src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 12 Oct 2012 09:22:52 -0700

author
kvn
date
Fri, 12 Oct 2012 09:22:52 -0700
changeset 4164
d804e148cff8
parent 4142
d8ce2825b193
parent 4159
8e47bac5643a
child 4318
cd3d6a6b95d9
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::osrBufferPointer() {
   133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   134 }
   136 //--------------fpu register translations-----------------------
   139 address LIR_Assembler::float_constant(float f) {
   140   address const_addr = __ float_constant(f);
   141   if (const_addr == NULL) {
   142     bailout("const section overflow");
   143     return __ code()->consts()->start();
   144   } else {
   145     return const_addr;
   146   }
   147 }
   150 address LIR_Assembler::double_constant(double d) {
   151   address const_addr = __ double_constant(d);
   152   if (const_addr == NULL) {
   153     bailout("const section overflow");
   154     return __ code()->consts()->start();
   155   } else {
   156     return const_addr;
   157   }
   158 }
   161 void LIR_Assembler::set_24bit_FPU() {
   162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   163 }
   165 void LIR_Assembler::reset_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 }
   169 void LIR_Assembler::fpop() {
   170   __ fpop();
   171 }
   173 void LIR_Assembler::fxch(int i) {
   174   __ fxch(i);
   175 }
   177 void LIR_Assembler::fld(int i) {
   178   __ fld_s(i);
   179 }
   181 void LIR_Assembler::ffree(int i) {
   182   __ ffree(i);
   183 }
   185 void LIR_Assembler::breakpoint() {
   186   __ int3();
   187 }
   189 void LIR_Assembler::push(LIR_Opr opr) {
   190   if (opr->is_single_cpu()) {
   191     __ push_reg(opr->as_register());
   192   } else if (opr->is_double_cpu()) {
   193     NOT_LP64(__ push_reg(opr->as_register_hi()));
   194     __ push_reg(opr->as_register_lo());
   195   } else if (opr->is_stack()) {
   196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   197   } else if (opr->is_constant()) {
   198     LIR_Const* const_opr = opr->as_constant_ptr();
   199     if (const_opr->type() == T_OBJECT) {
   200       __ push_oop(const_opr->as_jobject());
   201     } else if (const_opr->type() == T_INT) {
   202       __ push_jint(const_opr->as_jint());
   203     } else {
   204       ShouldNotReachHere();
   205     }
   207   } else {
   208     ShouldNotReachHere();
   209   }
   210 }
   212 void LIR_Assembler::pop(LIR_Opr opr) {
   213   if (opr->is_single_cpu()) {
   214     __ pop_reg(opr->as_register());
   215   } else {
   216     ShouldNotReachHere();
   217   }
   218 }
   220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   221   return addr->base()->is_illegal() && addr->index()->is_illegal();
   222 }
   224 //-------------------------------------------
   226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   227   return as_Address(addr, rscratch1);
   228 }
   230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   231   if (addr->base()->is_illegal()) {
   232     assert(addr->index()->is_illegal(), "must be illegal too");
   233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   234     if (! __ reachable(laddr)) {
   235       __ movptr(tmp, laddr.addr());
   236       Address res(tmp, 0);
   237       return res;
   238     } else {
   239       return __ as_Address(laddr);
   240     }
   241   }
   243   Register base = addr->base()->as_pointer_register();
   245   if (addr->index()->is_illegal()) {
   246     return Address( base, addr->disp());
   247   } else if (addr->index()->is_cpu_register()) {
   248     Register index = addr->index()->as_pointer_register();
   249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   250   } else if (addr->index()->is_constant()) {
   251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   252     assert(Assembler::is_simm32(addr_offset), "must be");
   254     return Address(base, addr_offset);
   255   } else {
   256     Unimplemented();
   257     return Address();
   258   }
   259 }
   262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   263   Address base = as_Address(addr);
   264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   265 }
   268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   269   return as_Address(addr);
   270 }
   273 void LIR_Assembler::osr_entry() {
   274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   276   ValueStack* entry_state = osr_entry->state();
   277   int number_of_locks = entry_state->locks_size();
   279   // we jump here if osr happens with the interpreter
   280   // state set up to continue at the beginning of the
   281   // loop that triggered osr - in particular, we have
   282   // the following registers setup:
   283   //
   284   // rcx: osr buffer
   285   //
   287   // build frame
   288   ciMethod* m = compilation()->method();
   289   __ build_frame(initial_frame_size_in_bytes());
   291   // OSR buffer is
   292   //
   293   // locals[nlocals-1..0]
   294   // monitors[0..number_of_locks]
   295   //
   296   // locals is a direct copy of the interpreter frame so in the osr buffer
   297   // so first slot in the local array is the last local from the interpreter
   298   // and last slot is local[0] (receiver) from the interpreter
   299   //
   300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   302   // in the interpreter frame (the method lock if a sync method)
   304   // Initialize monitors in the compiled activation.
   305   //   rcx: pointer to osr buffer
   306   //
   307   // All other registers are dead at this point and the locals will be
   308   // copied into place by code emitted in the IR.
   310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   312     int monitor_offset = BytesPerWord * method()->max_locals() +
   313       (2 * BytesPerWord) * (number_of_locks - 1);
   314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   315     // the OSR buffer using 2 word entries: first the lock and then
   316     // the oop.
   317     for (int i = 0; i < number_of_locks; i++) {
   318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   319 #ifdef ASSERT
   320       // verify the interpreter's monitor has a non-null object
   321       {
   322         Label L;
   323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   324         __ jcc(Assembler::notZero, L);
   325         __ stop("locked object is NULL");
   326         __ bind(L);
   327       }
   328 #endif
   329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   333     }
   334   }
   335 }
   338 // inline cache check; done before the frame is built.
   339 int LIR_Assembler::check_icache() {
   340   Register receiver = FrameMap::receiver_opr->as_register();
   341   Register ic_klass = IC_Klass;
   342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   343   const bool do_post_padding = VerifyOops || UseCompressedKlassPointers;
   344   if (!do_post_padding) {
   345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   347       __ nop();
   348     }
   349   }
   350   int offset = __ offset();
   351   __ inline_cache_check(receiver, IC_Klass);
   352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   353   if (do_post_padding) {
   354     // force alignment after the cache check.
   355     // It's been verified to be aligned if !VerifyOops
   356     __ align(CodeEntryAlignment);
   357   }
   358   return offset;
   359 }
   362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   363   jobject o = NULL;
   364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
   365   __ movoop(reg, o);
   366   patching_epilog(patch, lir_patch_normal, reg, info);
   367 }
   369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   370   Metadata* o = NULL;
   371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   372   __ mov_metadata(reg, o);
   373   patching_epilog(patch, lir_patch_normal, reg, info);
   374 }
   376 // This specifies the rsp decrement needed to build the frame
   377 int LIR_Assembler::initial_frame_size_in_bytes() {
   378   // if rounding, must let FrameMap know!
   380   // The frame_map records size in slots (32bit word)
   382   // subtract two words to account for return address and link
   383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   384 }
   387 int LIR_Assembler::emit_exception_handler() {
   388   // if the last instruction is a call (typically to do a throw which
   389   // is coming at the end after block reordering) the return address
   390   // must still point into the code area in order to avoid assertion
   391   // failures when searching for the corresponding bci => add a nop
   392   // (was bug 5/14/1999 - gri)
   393   __ nop();
   395   // generate code for exception handler
   396   address handler_base = __ start_a_stub(exception_handler_size);
   397   if (handler_base == NULL) {
   398     // not enough space left for the handler
   399     bailout("exception handler overflow");
   400     return -1;
   401   }
   403   int offset = code_offset();
   405   // the exception oop and pc are in rax, and rdx
   406   // no other registers need to be preserved, so invalidate them
   407   __ invalidate_registers(false, true, true, false, true, true);
   409   // check that there is really an exception
   410   __ verify_not_null_oop(rax);
   412   // search an exception handler (rax: exception oop, rdx: throwing pc)
   413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ get_thread(rsi);
   435   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   436   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   437   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   439   __ bind(_unwind_handler_entry);
   440   __ verify_not_null_oop(rax);
   441   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   442     __ mov(rsi, rax);  // Preserve the exception
   443   }
   445   // Preform needed unlocking
   446   MonitorExitStub* stub = NULL;
   447   if (method()->is_synchronized()) {
   448     monitor_address(0, FrameMap::rax_opr);
   449     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   450     __ unlock_object(rdi, rbx, rax, *stub->entry());
   451     __ bind(*stub->continuation());
   452   }
   454   if (compilation()->env()->dtrace_method_probes()) {
   455     __ get_thread(rax);
   456     __ movptr(Address(rsp, 0), rax);
   457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   458     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   459   }
   461   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   462     __ mov(rax, rsi);  // Restore the exception
   463   }
   465   // remove the activation and dispatch to the unwind handler
   466   __ remove_frame(initial_frame_size_in_bytes());
   467   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   469   // Emit the slow path assembly
   470   if (stub != NULL) {
   471     stub->emit_code(this);
   472   }
   474   return offset;
   475 }
   478 int LIR_Assembler::emit_deopt_handler() {
   479   // if the last instruction is a call (typically to do a throw which
   480   // is coming at the end after block reordering) the return address
   481   // must still point into the code area in order to avoid assertion
   482   // failures when searching for the corresponding bci => add a nop
   483   // (was bug 5/14/1999 - gri)
   484   __ nop();
   486   // generate code for exception handler
   487   address handler_base = __ start_a_stub(deopt_handler_size);
   488   if (handler_base == NULL) {
   489     // not enough space left for the handler
   490     bailout("deopt handler overflow");
   491     return -1;
   492   }
   494   int offset = code_offset();
   495   InternalAddress here(__ pc());
   497   __ pushptr(here.addr());
   498   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   499   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   500   __ end_a_stub();
   502   return offset;
   503 }
   506 // This is the fast version of java.lang.String.compare; it has not
   507 // OSR-entry and therefore, we generate a slow version for OSR's
   508 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   509   __ movptr (rbx, rcx); // receiver is in rcx
   510   __ movptr (rax, arg1->as_register());
   512   // Get addresses of first characters from both Strings
   513   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   514   if (java_lang_String::has_offset_field()) {
   515     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   516     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   517     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   518   } else {
   519     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   520     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   521   }
   523   // rbx, may be NULL
   524   add_debug_info_for_null_check_here(info);
   525   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   526   if (java_lang_String::has_offset_field()) {
   527     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   528     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   529     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   530   } else {
   531     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   532     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   533   }
   535   // compute minimum length (in rax) and difference of lengths (on top of stack)
   536   __ mov   (rcx, rbx);
   537   __ subptr(rbx, rax); // subtract lengths
   538   __ push  (rbx);      // result
   539   __ cmov  (Assembler::lessEqual, rax, rcx);
   541   // is minimum length 0?
