("integer indefinite value shouldn't be seen here");
  7721       bind(integer);
  7723 #else
  7725       Label integer;
  7726       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7727       shlq(tmp3, 1);
  7728       jcc(Assembler::carryClear, integer);
  7729       jcc(Assembler::notZero, integer);
  7730       STOP("integer indefinite value shouldn't be seen here");
  7731       bind(integer);
  7733 #endif
  7734 #endif
  7736     // get rid of duplicate arguments. Stack: X^Y
  7737     if (num_fpu_regs_in_use > 0) {
  7738       fxch(); fpop();
  7739       fxch(); fpop();
  7740     } else {
  7741       ffree(2);
  7742       ffree(1);
  7745     testl(tmp2, 1);
  7746     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7747     // X <= 0, Y even: X^Y = -abs(X)^Y
  7749     fchs();                     // Stack: -abs(X)^Y Y
  7750     jmp(done);
  7753   // slow case: runtime call
  7754   bind(slow_case);
  7756   fpop();                       // pop incorrect result or int(Y)
  7758   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7759                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7761   // Come here with result in F-TOS
  7762   bind(done);
  7765 void MacroAssembler::fpop() {
  7766   ffree();
  7767   fincstp();
  7770 void MacroAssembler::fremr(Register tmp) {
  7771   save_rax(tmp);
  7772   { Label L;
  7773     bind(L);
  7774     fprem();
  7775     fwait(); fnstsw_ax();
  7776 #ifdef _LP64
  7777     testl(rax, 0x400);
  7778     jcc(Assembler::notEqual, L);
  7779 #else
  7780     sahf();
  7781     jcc(Assembler::parity, L);
  7782 #endif // _LP64
  7784   restore_rax(tmp);
  7785   // Result is in ST0.
  7786   // Note: fxch & fpop to get rid of ST1
  7787   // (otherwise FPU stack could overflow eventually)
  7788   fxch(1);
  7789   fpop();
  7793 void MacroAssembler::incrementl(AddressLiteral dst) {
  7794   if (reachable(dst)) {
  7795     incrementl(as_Address(dst));
  7796   } else {
  7797     lea(rscratch1, dst);
  7798     incrementl(Address(rscratch1, 0));
  7802 void MacroAssembler::incrementl(ArrayAddress dst) {
  7803   incrementl(as_Address(dst));
  7806 void MacroAssembler::incrementl(Register reg, int value) {
  7807   if (value == min_jint) {addl(reg, value) ; return; }
  7808   if (value <  0) { decrementl(reg, -value); return; }
  7809   if (value == 0) {                        ; return; }
  7810   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7811   /* else */      { addl(reg, value)       ; return; }
  7814 void MacroAssembler::incrementl(Address dst, int value) {
  7815   if (value == min_jint) {addl(dst, value) ; return; }
  7816   if (value <  0) { decrementl(dst, -value); return; }
  7817   if (value == 0) {                        ; return; }
  7818   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7819   /* else */      { addl(dst, value)       ; return; }
  7822 void MacroAssembler::jump(AddressLiteral dst) {
  7823   if (reachable(dst)) {
  7824     jmp_literal(dst.target(), dst.rspec());
  7825   } else {
  7826     lea(rscratch1, dst);
  7827     jmp(rscratch1);
  7831 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7832   if (reachable(dst)) {
  7833     InstructionMark im(this);
  7834     relocate(dst.reloc());
  7835     const int short_size = 2;
  7836     const int long_size = 6;
  7837     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7838     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7839       // 0111 tttn #8-bit disp
  7840       emit_byte(0x70 | cc);
  7841       emit_byte((offs - short_size) & 0xFF);
  7842     } else {
  7843       // 0000 1111 1000 tttn #32-bit disp
  7844       emit_byte(0x0F);
  7845       emit_byte(0x80 | cc);
  7846       emit_long(offs - long_size);
  7848   } else {
  7849 #ifdef ASSERT
  7850     warning("reversing conditional branch");
  7851 #endif /* ASSERT */
  7852     Label skip;
  7853     jccb(reverse[cc], skip);
  7854     lea(rscratch1, dst);
  7855     Assembler::jmp(rscratch1);
  7856     bind(skip);
  7860 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7861   if (reachable(src)) {
  7862     Assembler::ldmxcsr(as_Address(src));
  7863   } else {
  7864     lea(rscratch1, src);
  7865     Assembler::ldmxcsr(Address(rscratch1, 0));
  7869 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7870   int off;
  7871   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7872     off = offset();
  7873     movsbl(dst, src); // movsxb
  7874   } else {
  7875     off = load_unsigned_byte(dst, src);
  7876     shll(dst, 24);
  7877     sarl(dst, 24);
  7879   return off;
  7882 // Note: load_signed_short used to be called load_signed_word.
  7883 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7884 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7885 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7886 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7887   int off;
  7888   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7889     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7890     // version but this is what 64bit has always done. This seems to imply
  7891     // that users are only using 32bits worth.
  7892     off = offset();
  7893     movswl(dst, src); // movsxw
  7894   } else {
  7895     off = load_unsigned_short(dst, src);
  7896     shll(dst, 16);
  7897     sarl(dst, 16);
  7899   return off;
  7902 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7903   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7904   // and "3.9 Partial Register Penalties", p. 22).
  7905   int off;
  7906   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7907     off = offset();
  7908     movzbl(dst, src); // movzxb
  7909   } else {
  7910     xorl(dst, dst);
  7911     off = offset();
  7912     movb(dst, src);
  7914   return off;
  7917 // Note: load_unsigned_short used to be called load_unsigned_word.
  7918 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7919   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7920   // and "3.9 Partial Register Penalties", p. 22).
  7921   int off;
  7922   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7923     off = offset();
  7924     movzwl(dst, src); // movzxw
  7925   } else {
  7926     xorl(dst, dst);
  7927     off = offset();
  7928     movw(dst, src);
  7930   return off;
  7933 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7934   switch (size_in_bytes) {
  7935 #ifndef _LP64
  7936   case  8:
  7937     assert(dst2 != noreg, "second dest register required");
  7938     movl(dst,  src);
  7939     movl(dst2, src.plus_disp(BytesPerInt));
  7940     break;
  7941 #else
  7942   case  8:  movq(dst, src); break;
  7943 #endif
  7944   case  4:  movl(dst, src); break;
  7945   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7946   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7947   default:  ShouldNotReachHere();
  7951 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7952   switch (size_in_bytes) {
  7953 #ifndef _LP64
  7954   case  8:
  7955     assert(src2 != noreg, "second source register required");
  7956     movl(dst,                        src);
  7957     movl(dst.plus_disp(BytesPerInt), src2);
  7958     break;
  7959 #else
  7960   case  8:  movq(dst, src); break;
  7961 #endif
  7962   case  4:  movl(dst, src); break;
  7963   case  2:  movw(dst, src); break;
  7964   case  1:  movb(dst, src); break;
  7965   default:  ShouldNotReachHere();
  7969 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7970   if (reachable(dst)) {
  7971     movl(as_Address(dst), src);
  7972   } else {
  7973     lea(rscratch1, dst);
  7974     movl(Address(rscratch1, 0), src);
  7978 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7979   if (reachable(src)) {
  7980     movl(dst, as_Address(src));
  7981   } else {
  7982     lea(rscratch1, src);
  7983     movl(dst, Address(rscratch1, 0));
  7987 // C++ bool manipulation
  7989 void MacroAssembler::movbool(Register dst, Address src) {
  7990   if(sizeof(bool) == 1)
  7991     movb(dst, src);
  7992   else if(sizeof(bool) == 2)
  7993     movw(dst, src);
  7994   else if(sizeof(bool) == 4)
  7995     movl(dst, src);
  7996   else
  7997     // unsupported
  7998     ShouldNotReachHere();
  8001 void MacroAssembler::movbool(Address dst, bool boolconst) {
  8002   if(sizeof(bool) == 1)
  8003     movb(dst, (int) boolconst);
  8004   else if(sizeof(bool) == 2)
  8005     movw(dst, (int) boolconst);
  8006   else if(sizeof(bool) == 4)
  8007     movl(dst, (int) boolconst);
  8008   else
  8009     // unsupported
  8010     ShouldNotReachHere();
  8013 void MacroAssembler::movbool(Address dst, Register src) {
  8014   if(sizeof(bool) == 1)
  8015     movb(dst, src);
  8016   else if(sizeof(bool) == 2)
  8017     movw(dst, src);
  8018   else if(sizeof(bool) == 4)
  8019     movl(dst, src);
  8020   else
  8021     // unsupported
  8022     ShouldNotReachHere();
  8025 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  8026   movb(as_Address(dst), src);
  8029 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  8030   if (reachable(src)) {
  8031     movdl(dst, as_Address(src));
  8032   } else {
  8033     lea(rscratch1, src);
  8034     movdl(dst, Address(rscratch1, 0));
  8038 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  8039   if (reachable(src)) {
  8040     movq(dst, as_Address(src));
  8041   } else {
  8042     lea(rscratch1, src);
  8043     movq(dst, Address(rscratch1, 0));
  8047 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  8048   if (reachable(src)) {
  8049     if (UseXmmLoadAndClearUpper) {
  8050       movsd (dst, as_Address(src));
  8051     } else {
  8052       movlpd(dst, as_Address(src));
  8054   } else {
  8055     lea(rscratch1, src);
  8056     if (UseXmmLoadAndClearUpper) {
  8057       movsd (dst, Address(rscratch1, 0));
  8058     } else {
  8059       movlpd(dst, Address(rscratch1, 0));
  8064 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  8065   if (reachable(src)) {
  8066     movss(dst, as_Address(src));
  8067   } else {
  8068     lea(rscratch1, src);
  8069     movss(dst, Address(rscratch1, 0));
  8073 void MacroAssembler::movptr(Register dst, Register src) {
  8074   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8077 void MacroAssembler::movptr(Register dst, Address src) {
  8078   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8081 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  8082 void MacroAssembler::movptr(Register dst, intptr_t src) {
  8083   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  8086 void MacroAssembler::movptr(Address dst, Register src) {
  8087   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8090 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  8091   if (reachable(src)) {
  8092     Assembler::movsd(dst, as_Address(src));
  8093   } else {
  8094     lea(rscratch1, src);
  8095     Assembler::movsd(dst, Address(rscratch1, 0));
  8099 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  8100   if (reachable(src)) {
  8101     Assembler::movss(dst, as_Address(src));
  8102   } else {
  8103     lea(rscratch1, src);
  8104     Assembler::movss(dst, Address(rscratch1, 0));
  8108 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  8109   if (reachable(src)) {
  8110     Assembler::mulsd(dst, as_Address(src));
  8111   } else {
  8112     lea(rscratch1, src);
  8113     Assembler::mulsd(dst, Address(rscratch1, 0));
  8117 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  8118   if (reachable(src)) {
  8119     Assembler::mulss(dst, as_Address(src));
  8120   } else {
  8121     lea(rscratch1, src);
  8122     Assembler::mulss(dst, Address(rscratch1, 0));
  8126 void MacroAssembler::null_check(Register reg, int offset) {
  8127   if (needs_explicit_null_check(offset)) {
  8128     // provoke OS NULL exception if reg = NULL by
  8129     // accessing M[reg] w/o changing any (non-CC) registers
  8130     // NOTE: cmpl is plenty here to provoke a segv
  8131     cmpptr(rax, Address(reg, 0));
  8132     // Note: should probably use testl(rax, Address(reg, 0));
  8133     //       may be shorter code (however, this version of
  8134     //       testl needs to be implemented first)
  8135   } else {
  8136     // nothing to do, (later) access of M[reg + offset]
  8137     // will provoke OS NULL exception if reg = NULL
  8141 void MacroAssembler::os_breakpoint() {
  8142   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  8143   // (e.g., MSVC can't call ps() otherwise)
  8144   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  8147 void MacroAssembler::pop_CPU_state() {
  8148   pop_FPU_state();
  8149   pop_IU_state();
  8152 void MacroAssembler::pop_FPU_state() {
  8153   NOT_LP64(frstor(Address(rsp, 0));)
  8154   LP64_ONLY(fxrstor(Address(rsp, 0));)
  8155   addptr(rsp, FPUStateSizeInWords * wordSize);
  8158 void MacroAssembler::pop_IU_state() {
  8159   popa();
  8160   LP64_ONLY(addq(rsp, 8));
  8161   popf();
  8164 // Save Integer and Float state
  8165 // Warning: Stack must be 16 byte aligned (64bit)
  8166 void MacroAssembler::push_CPU_state() {
  8167   push_IU_state();
  8168   push_FPU_state();
  8171 void MacroAssembler::push_FPU_state() {
  8172   subptr(rsp, FPUStateSizeInWords * wordSize);
  8173 #ifndef _LP64
  8174   fnsave(Address(rsp, 0));
  8175   fwait();
  8176 #else
  8177   fxsave(Address(rsp, 0));
  8178 #endif // LP64
  8181 void MacroAssembler::push_IU_state() {
  8182   // Push flags first because pusha kills them
  8183   pushf();
  8184   // Make sure rsp stays 16-byte aligned
  8185   LP64_ONLY(subq(rsp, 8));
  8186   pusha();
  8189 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  8190   // determine java_thread register
  8191   if (!java_thread->is_valid()) {
  8192     java_thread = rdi;
  8193     get_thread(java_thread);
  8195   // we must set sp to zero to clear frame
  8196   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  8197   if (clear_fp) {
  8198     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  8201   if (clear_pc)
  8202     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  8206 void MacroAssembler::restore_rax(Register tmp) {
  8207   if (tmp == noreg) pop(rax);
  8208   else if (tmp != rax) mov(rax, tmp);
  8211 void MacroAssembler::round_to(Register reg, int modulus) {
  8212   addptr(reg, modulus - 1);
  8213   andptr(reg, -modulus);
  8216 void MacroAssembler::save_rax(Register tmp) {
  8217   if (tmp == noreg) push(rax);
  8218   else if (tmp != rax) mov(tmp, rax);
  8221 // Write serialization page so VM thread can do a pseudo remote membar.