   542   Label noLoop, haveResult;
   543   __ testptr (rax, rax);
   544   __ jcc (Assembler::zero, noLoop);
   546   // compare first characters
   547   __ load_unsigned_short(rcx, Address(rdi, 0));
   548   __ load_unsigned_short(rbx, Address(rsi, 0));
   549   __ subl(rcx, rbx);
   550   __ jcc(Assembler::notZero, haveResult);
   551   // starting loop
   552   __ decrement(rax); // we already tested index: skip one
   553   __ jcc(Assembler::zero, noLoop);
   555   // set rsi.edi to the end of the arrays (arrays have same length)
   556   // negate the index
   558   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   559   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   560   __ negptr(rax);
   562   // compare the strings in a loop
   564   Label loop;
   565   __ align(wordSize);
   566   __ bind(loop);
   567   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   568   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   569   __ subl(rcx, rbx);
   570   __ jcc(Assembler::notZero, haveResult);
   571   __ increment(rax);
   572   __ jcc(Assembler::notZero, loop);
   574   // strings are equal up to min length
   576   __ bind(noLoop);
   577   __ pop(rax);
   578   return_op(LIR_OprFact::illegalOpr);
   580   __ bind(haveResult);
   581   // leave instruction is going to discard the TOS value
   582   __ mov (rax, rcx); // result of call is in rax,
   583 }
   586 void LIR_Assembler::return_op(LIR_Opr result) {
   587   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   588   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   589     assert(result->fpu() == 0, "result must already be on TOS");
   590   }
   592   // Pop the stack before the safepoint code
   593   __ remove_frame(initial_frame_size_in_bytes());
   595   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   597   // Note: we do not need to round double result; float result has the right precision
   598   // the poll sets the condition code, but no data registers
   599   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   600                               relocInfo::poll_return_type);
   602   if (Assembler::is_polling_page_far()) {
   603     __ lea(rscratch1, polling_page);
   604     __ relocate(relocInfo::poll_return_type);
   605     __ testl(rax, Address(rscratch1, 0));
   606   } else {
   607     __ testl(rax, polling_page);
   608   }
   609   __ ret(0);
   610 }
   613 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   614   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   615                               relocInfo::poll_type);
   616   guarantee(info != NULL, "Shouldn't be NULL");
   617   int offset = __ offset();
   618   if (Assembler::is_polling_page_far()) {
   619     __ lea(rscratch1, polling_page);
   620     offset = __ offset();
   621     add_debug_info_for_branch(info);
   622     __ testl(rax, Address(rscratch1, 0));
   623   } else {
   624     add_debug_info_for_branch(info);
   625     __ testl(rax, polling_page);
   626   }
   627   return offset;
   628 }
   631 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   632   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   633 }
   635 void LIR_Assembler::swap_reg(Register a, Register b) {
   636   __ xchgptr(a, b);
   637 }
   640 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   641   assert(src->is_constant(), "should not call otherwise");
   642   assert(dest->is_register(), "should not call otherwise");
   643   LIR_Const* c = src->as_constant_ptr();
   645   switch (c->type()) {
   646     case T_INT: {
   647       assert(patch_code == lir_patch_none, "no patching handled here");
   648       __ movl(dest->as_register(), c->as_jint());
   649       break;
   650     }
   652     case T_ADDRESS: {
   653       assert(patch_code == lir_patch_none, "no patching handled here");
   654       __ movptr(dest->as_register(), c->as_jint());
   655       break;
   656     }
   658     case T_LONG: {
   659       assert(patch_code == lir_patch_none, "no patching handled here");
   660 #ifdef _LP64
   661       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   662 #else
   663       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   664       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   665 #endif // _LP64
   666       break;
   667     }
   669     case T_OBJECT: {
   670       if (patch_code != lir_patch_none) {
   671         jobject2reg_with_patching(dest->as_register(), info);
   672       } else {
   673         __ movoop(dest->as_register(), c->as_jobject());
   674       }
   675       break;
   676     }
   678     case T_METADATA: {
   679       if (patch_code != lir_patch_none) {
   680         klass2reg_with_patching(dest->as_register(), info);
   681       } else {
   682         __ mov_metadata(dest->as_register(), c->as_metadata());
   683       }
   684       break;
   685     }
   687     case T_FLOAT: {
   688       if (dest->is_single_xmm()) {
   689         if (c->is_zero_float()) {
   690           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   691         } else {
   692           __ movflt(dest->as_xmm_float_reg(),
   693                    InternalAddress(float_constant(c->as_jfloat())));
   694         }
   695       } else {
   696         assert(dest->is_single_fpu(), "must be");
   697         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   698         if (c->is_zero_float()) {
   699           __ fldz();
   700         } else if (c->is_one_float()) {
   701           __ fld1();
   702         } else {
   703           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   704         }
   705       }
   706       break;
   707     }
   709     case T_DOUBLE: {
   710       if (dest->is_double_xmm()) {
   711         if (c->is_zero_double()) {
   712           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   713         } else {
   714           __ movdbl(dest->as_xmm_double_reg(),
   715                     InternalAddress(double_constant(c->as_jdouble())));
   716         }
   717       } else {
   718         assert(dest->is_double_fpu(), "must be");
   719         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   720         if (c->is_zero_double()) {
   721           __ fldz();
   722         } else if (c->is_one_double()) {
   723           __ fld1();
   724         } else {
   725           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   726         }
   727       }
   728       break;
   729     }
   731     default:
   732       ShouldNotReachHere();
   733   }
   734 }
   736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   737   assert(src->is_constant(), "should not call otherwise");
   738   assert(dest->is_stack(), "should not call otherwise");
   739   LIR_Const* c = src->as_constant_ptr();
   741   switch (c->type()) {
   742     case T_INT:  // fall through
   743     case T_FLOAT:
   744       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   745       break;
   747     case T_ADDRESS:
   748       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   749       break;
   751     case T_OBJECT:
   752       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   753       break;
   755     case T_LONG:  // fall through
   756     case T_DOUBLE:
   757 #ifdef _LP64
   758       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   759                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   760 #else
   761       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   762                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   763       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   764                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   765 #endif // _LP64
   766       break;
   768     default:
   769       ShouldNotReachHere();
   770   }
   771 }
   773 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   774   assert(src->is_constant(), "should not call otherwise");
   775   assert(dest->is_address(), "should not call otherwise");
   776   LIR_Const* c = src->as_constant_ptr();
   777   LIR_Address* addr = dest->as_address_ptr();
   779   int null_check_here = code_offset();
   780   switch (type) {
   781     case T_INT:    // fall through
   782     case T_FLOAT:
   783       __ movl(as_Address(addr), c->as_jint_bits());
   784       break;
   786     case T_ADDRESS:
   787       __ movptr(as_Address(addr), c->as_jint_bits());
   788       break;
   790     case T_OBJECT:  // fall through
   791     case T_ARRAY:
   792       if (c->as_jobject() == NULL) {
   793         if (UseCompressedOops && !wide) {
   794           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   795         } else {
   796           __ movptr(as_Address(addr), NULL_WORD);
   797         }
   798       } else {
   799         if (is_literal_address(addr)) {
   800           ShouldNotReachHere();
   801           __ movoop(as_Address(addr, noreg), c->as_jobject());
   802         } else {
   803 #ifdef _LP64
   804           __ movoop(rscratch1, c->as_jobject());
   805           if (UseCompressedOops && !wide) {
   806             __ encode_heap_oop(rscratch1);
   807             null_check_here = code_offset();
   808             __ movl(as_Address_lo(addr), rscratch1);
   809           } else {
   810             null_check_here = code_offset();
   811             __ movptr(as_Address_lo(addr), rscratch1);
   812           }
   813 #else
   814           __ movoop(as_Address(addr), c->as_jobject());
   815 #endif
   816         }
   817       }
   818       break;
   820     case T_LONG:    // fall through
   821     case T_DOUBLE:
   822 #ifdef _LP64
   823       if (is_literal_address(addr)) {
   824         ShouldNotReachHere();
   825         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   826       } else {
   827         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   828         null_check_here = code_offset();
   829         __ movptr(as_Address_lo(addr), r10);
   830       }
   831 #else
   832       // Always reachable in 32bit so this doesn't produce useless move literal
   833       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   834       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   835 #endif // _LP64
   836       break;
   838     case T_BOOLEAN: // fall through
   839     case T_BYTE:
   840       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   841       break;
   843     case T_CHAR:    // fall through
   844     case T_SHORT:
   845       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   846       break;
   848     default:
   849       ShouldNotReachHere();
   850   };
   852   if (info != NULL) {
   853     add_debug_info_for_null_check(null_check_here, info);
   854   }
   855 }
   858 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   859   assert(src->is_register(), "should not call otherwise");
   860   assert(dest->is_register(), "should not call otherwise");
   862   // move between cpu-registers
   863   if (dest->is_single_cpu()) {
   864 #ifdef _LP64
   865     if (src->type() == T_LONG) {
   866       // Can do LONG -> OBJECT
   867       move_regs(src->as_register_lo(), dest->as_register());
   868       return;
   869     }
   870 #endif
   871     assert(src->is_single_cpu(), "must match");
   872     if (src->type() == T_OBJECT) {
   873       __ verify_oop(src->as_register());
   874     }
   875     move_regs(src->as_register(), dest->as_register());
   877   } else if (dest->is_double_cpu()) {
   878 #ifdef _LP64
   879     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   880       // Surprising to me but we can see move of a long to t_object
   881       __ verify_oop(src->as_register());
   882       move_regs(src->as_register(), dest->as_register_lo());
   883       return;
   884     }
   885 #endif
   886     assert(src->is_double_cpu(), "must match");
   887     Register f_lo = src->as_register_lo();
   888     Register f_hi = src->as_register_hi();
   889     Register t_lo = dest->as_register_lo();
   890     Register t_hi = dest->as_register_hi();
   891 #ifdef _LP64
   892     assert(f_hi == f_lo, "must be same");
   893     assert(t_hi == t_lo, "must be same");
   894     move_regs(f_lo, t_lo);
   895 #else
   896     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   899     if (f_lo == t_hi && f_hi == t_lo) {
   900       swap_reg(f_lo, f_hi);
   901     } else if (f_hi == t_lo) {
   902       assert(f_lo != t_hi, "overwriting register");
   903       move_regs(f_hi, t_hi);
   904       move_regs(f_lo, t_lo);
   905     } else {
   906       assert(f_hi != t_lo, "overwriting register");
   907       move_regs(f_lo, t_lo);
   908       move_regs(f_hi, t_hi);
   909     }
   910 #endif // LP64
   912     // special moves from fpu-register to xmm-register
   913     // necessary for method results
   914   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   915     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   916     __ fld_s(Address(rsp, 0));
   917   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   918     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   919     __ fld_d(Address(rsp, 0));
   920   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   921     __ fstp_s(Address(rsp, 0));
   922     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   923   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   924     __ fstp_d(Address(rsp, 0));
   925     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   927     // move between xmm-registers
   928   } else if (dest->is_single_xmm()) {
   929     assert(src->is_single_xmm(), "must match");
   930     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   931   } else if (dest->is_double_xmm()) {
   932     assert(src->is_double_xmm(), "must match");
   933     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   935     // move between fpu-registers (no instruction necessary because of fpu-stack)
   936   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   937     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   938     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   939   } else {
   940     ShouldNotReachHere();
   941   }
   942 }
   944 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   945   assert(src->is_register(), "should not call otherwise");
   946   assert(dest->is_stack(), "should not call otherwise");
   948   if (src->is_single_cpu()) {
   949     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   950     if (type == T_OBJECT || type == T_ARRAY) {
   951       __ verify_oop(src->as_register());
   952       __ movptr (dst, src->as_register());
   953     } else if (type == T_METADATA) {
   954       __ movptr (dst, src->as_register());
   955     } else {
   956       __ movl (dst, src->as_register());
   957     }
   959   } else if (src->is_double_cpu()) {
   960     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   961     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   962     __ movptr (dstLO, src->as_register_lo());
   963     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   965   } else if (src->is_single_xmm()) {
   966     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   967     __ movflt(dst_addr, src->as_xmm_float_reg());
   969   } else if (src->is_double_xmm()) {
   970     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   971     __ movdbl(dst_addr, src->as_xmm_double_reg());
   973   } else if (src->is_single_fpu()) {
   974     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   975     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   976     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   977     else                   __ fst_s  (dst_addr);
   979   } else if (src->is_double_fpu()) {
   980     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   981     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   982     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   983     else                   __ fst_d  (dst_addr);
   985   } else {
   986     ShouldNotReachHere();
   987   }
   988 }
   991 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   992   LIR_Address* to_addr = dest->as_address_ptr();
   993   PatchingStub* patch = NULL;
   994   Register compressed_src = rscratch1;
   996   if (type == T_ARRAY || type == T_OBJECT) {
   997     __ verify_oop(src->as_register());
   998 #ifdef _LP64
   999     if (UseCompressedOops && !wide) {
  1000       __ movptr(compressed_src, src->as_register());
  1001       __ encode_heap_oop(compressed_src);
  1003 #endif
  1006   if (patch_code != lir_patch_none) {
  1007     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1008     Address toa = as_Address(to_addr);
  1009     assert(toa.disp() != 0, "must have");
  1012   int null_check_here = code_offset();
  1013   switch (type) {
  1014     case T_FLOAT: {
  1015       if (src->is_single_xmm()) {
  1016         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1017       } else {
  1018         assert(src->is_single_fpu(), "must be");
  1019         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1020         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1021         else                    __ fst_s (as_Address(to_addr));
  1023       break;
  1026     case T_DOUBLE: {
  1027       if (src->is_double_xmm()) {
  1028         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1029       } else {
  1030         assert(src->is_double_fpu(), "must be");
  1031         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1032         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1033         else                    __ fst_d (as_Address(to_addr));
  1035       break;
  1038     case T_ARRAY:   // fall through
  1039     case T_OBJECT:  // fall through
  1040       if (UseCompressedOops && !wide) {
  1041         __ movl(as_Address(to_addr), compressed_src);
  1042       } else {
  1043         __ movptr(as_Address(to_addr), src->as_register());
  1045       break;
  1046     case T_METADATA:
  1047       // We get here to store a method pointer to the stack to pass to
  1048       // a dtrace runtime call. This can't work on 64 bit with
  1049       // compressed klass ptrs: T_METADATA can be a compressed klass
  1050       // ptr or a 64 bit method pointer.
  1051       LP64_ONLY(ShouldNotReachHere());
  1052       __ movptr(as_Address(to_addr), src->as_register());
  1053       break;
  1054     case T_ADDRESS:
  1055       __ movptr(as_Address(to_addr), src->as_register());
  1056       break;
  1057     case T_INT:
  1058       __ movl(as_Address(to_addr), src->as_register());
  1059       break;
  1061     case T_LONG: {
  1062       Register from_lo = src->as_register_lo();
  1063       Register from_hi = src->as_register_hi();
  1064 #ifdef _LP64
  1065       __ movptr(as_Address_lo(to_addr), from_lo);
  1066 #else
  1067       Register base = to_addr->base()->as_register();
  1068       Register index = noreg;
  1069       if (to_addr->index()->is_register()) {
  1070         index = to_addr->index()->as_register();
  1072       if (base == from_lo || index == from_lo) {
  1073         assert(base != from_hi, "can't be");
  1074         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1075         __ movl(as_Address_hi(to_addr), from_hi);
  1076         if (patch != NULL) {
  1077           patching_epilog(patch, lir_patch_high, base, info);
  1078           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1079           patch_code = lir_patch_low;
  1081         __ movl(as_Address_lo(to_addr), from_lo);
  1082       } else {
  1083         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1084         __ movl(as_Address_lo(to_addr), from_lo);
  1085         if (patch != NULL) {
  1086           patching_epilog(patch, lir_patch_low, base, info);
  1087           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1088           patch_code = lir_patch_high;
  1090         __ movl(as_Address_hi(to_addr), from_hi);
  1092 #endif // _LP64
  1093       break;
  1096     case T_BYTE:    // fall through
  1097     case T_BOOLEAN: {
  1098       Register src_reg = src->as_register();
  1099       Address dst_addr = as_Address(to_addr);
  1100       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1101       __ movb(dst_addr, src_reg);
  1102       break;
  1105     case T_CHAR:    // fall through
  1106     case T_SHORT:
  1107       __ movw(as_Address(to_addr), src->as_register());
  1108       break;
  1110     default:
  1111       ShouldNotReachHere();
  1113   if (info != NULL) {
  1114     add_debug_info_for_null_check(null_check_here, info);
  1117   if (patch_code != lir_patch_none) {
  1118     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1123 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1124   assert(src->is_stack(), "should not call otherwise");
  1125   assert(dest->is_register(), "should not call otherwise");
  1127   if (dest->is_single_cpu()) {
  1128     if (type == T_ARRAY || type == T_OBJECT) {
  1129       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1130       __ verify_oop(dest->as_register());
  1131     } else if (type == T_METADATA) {
  1132       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1133     } else {
  1134       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1137   } else if (dest->is_double_cpu()) {
  1138     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1139     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1140     __ movptr(dest->as_register_lo(), src_addr_LO);
  1141     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1143   } else if (dest->is_single_xmm()) {
  1144     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1145     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1147   } else if (dest->is_double_xmm()) {
  1148     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1149     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1151   } else if (dest->is_single_fpu()) {
  1152     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1153     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1154     __ fld_s(src_addr);
  1156   } else if (dest->is_double_fpu()) {
  1157     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1158     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1159     __ fld_d(src_addr);
  1161   } else {
  1162     ShouldNotReachHere();
  1167 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1168   if (src->is_single_stack()) {
  1169     if (type == T_OBJECT || type == T_ARRAY) {
  1170       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1171       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1172     } else {
  1173 #ifndef _LP64
  1174       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1175       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1176 #else
  1177       //no pushl on 64bits
  1178       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1179       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1180 #endif
  1183   } else if (src->is_double_stack()) {
  1184 #ifdef _LP64
  1185     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1186     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1187 #else
  1188     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1189     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1190     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1191     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1192     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1193 #endif // _LP64
  1195   } else {
  1196     ShouldNotReachHere();
  1201 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1202   assert(src->is_address(), "should not call otherwise");
  1203   assert(dest->is_register(), "should not call otherwise");
  1205   LIR_Address* addr = src->as_address_ptr();
  1206   Address from_addr = as_Address(addr);
  1208   switch (type) {
  1209     case T_BOOLEAN: // fall through
  1210     case T_BYTE:    // fall through
  1211     case T_CHAR:    // fall through
  1212     case T_SHORT:
  1213       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1214         // on pre P6 processors we may get partial register stalls
  1215         // so blow away the value of to_rinfo before loading a
  1216         // partial word into it.  Do it here so that it precedes
  1217         // the potential patch point below.
  1218         __ xorptr(dest->as_register(), dest->as_register());
  1220       break;
  1223   PatchingStub* patch = NULL;
  1224   if (patch_code != lir_patch_none) {
  1225     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1226     assert(from_addr.disp() != 0, "must have");
  1228   if (info != NULL) {
  1229     add_debug_info_for_null_check_here(info);
  1232   switch (type) {
  1233     case T_FLOAT: {
  1234       if (dest->is_single_xmm()) {
  1235         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1236       } else {
  1237         assert(dest->is_single_fpu(), "must be");
  1238         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1239         __ fld_s(from_addr);
  1241       break;
  1244     case T_DOUBLE: {
  1245       if (dest->is_double_xmm()) {
  1246         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1247       } else {
  1248         assert(dest->is_double_fpu(), "must be");
  1249         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1250         __ fld_d(from_addr);
  1252       break;
  1255     case T_OBJECT:  // fall through
  1256     case T_ARRAY:   // fall through
  1257       if (UseCompressedOops && !wide) {
  1258         __ movl(dest->as_register(), from_addr);
  1259       } else {
  1260         __ movptr(dest->as_register(), from_addr);
  1262       break;
  1264     case T_ADDRESS:
  1265       if (UseCompressedKlassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1266         __ movl(dest->as_register(), from_addr);
  1267       } else {
  1268         __ movptr(dest->as_register(), from_addr);
  1270       break;
  1271     case T_INT:
  1272       __ movl(dest->as_register(), from_addr);
  1273       break;
  1275     case T_LONG: {
  1276       Register to_lo = dest->as_register_lo();
  1277       Register to_hi = dest->as_register_hi();
  1278 #ifdef _LP64
  1279       __ movptr(to_lo, as_Address_lo(addr));
  1280 #else
  1281       Register base = addr->base()->as_register();
  1282       Register index = noreg;
  1283       if (addr->index()->is_register()) {
  1284         index = addr->index()->as_register();
  1286       if ((base == to_lo && index == to_hi) ||
  1287           (base == to_hi && index == to_lo)) {
  1288         // addresses with 2 registers are only formed as a result of
  1289         // array access so this code will never have to deal with
  1290         // patches or null checks.
  1291         assert(info == NULL && patch == NULL, "must be");
  1292         __ lea(to_hi, as_Address(addr));
  1293         __ movl(to_lo, Address(to_hi, 0));
  1294         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1295       } else if (base == to_lo || index == to_lo) {
  1296         assert(base != to_hi, "can't be");
  1297         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1298         __ movl(to_hi, as_Address_hi(addr));
  1299         if (patch != NULL) {
  1300           patching_epilog(patch, lir_patch_high, base, info);
  1301           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1302           patch_code = lir_patch_low;
  1304         __ movl(to_lo, as_Address_lo(addr));
  1305       } else {
  1306         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1307         __ movl(to_lo, as_Address_lo(addr));
  1308         if (patch != NULL) {
  1309           patching_epilog(patch, lir_patch_low, base, info);
  1310           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1311           patch_code = lir_patch_high;
  1313         __ movl(to_hi, as_Address_hi(addr));
  1315 #endif // _LP64
  1316       break;
  1319     case T_BOOLEAN: // fall through
  1320     case T_BYTE: {
  1321       Register dest_reg = dest->as_register();
  1322       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1323       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1324         __ movsbl(dest_reg, from_addr);
  1325       } else {
  1326         __ movb(dest_reg, from_addr);
  1327         __ shll(dest_reg, 24);
  1328         __ sarl(dest_reg, 24);
  1330       break;
  1333     case T_CHAR: {
  1334       Register dest_reg = dest->as_register();
  1335       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1336       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1337         __ movzwl(dest_reg, from_addr);
  1338       } else {
  1339         __ movw(dest_reg, from_addr);
  1341       break;
  1344     case T_SHORT: {
  1345       Register dest_reg = dest->as_register();
  1346       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1347         __ movswl(dest_reg, from_addr);
  1348       } else {
  1349         __ movw(dest_reg, from_addr);
  1350         __ shll(dest_reg, 16);
  1351         __ sarl(dest_reg, 16);
  1353       break;
  1356     default:
  1357       ShouldNotReachHere();
  1360   if (patch != NULL) {
  1361     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1364   if (type == T_ARRAY || type == T_OBJECT) {
  1365 #ifdef _LP64
  1366     if (UseCompressedOops && !wide) {
  1367       __ decode_heap_oop(dest->as_register());
  1369 #endif
  1370     __ verify_oop(dest->as_register());
  1371   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1372 #ifdef _LP64
  1373     if (UseCompressedKlassPointers) {
  1374       __ decode_klass_not_null(dest->as_register());
  1376 #endif
  1381 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1382   LIR_Address* addr = src->as_address_ptr();
  1383   Address from_addr = as_Address(addr);
  1385   if (VM_Version::supports_sse()) {
  1386     switch (ReadPrefetchInstr) {
  1387       case 0:
  1388         __ prefetchnta(from_addr); break;
  1389       case 1:
  1390         __ prefetcht0(from_addr); break;
  1391       case 2:
  1392         __ prefetcht2(from_addr); break;
  1393       default:
  1394         ShouldNotReachHere(); break;
  1396   } else if (VM_Version::supports_3dnow_prefetch()) {
  1397     __ prefetchr(from_addr);
  1402 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1403   LIR_Address* addr = src->as_address_ptr();
  1404   Address from_addr = as_Address(addr);
  1406   if (VM_Version::supports_sse()) {
  1407     switch (AllocatePrefetchInstr) {
  1408       case 0:
  1409         __ prefetchnta(from_addr); break;
  1410       case 1:
  1411         __ prefetcht0(from_addr); break;
  1412       case 2:
  1413         __ prefetcht2(from_addr); break;
  1414       case 3:
  1415         __ prefetchw(from_addr); break;
  1416       default:
  1417         ShouldNotReachHere(); break;
  1419   } else if (VM_Version::supports_3dnow_prefetch()) {
  1420     __ prefetchw(from_addr);