  8222 // We use the current thread pointer to calculate a thread specific
  8223 // offset to write to within the page. This minimizes bus traffic
  8224 // due to cache line collision.
  8225 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  8226   movl(tmp, thread);
  8227   shrl(tmp, os::get_serialize_page_shift_count());
  8228   andl(tmp, (os::vm_page_size() - sizeof(int)));
  8230   Address index(noreg, tmp, Address::times_1);
  8231   ExternalAddress page(os::get_memory_serialize_page());
  8233   // Size of store must match masking code above
  8234   movl(as_Address(ArrayAddress(page, index)), tmp);
  8237 // Calls to C land
  8238 //
  8239 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  8240 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  8241 // has to be reset to 0. This is required to allow proper stack traversal.
  8242 void MacroAssembler::set_last_Java_frame(Register java_thread,
  8243                                          Register last_java_sp,
  8244                                          Register last_java_fp,
  8245                                          address  last_java_pc) {
  8246   // determine java_thread register
  8247   if (!java_thread->is_valid()) {
  8248     java_thread = rdi;
  8249     get_thread(java_thread);
  8251   // determine last_java_sp register
  8252   if (!last_java_sp->is_valid()) {
  8253     last_java_sp = rsp;
  8256   // last_java_fp is optional
  8258   if (last_java_fp->is_valid()) {
  8259     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  8262   // last_java_pc is optional
  8264   if (last_java_pc != NULL) {
  8265     lea(Address(java_thread,
  8266                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  8267         InternalAddress(last_java_pc));
  8270   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  8273 void MacroAssembler::shlptr(Register dst, int imm8) {
  8274   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  8277 void MacroAssembler::shrptr(Register dst, int imm8) {
  8278   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  8281 void MacroAssembler::sign_extend_byte(Register reg) {
  8282   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  8283     movsbl(reg, reg); // movsxb
  8284   } else {
  8285     shll(reg, 24);
  8286     sarl(reg, 24);
  8290 void MacroAssembler::sign_extend_short(Register reg) {
  8291   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  8292     movswl(reg, reg); // movsxw
  8293   } else {
  8294     shll(reg, 16);
  8295     sarl(reg, 16);
  8299 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  8300   assert(reachable(src), "Address should be reachable");
  8301   testl(dst, as_Address(src));
  8304 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  8305   if (reachable(src)) {
  8306     Assembler::sqrtsd(dst, as_Address(src));
  8307   } else {
  8308     lea(rscratch1, src);
  8309     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  8313 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  8314   if (reachable(src)) {
  8315     Assembler::sqrtss(dst, as_Address(src));
  8316   } else {
  8317     lea(rscratch1, src);
  8318     Assembler::sqrtss(dst, Address(rscratch1, 0));
  8322 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  8323   if (reachable(src)) {
  8324     Assembler::subsd(dst, as_Address(src));
  8325   } else {
  8326     lea(rscratch1, src);
  8327     Assembler::subsd(dst, Address(rscratch1, 0));
  8331 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  8332   if (reachable(src)) {
  8333     Assembler::subss(dst, as_Address(src));
  8334   } else {
  8335     lea(rscratch1, src);
  8336     Assembler::subss(dst, Address(rscratch1, 0));
  8340 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  8341   if (reachable(src)) {
  8342     Assembler::ucomisd(dst, as_Address(src));
  8343   } else {
  8344     lea(rscratch1, src);
  8345     Assembler::ucomisd(dst, Address(rscratch1, 0));
  8349 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  8350   if (reachable(src)) {
  8351     Assembler::ucomiss(dst, as_Address(src));
  8352   } else {
  8353     lea(rscratch1, src);
  8354     Assembler::ucomiss(dst, Address(rscratch1, 0));
  8358 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  8359   // Used in sign-bit flipping with aligned address.
  8360   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8361   if (reachable(src)) {
  8362     Assembler::xorpd(dst, as_Address(src));
  8363   } else {
  8364     lea(rscratch1, src);
  8365     Assembler::xorpd(dst, Address(rscratch1, 0));
  8369 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  8370   // Used in sign-bit flipping with aligned address.
  8371   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8372   if (reachable(src)) {
  8373     Assembler::xorps(dst, as_Address(src));
  8374   } else {
  8375     lea(rscratch1, src);
  8376     Assembler::xorps(dst, Address(rscratch1, 0));
  8380 // AVX 3-operands instructions
  8382 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8383   if (reachable(src)) {
  8384     vaddsd(dst, nds, as_Address(src));
  8385   } else {
  8386     lea(rscratch1, src);
  8387     vaddsd(dst, nds, Address(rscratch1, 0));
  8391 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8392   if (reachable(src)) {
  8393     vaddss(dst, nds, as_Address(src));
  8394   } else {
  8395     lea(rscratch1, src);
  8396     vaddss(dst, nds, Address(rscratch1, 0));
  8400 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8401   if (reachable(src)) {
  8402     vandpd(dst, nds, as_Address(src), vector256);
  8403   } else {
  8404     lea(rscratch1, src);
  8405     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  8409 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8410   if (reachable(src)) {
  8411     vandps(dst, nds, as_Address(src), vector256);
  8412   } else {
  8413     lea(rscratch1, src);
  8414     vandps(dst, nds, Address(rscratch1, 0), vector256);
  8418 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8419   if (reachable(src)) {
  8420     vdivsd(dst, nds, as_Address(src));
  8421   } else {
  8422     lea(rscratch1, src);
  8423     vdivsd(dst, nds, Address(rscratch1, 0));
  8427 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8428   if (reachable(src)) {
  8429     vdivss(dst, nds, as_Address(src));
  8430   } else {
  8431     lea(rscratch1, src);
  8432     vdivss(dst, nds, Address(rscratch1, 0));
  8436 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8437   if (reachable(src)) {
  8438     vmulsd(dst, nds, as_Address(src));
  8439   } else {
  8440     lea(rscratch1, src);
  8441     vmulsd(dst, nds, Address(rscratch1, 0));
  8445 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8446   if (reachable(src)) {
  8447     vmulss(dst, nds, as_Address(src));
  8448   } else {
  8449     lea(rscratch1, src);
  8450     vmulss(dst, nds, Address(rscratch1, 0));
  8454 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8455   if (reachable(src)) {
  8456     vsubsd(dst, nds, as_Address(src));
  8457   } else {
  8458     lea(rscratch1, src);
  8459     vsubsd(dst, nds, Address(rscratch1, 0));
  8463 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8464   if (reachable(src)) {
  8465     vsubss(dst, nds, as_Address(src));
  8466   } else {
  8467     lea(rscratch1, src);
  8468     vsubss(dst, nds, Address(rscratch1, 0));
  8472 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8473   if (reachable(src)) {
  8474     vxorpd(dst, nds, as_Address(src), vector256);
  8475   } else {
  8476     lea(rscratch1, src);
  8477     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  8481 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8482   if (reachable(src)) {
  8483     vxorps(dst, nds, as_Address(src), vector256);
  8484   } else {
  8485     lea(rscratch1, src);
  8486     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  8491 //////////////////////////////////////////////////////////////////////////////////
  8492 #ifndef SERIALGC
  8494 void MacroAssembler::g1_write_barrier_pre(Register obj,
  8495                                           Register pre_val,
  8496                                           Register thread,
  8497                                           Register tmp,
  8498                                           bool tosca_live,
  8499                                           bool expand_call) {
  8501   // If expand_call is true then we expand the call_VM_leaf macro
  8502   // directly to skip generating the check by
  8503   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  8505 #ifdef _LP64
  8506   assert(thread == r15_thread, "must be");
  8507 #endif // _LP64
  8509   Label done;
  8510   Label runtime;
  8512   assert(pre_val != noreg, "check this code");
  8514   if (obj != noreg) {
  8515     assert_different_registers(obj, pre_val, tmp);
  8516     assert(pre_val != rax, "check this code");
  8519   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8520                                        PtrQueue::byte_offset_of_active()));
  8521   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8522                                        PtrQueue::byte_offset_of_index()));
  8523   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8524                                        PtrQueue::byte_offset_of_buf()));
  8527   // Is marking active?
  8528   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8529     cmpl(in_progress, 0);
  8530   } else {
  8531     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8532     cmpb(in_progress, 0);
  8534   jcc(Assembler::equal, done);
  8536   // Do we need to load the previous value?
  8537   if (obj != noreg) {
  8538     load_heap_oop(pre_val, Address(obj, 0));
  8541   // Is the previous value null?
  8542   cmpptr(pre_val, (int32_t) NULL_WORD);
  8543   jcc(Assembler::equal, done);
  8545   // Can we store original value in the thread's buffer?
  8546   // Is index == 0?
  8547   // (The index field is typed as size_t.)
  8549   movptr(tmp, index);                   // tmp := *index_adr
  8550   cmpptr(tmp, 0);                       // tmp == 0?
  8551   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8553   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8554   movptr(index, tmp);                   // *index_adr := tmp
  8555   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8557   // Record the previous value
  8558   movptr(Address(tmp, 0), pre_val);
  8559   jmp(done);
  8561   bind(runtime);
  8562   // save the live input values
  8563   if(tosca_live) push(rax);
  8565   if (obj != noreg && obj != rax)
  8566     push(obj);
  8568   if (pre_val != rax)
  8569     push(pre_val);
  8571   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8572   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8573   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8574   //
  8575   // If we care generating the pre-barrier without a frame (e.g. in the
  8576   // intrinsified Reference.get() routine) then ebp might be pointing to
  8577   // the caller frame and so this check will most likely fail at runtime.
  8578   //
  8579   // Expanding the call directly bypasses the generation of the check.
  8580   // So when we do not have have a full interpreter frame on the stack
  8581   // expand_call should be passed true.
  8583   NOT_LP64( push(thread); )
  8585   if (expand_call) {
  8586     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8587     pass_arg1(this, thread);
  8588     pass_arg0(this, pre_val);
  8589     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8590   } else {
  8591     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8594   NOT_LP64( pop(thread); )
  8596   // save the live input values
  8597   if (pre_val != rax)
  8598     pop(pre_val);
  8600   if (obj != noreg && obj != rax)
  8601     pop(obj);
  8603   if(tosca_live) pop(rax);
  8605   bind(done);
  8608 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8609                                            Register new_val,
  8610                                            Register thread,
  8611                                            Register tmp,
  8612                                            Register tmp2) {
  8613 #ifdef _LP64
  8614   assert(thread == r15_thread, "must be");
  8615 #endif // _LP64
  8617   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8618                                        PtrQueue::byte_offset_of_index()));
  8619   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8620                                        PtrQueue::byte_offset_of_buf()));
  8622   BarrierSet* bs = Universe::heap()->barrier_set();
  8623   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8624   Label done;
  8625   Label runtime;
  8627   // Does store cross heap regions?
  8629   movptr(tmp, store_addr);
  8630   xorptr(tmp, new_val);
  8631   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8632   jcc(Assembler::equal, done);
  8634   // crosses regions, storing NULL?
  8636   cmpptr(new_val, (int32_t) NULL_WORD);
  8637   jcc(Assembler::equal, done);
  8639   // storing region crossing non-NULL, is card already dirty?
  8641   ExternalAddress cardtable((address) ct->byte_map_base);
  8642   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8643 #ifdef _LP64
  8644   const Register card_addr = tmp;
  8646   movq(card_addr, store_addr);
  8647   shrq(card_addr, CardTableModRefBS::card_shift);
  8649   lea(tmp2, cardtable);
  8651   // get the address of the card
  8652   addq(card_addr, tmp2);
  8653 #else
  8654   const Register card_index = tmp;
  8656   movl(card_index, store_addr);
  8657   shrl(card_index, CardTableModRefBS::card_shift);
  8659   Address index(noreg, card_index, Address::times_1);
  8660   const Register card_addr = tmp;
  8661   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8662 #endif
  8663   cmpb(Address(card_addr, 0), 0);
  8664   jcc(Assembler::equal, done);
  8666   // storing a region crossing, non-NULL oop, card is clean.
  8667   // dirty card and log.
  8669   movb(Address(card_addr, 0), 0);
  8671   cmpl(queue_index, 0);
  8672   jcc(Assembler::equal, runtime);
  8673   subl(queue_index, wordSize);
  8674   movptr(tmp2, buffer);
  8675 #ifdef _LP64
  8676   movslq(rscratch1, queue_index);
  8677   addq(tmp2, rscratch1);
  8678   movq(Address(tmp2, 0), card_addr);
  8679 #else
  8680   addl(tmp2, queue_index);
  8681   movl(Address(tmp2, 0), card_index);
  8682 #endif
  8683   jmp(done);
  8685   bind(runtime);
  8686   // save the live input values
  8687   push(store_addr);
  8688   push(new_val);
  8689 #ifdef _LP64
  8690   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8691 #else
  8692   push(thread);
  8693   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8694   pop(thread);
  8695 #endif
  8696   pop(new_val);
  8697   pop(store_addr);
  8699   bind(done);
  8702 #endif // SERIALGC
  8703 //////////////////////////////////////////////////////////////////////////////////
  8706 void MacroAssembler::store_check(Register obj) {
  8707   // Does a store check for the oop in register obj. The content of
  8708   // register obj is destroyed afterwards.