  1425 NEEDS_CLEANUP; // This could be static?
  1426 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1427   int elem_size = type2aelembytes(type);
  1428   switch (elem_size) {
  1429     case 1: return Address::times_1;
  1430     case 2: return Address::times_2;
  1431     case 4: return Address::times_4;
  1432     case 8: return Address::times_8;
  1434   ShouldNotReachHere();
  1435   return Address::no_scale;
  1439 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1440   switch (op->code()) {
  1441     case lir_idiv:
  1442     case lir_irem:
  1443       arithmetic_idiv(op->code(),
  1444                       op->in_opr1(),
  1445                       op->in_opr2(),
  1446                       op->in_opr3(),
  1447                       op->result_opr(),
  1448                       op->info());
  1449       break;
  1450     default:      ShouldNotReachHere(); break;
  1454 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1455 #ifdef ASSERT
  1456   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1457   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1458   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1459 #endif
  1461   if (op->cond() == lir_cond_always) {
  1462     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1463     __ jmp (*(op->label()));
  1464   } else {
  1465     Assembler::Condition acond = Assembler::zero;
  1466     if (op->code() == lir_cond_float_branch) {
  1467       assert(op->ublock() != NULL, "must have unordered successor");
  1468       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1469       switch(op->cond()) {
  1470         case lir_cond_equal:        acond = Assembler::equal;      break;
  1471         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1472         case lir_cond_less:         acond = Assembler::below;      break;
  1473         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1474         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1475         case lir_cond_greater:      acond = Assembler::above;      break;
  1476         default:                         ShouldNotReachHere();
  1478     } else {
  1479       switch (op->cond()) {
  1480         case lir_cond_equal:        acond = Assembler::equal;       break;
  1481         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1482         case lir_cond_less:         acond = Assembler::less;        break;
  1483         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1484         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1485         case lir_cond_greater:      acond = Assembler::greater;     break;
  1486         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1487         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1488         default:                         ShouldNotReachHere();
  1491     __ jcc(acond,*(op->label()));
  1495 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1496   LIR_Opr src  = op->in_opr();
  1497   LIR_Opr dest = op->result_opr();
  1499   switch (op->bytecode()) {
  1500     case Bytecodes::_i2l:
  1501 #ifdef _LP64
  1502       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1503 #else
  1504       move_regs(src->as_register(), dest->as_register_lo());
  1505       move_regs(src->as_register(), dest->as_register_hi());
  1506       __ sarl(dest->as_register_hi(), 31);
  1507 #endif // LP64
  1508       break;
  1510     case Bytecodes::_l2i:
  1511 #ifdef _LP64
  1512       __ movl(dest->as_register(), src->as_register_lo());
  1513 #else
  1514       move_regs(src->as_register_lo(), dest->as_register());
  1515 #endif
  1516       break;
  1518     case Bytecodes::_i2b:
  1519       move_regs(src->as_register(), dest->as_register());
  1520       __ sign_extend_byte(dest->as_register());
  1521       break;
  1523     case Bytecodes::_i2c:
  1524       move_regs(src->as_register(), dest->as_register());
  1525       __ andl(dest->as_register(), 0xFFFF);
  1526       break;
  1528     case Bytecodes::_i2s:
  1529       move_regs(src->as_register(), dest->as_register());
  1530       __ sign_extend_short(dest->as_register());
  1531       break;
  1534     case Bytecodes::_f2d:
  1535     case Bytecodes::_d2f:
  1536       if (dest->is_single_xmm()) {
  1537         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1538       } else if (dest->is_double_xmm()) {
  1539         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1540       } else {
  1541         assert(src->fpu() == dest->fpu(), "register must be equal");
  1542         // do nothing (float result is rounded later through spilling)
  1544       break;
  1546     case Bytecodes::_i2f:
  1547     case Bytecodes::_i2d:
  1548       if (dest->is_single_xmm()) {
  1549         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1550       } else if (dest->is_double_xmm()) {
  1551         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1552       } else {
  1553         assert(dest->fpu() == 0, "result must be on TOS");
  1554         __ movl(Address(rsp, 0), src->as_register());
  1555         __ fild_s(Address(rsp, 0));
  1557       break;
  1559     case Bytecodes::_f2i:
  1560     case Bytecodes::_d2i:
  1561       if (src->is_single_xmm()) {
  1562         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1563       } else if (src->is_double_xmm()) {
  1564         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1565       } else {
  1566         assert(src->fpu() == 0, "input must be on TOS");
  1567         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1568         __ fist_s(Address(rsp, 0));
  1569         __ movl(dest->as_register(), Address(rsp, 0));
  1570         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1573       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1574       assert(op->stub() != NULL, "stub required");
  1575       __ cmpl(dest->as_register(), 0x80000000);
  1576       __ jcc(Assembler::equal, *op->stub()->entry());
  1577       __ bind(*op->stub()->continuation());
  1578       break;
  1580     case Bytecodes::_l2f:
  1581     case Bytecodes::_l2d:
  1582       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1583       assert(dest->fpu() == 0, "result must be on TOS");
  1585       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1586       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1587       __ fild_d(Address(rsp, 0));
  1588       // float result is rounded later through spilling
  1589       break;
  1591     case Bytecodes::_f2l:
  1592     case Bytecodes::_d2l:
  1593       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1594       assert(src->fpu() == 0, "input must be on TOS");
  1595       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1597       // instruction sequence too long to inline it here
  1599         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1601       break;
  1603     default: ShouldNotReachHere();
  1607 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1608   if (op->init_check()) {
  1609     __ cmpb(Address(op->klass()->as_register(),
  1610                     InstanceKlass::init_state_offset()),
  1611                     InstanceKlass::fully_initialized);
  1612     add_debug_info_for_null_check_here(op->stub()->info());
  1613     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1615   __ allocate_object(op->obj()->as_register(),
  1616                      op->tmp1()->as_register(),
  1617                      op->tmp2()->as_register(),
  1618                      op->header_size(),
  1619                      op->object_size(),
  1620                      op->klass()->as_register(),
  1621                      *op->stub()->entry());
  1622   __ bind(*op->stub()->continuation());
  1625 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1626   Register len =  op->len()->as_register();
  1627   LP64_ONLY( __ movslq(len, len); )
  1629   if (UseSlowPath ||
  1630       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1631       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1632     __ jmp(*op->stub()->entry());
  1633   } else {
  1634     Register tmp1 = op->tmp1()->as_register();
  1635     Register tmp2 = op->tmp2()->as_register();
  1636     Register tmp3 = op->tmp3()->as_register();
  1637     if (len == tmp1) {
  1638       tmp1 = tmp3;
  1639     } else if (len == tmp2) {
  1640       tmp2 = tmp3;
  1641     } else if (len == tmp3) {
  1642       // everything is ok
  1643     } else {
  1644       __ mov(tmp3, len);
  1646     __ allocate_array(op->obj()->as_register(),
  1647                       len,
  1648                       tmp1,
  1649                       tmp2,
  1650                       arrayOopDesc::header_size(op->type()),
  1651                       array_element_size(op->type()),
  1652                       op->klass()->as_register(),
  1653                       *op->stub()->entry());
  1655   __ bind(*op->stub()->continuation());
  1658 void LIR_Assembler::type_profile_helper(Register mdo,
  1659                                         ciMethodData *md, ciProfileData *data,
  1660                                         Register recv, Label* update_done) {
  1661   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1662     Label next_test;
  1663     // See if the receiver is receiver[n].
  1664     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1665     __ jccb(Assembler::notEqual, next_test);
  1666     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1667     __ addptr(data_addr, DataLayout::counter_increment);
  1668     __ jmp(*update_done);
  1669     __ bind(next_test);
  1672   // Didn't find receiver; find next empty slot and fill it in
  1673   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1674     Label next_test;
  1675     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1676     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1677     __ jccb(Assembler::notEqual, next_test);
  1678     __ movptr(recv_addr, recv);
  1679     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1680     __ jmp(*update_done);
  1681     __ bind(next_test);
  1685 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1686   // we always need a stub for the failure case.