  8709   store_check_part_1(obj);
  8710   store_check_part_2(obj);
  8713 void MacroAssembler::store_check(Register obj, Address dst) {
  8714   store_check(obj);
  8718 // split the store check operation so that other instructions can be scheduled inbetween
  8719 void MacroAssembler::store_check_part_1(Register obj) {
  8720   BarrierSet* bs = Universe::heap()->barrier_set();
  8721   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8722   shrptr(obj, CardTableModRefBS::card_shift);
  8725 void MacroAssembler::store_check_part_2(Register obj) {
  8726   BarrierSet* bs = Universe::heap()->barrier_set();
  8727   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8728   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8729   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8731   // The calculation for byte_map_base is as follows:
  8732   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8733   // So this essentially converts an address to a displacement and
  8734   // it will never need to be relocated. On 64bit however the value may be too
  8735   // large for a 32bit displacement
  8737   intptr_t disp = (intptr_t) ct->byte_map_base;
  8738   if (is_simm32(disp)) {
  8739     Address cardtable(noreg, obj, Address::times_1, disp);
  8740     movb(cardtable, 0);
  8741   } else {
  8742     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8743     // displacement and done in a single instruction given favorable mapping and
  8744     // a smarter version of as_Address. Worst case it is two instructions which
  8745     // is no worse off then loading disp into a register and doing as a simple
  8746     // Address() as above.
  8747     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8748     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8749     // in some cases we'll get a single instruction version.
  8751     ExternalAddress cardtable((address)disp);
  8752     Address index(noreg, obj, Address::times_1);
  8753     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8757 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8758   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8761 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8762 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8763   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8766 void MacroAssembler::subptr(Register dst, Register src) {
  8767   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8770 // C++ bool manipulation
  8771 void MacroAssembler::testbool(Register dst) {
  8772   if(sizeof(bool) == 1)
  8773     testb(dst, 0xff);
  8774   else if(sizeof(bool) == 2) {
  8775     // testw implementation needed for two byte bools
  8776     ShouldNotReachHere();
  8777   } else if(sizeof(bool) == 4)
  8778     testl(dst, dst);
  8779   else
  8780     // unsupported
  8781     ShouldNotReachHere();
  8784 void MacroAssembler::testptr(Register dst, Register src) {
  8785   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8788 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8789 void MacroAssembler::tlab_allocate(Register obj,
  8790                                    Register var_size_in_bytes,
  8791                                    int con_size_in_bytes,
  8792                                    Register t1,
  8793                                    Register t2,
  8794                                    Label& slow_case) {
  8795   assert_different_registers(obj, t1, t2);
  8796   assert_different_registers(obj, var_size_in_bytes, t1);
  8797   Register end = t2;
  8798   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8800   verify_tlab();
  8802   NOT_LP64(get_thread(thread));
  8804   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8805   if (var_size_in_bytes == noreg) {
  8806     lea(end, Address(obj, con_size_in_bytes));
  8807   } else {
  8808     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8810   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8811   jcc(Assembler::above, slow_case);
  8813   // update the tlab top pointer
  8814   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8816   // recover var_size_in_bytes if necessary
  8817   if (var_size_in_bytes == end) {
  8818     subptr(var_size_in_bytes, obj);
  8820   verify_tlab();
  8823 // Preserves rbx, and rdx.
  8824 Register MacroAssembler::tlab_refill(Label& retry,
  8825                                      Label& try_eden,
  8826                                      Label& slow_case) {
  8827   Register top = rax;
  8828   Register t1  = rcx;
  8829   Register t2  = rsi;
  8830   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8831   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8832   Label do_refill, discard_tlab;
  8834   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8835     // No allocation in the shared eden.
  8836     jmp(slow_case);
  8839   NOT_LP64(get_thread(thread_reg));
  8841   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8842   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8844   // calculate amount of free space
  8845   subptr(t1, top);
  8846   shrptr(t1, LogHeapWordSize);
  8848   // Retain tlab and allocate object in shared space if
  8849   // the amount free in the tlab is too large to discard.
  8850   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8851   jcc(Assembler::lessEqual, discard_tlab);
  8853   // Retain
  8854   // %%% yuck as movptr...
  8855   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8856   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8857   if (TLABStats) {
  8858     // increment number of slow_allocations
  8859     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8861   jmp(try_eden);
  8863   bind(discard_tlab);
  8864   if (TLABStats) {
  8865     // increment number of refills
  8866     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8867     // accumulate wastage -- t1 is amount free in tlab
  8868     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8871   // if tlab is currently allocated (top or end != null) then
  8872   // fill [top, end + alignment_reserve) with array object
  8873   testptr(top, top);
  8874   jcc(Assembler::zero, do_refill);
  8876   // set up the mark word
  8877   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8878   // set the length to the remaining space
  8879   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8880   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8881   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8882   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8883   // set klass to intArrayKlass
  8884   // dubious reloc why not an oop reloc?
  8885   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8886   // store klass last.  concurrent gcs assumes klass length is valid if
  8887   // klass field is not null.
  8888   store_klass(top, t1);
  8890   movptr(t1, top);
  8891   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8892   incr_allocated_bytes(thread_reg, t1, 0);
  8894   // refill the tlab with an eden allocation
  8895   bind(do_refill);
  8896   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8897   shlptr(t1, LogHeapWordSize);
  8898   // allocate new tlab, address returned in top
  8899   eden_allocate(top, t1, 0, t2, slow_case);
  8901   // Check that t1 was preserved in eden_allocate.
  8902 #ifdef ASSERT
  8903   if (UseTLAB) {
  8904     Label ok;
  8905     Register tsize = rsi;
  8906     assert_different_registers(tsize, thread_reg, t1);
  8907     push(tsize);
  8908     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8909     shlptr(tsize, LogHeapWordSize);
  8910     cmpptr(t1, tsize);
  8911     jcc(Assembler::equal, ok);
  8912     STOP("assert(t1 != tlab size)");
  8913     should_not_reach_here();
  8915     bind(ok);
  8916     pop(tsize);
  8918 #endif
  8919   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8920   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8921   addptr(top, t1);
  8922   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8923   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8924   verify_tlab();
  8925   jmp(retry);
  8927   return thread_reg; // for use by caller
  8930 void MacroAssembler::incr_allocated_bytes(Register thread,
  8931                                           Register var_size_in_bytes,
  8932                                           int con_size_in_bytes,
  8933                                           Register t1) {
  8934   if (!thread->is_valid()) {
  8935 #ifdef _LP64
  8936     thread = r15_thread;
  8937 #else
  8938     assert(t1->is_valid(), "need temp reg");
  8939     thread = t1;
  8940     get_thread(thread);
  8941 #endif
  8944 #ifdef _LP64
  8945   if (var_size_in_bytes->is_valid()) {
  8946     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8947   } else {
  8948     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8950 #else
  8951   if (var_size_in_bytes->is_valid()) {
  8952     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8953   } else {
  8954     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8956   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8957 #endif
  8960 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8961   pusha();
  8963   // if we are coming from c1, xmm registers may be live
  8964   int off = 0;
  8965   if (UseSSE == 1)  {
  8966     subptr(rsp, sizeof(jdouble)*8);
  8967     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8968     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8969     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8970     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8971     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8972     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8973     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8974     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8975   } else if (UseSSE >= 2)  {
  8976 #ifdef COMPILER2
  8977     if (MaxVectorSize > 16) {
  8978       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  8979       // Save upper half of YMM registes
  8980       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  8981       vextractf128h(Address(rsp,  0),xmm0);
  8982       vextractf128h(Address(rsp, 16),xmm1);
  8983       vextractf128h(Address(rsp, 32),xmm2);
  8984       vextractf128h(Address(rsp, 48),xmm3);
  8985       vextractf128h(Address(rsp, 64),xmm4);
  8986       vextractf128h(Address(rsp, 80),xmm5);
  8987       vextractf128h(Address(rsp, 96),xmm6);
  8988       vextractf128h(Address(rsp,112),xmm7);
  8989 #ifdef _LP64
  8990       vextractf128h(Address(rsp,128),xmm8);
  8991       vextractf128h(Address(rsp,144),xmm9);
  8992       vextractf128h(Address(rsp,160),xmm10);
  8993       vextractf128h(Address(rsp,176),xmm11);
  8994       vextractf128h(Address(rsp,192),xmm12);
  8995       vextractf128h(Address(rsp,208),xmm13);
  8996       vextractf128h(Address(rsp,224),xmm14);
  8997       vextractf128h(Address(rsp,240),xmm15);
  8998 #endif
  9000 #endif
  9001     // Save whole 128bit (16 bytes) XMM regiters
  9002     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9003     movdqu(Address(rsp,off++*16),xmm0);
  9004     movdqu(Address(rsp,off++*16),xmm1);
  9005     movdqu(Address(rsp,off++*16),xmm2);
  9006     movdqu(Address(rsp,off++*16),xmm3);
  9007     movdqu(Address(rsp,off++*16),xmm4);
  9008     movdqu(Address(rsp,off++*16),xmm5);
  9009     movdqu(Address(rsp,off++*16),xmm6);
  9010     movdqu(Address(rsp,off++*16),xmm7);
  9011 #ifdef _LP64
  9012     movdqu(Address(rsp,off++*16),xmm8);
  9013     movdqu(Address(rsp,off++*16),xmm9);
  9014     movdqu(Address(rsp,off++*16),xmm10);
  9015     movdqu(Address(rsp,off++*16),xmm11);
  9016     movdqu(Address(rsp,off++*16),xmm12);
  9017     movdqu(Address(rsp,off++*16),xmm13);
  9018     movdqu(Address(rsp,off++*16),xmm14);
  9019     movdqu(Address(rsp,off++*16),xmm15);
  9020 #endif
  9023   // Preserve registers across runtime call
  9024   int incoming_argument_and_return_value_offset = -1;
  9025   if (num_fpu_regs_in_use > 1) {
  9026     // Must preserve all other FPU regs (could alternatively convert
  9027     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  9028     // FPU state, but can not trust C compiler)
  9029     NEEDS_CLEANUP;
  9030     // NOTE that in this case we also push the incoming argument(s) to
  9031     // the stack and restore it later; we also use this stack slot to
  9032     // hold the return value from dsin, dcos etc.
  9033     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  9034       subptr(rsp, sizeof(jdouble));
  9035       fstp_d(Address(rsp, 0));
  9037     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  9038     for (int i = nb_args-1; i >= 0; i--) {
  9039       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  9043   subptr(rsp, nb_args*sizeof(jdouble));
  9044   for (int i = 0; i < nb_args; i++) {
  9045     fstp_d(Address(rsp, i*sizeof(jdouble)));
  9048 #ifdef _LP64
  9049   if (nb_args > 0) {
  9050     movdbl(xmm0, Address(rsp, 0));
  9052   if (nb_args > 1) {
  9053     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  9055   assert(nb_args <= 2, "unsupported number of args");
  9056 #endif // _LP64
  9058   // NOTE: we must not use call_VM_leaf here because that requires a
  9059   // complete interpreter frame in debug mode -- same bug as 4387334
  9060   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  9061   // do proper 64bit abi
  9063   NEEDS_CLEANUP;
  9064   // Need to add stack banging before this runtime call if it needs to
  9065   // be taken; however, there is no generic stack banging routine at
  9066   // the MacroAssembler level
  9068   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  9070 #ifdef _LP64
  9071   movsd(Address(rsp, 0), xmm0);
  9072   fld_d(Address(rsp, 0));
  9073 #endif // _LP64
  9074   addptr(rsp, sizeof(jdouble) * nb_args);
  9075   if (num_fpu_regs_in_use > 1) {
  9076     // Must save return value to stack and then restore entire FPU
  9077     // stack except incoming arguments
  9078     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  9079     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  9080       fld_d(Address(rsp, 0));
  9081       addptr(rsp, sizeof(jdouble));
  9083     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  9084     addptr(rsp, sizeof(jdouble) * nb_args);
  9087   off = 0;
  9088   if (UseSSE == 1)  {
  9089     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  9090     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  9091     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  9092     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  9093     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  9094     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  9095     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  9096     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  9097     addptr(rsp, sizeof(jdouble)*8);
  9098   } else if (UseSSE >= 2)  {
  9099     // Restore whole 128bit (16 bytes) XMM regiters
  9100     movdqu(xmm0, Address(rsp,off++*16));
  9101     movdqu(xmm1, Address(rsp,off++*16));
  9102     movdqu(xmm2, Address(rsp,off++*16));
  9103     movdqu(xmm3, Address(rsp,off++*16));
  9104     movdqu(xmm4, Address(rsp,off++*16));
  9105     movdqu(xmm5, Address(rsp,off++*16));
  9106     movdqu(xmm6, Address(rsp,off++*16));
  9107     movdqu(xmm7, Address(rsp,off++*16));
  9108 #ifdef _LP64
  9109     movdqu(xmm8, Address(rsp,off++*16));
  9110     movdqu(xmm9, Address(rsp,off++*16));
  9111     movdqu(xmm10, Address(rsp,off++*16));
  9112     movdqu(xmm11, Address(rsp,off++*16));
  9113     movdqu(xmm12, Address(rsp,off++*16));
  9114     movdqu(xmm13, Address(rsp,off++*16));
  9115     movdqu(xmm14, Address(rsp,off++*16));
  9116     movdqu(xmm15, Address(rsp,off++*16));
  9117 #endif
  9118     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9119 #ifdef COMPILER2
  9120     if (MaxVectorSize > 16) {
  9121       // Restore upper half of YMM registes.
  9122       vinsertf128h(xmm0, Address(rsp,  0));
  9123       vinsertf128h(xmm1, Address(rsp, 16));
  9124       vinsertf128h(xmm2, Address(rsp, 32));
  9125       vinsertf128h(xmm3, Address(rsp, 48));
  9126       vinsertf128h(xmm4, Address(rsp, 64));
  9127       vinsertf128h(xmm5, Address(rsp, 80));
  9128       vinsertf128h(xmm6, Address(rsp, 96));
  9129       vinsertf128h(xmm7, Address(rsp,112));
  9130 #ifdef _LP64
  9131       vinsertf128h(xmm8, Address(rsp,128));
  9132       vinsertf128h(xmm9, Address(rsp,144));
  9133       vinsertf128h(xmm10, Address(rsp,160));
  9134       vinsertf128h(xmm11, Address(rsp,176));
  9135       vinsertf128h(xmm12, Address(rsp,192));
  9136       vinsertf128h(xmm13, Address(rsp,208));
  9137       vinsertf128h(xmm14, Address(rsp,224));
  9138       vinsertf128h(xmm15, Address(rsp,240));
  9139 #endif
  9140       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9142 #endif
  9144   popa();
  9147 static const double     pi_4 =  0.7853981633974483;
  9149 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  9150   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  9151   // was attempted in this code; unfortunately it appears that the
  9152   // switch to 80-bit precision and back causes this to be
  9153   // unprofitable compared with simply performing a runtime call if
  9154   // the argument is out of the (-pi/4, pi/4) range.
  9156   Register tmp = noreg;
  9157   if (!VM_Version::supports_cmov()) {
  9158     // fcmp needs a temporary so preserve rbx,
  9159     tmp = rbx;
  9160     push(tmp);
  9163   Label slow_case, done;
  9165   ExternalAddress pi4_adr = (address)&pi_4;
  9166   if (reachable(pi4_adr)) {
  9167     // x ?<= pi/4
  9168     fld_d(pi4_adr);
  9169     fld_s(1);                // Stack:  X  PI/4  X
  9170     fabs();                  // Stack: |X| PI/4  X
  9171     fcmp(tmp);
  9172     jcc(Assembler::above, slow_case);
  9174     // fastest case: -pi/4 <= x <= pi/4
  9175     switch(trig) {
  9176     case 's':
  9177       fsin();
  9178       break;
  9179     case 'c':
  9180       fcos();
  9181       break;
  9182     case 't':
  9183       ftan();
  9184       break;
  9185     default:
  9186       assert(false, "bad intrinsic");
  9187       break;
  9189     jmp(done);
  9192   // slow case: runtime call
  9193   bind(slow_case);
  9195   switch(trig) {
  9196   case 's':
  9198       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  9200     break;
  9201   case 'c':
  9203       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  9205     break;
  9206   case 't':
  9208       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  9210     break;
  9211   default:
  9212     assert(false, "bad intrinsic");
  9213     break;
  9216   // Come here with result in F-TOS
  9217   bind(done);
  9219   if (tmp != noreg) {
  9220     pop(tmp);
  9225 // Look up the method for a megamorphic invokeinterface call.
  9226 // The target method is determined by <intf_klass, itable_index>.
  9227 // The receiver klass is in recv_klass.
  9228 // On success, the result will be in method_result, and execution falls through.
  9229 // On failure, execution transfers to the given label.
  9230 void MacroAssembler::lookup_interface_method(Register recv_klass,
  9231                                              Register intf_klass,
  9232                                              RegisterOrConstant itable_index,
  9233                                              Register method_result,
  9234                                              Register scan_temp,
  9235                                              Label& L_no_such_interface) {
  9236   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  9237   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  9238          "caller must use same register for non-constant itable index as for method");
  9240   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  9241   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  9242   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  9243   int scan_step   = itableOffsetEntry::size() * wordSize;
  9244   int vte_size    = vtableEntry::size() * wordSize;
  9245   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  9246   assert(vte_size == wordSize, "else adjust times_vte_scale");
  9248   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  9250   // %%% Could store the aligned, prescaled offset in the klassoop.
  9251   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  9252   if (HeapWordsPerLong > 1) {
  9253     // Round up to align_object_offset boundary
  9254     // see code for InstanceKlass::start_of_itable!
  9255     round_to(scan_temp, BytesPerLong);
  9258   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  9259   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  9260   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  9262   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  9263   //   if (scan->interface() == intf) {
  9264   //     result = (klass + scan->offset() + itable_index);
  9265   //   }
  9266   // }
  9267   Label search, found_method;
  9269   for (int peel = 1; peel >= 0; peel--) {
  9270     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  9271     cmpptr(intf_klass, method_result);
  9273     if (peel) {
  9274       jccb(Assembler::equal, found_method);
  9275     } else {
  9276       jccb(Assembler::notEqual, search);
  9277       // (invert the test to fall through to found_method...)
  9280     if (!peel)  break;
  9282     bind(search);
  9284     // Check that the previous entry is non-null.  A null entry means that
  9285     // the receiver class doesn't implement the interface, and wasn't the
  9286     // same as when the caller was compiled.
  9287     testptr(method_result, method_result);
  9288     jcc(Assembler::zero, L_no_such_interface);
  9289     addptr(scan_temp, scan_step);
  9292   bind(found_method);
  9294   // Got a hit.
  9295   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  9296   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  9300 // virtual method calling
  9301 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  9302                                            RegisterOrConstant vtable_index,
  9303                                            Register method_result) {
  9304   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  9305   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  9306   Address vtable_entry_addr(recv_klass,
  9307                             vtable_index, Address::times_ptr,
  9308                             base + vtableEntry::method_offset_in_bytes());
  9309   movptr(method_result, vtable_entry_addr);
  9313 void MacroAssembler::check_klass_subtype(Register sub_klass,
  9314                            Register super_klass,
  9315                            Register temp_reg,
  9316                            Label& L_success) {
  9317   Label L_failure;
  9318   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  9319   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  9320   bind(L_failure);
  9324 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  9325                                                    Register super_klass,
  9326                                                    Register temp_reg,
  9327                                                    Label* L_success,
  9328                                                    Label* L_failure,
  9329                                                    Label* L_slow_path,
  9330                                         RegisterOrConstant super_check_offset) {
  9331   assert_different_registers(sub_klass, super_klass, temp_reg);
  9332   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  9333   if (super_check_offset.is_register()) {
  9334     assert_different_registers(sub_klass, super_klass,
  9335                                super_check_offset.as_register());
  9336   } else if (must_load_sco) {
  9337     assert(temp_reg != noreg, "supply either a temp or a register offset");
  9340   Label L_fallthrough;
  9341   int label_nulls = 0;
  9342   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9343   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9344   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  9345   assert(label_nulls <= 1, "at most one NULL in the batch");
  9347   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9348   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  9349   Address super_check_offset_addr(super_klass, sco_offset);
  9351   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  9352   // range of a jccb.  If this routine grows larger, reconsider at
  9353   // least some of these.
  9354 #define local_jcc(assembler_cond, label)                                \
  9355   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  9356   else                             jcc( assembler_cond, label) /*omit semi*/
  9358   // Hacked jmp, which may only be used just before L_fallthrough.
  9359 #define final_jmp(label)                                                \
  9360   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  9361   else                            jmp(label)                /*omit semi*/
  9363   // If the pointers are equal, we are done (e.g., String[] elements).
  9364   // This self-check enables sharing of secondary supertype arrays among
  9365   // non-primary types such as array-of-interface.  Otherwise, each such
  9366   // type would need its own customized SSA.
  9367   // We move this check to the front of the fast path because many
  9368   // type checks are in fact trivially successful in this manner,
  9369   // so we get a nicely predicted branch right at the start of the check.
  9370   cmpptr(sub_klass, super_klass);
  9371   local_jcc(Assembler::equal, *L_success);
  9373   // Check the supertype display:
  9374   if (must_load_sco) {
  9375     // Positive movl does right thing on LP64.
  9376     movl(temp_reg, super_check_offset_addr);
  9377     super_check_offset = RegisterOrConstant(temp_reg);
  9379   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  9380   cmpptr(super_klass, super_check_addr); // load displayed supertype
  9382   // This check has worked decisively for primary supers.
  9383   // Secondary supers are sought in the super_cache ('super_cache_addr').
  9384   // (Secondary supers are interfaces and very deeply nested subtypes.)
  9385   // This works in the same check above because of a tricky aliasing
  9386   // between the super_cache and the primary super display elements.
  9387   // (The 'super_check_addr' can address either, as the case requires.)
  9388   // Note that the cache is updated below if it does not help us find
  9389   // what we need immediately.
  9390   // So if it was a primary super, we can just fail immediately.
  9391   // Otherwise, it's the slow path for us (no success at this point).
  9393   if (super_check_offset.is_register()) {
  9394     local_jcc(Assembler::equal, *L_success);
  9395     cmpl(super_check_offset.as_register(), sc_offset);
  9396     if (L_failure == &L_fallthrough) {
  9397       local_jcc(Assembler::equal, *L_slow_path);
  9398     } else {
  9399       local_jcc(Assembler::notEqual, *L_failure);
  9400       final_jmp(*L_slow_path);
  9402   } else if (super_check_offset.as_constant() == sc_offset) {
  9403     // Need a slow path; fast failure is impossible.
  9404     if (L_slow_path == &L_fallthrough) {
  9405       local_jcc(Assembler::equal, *L_success);
  9406     } else {
  9407       local_jcc(Assembler::notEqual, *L_slow_path);
  9408       final_jmp(*L_success);
  9410   } else {
  9411     // No slow path; it's a fast decision.
  9412     if (L_failure == &L_fallthrough) {
  9413       local_jcc(Assembler::equal, *L_success);
  9414     } else {
  9415       local_jcc(Assembler::notEqual, *L_failure);
  9416       final_jmp(*L_success);
  9420   bind(L_fallthrough);
  9422 #undef local_jcc
  9423 #undef final_jmp
  9427 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  9428                                                    Register super_klass,
  9429                                                    Register temp_reg,
  9430                                                    Register temp2_reg,
  9431                                                    Label* L_success,
  9432                                                    Label* L_failure,
  9433                                                    bool set_cond_codes) {
  9434   assert_different_registers(sub_klass, super_klass, temp_reg);
  9435   if (temp2_reg != noreg)
  9436     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  9437 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  9439   Label L_fallthrough;
  9440   int label_nulls = 0;
  9441   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9442   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9443   assert(label_nulls <= 1, "at most one NULL in the batch");
  9445   // a couple of useful fields in sub_klass:
  9446   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  9447   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9448   Address secondary_supers_addr(sub_klass, ss_offset);
  9449   Address super_cache_addr(     sub_klass, sc_offset);
  9451   // Do a linear scan of the secondary super-klass chain.
  9452   // This code is rarely used, so simplicity is a virtue here.
  9453   // The repne_scan instruction uses fixed registers, which we must spill.
  9454   // Don't worry too much about pre-existing connections with the input regs.
  9456   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  9457   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  9459   // Get super_klass value into rax (even if it was in rdi or rcx).
  9460   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  9461   if (super_klass != rax || UseCompressedOops) {
  9462     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  9463     mov(rax, super_klass);
  9465   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  9466   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  9468 #ifndef PRODUCT
  9469   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  9470   ExternalAddress pst_counter_addr((address) pst_counter);
  9471   NOT_LP64(  incrementl(pst_counter_addr) );
  9472   LP64_ONLY( lea(rcx, pst_counter_addr) );
  9473   LP64_ONLY( incrementl(Address(rcx, 0)) );
  9474 #endif //PRODUCT
  9476   // We will consult the secondary-super array.
  9477   movptr(rdi, secondary_supers_addr);
  9478   // Load the array length.  (Positive movl does right thing on LP64.)
  9479   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  9480   // Skip to start of data.
  9481   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  9483   // Scan RCX words at [RDI] for an occurrence of RAX.
  9484   // Set NZ/Z based on last compare.
  9485   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  9486   // not change flags (only scas instruction which is repeated sets flags).
  9487   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  9489     testptr(rax,rax); // Set Z = 0
  9490     repne_scan();
  9492   // Unspill the temp. registers:
  9493   if (pushed_rdi)  pop(rdi);
  9494   if (pushed_rcx)  pop(rcx);
  9495   if (pushed_rax)  pop(rax);
  9497   if (set_cond_codes) {
  9498     // Special hack for the AD files:  rdi is guaranteed non-zero.
  9499     assert(!pushed_rdi, "rdi must be left non-NULL");
  9500     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  9503   if (L_failure == &L_fallthrough)
  9504         jccb(Assembler::notEqual, *L_failure);
  9505   else  jcc(Assembler::notEqual, *L_failure);
  9507   // Success.  Cache the super we found and proceed in triumph.