  1687   CodeStub* stub = op->stub();
  1688   Register obj = op->object()->as_register();
  1689   Register k_RInfo = op->tmp1()->as_register();
  1690   Register klass_RInfo = op->tmp2()->as_register();
  1691   Register dst = op->result_opr()->as_register();
  1692   ciKlass* k = op->klass();
  1693   Register Rtmp1 = noreg;
  1695   // check if it needs to be profiled
  1696   ciMethodData* md;
  1697   ciProfileData* data;
  1699   if (op->should_profile()) {
  1700     ciMethod* method = op->profiled_method();
  1701     assert(method != NULL, "Should have method");
  1702     int bci = op->profiled_bci();
  1703     md = method->method_data_or_null();
  1704     assert(md != NULL, "Sanity");
  1705     data = md->bci_to_data(bci);
  1706     assert(data != NULL,                "need data for type check");
  1707     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1709   Label profile_cast_success, profile_cast_failure;
  1710   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1711   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1713   if (obj == k_RInfo) {
  1714     k_RInfo = dst;
  1715   } else if (obj == klass_RInfo) {
  1716     klass_RInfo = dst;
  1718   if (k->is_loaded() && !UseCompressedKlassPointers) {
  1719     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1720   } else {
  1721     Rtmp1 = op->tmp3()->as_register();
  1722     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1725   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1726   if (!k->is_loaded()) {
  1727     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1728   } else {
  1729 #ifdef _LP64
  1730     __ mov_metadata(k_RInfo, k->constant_encoding());
  1731 #endif // _LP64
  1733   assert(obj != k_RInfo, "must be different");
  1735   __ cmpptr(obj, (int32_t)NULL_WORD);
  1736   if (op->should_profile()) {
  1737     Label not_null;
  1738     __ jccb(Assembler::notEqual, not_null);
  1739     // Object is null; update MDO and exit
  1740     Register mdo  = klass_RInfo;
  1741     __ mov_metadata(mdo, md->constant_encoding());
  1742     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1743     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1744     __ orl(data_addr, header_bits);
  1745     __ jmp(*obj_is_null);
  1746     __ bind(not_null);
  1747   } else {
  1748     __ jcc(Assembler::equal, *obj_is_null);
  1750   __ verify_oop(obj);
  1752   if (op->fast_check()) {
  1753     // get object class
  1754     // not a safepoint as obj null check happens earlier
  1755 #ifdef _LP64
  1756     if (UseCompressedKlassPointers) {
  1757       __ load_klass(Rtmp1, obj);
  1758       __ cmpptr(k_RInfo, Rtmp1);
  1759     } else {
  1760       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1762 #else
  1763     if (k->is_loaded()) {
  1764       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1765     } else {
  1766       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1768 #endif
  1769     __ jcc(Assembler::notEqual, *failure_target);
  1770     // successful cast, fall through to profile or jump
  1771   } else {
  1772     // get object class
  1773     // not a safepoint as obj null check happens earlier
  1774     __ load_klass(klass_RInfo, obj);
  1775     if (k->is_loaded()) {
  1776       // See if we get an immediate positive hit
  1777 #ifdef _LP64
  1778       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1779 #else
  1780       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1781 #endif // _LP64
  1782       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1783         __ jcc(Assembler::notEqual, *failure_target);
  1784         // successful cast, fall through to profile or jump
  1785       } else {
  1786         // See if we get an immediate positive hit
  1787         __ jcc(Assembler::equal, *success_target);
  1788         // check for self
  1789 #ifdef _LP64
  1790         __ cmpptr(klass_RInfo, k_RInfo);
  1791 #else
  1792         __ cmpklass(klass_RInfo, k->constant_encoding());
  1793 #endif // _LP64
  1794         __ jcc(Assembler::equal, *success_target);
  1796         __ push(klass_RInfo);
  1797 #ifdef _LP64
  1798         __ push(k_RInfo);
  1799 #else
  1800         __ pushklass(k->constant_encoding());
  1801 #endif // _LP64
  1802         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1803         __ pop(klass_RInfo);
  1804         __ pop(klass_RInfo);
  1805         // result is a boolean
  1806         __ cmpl(klass_RInfo, 0);
  1807         __ jcc(Assembler::equal, *failure_target);
  1808         // successful cast, fall through to profile or jump
  1810     } else {
  1811       // perform the fast part of the checking logic
  1812       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1813       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1814       __ push(klass_RInfo);
  1815       __ push(k_RInfo);
  1816       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1817       __ pop(klass_RInfo);
  1818       __ pop(k_RInfo);
  1819       // result is a boolean
  1820       __ cmpl(k_RInfo, 0);
  1821       __ jcc(Assembler::equal, *failure_target);
  1822       // successful cast, fall through to profile or jump
  1825   if (op->should_profile()) {
  1826     Register mdo  = klass_RInfo, recv = k_RInfo;
  1827     __ bind(profile_cast_success);
  1828     __ mov_metadata(mdo, md->constant_encoding());
  1829     __ load_klass(recv, obj);
  1830     Label update_done;
  1831     type_profile_helper(mdo, md, data, recv, success);
  1832     __ jmp(*success);
  1834     __ bind(profile_cast_failure);
  1835     __ mov_metadata(mdo, md->constant_encoding());
  1836     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1837     __ subptr(counter_addr, DataLayout::counter_increment);
  1838     __ jmp(*failure);
  1840   __ jmp(*success);
  1844 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1845   LIR_Code code = op->code();
  1846   if (code == lir_store_check) {
  1847     Register value = op->object()->as_register();
  1848     Register array = op->array()->as_register();
  1849     Register k_RInfo = op->tmp1()->as_register();
  1850     Register klass_RInfo = op->tmp2()->as_register();
  1851     Register Rtmp1 = op->tmp3()->as_register();
  1853     CodeStub* stub = op->stub();
  1855     // check if it needs to be profiled
  1856     ciMethodData* md;
  1857     ciProfileData* data;
  1859     if (op->should_profile()) {
  1860       ciMethod* method = op->profiled_method();
  1861       assert(method != NULL, "Should have method");
  1862       int bci = op->profiled_bci();
  1863       md = method->method_data_or_null();
  1864       assert(md != NULL, "Sanity");
  1865       data = md->bci_to_data(bci);
  1866       assert(data != NULL,                "need data for type check");
  1867       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1869     Label profile_cast_success, profile_cast_failure, done;
  1870     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1871     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1873     __ cmpptr(value, (int32_t)NULL_WORD);
  1874     if (op->should_profile()) {
  1875       Label not_null;
  1876       __ jccb(Assembler::notEqual, not_null);
  1877       // Object is null; update MDO and exit
  1878       Register mdo  = klass_RInfo;
  1879       __ mov_metadata(mdo, md->constant_encoding());
  1880       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1881       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1882       __ orl(data_addr, header_bits);
  1883       __ jmp(done);
  1884       __ bind(not_null);
  1885     } else {
  1886       __ jcc(Assembler::equal, done);
  1889     add_debug_info_for_null_check_here(op->info_for_exception());
  1890     __ load_klass(k_RInfo, array);
  1891     __ load_klass(klass_RInfo, value);
  1893     // get instance klass (it's already uncompressed)
  1894     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
  1895     // perform the fast part of the checking logic
  1896     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1897     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1898     __ push(klass_RInfo);
  1899     __ push(k_RInfo);
  1900     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1901     __ pop(klass_RInfo);
  1902     __ pop(k_RInfo);
  1903     // result is a boolean
  1904     __ cmpl(k_RInfo, 0);
  1905     __ jcc(Assembler::equal, *failure_target);
  1906     // fall through to the success case
  1908     if (op->should_profile()) {
  1909       Register mdo  = klass_RInfo, recv = k_RInfo;
  1910       __ bind(profile_cast_success);
  1911       __ mov_metadata(mdo, md->constant_encoding());
  1912       __ load_klass(recv, value);
  1913       Label update_done;
  1914       type_profile_helper(mdo, md, data, recv, &done);
  1915       __ jmpb(done);
  1917       __ bind(profile_cast_failure);
  1918       __ mov_metadata(mdo, md->constant_encoding());
  1919       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1920       __ subptr(counter_addr, DataLayout::counter_increment);
  1921       __ jmp(*stub->entry());
  1924     __ bind(done);
  1925   } else
  1926     if (code == lir_checkcast) {
  1927       Register obj = op->object()->as_register();
  1928       Register dst = op->result_opr()->as_register();
  1929       Label success;
  1930       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1931       __ bind(success);
  1932       if (dst != obj) {
  1933         __ mov(dst, obj);
  1935     } else
  1936       if (code == lir_instanceof) {
  1937         Register obj = op->object()->as_register();
  1938         Register dst = op->result_opr()->as_register();
  1939         Label success, failure, done;
  1940         emit_typecheck_helper(op, &success, &failure, &failure);
  1941         __ bind(failure);
  1942         __ xorptr(dst, dst);
  1943         __ jmpb(done);
  1944         __ bind(success);
  1945         __ movptr(dst, 1);
  1946         __ bind(done);
  1947       } else {
  1948         ShouldNotReachHere();
  1954 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1955   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1956     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1957     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1958     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1959     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1960     Register addr = op->addr()->as_register();
  1961     if (os::is_MP()) {
  1962       __ lock();
  1964     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1966   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1967     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1968     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1969     Register newval = op->new_value()->as_register();
  1970     Register cmpval = op->cmp_value()->as_register();
  1971     assert(cmpval == rax, "wrong register");
  1972     assert(newval != NULL, "new val must be register");
  1973     assert(cmpval != newval, "cmp and new values must be in different registers");
  1974     assert(cmpval != addr, "cmp and addr must be in different registers");
  1975     assert(newval != addr, "new value and addr must be in different registers");
  1977     if ( op->code() == lir_cas_obj) {
  1978 #ifdef _LP64
  1979       if (UseCompressedOops) {
  1980         __ encode_heap_oop(cmpval);
  1981         __ mov(rscratch1, newval);
  1982         __ encode_heap_oop(rscratch1);
  1983         if (os::is_MP()) {
  1984           __ lock();
  1986         // cmpval (rax) is implicitly used by this instruction
  1987         __ cmpxchgl(rscratch1, Address(addr, 0));
  1988       } else
  1989 #endif
  1991         if (os::is_MP()) {
  1992           __ lock();
  1994         __ cmpxchgptr(newval, Address(addr, 0));
  1996     } else {
  1997       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1998       if (os::is_MP()) {
  1999         __ lock();
  2001       __ cmpxchgl(newval, Address(addr, 0));
  2003 #ifdef _LP64
  2004   } else if (op->code() == lir_cas_long) {
  2005     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2006     Register newval = op->new_value()->as_register_lo();
  2007     Register cmpval = op->cmp_value()->as_register_lo();
  2008     assert(cmpval == rax, "wrong register");
  2009     assert(newval != NULL, "new val must be register");
  2010     assert(cmpval != newval, "cmp and new values must be in different registers");
  2011     assert(cmpval != addr, "cmp and addr must be in different registers");
  2012     assert(newval != addr, "new value and addr must be in different registers");
  2013     if (os::is_MP()) {
  2014       __ lock();
  2016     __ cmpxchgq(newval, Address(addr, 0));
  2017 #endif // _LP64
  2018   } else {
  2019     Unimplemented();
  2023 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2024   Assembler::Condition acond, ncond;
  2025   switch (condition) {
  2026     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2027     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2028     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2029     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2030     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2031     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2032     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2033     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2034     default:                    ShouldNotReachHere();
  2037   if (opr1->is_cpu_register()) {
  2038     reg2reg(opr1, result);
  2039   } else if (opr1->is_stack()) {
  2040     stack2reg(opr1, result, result->type());
  2041   } else if (opr1->is_constant()) {
  2042     const2reg(opr1, result, lir_patch_none, NULL);
  2043   } else {
  2044     ShouldNotReachHere();
  2047   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2048     // optimized version that does not require a branch
  2049     if (opr2->is_single_cpu()) {
  2050       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2051       __ cmov(ncond, result->as_register(), opr2->as_register());
  2052     } else if (opr2->is_double_cpu()) {
  2053       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2054       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2055       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2056       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2057     } else if (opr2->is_single_stack()) {