  9508   movptr(super_cache_addr, super_klass);
  9510   if (L_success != &L_fallthrough) {
  9511     jmp(*L_success);
  9514 #undef IS_A_TEMP
  9516   bind(L_fallthrough);
  9520 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  9521   if (VM_Version::supports_cmov()) {
  9522     cmovl(cc, dst, src);
  9523   } else {
  9524     Label L;
  9525     jccb(negate_condition(cc), L);
  9526     movl(dst, src);
  9527     bind(L);
  9531 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  9532   if (VM_Version::supports_cmov()) {
  9533     cmovl(cc, dst, src);
  9534   } else {
  9535     Label L;
  9536     jccb(negate_condition(cc), L);
  9537     movl(dst, src);
  9538     bind(L);
  9542 void MacroAssembler::verify_oop(Register reg, const char* s) {
  9543   if (!VerifyOops) return;
  9545   // Pass register number to verify_oop_subroutine
  9546   char* b = new char[strlen(s) + 50];
  9547   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  9548   BLOCK_COMMENT("verify_oop {");
  9549 #ifdef _LP64
  9550   push(rscratch1);                    // save r10, trashed by movptr()
  9551 #endif
  9552   push(rax);                          // save rax,
  9553   push(reg);                          // pass register argument
  9554   ExternalAddress buffer((address) b);
  9555   // avoid using pushptr, as it modifies scratch registers
  9556   // and our contract is not to modify anything
  9557   movptr(rax, buffer.addr());
  9558   push(rax);
  9559   // call indirectly to solve generation ordering problem
  9560   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9561   call(rax);
  9562   // Caller pops the arguments (oop, message) and restores rax, r10
  9563   BLOCK_COMMENT("} verify_oop");
  9567 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  9568                                                       Register tmp,
  9569                                                       int offset) {
  9570   intptr_t value = *delayed_value_addr;
  9571   if (value != 0)
  9572     return RegisterOrConstant(value + offset);
  9574   // load indirectly to solve generation ordering problem
  9575   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9577 #ifdef ASSERT
  9578   { Label L;
  9579     testptr(tmp, tmp);
  9580     if (WizardMode) {
  9581       jcc(Assembler::notZero, L);
  9582       char* buf = new char[40];
  9583       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9584       STOP(buf);
  9585     } else {
  9586       jccb(Assembler::notZero, L);
  9587       hlt();
  9589     bind(L);
  9591 #endif
  9593   if (offset != 0)
  9594     addptr(tmp, offset);
  9596   return RegisterOrConstant(tmp);
  9600 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9601                                          int extra_slot_offset) {
  9602   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9603   int stackElementSize = Interpreter::stackElementSize;
  9604   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9605 #ifdef ASSERT
  9606   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9607   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9608 #endif
  9609   Register             scale_reg    = noreg;
  9610   Address::ScaleFactor scale_factor = Address::no_scale;
  9611   if (arg_slot.is_constant()) {
  9612     offset += arg_slot.as_constant() * stackElementSize;
  9613   } else {
  9614     scale_reg    = arg_slot.as_register();
  9615     scale_factor = Address::times(stackElementSize);
  9617   offset += wordSize;           // return PC is on stack
  9618   return Address(rsp, scale_reg, scale_factor, offset);
  9622 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9623   if (!VerifyOops) return;
  9625   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9626   // Pass register number to verify_oop_subroutine
  9627   char* b = new char[strlen(s) + 50];
  9628   sprintf(b, "verify_oop_addr: %s", s);
  9630 #ifdef _LP64
  9631   push(rscratch1);                    // save r10, trashed by movptr()
  9632 #endif
  9633   push(rax);                          // save rax,
  9634   // addr may contain rsp so we will have to adjust it based on the push
  9635   // we just did (and on 64 bit we do two pushes)
  9636   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9637   // stores rax into addr which is backwards of what was intended.
  9638   if (addr.uses(rsp)) {
  9639     lea(rax, addr);
  9640     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9641   } else {
  9642     pushptr(addr);
  9645   ExternalAddress buffer((address) b);
  9646   // pass msg argument
  9647   // avoid using pushptr, as it modifies scratch registers
  9648   // and our contract is not to modify anything
  9649   movptr(rax, buffer.addr());
  9650   push(rax);
  9652   // call indirectly to solve generation ordering problem
  9653   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9654   call(rax);
  9655   // Caller pops the arguments (addr, message) and restores rax, r10.
  9658 void MacroAssembler::verify_tlab() {
  9659 #ifdef ASSERT
  9660   if (UseTLAB && VerifyOops) {
  9661     Label next, ok;
  9662     Register t1 = rsi;
  9663     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9665     push(t1);
  9666     NOT_LP64(push(thread_reg));
  9667     NOT_LP64(get_thread(thread_reg));
  9669     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9670     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9671     jcc(Assembler::aboveEqual, next);
  9672     STOP("assert(top >= start)");
  9673     should_not_reach_here();
  9675     bind(next);
  9676     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9677     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9678     jcc(Assembler::aboveEqual, ok);
  9679     STOP("assert(top <= end)");
  9680     should_not_reach_here();
  9682     bind(ok);
  9683     NOT_LP64(pop(thread_reg));
  9684     pop(t1);
  9686 #endif
  9689 class ControlWord {
  9690  public:
  9691   int32_t _value;
  9693   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9694   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9695   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9696   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9697   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9698   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9699   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9700   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9702   void print() const {
  9703     // rounding control
  9704     const char* rc;
  9705     switch (rounding_control()) {
  9706       case 0: rc = "round near"; break;
  9707       case 1: rc = "round down"; break;
  9708       case 2: rc = "round up  "; break;
  9709       case 3: rc = "chop      "; break;
  9710     };
  9711     // precision control
  9712     const char* pc;
  9713     switch (precision_control()) {
  9714       case 0: pc = "24 bits "; break;
  9715       case 1: pc = "reserved"; break;
  9716       case 2: pc = "53 bits "; break;
  9717       case 3: pc = "64 bits "; break;
  9718     };
  9719     // flags
  9720     char f[9];
  9721     f[0] = ' ';
  9722     f[1] = ' ';
  9723     f[2] = (precision   ()) ? 'P' : 'p';
  9724     f[3] = (underflow   ()) ? 'U' : 'u';
  9725     f[4] = (overflow    ()) ? 'O' : 'o';
  9726     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9727     f[6] = (denormalized()) ? 'D' : 'd';
  9728     f[7] = (invalid     ()) ? 'I' : 'i';
  9729     f[8] = '\x0';
  9730     // output
  9731     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9734 };
  9736 class StatusWord {
  9737  public:
  9738   int32_t _value;
  9740   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9741   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9742   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9743   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9744   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9745   int  top() const                     { return  (_value >> 11) & 7      ; }
  9746   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9747   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9748   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9749   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9750   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9751   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9752   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9753   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9755   void print() const {
  9756     // condition codes
  9757     char c[5];
  9758     c[0] = (C3()) ? '3' : '-';
  9759     c[1] = (C2()) ? '2' : '-';
  9760     c[2] = (C1()) ? '1' : '-';
  9761     c[3] = (C0()) ? '0' : '-';
  9762     c[4] = '\x0';
  9763     // flags
  9764     char f[9];
  9765     f[0] = (error_status()) ? 'E' : '-';
  9766     f[1] = (stack_fault ()) ? 'S' : '-';
  9767     f[2] = (precision   ()) ? 'P' : '-';
  9768     f[3] = (underflow   ()) ? 'U' : '-';
  9769     f[4] = (overflow    ()) ? 'O' : '-';
  9770     f[5] = (zero_divide ()) ? 'Z' : '-';
  9771     f[6] = (denormalized()) ? 'D' : '-';
  9772     f[7] = (invalid     ()) ? 'I' : '-';
  9773     f[8] = '\x0';
  9774     // output
  9775     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9778 };
  9780 class TagWord {
  9781  public:
  9782   int32_t _value;
  9784   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9786   void print() const {
  9787     printf("%04x", _value & 0xFFFF);
  9790 };
  9792 class FPU_Register {
  9793  public:
  9794   int32_t _m0;
  9795   int32_t _m1;
  9796   int16_t _ex;
  9798   bool is_indefinite() const           {
  9799     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9802   void print() const {
  9803     char  sign = (_ex < 0) ? '-' : '+';
  9804     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9805     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9806   };
  9808 };
  9810 class FPU_State {
  9811  public:
  9812   enum {
  9813     register_size       = 10,
  9814     number_of_registers =  8,
  9815     register_mask       =  7
  9816   };
  9818   ControlWord  _control_word;
  9819   StatusWord   _status_word;
  9820   TagWord      _tag_word;
  9821   int32_t      _error_offset;
  9822   int32_t      _error_selector;
  9823   int32_t      _data_offset;
  9824   int32_t      _data_selector;
  9825   int8_t       _register[register_size * number_of_registers];
  9827   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9828   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9830   const char* tag_as_string(int tag) const {
  9831     switch (tag) {
  9832       case 0: return "valid";
  9833       case 1: return "zero";
  9834       case 2: return "special";
  9835       case 3: return "empty";
  9837     ShouldNotReachHere();
  9838     return NULL;
  9841   void print() const {
  9842     // print computation registers
  9843     { int t = _status_word.top();
  9844       for (int i = 0; i < number_of_registers; i++) {
  9845         int j = (i - t) & register_mask;
  9846         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9847         st(j)->print();
  9848         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9851     printf("\n");
  9852     // print control registers
  9853     printf("ctrl = "); _control_word.print(); printf("\n");
  9854     printf("stat = "); _status_word .print(); printf("\n");
  9855     printf("tags = "); _tag_word    .print(); printf("\n");
  9858 };
  9860 class Flag_Register {
  9861  public:
  9862   int32_t _value;
  9864   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9865   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9866   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9867   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9868   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9869   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9870   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9872   void print() const {
  9873     // flags
  9874     char f[8];
  9875     f[0] = (overflow       ()) ? 'O' : '-';
  9876     f[1] = (direction      ()) ? 'D' : '-';
  9877     f[2] = (sign           ()) ? 'S' : '-';
  9878     f[3] = (zero           ()) ? 'Z' : '-';
  9879     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9880     f[5] = (parity         ()) ? 'P' : '-';
  9881     f[6] = (carry          ()) ? 'C' : '-';
  9882     f[7] = '\x0';
  9883     // output
  9884     printf("%08x  flags = %s", _value, f);
  9887 };
  9889 class IU_Register {
  9890  public:
  9891   int32_t _value;
  9893   void print() const {
  9894     printf("%08x  %11d", _value, _value);
  9897 };
  9899 class IU_State {
  9900  public:
  9901   Flag_Register _eflags;
  9902   IU_Register   _rdi;
  9903   IU_Register   _rsi;
  9904   IU_Register   _rbp;
  9905   IU_Register   _rsp;
  9906   IU_Register   _rbx;
  9907   IU_Register   _rdx;
  9908   IU_Register   _rcx;
  9909   IU_Register   _rax;
  9911   void print() const {
  9912     // computation registers
  9913     printf("rax,  = "); _rax.print(); printf("\n");
  9914     printf("rbx,  = "); _rbx.print(); printf("\n");
  9915     printf("rcx  = "); _rcx.print(); printf("\n");
  9916     printf("rdx  = "); _rdx.print(); printf("\n");
  9917     printf("rdi  = "); _rdi.print(); printf("\n");
  9918     printf("rsi  = "); _rsi.print(); printf("\n");
  9919     printf("rbp,  = "); _rbp.print(); printf("\n");
  9920     printf("rsp  = "); _rsp.print(); printf("\n");
  9921     printf("\n");
  9922     // control registers
  9923     printf("flgs = "); _eflags.print(); printf("\n");
  9925 };
  9928 class CPU_State {
  9929  public:
  9930   FPU_State _fpu_state;
  9931   IU_State  _iu_state;
  9933   void print() const {
  9934     printf("--------------------------------------------------\n");
  9935     _iu_state .print();
  9936     printf("\n");
  9937     _fpu_state.print();
  9938     printf("--------------------------------------------------\n");
  9941 };
  9944 static void _print_CPU_state(CPU_State* state) {
  9945   state->print();
  9946 };
  9949 void MacroAssembler::print_CPU_state() {
  9950   push_CPU_state();
  9951   push(rsp);                // pass CPU state
  9952   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9953   addptr(rsp, wordSize);       // discard argument
  9954   pop_CPU_state();
  9958 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9959   static int counter = 0;
  9960   FPU_State* fs = &state->_fpu_state;
  9961   counter++;
  9962   // For leaf calls, only verify that the top few elements remain empty.
  9963   // We only need 1 empty at the top for C2 code.
  9964   if( stack_depth < 0 ) {
  9965     if( fs->tag_for_st(7) != 3 ) {
  9966       printf("FPR7 not empty\n");
  9967       state->print();
  9968       assert(false, "error");
  9969       return false;
  9971     return true;                // All other stack states do not matter
  9974   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9975          "bad FPU control word");
  9977   // compute stack depth
  9978   int i = 0;
  9979   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9980   int d = i;
  9981   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9982   // verify findings
  9983   if (i != FPU_State::number_of_registers) {
  9984     // stack not contiguous
  9985     printf("%s: stack not contiguous at ST%d\n", s, i);
  9986     state->print();
  9987     assert(false, "error");
  9988     return false;
  9990   // check if computed stack depth corresponds to expected stack depth
  9991   if (stack_depth < 0) {
  9992     // expected stack depth is -stack_depth or less
  9993     if (d > -stack_depth) {
  9994       // too many elements on the stack
  9995       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9996       state->print();
  9997       assert(false, "error");
  9998       return false;
 10000   } else {
 10001     // expected stack depth is stack_depth
 10002     if (d != stack_depth) {
 10003       // wrong stack depth
 10004       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 10005       state->print();
 10006       assert(false, "error");
 10007       return false;
 10010   // everything is cool
 10011   return true;
 10015 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 10016   if (!VerifyFPU) return;
 10017   push_CPU_state();
 10018   push(rsp);                // pass CPU state
 10019   ExternalAddress msg((address) s);
 10020   // pass message string s
 10021   pushptr(msg.addr());
 10022   push(stack_depth);        // pass stack depth
 10023   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 10024   addptr(rsp, 3 * wordSize);   // discard arguments
 10025   // check for error
 10026   { Label L;
 10027     testl(rax, rax);
 10028     jcc(Assembler::notZero, L);
 10029     int3();                  // break if error condition
 10030     bind(L);
 10032   pop_CPU_state();
 10035 void MacroAssembler::load_klass(Register dst, Register src) {
 10036 #ifdef _LP64
 10037   if (UseCompressedKlassPointers) {
 10038     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10039     decode_heap_oop_not_null(dst);
 10040   } else
 10041 #endif
 10042     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10045 void MacroAssembler::load_prototype_header(Register dst, Register src) {
 10046 #ifdef _LP64
 10047   if (UseCompressedKlassPointers) {
 10048     assert (Universe::heap() != NULL, "java heap should be initialized");
 10049     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10050     if (Universe::narrow_oop_shift() != 0) {
 10051       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10052       if (LogMinObjAlignmentInBytes == Address::times_8) {
 10053         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
 10054       } else {
 10055         // OK to use shift since we don't need to preserve flags.
 10056         shlq(dst, LogMinObjAlignmentInBytes);
 10057         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
 10059     } else {
 10060       movq(dst, Address(dst, Klass::prototype_header_offset()));
 10062   } else
 10063 #endif
 10065     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10066     movptr(dst, Address(dst, Klass::prototype_header_offset()));
 10070 void MacroAssembler::store_klass(Register dst, Register src) {
 10071 #ifdef _LP64
 10072   if (UseCompressedKlassPointers) {
 10073     encode_heap_oop_not_null(src);
 10074     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 10075   } else
 10076 #endif
 10077     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 10080 void MacroAssembler::load_heap_oop(Register dst, Address src) {
 10081 #ifdef _LP64
 10082   // FIXME: Must change all places where we try to load the klass.
 10083   if (UseCompressedOops) {
 10084     movl(dst, src);
 10085     decode_heap_oop(dst);
 10086   } else
 10087 #endif
 10088     movptr(dst, src);
 10091 // Doesn't do verfication, generates fixed size code
 10092 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
 10093 #ifdef _LP64
 10094   if (UseCompressedOops) {
 10095     movl(dst, src);
 10096     decode_heap_oop_not_null(dst);
 10097   } else
 10098 #endif
 10099     movptr(dst, src);
 10102 void MacroAssembler::store_heap_oop(Address dst, Register src) {
 10103 #ifdef _LP64
 10104   if (UseCompressedOops) {
 10105     assert(!dst.uses(src), "not enough registers");
 10106     encode_heap_oop(src);
 10107     movl(dst, src);
 10108   } else
 10109 #endif
 10110     movptr(dst, src);
 10113 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
 10114   assert_different_registers(src1, tmp);
 10115 #ifdef _LP64
 10116   if (UseCompressedOops) {
 10117     bool did_push = false;
 10118     if (tmp == noreg) {
 10119       tmp = rax;
 10120       push(tmp);
 10121       did_push = true;
 10122       assert(!src2.uses(rsp), "can't push");
 10124     load_heap_oop(tmp, src2);
 10125     cmpptr(src1, tmp);
 10126     if (did_push)  pop(tmp);
 10127   } else
 10128 #endif
 10129     cmpptr(src1, src2);
 10132 // Used for storing NULLs.
 10133 void MacroAssembler::store_heap_oop_null(Address dst) {
 10134 #ifdef _LP64
 10135   if (UseCompressedOops) {
 10136     movl(dst, (int32_t)NULL_WORD);
 10137   } else {
 10138     movslq(dst, (int32_t)NULL_WORD);
 10140 #else
 10141   movl(dst, (int32_t)NULL_WORD);
 10142 #endif
 10145 #ifdef _LP64
 10146 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 10147   if (UseCompressedKlassPointers) {
 10148     // Store to klass gap in destination
 10149     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 10153 #ifdef ASSERT
 10154 void MacroAssembler::verify_heapbase(const char* msg) {
 10155   assert (UseCompressedOops, "should be compressed");
 10156   assert (Universe::heap() != NULL, "java heap should be initialized");
 10157   if (CheckCompressedOops) {
 10158     Label ok;
 10159     push(rscratch1); // cmpptr trashes rscratch1
 10160     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10161     jcc(Assembler::equal, ok);
 10162     STOP(msg);
 10163     bind(ok);
 10164     pop(rscratch1);
 10167 #endif
 10169 // Algorithm must match oop.inline.hpp encode_heap_oop.
 10170 void MacroAssembler::encode_heap_oop(Register r) {
 10171 #ifdef ASSERT
 10172   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 10173 #endif
 10174   verify_oop(r, "broken oop in encode_heap_oop");
 10175   if (Universe::narrow_oop_base() == NULL) {
 10176     if (Universe::narrow_oop_shift() != 0) {
 10177       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10178       shrq(r, LogMinObjAlignmentInBytes);
 10180     return;
 10182   testq(r, r);
 10183   cmovq(Assembler::equal, r, r12_heapbase);
 10184   subq(r, r12_heapbase);
 10185   shrq(r, LogMinObjAlignmentInBytes);
 10188 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 10189 #ifdef ASSERT
 10190   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 10191   if (CheckCompressedOops) {
 10192     Label ok;
 10193     testq(r, r);
 10194     jcc(Assembler::notEqual, ok);
 10195     STOP("null oop passed to encode_heap_oop_not_null");
 10196     bind(ok);
 10198 #endif
 10199   verify_oop(r, "broken oop in encode_heap_oop_not_null");
 10200   if (Universe::narrow_oop_base() != NULL) {
 10201     subq(r, r12_heapbase);
 10203   if (Universe::narrow_oop_shift() != 0) {
 10204     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10205     shrq(r, LogMinObjAlignmentInBytes);
 10209 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 10210 #ifdef ASSERT
 10211   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 10212   if (CheckCompressedOops) {
 10213     Label ok;
 10214     testq(src, src);
 10215     jcc(Assembler::notEqual, ok);
 10216     STOP("null oop passed to encode_heap_oop_not_null2");
 10217     bind(ok);
 10219 #endif
 10220   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
 10221   if (dst != src) {
 10222     movq(dst, src);
 10224   if (Universe::narrow_oop_base() != NULL) {
 10225     subq(dst, r12_heapbase);
 10227   if (Universe::narrow_oop_shift() != 0) {
 10228     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10229     shrq(dst, LogMinObjAlignmentInBytes);
 10233 void  MacroAssembler::decode_heap_oop(Register r) {
 10234 #ifdef ASSERT
 10235   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 10236 #endif
 10237   if (Universe::narrow_oop_base() == NULL) {
 10238     if (Universe::narrow_oop_shift() != 0) {
 10239       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10240       shlq(r, LogMinObjAlignmentInBytes);
 10242   } else {
 10243     Label done;
 10244     shlq(r, LogMinObjAlignmentInBytes);
 10245     jccb(Assembler::equal, done);
 10246     addq(r, r12_heapbase);
 10247     bind(done);
 10249   verify_oop(r, "broken oop in decode_heap_oop");
 10252 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 10253   // Note: it will change flags
 10254   assert (UseCompressedOops, "should only be used for compressed headers");
 10255   assert (Universe::heap() != NULL, "java heap should be initialized");
 10256   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10257   // vtableStubs also counts instructions in pd_code_size_limit.
 10258   // Also do not verify_oop as this is called by verify_oop.
 10259   if (Universe::narrow_oop_shift() != 0) {
 10260     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10261     shlq(r, LogMinObjAlignmentInBytes);
 10262     if (Universe::narrow_oop_base() != NULL) {
 10263       addq(r, r12_heapbase);
 10265   } else {
 10266     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10270 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 10271   // Note: it will change flags
 10272   assert (UseCompressedOops, "should only be used for compressed headers");
 10273   assert (Universe::heap() != NULL, "java heap should be initialized");
 10274   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10275   // vtableStubs also counts instructions in pd_code_size_limit.
 10276   // Also do not verify_oop as this is called by verify_oop.
 10277   if (Universe::narrow_oop_shift() != 0) {
 10278     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10279     if (LogMinObjAlignmentInBytes == Address::times_8) {
 10280       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 10281     } else {
 10282       if (dst != src) {
 10283         movq(dst, src);
 10285       shlq(dst, LogMinObjAlignmentInBytes);
 10286       if (Universe::narrow_oop_base() != NULL) {
 10287         addq(dst, r12_heapbase);
 10290   } else {
 10291     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10292     if (dst != src) {
 10293       movq(dst, src);
 10298 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 10299   assert (UseCompressedOops, "should only be used for compressed headers");
 10300   assert (Universe::heap() != NULL, "java heap should be initialized");
 10301   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10302   int oop_index = oop_recorder()->find_index(obj);
 10303   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10304   mov_narrow_oop(dst, oop_index, rspec);
 10307 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 10308   assert (UseCompressedOops, "should only be used for compressed headers");
 10309   assert (Universe::heap() != NULL, "java heap should be initialized");
 10310   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10311   int oop_index = oop_recorder()->find_index(obj);
 10312   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10313   mov_narrow_oop(dst, oop_index, rspec);
 10316 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 10317   assert (UseCompressedOops, "should only be used for compressed headers");
 10318   assert (Universe::heap() != NULL, "java heap should be initialized");
 10319   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10320   int oop_index = oop_recorder()->find_index(obj);
 10321   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10322   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10325 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 10326   assert (UseCompressedOops, "should only be used for compressed headers");
 10327   assert (Universe::heap() != NULL, "java heap should be initialized");
 10328   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10329   int oop_index = oop_recorder()->find_index(obj);
 10330   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10331   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10334 void MacroAssembler::reinit_heapbase() {
 10335   if (UseCompressedOops) {
 10336     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10339 #endif // _LP64
 10342 // C2 compiled method's prolog code.
 10343 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
 10345   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 10346   // NativeJump::patch_verified_entry will be able to patch out the entry
 10347   // code safely. The push to verify stack depth is ok at 5 bytes,
 10348   // the frame allocation can be either 3 or 6 bytes. So if we don't do
 10349   // stack bang then we must use the 6 byte frame allocation even if
 10350   // we have no frame. :-(
 10352   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 10353   // Remove word for return addr
 10354   framesize -= wordSize;
 10356   // Calls to C2R adapters often do not accept exceptional returns.
 10357   // We require that their callers must bang for them.  But be careful, because
 10358   // some VM calls (such as call site linkage) can use several kilobytes of
 10359   // stack.  But the stack safety zone should account for that.
 10360   // See bugs 4446381, 4468289, 4497237.
 10361   if (stack_bang) {
 10362     generate_stack_overflow_check(framesize);
 10364     // We always push rbp, so that on return to interpreter rbp, will be
 10365     // restored correctly and we can correct the stack.
 10366     push(rbp);
 10367     // Remove word for ebp
 10368     framesize -= wordSize;
 10370     // Create frame
 10371     if (framesize) {
 10372       subptr(rsp, framesize);
 10374   } else {
 10375     // Create frame (force generation of a 4 byte immediate value)
 10376     subptr_imm32(rsp, framesize);
 10378     // Save RBP register now.
 10379     framesize -= wordSize;
 10380     movptr(Address(rsp, framesize), rbp);
 10383   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
 10384     framesize -= wordSize;
 10385     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
 10388 #ifndef _LP64
 10389   // If method sets FPU control word do it now
 10390   if (fp_mode_24b) {
 10391     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10393   if (UseSSE >= 2 && VerifyFPU) {
 10394     verify_FPU(0, "FPU stack must be clean on entry");
 10396 #endif
 10398 #ifdef ASSERT
 10399   if (VerifyStackAtCalls) {
 10400     Label L;
 10401     push(rax);
 10402     mov(rax, rsp);
 10403     andptr(rax, StackAlignmentInBytes-1);
 10404     cmpptr(rax, StackAlignmentInBytes-wordSize);
 10405     pop(rax);
 10406     jcc(Assembler::equal, L);
 10407     STOP("Stack is not properly aligned!");
 10408     bind(L);
 10410 #endif
 10415 // IndexOf for constant substrings with size >= 8 chars
 10416 // which don't need to be loaded through stack.
 10417 void MacroAssembler::string_indexofC8(Register str1, Register str2,
 10418                                       Register cnt1, Register cnt2,
 10419                                       int int_cnt2,  Register result,
 10420                                       XMMRegister vec, Register tmp) {
 10421   ShortBranchVerifier sbv(this);
 10422   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10424   // This method uses pcmpestri inxtruction with bound registers
 10425   //   inputs:
 10426   //     xmm - substring
 10427   //     rax - substring length (elements count)
 10428   //     mem - scanned string
 10429   //     rdx - string length (elements count)
 10430   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10431   //   outputs:
 10432   //     rcx - matched index in string
 10433   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10435   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
 10436         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
 10437         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
 10439   // Note, inline_string_indexOf() generates checks:
 10440   // if (substr.count > string.count) return -1;
 10441   // if (substr.count == 0) return 0;
 10442   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
 10444   // Load substring.
 10445   movdqu(vec, Address(str2, 0));
 10446   movl(cnt2, int_cnt2);
 10447   movptr(result, str1); // string addr
 10449   if (int_cnt2 > 8) {
 10450     jmpb(SCAN_TO_SUBSTR);
 10452     // Reload substr for rescan, this code
 10453     // is executed only for large substrings (> 8 chars)
 10454     bind(RELOAD_SUBSTR);
 10455     movdqu(vec, Address(str2, 0));
 10456     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
 10458     bind(RELOAD_STR);
 10459     // We came here after the beginning of the substring was
 10460     // matched but the rest of it was not so we need to search
 10461     // again. Start from the next element after the previous match.
 10463     // cnt2 is number of substring reminding elements and
 10464     // cnt1 is number of string reminding elements when cmp failed.
 10465     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
 10466     subl(cnt1, cnt2);
 10467     addl(cnt1, int_cnt2);
 10468     movl(cnt2, int_cnt2); // Now restore cnt2
 10470     decrementl(cnt1);     // Shift to next element
 10471     cmpl(cnt1, cnt2);
 10472     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10474     addptr(result, 2);
 10476   } // (int_cnt2 > 8)
 10478   // Scan string for start of substr in 16-byte vectors
 10479   bind(SCAN_TO_SUBSTR);
 10480   pcmpestri(vec, Address(result, 0), 0x0d);
 10481   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10482   subl(cnt1, 8);
 10483   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10484   cmpl(cnt1, cnt2);
 10485   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10486   addptr(result, 16);
 10487   jmpb(SCAN_TO_SUBSTR);
 10489   // Found a potential substr
 10490   bind(FOUND_CANDIDATE);
 10491   // Matched whole vector if first element matched (tmp(rcx) == 0).