  2058       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2059     } else if (opr2->is_double_stack()) {
  2060       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2061       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2062     } else {
  2063       ShouldNotReachHere();
  2066   } else {
  2067     Label skip;
  2068     __ jcc (acond, skip);
  2069     if (opr2->is_cpu_register()) {
  2070       reg2reg(opr2, result);
  2071     } else if (opr2->is_stack()) {
  2072       stack2reg(opr2, result, result->type());
  2073     } else if (opr2->is_constant()) {
  2074       const2reg(opr2, result, lir_patch_none, NULL);
  2075     } else {
  2076       ShouldNotReachHere();
  2078     __ bind(skip);
  2083 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2084   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2086   if (left->is_single_cpu()) {
  2087     assert(left == dest, "left and dest must be equal");
  2088     Register lreg = left->as_register();
  2090     if (right->is_single_cpu()) {
  2091       // cpu register - cpu register
  2092       Register rreg = right->as_register();
  2093       switch (code) {
  2094         case lir_add: __ addl (lreg, rreg); break;
  2095         case lir_sub: __ subl (lreg, rreg); break;
  2096         case lir_mul: __ imull(lreg, rreg); break;
  2097         default:      ShouldNotReachHere();
  2100     } else if (right->is_stack()) {
  2101       // cpu register - stack
  2102       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2103       switch (code) {
  2104         case lir_add: __ addl(lreg, raddr); break;
  2105         case lir_sub: __ subl(lreg, raddr); break;
  2106         default:      ShouldNotReachHere();
  2109     } else if (right->is_constant()) {
  2110       // cpu register - constant
  2111       jint c = right->as_constant_ptr()->as_jint();
  2112       switch (code) {
  2113         case lir_add: {
  2114           __ incrementl(lreg, c);
  2115           break;
  2117         case lir_sub: {
  2118           __ decrementl(lreg, c);
  2119           break;
  2121         default: ShouldNotReachHere();
  2124     } else {
  2125       ShouldNotReachHere();
  2128   } else if (left->is_double_cpu()) {
  2129     assert(left == dest, "left and dest must be equal");
  2130     Register lreg_lo = left->as_register_lo();
  2131     Register lreg_hi = left->as_register_hi();
  2133     if (right->is_double_cpu()) {
  2134       // cpu register - cpu register
  2135       Register rreg_lo = right->as_register_lo();
  2136       Register rreg_hi = right->as_register_hi();
  2137       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2138       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2139       switch (code) {
  2140         case lir_add:
  2141           __ addptr(lreg_lo, rreg_lo);
  2142           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2143           break;
  2144         case lir_sub:
  2145           __ subptr(lreg_lo, rreg_lo);
  2146           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2147           break;
  2148         case lir_mul:
  2149 #ifdef _LP64
  2150           __ imulq(lreg_lo, rreg_lo);
  2151 #else
  2152           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2153           __ imull(lreg_hi, rreg_lo);
  2154           __ imull(rreg_hi, lreg_lo);
  2155           __ addl (rreg_hi, lreg_hi);
  2156           __ mull (rreg_lo);
  2157           __ addl (lreg_hi, rreg_hi);
  2158 #endif // _LP64
  2159           break;
  2160         default:
  2161           ShouldNotReachHere();
  2164     } else if (right->is_constant()) {
  2165       // cpu register - constant
  2166 #ifdef _LP64
  2167       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2168       __ movptr(r10, (intptr_t) c);
  2169       switch (code) {
  2170         case lir_add:
  2171           __ addptr(lreg_lo, r10);
  2172           break;
  2173         case lir_sub:
  2174           __ subptr(lreg_lo, r10);
  2175           break;
  2176         default:
  2177           ShouldNotReachHere();
  2179 #else
  2180       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2181       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2182       switch (code) {
  2183         case lir_add:
  2184           __ addptr(lreg_lo, c_lo);
  2185           __ adcl(lreg_hi, c_hi);
  2186           break;
  2187         case lir_sub:
  2188           __ subptr(lreg_lo, c_lo);
  2189           __ sbbl(lreg_hi, c_hi);
  2190           break;
  2191         default:
  2192           ShouldNotReachHere();
  2194 #endif // _LP64
  2196     } else {
  2197       ShouldNotReachHere();
  2200   } else if (left->is_single_xmm()) {
  2201     assert(left == dest, "left and dest must be equal");
  2202     XMMRegister lreg = left->as_xmm_float_reg();
  2204     if (right->is_single_xmm()) {
  2205       XMMRegister rreg = right->as_xmm_float_reg();
  2206       switch (code) {
  2207         case lir_add: __ addss(lreg, rreg);  break;
  2208         case lir_sub: __ subss(lreg, rreg);  break;
  2209         case lir_mul_strictfp: // fall through
  2210         case lir_mul: __ mulss(lreg, rreg);  break;
  2211         case lir_div_strictfp: // fall through
  2212         case lir_div: __ divss(lreg, rreg);  break;
  2213         default: ShouldNotReachHere();
  2215     } else {
  2216       Address raddr;
  2217       if (right->is_single_stack()) {
  2218         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2219       } else if (right->is_constant()) {
  2220         // hack for now
  2221         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2222       } else {
  2223         ShouldNotReachHere();
  2225       switch (code) {
  2226         case lir_add: __ addss(lreg, raddr);  break;
  2227         case lir_sub: __ subss(lreg, raddr);  break;
  2228         case lir_mul_strictfp: // fall through
  2229         case lir_mul: __ mulss(lreg, raddr);  break;
  2230         case lir_div_strictfp: // fall through
  2231         case lir_div: __ divss(lreg, raddr);  break;
  2232         default: ShouldNotReachHere();
  2236   } else if (left->is_double_xmm()) {
  2237     assert(left == dest, "left and dest must be equal");
  2239     XMMRegister lreg = left->as_xmm_double_reg();
  2240     if (right->is_double_xmm()) {
  2241       XMMRegister rreg = right->as_xmm_double_reg();
  2242       switch (code) {
  2243         case lir_add: __ addsd(lreg, rreg);  break;
  2244         case lir_sub: __ subsd(lreg, rreg);  break;
  2245         case lir_mul_strictfp: // fall through
  2246         case lir_mul: __ mulsd(lreg, rreg);  break;
  2247         case lir_div_strictfp: // fall through
  2248         case lir_div: __ divsd(lreg, rreg);  break;
  2249         default: ShouldNotReachHere();
  2251     } else {
  2252       Address raddr;
  2253       if (right->is_double_stack()) {
  2254         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2255       } else if (right->is_constant()) {
  2256         // hack for now
  2257         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2258       } else {
  2259         ShouldNotReachHere();
  2261       switch (code) {
  2262         case lir_add: __ addsd(lreg, raddr);  break;
  2263         case lir_sub: __ subsd(lreg, raddr);  break;
  2264         case lir_mul_strictfp: // fall through
  2265         case lir_mul: __ mulsd(lreg, raddr);  break;
  2266         case lir_div_strictfp: // fall through
  2267         case lir_div: __ divsd(lreg, raddr);  break;
  2268         default: ShouldNotReachHere();
  2272   } else if (left->is_single_fpu()) {
  2273     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2275     if (right->is_single_fpu()) {
  2276       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2278     } else {
  2279       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2280       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2282       Address raddr;
  2283       if (right->is_single_stack()) {
  2284         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2285       } else if (right->is_constant()) {
  2286         address const_addr = float_constant(right->as_jfloat());
  2287         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2288         // hack for now
  2289         raddr = __ as_Address(InternalAddress(const_addr));
  2290       } else {
  2291         ShouldNotReachHere();
  2294       switch (code) {
  2295         case lir_add: __ fadd_s(raddr); break;
  2296         case lir_sub: __ fsub_s(raddr); break;
  2297         case lir_mul_strictfp: // fall through
  2298         case lir_mul: __ fmul_s(raddr); break;
  2299         case lir_div_strictfp: // fall through
  2300         case lir_div: __ fdiv_s(raddr); break;
  2301         default:      ShouldNotReachHere();
  2305   } else if (left->is_double_fpu()) {
  2306     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2308     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2309       // Double values require special handling for strictfp mul/div on x86
  2310       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2311       __ fmulp(left->fpu_regnrLo() + 1);
  2314     if (right->is_double_fpu()) {
  2315       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2317     } else {
  2318       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2319       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2321       Address raddr;
  2322       if (right->is_double_stack()) {
  2323         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2324       } else if (right->is_constant()) {
  2325         // hack for now
  2326         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2327       } else {
  2328         ShouldNotReachHere();
  2331       switch (code) {
  2332         case lir_add: __ fadd_d(raddr); break;
  2333         case lir_sub: __ fsub_d(raddr); break;
  2334         case lir_mul_strictfp: // fall through
  2335         case lir_mul: __ fmul_d(raddr); break;
  2336         case lir_div_strictfp: // fall through
  2337         case lir_div: __ fdiv_d(raddr); break;
  2338         default: ShouldNotReachHere();
  2342     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2343       // Double values require special handling for strictfp mul/div on x86
  2344       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2345       __ fmulp(dest->fpu_regnrLo() + 1);
  2348   } else if (left->is_single_stack() || left->is_address()) {
  2349     assert(left == dest, "left and dest must be equal");
  2351     Address laddr;
  2352     if (left->is_single_stack()) {
  2353       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2354     } else if (left->is_address()) {
  2355       laddr = as_Address(left->as_address_ptr());
  2356     } else {
  2357       ShouldNotReachHere();
  2360     if (right->is_single_cpu()) {
  2361       Register rreg = right->as_register();
  2362       switch (code) {
  2363         case lir_add: __ addl(laddr, rreg); break;
  2364         case lir_sub: __ subl(laddr, rreg); break;
  2365         default:      ShouldNotReachHere();
  2367     } else if (right->is_constant()) {
  2368       jint c = right->as_constant_ptr()->as_jint();
  2369       switch (code) {
  2370         case lir_add: {
  2371           __ incrementl(laddr, c);
  2372           break;
  2374         case lir_sub: {
  2375           __ decrementl(laddr, c);
  2376           break;
  2378         default: ShouldNotReachHere();
  2380     } else {
  2381       ShouldNotReachHere();
  2384   } else {
  2385     ShouldNotReachHere();
  2389 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2390   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2391   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2392   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2394   bool left_is_tos = (left_index == 0);
  2395   bool dest_is_tos = (dest_index == 0);
  2396   int non_tos_index = (left_is_tos ? right_index : left_index);
  2398   switch (code) {
  2399     case lir_add:
  2400       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2401       else if (dest_is_tos)    __ fadd (non_tos_index);
  2402       else                     __ fadda(non_tos_index);
  2403       break;
  2405     case lir_sub:
  2406       if (left_is_tos) {
  2407         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2408         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2409         else                   __ fsubra(non_tos_index);
  2410       } else {
  2411         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2412         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2413         else                   __ fsuba (non_tos_index);
  2415       break;
  2417     case lir_mul_strictfp: // fall through
  2418     case lir_mul:
  2419       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2420       else if (dest_is_tos)    __ fmul (non_tos_index);
  2421       else                     __ fmula(non_tos_index);
  2422       break;
  2424     case lir_div_strictfp: // fall through
  2425     case lir_div:
  2426       if (left_is_tos) {
  2427         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2428         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2429         else                   __ fdivra(non_tos_index);
  2430       } else {
  2431         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2432         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2433         else                   __ fdiva (non_tos_index);
  2435       break;
  2437     case lir_rem:
  2438       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2439       __ fremr(noreg);
  2440       break;
  2442     default:
  2443       ShouldNotReachHere();
  2448 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2449   if (value->is_double_xmm()) {
  2450     switch(code) {
  2451       case lir_abs :
  2453           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2454             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2456           __ andpd(dest->as_xmm_double_reg(),
  2457                     ExternalAddress((address)double_signmask_pool));
  2459         break;