 10492   if (int_cnt2 == 8) {
 10493     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
 10494   } else { // int_cnt2 > 8
 10495     jccb(Assembler::overflow, FOUND_SUBSTR);
 10497   // After pcmpestri tmp(rcx) contains matched element index
 10498   // Compute start addr of substr
 10499   lea(result, Address(result, tmp, Address::times_2));
 10501   // Make sure string is still long enough
 10502   subl(cnt1, tmp);
 10503   cmpl(cnt1, cnt2);
 10504   if (int_cnt2 == 8) {
 10505     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10506   } else { // int_cnt2 > 8
 10507     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
 10509   // Left less then substring.
 10511   bind(RET_NOT_FOUND);
 10512   movl(result, -1);
 10513   jmpb(EXIT);
 10515   if (int_cnt2 > 8) {
 10516     // This code is optimized for the case when whole substring
 10517     // is matched if its head is matched.
 10518     bind(MATCH_SUBSTR_HEAD);
 10519     pcmpestri(vec, Address(result, 0), 0x0d);
 10520     // Reload only string if does not match
 10521     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
 10523     Label CONT_SCAN_SUBSTR;
 10524     // Compare the rest of substring (> 8 chars).
 10525     bind(FOUND_SUBSTR);
 10526     // First 8 chars are already matched.
 10527     negptr(cnt2);
 10528     addptr(cnt2, 8);
 10530     bind(SCAN_SUBSTR);
 10531     subl(cnt1, 8);
 10532     cmpl(cnt2, -8); // Do not read beyond substring
 10533     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
 10534     // Back-up strings to avoid reading beyond substring:
 10535     // cnt1 = cnt1 - cnt2 + 8
 10536     addl(cnt1, cnt2); // cnt2 is negative
 10537     addl(cnt1, 8);
 10538     movl(cnt2, 8); negptr(cnt2);
 10539     bind(CONT_SCAN_SUBSTR);
 10540     if (int_cnt2 < (int)G) {
 10541       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10542       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10543     } else {
 10544       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10545       movl(tmp, int_cnt2);
 10546       addptr(tmp, cnt2);
 10547       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10548       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10550     // Need to reload strings pointers if not matched whole vector
 10551     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10552     addptr(cnt2, 8);
 10553     jcc(Assembler::negative, SCAN_SUBSTR);
 10554     // Fall through if found full substring
 10556   } // (int_cnt2 > 8)
 10558   bind(RET_FOUND);
 10559   // Found result if we matched full small substring.
 10560   // Compute substr offset
 10561   subptr(result, str1);
 10562   shrl(result, 1); // index
 10563   bind(EXIT);
 10565 } // string_indexofC8
 10567 // Small strings are loaded through stack if they cross page boundary.
 10568 void MacroAssembler::string_indexof(Register str1, Register str2,
 10569                                     Register cnt1, Register cnt2,
 10570                                     int int_cnt2,  Register result,
 10571                                     XMMRegister vec, Register tmp) {
 10572   ShortBranchVerifier sbv(this);
 10573   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10574   //
 10575   // int_cnt2 is length of small (< 8 chars) constant substring
 10576   // or (-1) for non constant substring in which case its length
 10577   // is in cnt2 register.
 10578   //
 10579   // Note, inline_string_indexOf() generates checks:
 10580   // if (substr.count > string.count) return -1;
 10581   // if (substr.count == 0) return 0;
 10582   //
 10583   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10585   // This method uses pcmpestri inxtruction with bound registers
 10586   //   inputs:
 10587   //     xmm - substring
 10588   //     rax - substring length (elements count)
 10589   //     mem - scanned string
 10590   //     rdx - string length (elements count)
 10591   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10592   //   outputs:
 10593   //     rcx - matched index in string
 10594   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10596   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10597         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10598         FOUND_CANDIDATE;
 10600   { //========================================================
 10601     // We don't know where these strings are located
 10602     // and we can't read beyond them. Load them through stack.
 10603     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10605     movptr(tmp, rsp); // save old SP
 10607     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10608       if (int_cnt2 == 1) {  // One char
 10609         load_unsigned_short(result, Address(str2, 0));
 10610         movdl(vec, result); // move 32 bits
 10611       } else if (int_cnt2 == 2) { // Two chars
 10612         movdl(vec, Address(str2, 0)); // move 32 bits
 10613       } else if (int_cnt2 == 4) { // Four chars
 10614         movq(vec, Address(str2, 0));  // move 64 bits
 10615       } else { // cnt2 = { 3, 5, 6, 7 }
 10616         // Array header size is 12 bytes in 32-bit VM
 10617         // + 6 bytes for 3 chars == 18 bytes,
 10618         // enough space to load vec and shift.
 10619         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
 10620         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10621         psrldq(vec, 16-(int_cnt2*2));
 10623     } else { // not constant substring
 10624       cmpl(cnt2, 8);
 10625       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10627       // We can read beyond string if srt+16 does not cross page boundary
 10628       // since heaps are aligned and mapped by pages.
 10629       assert(os::vm_page_size() < (int)G, "default page should be small");
 10630       movl(result, str2); // We need only low 32 bits
 10631       andl(result, (os::vm_page_size()-1));
 10632       cmpl(result, (os::vm_page_size()-16));
 10633       jccb(Assembler::belowEqual, CHECK_STR);
 10635       // Move small strings to stack to allow load 16 bytes into vec.
 10636       subptr(rsp, 16);
 10637       int stk_offset = wordSize-2;
 10638       push(cnt2);
 10640       bind(COPY_SUBSTR);
 10641       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10642       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10643       decrement(cnt2);
 10644       jccb(Assembler::notZero, COPY_SUBSTR);
 10646       pop(cnt2);
 10647       movptr(str2, rsp);  // New substring address
 10648     } // non constant
 10650     bind(CHECK_STR);
 10651     cmpl(cnt1, 8);
 10652     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10654     // Check cross page boundary.
 10655     movl(result, str1); // We need only low 32 bits
 10656     andl(result, (os::vm_page_size()-1));
 10657     cmpl(result, (os::vm_page_size()-16));
 10658     jccb(Assembler::belowEqual, BIG_STRINGS);
 10660     subptr(rsp, 16);
 10661     int stk_offset = -2;
 10662     if (int_cnt2 < 0) { // not constant
 10663       push(cnt2);
 10664       stk_offset += wordSize;
 10666     movl(cnt2, cnt1);
 10668     bind(COPY_STR);
 10669     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10670     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10671     decrement(cnt2);
 10672     jccb(Assembler::notZero, COPY_STR);
 10674     if (int_cnt2 < 0) { // not constant
 10675       pop(cnt2);
 10677     movptr(str1, rsp);  // New string address
 10679     bind(BIG_STRINGS);
 10680     // Load substring.
 10681     if (int_cnt2 < 0) { // -1
 10682       movdqu(vec, Address(str2, 0));
 10683       push(cnt2);       // substr count
 10684       push(str2);       // substr addr
 10685       push(str1);       // string addr
 10686     } else {
 10687       // Small (< 8 chars) constant substrings are loaded already.
 10688       movl(cnt2, int_cnt2);
 10690     push(tmp);  // original SP
 10692   } // Finished loading
 10694   //========================================================
 10695   // Start search
 10696   //
 10698   movptr(result, str1); // string addr
 10700   if (int_cnt2  < 0) {  // Only for non constant substring
 10701     jmpb(SCAN_TO_SUBSTR);
 10703     // SP saved at sp+0
 10704     // String saved at sp+1*wordSize
 10705     // Substr saved at sp+2*wordSize
 10706     // Substr count saved at sp+3*wordSize
 10708     // Reload substr for rescan, this code
 10709     // is executed only for large substrings (> 8 chars)
 10710     bind(RELOAD_SUBSTR);
 10711     movptr(str2, Address(rsp, 2*wordSize));
 10712     movl(cnt2, Address(rsp, 3*wordSize));
 10713     movdqu(vec, Address(str2, 0));
 10714     // We came here after the beginning of the substring was
 10715     // matched but the rest of it was not so we need to search
 10716     // again. Start from the next element after the previous match.
 10717     subptr(str1, result); // Restore counter
 10718     shrl(str1, 1);
 10719     addl(cnt1, str1);
 10720     decrementl(cnt1);   // Shift to next element
 10721     cmpl(cnt1, cnt2);
 10722     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10724     addptr(result, 2);
 10725   } // non constant
 10727   // Scan string for start of substr in 16-byte vectors
 10728   bind(SCAN_TO_SUBSTR);
 10729   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10730   pcmpestri(vec, Address(result, 0), 0x0d);
 10731   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10732   subl(cnt1, 8);
 10733   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10734   cmpl(cnt1, cnt2);
 10735   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10736   addptr(result, 16);
 10738   bind(ADJUST_STR);
 10739   cmpl(cnt1, 8); // Do not read beyond string
 10740   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10741   // Back-up string to avoid reading beyond string.
 10742   lea(result, Address(result, cnt1, Address::times_2, -16));
 10743   movl(cnt1, 8);
 10744   jmpb(SCAN_TO_SUBSTR);
 10746   // Found a potential substr
 10747   bind(FOUND_CANDIDATE);
 10748   // After pcmpestri tmp(rcx) contains matched element index
 10750   // Make sure string is still long enough
 10751   subl(cnt1, tmp);
 10752   cmpl(cnt1, cnt2);
 10753   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10754   // Left less then substring.
 10756   bind(RET_NOT_FOUND);
 10757   movl(result, -1);
 10758   jmpb(CLEANUP);
 10760   bind(FOUND_SUBSTR);
 10761   // Compute start addr of substr
 10762   lea(result, Address(result, tmp, Address::times_2));
 10764   if (int_cnt2 > 0) { // Constant substring
 10765     // Repeat search for small substring (< 8 chars)
 10766     // from new point without reloading substring.
 10767     // Have to check that we don't read beyond string.
 10768     cmpl(tmp, 8-int_cnt2);
 10769     jccb(Assembler::greater, ADJUST_STR);
 10770     // Fall through if matched whole substring.
 10771   } else { // non constant
 10772     assert(int_cnt2 == -1, "should be != 0");
 10774     addl(tmp, cnt2);
 10775     // Found result if we matched whole substring.
 10776     cmpl(tmp, 8);
 10777     jccb(Assembler::lessEqual, RET_FOUND);
 10779     // Repeat search for small substring (<= 8 chars)
 10780     // from new point 'str1' without reloading substring.
 10781     cmpl(cnt2, 8);
 10782     // Have to check that we don't read beyond string.
 10783     jccb(Assembler::lessEqual, ADJUST_STR);
 10785     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10786     // Compare the rest of substring (> 8 chars).
 10787     movptr(str1, result);
 10789     cmpl(tmp, cnt2);
 10790     // First 8 chars are already matched.
 10791     jccb(Assembler::equal, CHECK_NEXT);
 10793     bind(SCAN_SUBSTR);
 10794     pcmpestri(vec, Address(str1, 0), 0x0d);
 10795     // Need to reload strings pointers if not matched whole vector
 10796     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10798     bind(CHECK_NEXT);
 10799     subl(cnt2, 8);
 10800     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10801     addptr(str1, 16);
 10802     addptr(str2, 16);
 10803     subl(cnt1, 8);
 10804     cmpl(cnt2, 8); // Do not read beyond substring
 10805     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10806     // Back-up strings to avoid reading beyond substring.
 10807     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10808     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10809     subl(cnt1, cnt2);
 10810     movl(cnt2, 8);
 10811     addl(cnt1, 8);
 10812     bind(CONT_SCAN_SUBSTR);
 10813     movdqu(vec, Address(str2, 0));
 10814     jmpb(SCAN_SUBSTR);
 10816     bind(RET_FOUND_LONG);
 10817     movptr(str1, Address(rsp, wordSize));
 10818   } // non constant
 10820   bind(RET_FOUND);
 10821   // Compute substr offset
 10822   subptr(result, str1);
 10823   shrl(result, 1); // index
 10825   bind(CLEANUP);
 10826   pop(rsp); // restore SP
 10828 } // string_indexof
 10830 // Compare strings.
 10831 void MacroAssembler::string_compare(Register str1, Register str2,
 10832                                     Register cnt1, Register cnt2, Register result,
 10833                                     XMMRegister vec1) {
 10834   ShortBranchVerifier sbv(this);
 10835   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10837   // Compute the minimum of the string lengths and the
 10838   // difference of the string lengths (stack).
 10839   // Do the conditional move stuff
 10840   movl(result, cnt1);
 10841   subl(cnt1, cnt2);
 10842   push(cnt1);
 10843   cmov32(Assembler::lessEqual, cnt2, result);
 10845   // Is the minimum length zero?
 10846   testl(cnt2, cnt2);
 10847   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10849   // Load first characters
 10850   load_unsigned_short(result, Address(str1, 0));
 10851   load_unsigned_short(cnt1, Address(str2, 0));
 10853   // Compare first characters
 10854   subl(result, cnt1);
 10855   jcc(Assembler::notZero,  POP_LABEL);
 10856   decrementl(cnt2);
 10857   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10860     // Check after comparing first character to see if strings are equivalent
 10861     Label LSkip2;
 10862     // Check if the strings start at same location
 10863     cmpptr(str1, str2);
 10864     jccb(Assembler::notEqual, LSkip2);
 10866     // Check if the length difference is zero (from stack)
 10867     cmpl(Address(rsp, 0), 0x0);
 10868     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10870     // Strings might not be equivalent
 10871     bind(LSkip2);
 10874   Address::ScaleFactor scale = Address::times_2;
 10875   int stride = 8;
 10877   // Advance to next element
 10878   addptr(str1, 16/stride);
 10879   addptr(str2, 16/stride);
 10881   if (UseSSE42Intrinsics) {
 10882     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10883     int pcmpmask = 0x19;
 10884     // Setup to compare 16-byte vectors
 10885     movl(result, cnt2);
 10886     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10887     jccb(Assembler::zero, COMPARE_TAIL);
 10889     lea(str1, Address(str1, result, scale));
 10890     lea(str2, Address(str2, result, scale));
 10891     negptr(result);
 10893     // pcmpestri
 10894     //   inputs:
 10895     //     vec1- substring
 10896     //     rax - negative string length (elements count)
 10897     //     mem - scaned string
 10898     //     rdx - string length (elements count)
 10899     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10900     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10901     //   outputs:
 10902     //     rcx - first mismatched element index
 10903     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10905     bind(COMPARE_WIDE_VECTORS);
 10906     movdqu(vec1, Address(str1, result, scale));
 10907     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10908     // After pcmpestri cnt1(rcx) contains mismatched element index
 10910     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10911     addptr(result, stride);
 10912     subptr(cnt2, stride);
 10913     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10915     // compare wide vectors tail
 10916     testl(result, result);
 10917     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10919     movl(cnt2, stride);
 10920     movl(result, stride);
 10921     negptr(result);
 10922     movdqu(vec1, Address(str1, result, scale));
 10923     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10924     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10926     // Mismatched characters in the vectors
 10927     bind(VECTOR_NOT_EQUAL);
 10928     addptr(result, cnt1);
 10929     movptr(cnt2, result);
 10930     load_unsigned_short(result, Address(str1, cnt2, scale));
 10931     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10932     subl(result, cnt1);
 10933     jmpb(POP_LABEL);
 10935     bind(COMPARE_TAIL); // limit is zero
 10936     movl(cnt2, result);
 10937     // Fallthru to tail compare
 10940   // Shift str2 and str1 to the end of the arrays, negate min
 10941   lea(str1, Address(str1, cnt2, scale, 0));
 10942   lea(str2, Address(str2, cnt2, scale, 0));
 10943   negptr(cnt2);
 10945   // Compare the rest of the elements
 10946   bind(WHILE_HEAD_LABEL);
 10947   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10948   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10949   subl(result, cnt1);
 10950   jccb(Assembler::notZero, POP_LABEL);
 10951   increment(cnt2);
 10952   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10954   // Strings are equal up to min length.  Return the length difference.
 10955   bind(LENGTH_DIFF_LABEL);
 10956   pop(result);
 10957   jmpb(DONE_LABEL);
 10959   // Discard the stored length difference
 10960   bind(POP_LABEL);
 10961   pop(cnt1);
 10963   // That's it
 10964   bind(DONE_LABEL);
 10967 // Compare char[] arrays aligned to 4 bytes or substrings.
 10968 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10969                                         Register limit, Register result, Register chr,
 10970                                         XMMRegister vec1, XMMRegister vec2) {
 10971   ShortBranchVerifier sbv(this);
 10972   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10974   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10975   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10977   // Check the input args
 10978   cmpptr(ary1, ary2);
 10979   jcc(Assembler::equal, TRUE_LABEL);
 10981   if (is_array_equ) {
 10982     // Need additional checks for arrays_equals.
 10983     testptr(ary1, ary1);
 10984     jcc(Assembler::zero, FALSE_LABEL);
 10985     testptr(ary2, ary2);
 10986     jcc(Assembler::zero, FALSE_LABEL);
 10988     // Check the lengths
 10989     movl(limit, Address(ary1, length_offset));
 10990     cmpl(limit, Address(ary2, length_offset));
 10991     jcc(Assembler::notEqual, FALSE_LABEL);
 10994   // count == 0
 10995   testl(limit, limit);
 10996   jcc(Assembler::zero, TRUE_LABEL);
 10998   if (is_array_equ) {
 10999     // Load array address
 11000     lea(ary1, Address(ary1, base_offset));
 11001     lea(ary2, Address(ary2, base_offset));
 11004   shll(limit, 1);      // byte count != 0
 11005   movl(result, limit); // copy
 11007   if (UseSSE42Intrinsics) {
 11008     // With SSE4.2, use double quad vector compare
 11009     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 11011     // Compare 16-byte vectors
 11012     andl(result, 0x0000000e);  //   tail count (in bytes)
 11013     andl(limit, 0xfffffff0);   // vector count (in bytes)
 11014     jccb(Assembler::zero, COMPARE_TAIL);
 11016     lea(ary1, Address(ary1, limit, Address::times_1));
 11017     lea(ary2, Address(ary2, limit, Address::times_1));
 11018     negptr(limit);
 11020     bind(COMPARE_WIDE_VECTORS);
 11021     movdqu(vec1, Address(ary1, limit, Address::times_1));
 11022     movdqu(vec2, Address(ary2, limit, Address::times_1));
 11023     pxor(vec1, vec2);
 11025     ptest(vec1, vec1);
 11026     jccb(Assembler::notZero, FALSE_LABEL);
 11027     addptr(limit, 16);
 11028     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 11030     testl(result, result);
 11031     jccb(Assembler::zero, TRUE_LABEL);
 11033     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 11034     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 11035     pxor(vec1, vec2);
 11037     ptest(vec1, vec1);
 11038     jccb(Assembler::notZero, FALSE_LABEL);
 11039     jmpb(TRUE_LABEL);
 11041     bind(COMPARE_TAIL); // limit is zero
 11042     movl(limit, result);
 11043     // Fallthru to tail compare
 11046   // Compare 4-byte vectors
 11047   andl(limit, 0xfffffffc); // vector count (in bytes)
 11048   jccb(Assembler::zero, COMPARE_CHAR);
 11050   lea(ary1, Address(ary1, limit, Address::times_1));
 11051   lea(ary2, Address(ary2, limit, Address::times_1));
 11052   negptr(limit);
 11054   bind(COMPARE_VECTORS);
 11055   movl(chr, Address(ary1, limit, Address::times_1));
 11056   cmpl(chr, Address(ary2, limit, Address::times_1));
 11057   jccb(Assembler::notEqual, FALSE_LABEL);
 11058   addptr(limit, 4);
 11059   jcc(Assembler::notZero, COMPARE_VECTORS);
 11061   // Compare trailing char (final 2 bytes), if any
 11062   bind(COMPARE_CHAR);
 11063   testl(result, 0x2);   // tail  char
 11064   jccb(Assembler::zero, TRUE_LABEL);
 11065   load_unsigned_short(chr, Address(ary1, 0));
 11066   load_unsigned_short(limit, Address(ary2, 0));
 11067   cmpl(chr, limit);
 11068   jccb(Assembler::notEqual, FALSE_LABEL);
 11070   bind(TRUE_LABEL);
 11071   movl(result, 1);   // return true
 11072   jmpb(DONE);
 11074   bind(FALSE_LABEL);
 11075   xorl(result, result); // return false
 11077   // That's it
 11078   bind(DONE);
 11081 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 11082                                    Register to, Register value, Register count,
 11083                                    Register rtmp, XMMRegister xtmp) {
 11084   ShortBranchVerifier sbv(this);
 11085   assert_different_registers(to, value, count, rtmp);
 11086   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 11087   Label L_fill_2_bytes, L_fill_4_bytes;
 11089   int shift = -1;
 11090   switch (t) {
 11091     case T_BYTE:
 11092       shift = 2;
 11093       break;
 11094     case T_SHORT:
 11095       shift = 1;
 11096       break;
 11097     case T_INT:
 11098       shift = 0;
 11099       break;
 11100     default: ShouldNotReachHere();
 11103   if (t == T_BYTE) {
 11104     andl(value, 0xff);
 11105     movl(rtmp, value);
 11106     shll(rtmp, 8);
 11107     orl(value, rtmp);
 11109   if (t == T_SHORT) {
 11110     andl(value, 0xffff);
 11112   if (t == T_BYTE || t == T_SHORT) {
 11113     movl(rtmp, value);
 11114     shll(rtmp, 16);
 11115     orl(value, rtmp);
 11118   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 11119   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 11120   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 11121     // align source address at 4 bytes address boundary
 11122     if (t == T_BYTE) {
 11123       // One byte misalignment happens only for byte arrays
 11124       testptr(to, 1);
 11125       jccb(Assembler::zero, L_skip_align1);
 11126       movb(Address(to, 0), value);
 11127       increment(to);
 11128       decrement(count);
 11129       BIND(L_skip_align1);
 11131     // Two bytes misalignment happens only for byte and short (char) arrays
 11132     testptr(to, 2);
 11133     jccb(Assembler::zero, L_skip_align2);
 11134     movw(Address(to, 0), value);
 11135     addptr(to, 2);
 11136     subl(count, 1<<(shift-1));
 11137     BIND(L_skip_align2);
 11139   if (UseSSE < 2) {
 11140     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11141     // Fill 32-byte chunks
 11142     subl(count, 8 << shift);
 11143     jcc(Assembler::less, L_check_fill_8_bytes);
 11144     align(16);
 11146     BIND(L_fill_32_bytes_loop);
 11148     for (int i = 0; i < 32; i += 4) {
 11149       movl(Address(to, i), value);
 11152     addptr(to, 32);
 11153     subl(count, 8 << shift);
 11154     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11155     BIND(L_check_fill_8_bytes);
 11156     addl(count, 8 << shift);
 11157     jccb(Assembler::zero, L_exit);
 11158     jmpb(L_fill_8_bytes);
 11160     //
 11161     // length is too short, just fill qwords
 11162     //
 11163     BIND(L_fill_8_bytes_loop);
 11164     movl(Address(to, 0), value);
 11165     movl(Address(to, 4), value);
 11166     addptr(to, 8);
 11167     BIND(L_fill_8_bytes);
 11168     subl(count, 1 << (shift + 1));
 11169     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11170     // fall through to fill 4 bytes
 11171   } else {
 11172     Label L_fill_32_bytes;
 11173     if (!UseUnalignedLoadStores) {
 11174       // align to 8 bytes, we know we are 4 byte aligned to start
 11175       testptr(to, 4);
 11176       jccb(Assembler::zero, L_fill_32_bytes);
 11177       movl(Address(to, 0), value);
 11178       addptr(to, 4);
 11179       subl(count, 1<<shift);
 11181     BIND(L_fill_32_bytes);
 11183       assert( UseSSE >= 2, "supported cpu only" );
 11184       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11185       // Fill 32-byte chunks
 11186       movdl(xtmp, value);
 11187       pshufd(xtmp, xtmp, 0);
 11189       subl(count, 8 << shift);
 11190       jcc(Assembler::less, L_check_fill_8_bytes);
 11191       align(16);
 11193       BIND(L_fill_32_bytes_loop);
 11195       if (UseUnalignedLoadStores) {
 11196         movdqu(Address(to, 0), xtmp);
 11197         movdqu(Address(to, 16), xtmp);
 11198       } else {
 11199         movq(Address(to, 0), xtmp);
 11200         movq(Address(to, 8), xtmp);
 11201         movq(Address(to, 16), xtmp);
 11202         movq(Address(to, 24), xtmp);
 11205       addptr(to, 32);
 11206       subl(count, 8 << shift);
 11207       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11208       BIND(L_check_fill_8_bytes);
 11209       addl(count, 8 << shift);
 11210       jccb(Assembler::zero, L_exit);
 11211       jmpb(L_fill_8_bytes);
 11213       //
 11214       // length is too short, just fill qwords
 11215       //
 11216       BIND(L_fill_8_bytes_loop);
 11217       movq(Address(to, 0), xtmp);
 11218       addptr(to, 8);
 11219       BIND(L_fill_8_bytes);
 11220       subl(count, 1 << (shift + 1));
 11221       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11224   // fill trailing 4 bytes
 11225   BIND(L_fill_4_bytes);
 11226   testl(count, 1<<shift);
 11227   jccb(Assembler::zero, L_fill_2_bytes);
 11228   movl(Address(to, 0), value);
 11229   if (t == T_BYTE || t == T_SHORT) {
 11230     addptr(to, 4);
 11231     BIND(L_fill_2_bytes);
 11232     // fill trailing 2 bytes
 11233     testl(count, 1<<(shift-1));
 11234     jccb(Assembler::zero, L_fill_byte);
 11235     movw(Address(to, 0), value);
 11236     if (t == T_BYTE) {
 11237       addptr(to, 2);
 11238       BIND(L_fill_byte);
 11239       // fill trailing byte
 11240       testl(count, 1);
 11241       jccb(Assembler::zero, L_exit);
 11242       movb(Address(to, 0), value);
 11243     } else {
 11244       BIND(L_fill_byte);
 11246   } else {
 11247     BIND(L_fill_2_bytes);
 11249   BIND(L_exit);
 11251 #undef BIND
 11252 #undef BLOCK_COMMENT
 11255 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 11256   switch (cond) {
 11257     // Note some conditions are synonyms for others
 11258     case Assembler::zero:         return Assembler::notZero;
 11259     case Assembler::notZero:      return Assembler::zero;
 11260     case Assembler::less:         return Assembler::greaterEqual;
 11261     case Assembler::lessEqual:    return Assembler::greater;
 11262     case Assembler::greater:      return Assembler::lessEqual;
 11263     case Assembler::greaterEqual: return Assembler::less;
 11264     case Assembler::below:        return Assembler::aboveEqual;
 11265     case Assembler::belowEqual:   return Assembler::above;
 11266     case Assembler::above:        return Assembler::belowEqual;
 11267     case Assembler::aboveEqual:   return Assembler::below;
 11268     case Assembler::overflow:     return Assembler::noOverflow;
 11269     case Assembler::noOverflow:   return Assembler::overflow;
 11270     case Assembler::negative:     return Assembler::positive;
 11271     case Assembler::positive:     return Assembler::negative;
 11272     case Assembler::parity:       return Assembler::noParity;
 11273     case Assembler::noParity:     return Assembler::parity;
 11275   ShouldNotReachHere(); return Assembler::overflow;
 11278 SkipIfEqual::SkipIfEqual(
 11279     MacroAssembler* masm, const bool* flag_addr, bool value) {
 11280   _masm = masm;
 11281   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 11282   _masm->jcc(Assembler::equal, _label);
 11285 SkipIfEqual::~SkipIfEqual() {
 11286   _masm->bind(_label);

mercurial