  2461       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2462       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2463       default      : ShouldNotReachHere();
  2466   } else if (value->is_double_fpu()) {
  2467     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2468     switch(code) {
  2469       case lir_log   : __ flog() ; break;
  2470       case lir_log10 : __ flog10() ; break;
  2471       case lir_abs   : __ fabs() ; break;
  2472       case lir_sqrt  : __ fsqrt(); break;
  2473       case lir_sin   :
  2474         // Should consider not saving rbx, if not necessary
  2475         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2476         break;
  2477       case lir_cos :
  2478         // Should consider not saving rbx, if not necessary
  2479         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2480         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2481         break;
  2482       case lir_tan :
  2483         // Should consider not saving rbx, if not necessary
  2484         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2485         break;
  2486       case lir_exp :
  2487         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2488         break;
  2489       case lir_pow :
  2490         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2491         break;
  2492       default      : ShouldNotReachHere();
  2494   } else {
  2495     Unimplemented();
  2499 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2500   // assert(left->destroys_register(), "check");
  2501   if (left->is_single_cpu()) {
  2502     Register reg = left->as_register();
  2503     if (right->is_constant()) {
  2504       int val = right->as_constant_ptr()->as_jint();
  2505       switch (code) {
  2506         case lir_logic_and: __ andl (reg, val); break;
  2507         case lir_logic_or:  __ orl  (reg, val); break;
  2508         case lir_logic_xor: __ xorl (reg, val); break;
  2509         default: ShouldNotReachHere();
  2511     } else if (right->is_stack()) {
  2512       // added support for stack operands
  2513       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2514       switch (code) {
  2515         case lir_logic_and: __ andl (reg, raddr); break;
  2516         case lir_logic_or:  __ orl  (reg, raddr); break;
  2517         case lir_logic_xor: __ xorl (reg, raddr); break;
  2518         default: ShouldNotReachHere();
  2520     } else {
  2521       Register rright = right->as_register();
  2522       switch (code) {
  2523         case lir_logic_and: __ andptr (reg, rright); break;
  2524         case lir_logic_or : __ orptr  (reg, rright); break;
  2525         case lir_logic_xor: __ xorptr (reg, rright); break;
  2526         default: ShouldNotReachHere();
  2529     move_regs(reg, dst->as_register());
  2530   } else {
  2531     Register l_lo = left->as_register_lo();
  2532     Register l_hi = left->as_register_hi();
  2533     if (right->is_constant()) {
  2534 #ifdef _LP64
  2535       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2536       switch (code) {
  2537         case lir_logic_and:
  2538           __ andq(l_lo, rscratch1);
  2539           break;
  2540         case lir_logic_or:
  2541           __ orq(l_lo, rscratch1);
  2542           break;
  2543         case lir_logic_xor:
  2544           __ xorq(l_lo, rscratch1);
  2545           break;
  2546         default: ShouldNotReachHere();
  2548 #else
  2549       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2550       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2551       switch (code) {
  2552         case lir_logic_and:
  2553           __ andl(l_lo, r_lo);
  2554           __ andl(l_hi, r_hi);
  2555           break;
  2556         case lir_logic_or:
  2557           __ orl(l_lo, r_lo);
  2558           __ orl(l_hi, r_hi);
  2559           break;
  2560         case lir_logic_xor:
  2561           __ xorl(l_lo, r_lo);
  2562           __ xorl(l_hi, r_hi);
  2563           break;
  2564         default: ShouldNotReachHere();
  2566 #endif // _LP64
  2567     } else {
  2568 #ifdef _LP64
  2569       Register r_lo;
  2570       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2571         r_lo = right->as_register();
  2572       } else {
  2573         r_lo = right->as_register_lo();
  2575 #else
  2576       Register r_lo = right->as_register_lo();
  2577       Register r_hi = right->as_register_hi();
  2578       assert(l_lo != r_hi, "overwriting registers");
  2579 #endif
  2580       switch (code) {
  2581         case lir_logic_and:
  2582           __ andptr(l_lo, r_lo);
  2583           NOT_LP64(__ andptr(l_hi, r_hi);)
  2584           break;
  2585         case lir_logic_or:
  2586           __ orptr(l_lo, r_lo);
  2587           NOT_LP64(__ orptr(l_hi, r_hi);)
  2588           break;
  2589         case lir_logic_xor:
  2590           __ xorptr(l_lo, r_lo);
  2591           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2592           break;
  2593         default: ShouldNotReachHere();
  2597     Register dst_lo = dst->as_register_lo();
  2598     Register dst_hi = dst->as_register_hi();
  2600 #ifdef _LP64
  2601     move_regs(l_lo, dst_lo);
  2602 #else
  2603     if (dst_lo == l_hi) {
  2604       assert(dst_hi != l_lo, "overwriting registers");
  2605       move_regs(l_hi, dst_hi);
  2606       move_regs(l_lo, dst_lo);
  2607     } else {
  2608       assert(dst_lo != l_hi, "overwriting registers");
  2609       move_regs(l_lo, dst_lo);
  2610       move_regs(l_hi, dst_hi);
  2612 #endif // _LP64
  2617 // we assume that rax, and rdx can be overwritten
  2618 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2620   assert(left->is_single_cpu(),   "left must be register");
  2621   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2622   assert(result->is_single_cpu(), "result must be register");
  2624   //  assert(left->destroys_register(), "check");
  2625   //  assert(right->destroys_register(), "check");
  2627   Register lreg = left->as_register();
  2628   Register dreg = result->as_register();
  2630   if (right->is_constant()) {
  2631     int divisor = right->as_constant_ptr()->as_jint();
  2632     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2633     if (code == lir_idiv) {
  2634       assert(lreg == rax, "must be rax,");
  2635       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2636       __ cdql(); // sign extend into rdx:rax
  2637       if (divisor == 2) {
  2638         __ subl(lreg, rdx);
  2639       } else {
  2640         __ andl(rdx, divisor - 1);
  2641         __ addl(lreg, rdx);
  2643       __ sarl(lreg, log2_intptr(divisor));
  2644       move_regs(lreg, dreg);
  2645     } else if (code == lir_irem) {
  2646       Label done;
  2647       __ mov(dreg, lreg);
  2648       __ andl(dreg, 0x80000000 | (divisor - 1));
  2649       __ jcc(Assembler::positive, done);
  2650       __ decrement(dreg);
  2651       __ orl(dreg, ~(divisor - 1));
  2652       __ increment(dreg);
  2653       __ bind(done);
  2654     } else {
  2655       ShouldNotReachHere();
  2657   } else {
  2658     Register rreg = right->as_register();
  2659     assert(lreg == rax, "left register must be rax,");
  2660     assert(rreg != rdx, "right register must not be rdx");
  2661     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2663     move_regs(lreg, rax);
  2665     int idivl_offset = __ corrected_idivl(rreg);
  2666     add_debug_info_for_div0(idivl_offset, info);
  2667     if (code == lir_irem) {
  2668       move_regs(rdx, dreg); // result is in rdx
  2669     } else {
  2670       move_regs(rax, dreg);
  2676 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2677   if (opr1->is_single_cpu()) {
  2678     Register reg1 = opr1->as_register();
  2679     if (opr2->is_single_cpu()) {
  2680       // cpu register - cpu register
  2681       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2682         __ cmpptr(reg1, opr2->as_register());
  2683       } else {
  2684         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2685         __ cmpl(reg1, opr2->as_register());
  2687     } else if (opr2->is_stack()) {
  2688       // cpu register - stack
  2689       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2690         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2691       } else {
  2692         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2694     } else if (opr2->is_constant()) {
  2695       // cpu register - constant
  2696       LIR_Const* c = opr2->as_constant_ptr();
  2697       if (c->type() == T_INT) {
  2698         __ cmpl(reg1, c->as_jint());
  2699       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2700         // In 64bit oops are single register
  2701         jobject o = c->as_jobject();
  2702         if (o == NULL) {
  2703           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2704         } else {
  2705 #ifdef _LP64
  2706           __ movoop(rscratch1, o);
  2707           __ cmpptr(reg1, rscratch1);
  2708 #else
  2709           __ cmpoop(reg1, c->as_jobject());
  2710 #endif // _LP64
  2712       } else {
  2713         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2715       // cpu register - address
  2716     } else if (opr2->is_address()) {
  2717       if (op->info() != NULL) {
  2718         add_debug_info_for_null_check_here(op->info());
  2720       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2721     } else {
  2722       ShouldNotReachHere();
  2725   } else if(opr1->is_double_cpu()) {
  2726     Register xlo = opr1->as_register_lo();
  2727     Register xhi = opr1->as_register_hi();
  2728     if (opr2->is_double_cpu()) {
  2729 #ifdef _LP64
  2730       __ cmpptr(xlo, opr2->as_register_lo());
  2731 #else
  2732       // cpu register - cpu register
  2733       Register ylo = opr2->as_register_lo();
  2734       Register yhi = opr2->as_register_hi();
  2735       __ subl(xlo, ylo);
  2736       __ sbbl(xhi, yhi);
  2737       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2738         __ orl(xhi, xlo);
  2740 #endif // _LP64
  2741     } else if (opr2->is_constant()) {
  2742       // cpu register - constant 0
  2743       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2744 #ifdef _LP64
  2745       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2746 #else
  2747       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2748       __ orl(xhi, xlo);
  2749 #endif // _LP64
  2750     } else {
  2751       ShouldNotReachHere();
  2754   } else if (opr1->is_single_xmm()) {
  2755     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2756     if (opr2->is_single_xmm()) {
  2757       // xmm register - xmm register
  2758       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2759     } else if (opr2->is_stack()) {
  2760       // xmm register - stack
  2761       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2762     } else if (opr2->is_constant()) {
  2763       // xmm register - constant
  2764       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2765     } else if (opr2->is_address()) {
  2766       // xmm register - address
  2767       if (op->info() != NULL) {
  2768         add_debug_info_for_null_check_here(op->info());
  2770       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2771     } else {
  2772       ShouldNotReachHere();
  2775   } else if (opr1->is_double_xmm()) {
  2776     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2777     if (opr2->is_double_xmm()) {
  2778       // xmm register - xmm register
  2779       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2780     } else if (opr2->is_stack()) {
  2781       // xmm register - stack
  2782       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2783     } else if (opr2->is_constant()) {
  2784       // xmm register - constant
  2785       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2786     } else if (opr2->is_address()) {
  2787       // xmm register - address
  2788       if (op->info() != NULL) {
  2789         add_debug_info_for_null_check_here(op->info());
  2791       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2792     } else {
  2793       ShouldNotReachHere();
  2796   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2797     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2798     assert(opr2->is_fpu_register(), "both must be registers");
  2799     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2801   } else if (opr1->is_address() && opr2->is_constant()) {
  2802     LIR_Const* c = opr2->as_constant_ptr();
  2803 #ifdef _LP64
  2804     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2805       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2806       __ movoop(rscratch1, c->as_jobject());
  2808 #endif // LP64
  2809     if (op->info() != NULL) {
  2810       add_debug_info_for_null_check_here(op->info());
  2812     // special case: address - constant
  2813     LIR_Address* addr = opr1->as_address_ptr();
  2814     if (c->type() == T_INT) {
  2815       __ cmpl(as_Address(addr), c->as_jint());
  2816     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2817 #ifdef _LP64
  2818       // %%% Make this explode if addr isn't reachable until we figure out a
  2819       // better strategy by giving noreg as the temp for as_Address
  2820       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2821 #else
  2822       __ cmpoop(as_Address(addr), c->as_jobject());
  2823 #endif // _LP64
  2824     } else {
  2825       ShouldNotReachHere();
  2828   } else {
  2829     ShouldNotReachHere();
  2833 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2834   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2835     if (left->is_single_xmm()) {
  2836       assert(right->is_single_xmm(), "must match");
  2837       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2838     } else if (left->is_double_xmm()) {
  2839       assert(right->is_double_xmm(), "must match");
  2840       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2842     } else {
  2843       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2844       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2846       assert(left->fpu() == 0, "left must be on TOS");
  2847       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2848                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2850   } else {
  2851     assert(code == lir_cmp_l2i, "check");
  2852 #ifdef _LP64
  2853     Label done;
  2854     Register dest = dst->as_register();
  2855     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2856     __ movl(dest, -1);
  2857     __ jccb(Assembler::less, done);
  2858     __ set_byte_if_not_zero(dest);
  2859     __ movzbl(dest, dest);
  2860     __ bind(done);
  2861 #else
  2862     __ lcmp2int(left->as_register_hi(),
  2863                 left->as_register_lo(),
  2864                 right->as_register_hi(),
  2865                 right->as_register_lo());
  2866     move_regs(left->as_register_hi(), dst->as_register());
  2867 #endif // _LP64
  2872 void LIR_Assembler::align_call(LIR_Code code) {
  2873   if (os::is_MP()) {
  2874     // make sure that the displacement word of the call ends up word aligned
  2875     int offset = __ offset();
  2876     switch (code) {
  2877       case lir_static_call:
  2878       case lir_optvirtual_call:
  2879       case lir_dynamic_call:
  2880         offset += NativeCall::displacement_offset;
  2881         break;
  2882       case lir_icvirtual_call:
  2883         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2884       break;
  2885       case lir_virtual_call:  // currently, sparc-specific for niagara
  2886       default: ShouldNotReachHere();
  2888     while (offset++ % BytesPerWord != 0) {
  2889       __ nop();
  2895 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2896   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2897          "must be aligned");
  2898   __ call(AddressLiteral(op->addr(), rtype));
  2899   add_call_info(code_offset(), op->info());
  2903 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2904   __ ic_call(op->addr());
  2905   add_call_info(code_offset(), op->info());
  2906   assert(!os::is_MP() ||
  2907          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2908          "must be aligned");
  2912 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2913 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2914   ShouldNotReachHere();
  2918 void LIR_Assembler::emit_static_call_stub() {
  2919   address call_pc = __ pc();
  2920   address stub = __ start_a_stub(call_stub_size);
  2921   if (stub == NULL) {
  2922     bailout("static call stub overflow");
  2923     return;
  2926   int start = __ offset();
  2927   if (os::is_MP()) {
  2928     // make sure that the displacement word of the call ends up word aligned
  2929     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2930     while (offset++ % BytesPerWord != 0) {
  2931       __ nop();
  2934   __ relocate(static_stub_Relocation::spec(call_pc));
  2935   __ mov_metadata(rbx, (Metadata*)NULL);
  2936   // must be set to -1 at code generation time
  2937   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2938   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2939   __ jump(RuntimeAddress(__ pc()));
  2941   assert(__ offset() - start <= call_stub_size, "stub too big");
  2942   __ end_a_stub();
  2946 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2947   assert(exceptionOop->as_register() == rax, "must match");
  2948   assert(exceptionPC->as_register() == rdx, "must match");
  2950   // exception object is not added to oop map by LinearScan
  2951   // (LinearScan assumes that no oops are in fixed registers)
  2952   info->add_register_oop(exceptionOop);
  2953   Runtime1::StubID unwind_id;
  2955   // get current pc information
  2956   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2957   int pc_for_athrow_offset = __ offset();
  2958   InternalAddress pc_for_athrow(__ pc());
  2959   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2960   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2962   __ verify_not_null_oop(rax);
  2963   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2964   if (compilation()->has_fpu_code()) {
  2965     unwind_id = Runtime1::handle_exception_id;
  2966   } else {
  2967     unwind_id = Runtime1::handle_exception_nofpu_id;
  2969   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2971   // enough room for two byte trap
  2972   __ nop();
  2976 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2977   assert(exceptionOop->as_register() == rax, "must match");
  2979   __ jmp(_unwind_handler_entry);
  2983 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2985   // optimized version for linear scan:
  2986   // * count must be already in ECX (guaranteed by LinearScan)
  2987   // * left and dest must be equal
  2988   // * tmp must be unused
  2989   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2990   assert(left == dest, "left and dest must be equal");
  2991   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2993   if (left->is_single_cpu()) {
  2994     Register value = left->as_register();
  2995     assert(value != SHIFT_count, "left cannot be ECX");
  2997     switch (code) {
  2998       case lir_shl:  __ shll(value); break;
  2999       case lir_shr:  __ sarl(value); break;
  3000       case lir_ushr: __ shrl(value); break;
  3001       default: ShouldNotReachHere();
  3003   } else if (left->is_double_cpu()) {
  3004     Register lo = left->as_register_lo();
  3005     Register hi = left->as_register_hi();
  3006     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3007 #ifdef _LP64
  3008     switch (code) {
  3009       case lir_shl:  __ shlptr(lo);        break;
  3010       case lir_shr:  __ sarptr(lo);        break;
  3011       case lir_ushr: __ shrptr(lo);        break;
  3012       default: ShouldNotReachHere();
  3014 #else
  3016     switch (code) {
  3017       case lir_shl:  __ lshl(hi, lo);        break;
  3018       case lir_shr:  __ lshr(hi, lo, true);  break;
  3019       case lir_ushr: __ lshr(hi, lo, false); break;
  3020       default: ShouldNotReachHere();
  3022 #endif // LP64
  3023   } else {
  3024     ShouldNotReachHere();
  3029 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3030   if (dest->is_single_cpu()) {
  3031     // first move left into dest so that left is not destroyed by the shift
  3032     Register value = dest->as_register();
  3033     count = count & 0x1F; // Java spec
  3035     move_regs(left->as_register(), value);
  3036     switch (code) {
  3037       case lir_shl:  __ shll(value, count); break;
  3038       case lir_shr:  __ sarl(value, count); break;
  3039       case lir_ushr: __ shrl(value, count); break;
  3040       default: ShouldNotReachHere();
  3042   } else if (dest->is_double_cpu()) {
  3043 #ifndef _LP64
  3044     Unimplemented();
  3045 #else
  3046     // first move left into dest so that left is not destroyed by the shift
  3047     Register value = dest->as_register_lo();
  3048     count = count & 0x1F; // Java spec
  3050     move_regs(left->as_register_lo(), value);
  3051     switch (code) {
  3052       case lir_shl:  __ shlptr(value, count); break;
  3053       case lir_shr:  __ sarptr(value, count); break;
  3054       case lir_ushr: __ shrptr(value, count); break;
  3055       default: ShouldNotReachHere();
  3057 #endif // _LP64
  3058   } else {
  3059     ShouldNotReachHere();
  3064 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3065   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3066   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3067   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3068   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3072 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3073   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3074   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3075   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3076   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3080 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3081   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3082   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3083   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3084   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3088 // This code replaces a call to arraycopy; no exception may
  3089 // be thrown in this code, they must be thrown in the System.arraycopy
  3090 // activation frame; we could save some checks if this would not be the case
  3091 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3092   ciArrayKlass* default_type = op->expected_type();
  3093   Register src = op->src()->as_register();
  3094   Register dst = op->dst()->as_register();
  3095   Register src_pos = op->src_pos()->as_register();
  3096   Register dst_pos = op->dst_pos()->as_register();
  3097   Register length  = op->length()->as_register();
  3098   Register tmp = op->tmp()->as_register();
  3100   CodeStub* stub = op->stub();
  3101   int flags = op->flags();
  3102   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3103   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3105   // if we don't know anything, just go through the generic arraycopy
  3106   if (default_type == NULL) {
  3107     Label done;
  3108     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3109     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3110     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3111     // For the moment until C1 gets the new register allocator I just force all the
  3112     // args to the right place (except the register args) and then on the back side
  3113     // reload the register args properly if we go slow path. Yuck
  3115     // These are proper for the calling convention
  3116     store_parameter(length, 2);
  3117     store_parameter(dst_pos, 1);
  3118     store_parameter(dst, 0);
  3120     // these are just temporary placements until we need to reload
  3121     store_parameter(src_pos, 3);
  3122     store_parameter(src, 4);
  3123     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3125     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3127     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3129     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3130 #ifdef _LP64
  3131     // The arguments are in java calling convention so we can trivially shift them to C
  3132     // convention
  3133     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3134     __ mov(c_rarg0, j_rarg0);
  3135     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3136     __ mov(c_rarg1, j_rarg1);
  3137     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3138     __ mov(c_rarg2, j_rarg2);
  3139     assert_different_registers(c_rarg3, j_rarg4);
  3140     __ mov(c_rarg3, j_rarg3);
  3141 #ifdef _WIN64
  3142     // Allocate abi space for args but be sure to keep stack aligned
  3143     __ subptr(rsp, 6*wordSize);
  3144     store_parameter(j_rarg4, 4);
  3145     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3146       __ call(RuntimeAddress(C_entry));
  3147     } else {
  3148 #ifndef PRODUCT
  3149       if (PrintC1Statistics) {
  3150         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3152 #endif
  3153       __ call(RuntimeAddress(copyfunc_addr));
  3155     __ addptr(rsp, 6*wordSize);
  3156 #else
  3157     __ mov(c_rarg4, j_rarg4);
  3158     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3159       __ call(RuntimeAddress(C_entry));
  3160     } else {
  3161 #ifndef PRODUCT
  3162       if (PrintC1Statistics) {
  3163         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3165 #endif
  3166       __ call(RuntimeAddress(copyfunc_addr));
  3168 #endif // _WIN64
  3169 #else
  3170     __ push(length);
  3171     __ push(dst_pos);
  3172     __ push(dst);
  3173     __ push(src_pos);
  3174     __ push(src);
  3176     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3177       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3178     } else {
  3179 #ifndef PRODUCT
  3180       if (PrintC1Statistics) {
  3181         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3183 #endif
  3184       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3187 #endif // _LP64
  3189     __ cmpl(rax, 0);
  3190     __ jcc(Assembler::equal, *stub->continuation());
  3192     if (copyfunc_addr != NULL) {
  3193       __ mov(tmp, rax);
  3194       __ xorl(tmp, -1);
  3197     // Reload values from the stack so they are where the stub
  3198     // expects them.
  3199     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3200     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3201     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3202     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3203     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3205     if (copyfunc_addr != NULL) {
  3206       __ subl(length, tmp);
  3207       __ addl(src_pos, tmp);
  3208       __ addl(dst_pos, tmp);
  3210     __ jmp(*stub->entry());
  3212     __ bind(*stub->continuation());
  3213     return;
  3216   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3218   int elem_size = type2aelembytes(basic_type);
  3219   int shift_amount;
  3220   Address::ScaleFactor scale;
  3222   switch (elem_size) {
  3223     case 1 :
  3224       shift_amount = 0;
  3225       scale = Address::times_1;
  3226       break;
  3227     case 2 :
  3228       shift_amount = 1;
  3229       scale = Address::times_2;
  3230       break;
  3231     case 4 :
  3232       shift_amount = 2;
  3233       scale = Address::times_4;
  3234       break;
  3235     case 8 :
  3236       shift_amount = 3;
  3237       scale = Address::times_8;
  3238       break;
  3239     default:
  3240       ShouldNotReachHere();
  3243   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3244   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3245   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3246   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3248   // length and pos's are all sign extended at this point on 64bit
  3250   // test for NULL
  3251   if (flags & LIR_OpArrayCopy::src_null_check) {
  3252     __ testptr(src, src);
  3253     __ jcc(Assembler::zero, *stub->entry());
  3255   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3256     __ testptr(dst, dst);
  3257     __ jcc(Assembler::zero, *stub->entry());
  3260   // check if negative
  3261   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3262     __ testl(src_pos, src_pos);
  3263     __ jcc(Assembler::less, *stub->entry());
  3265   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3266     __ testl(dst_pos, dst_pos);
  3267     __ jcc(Assembler::less, *stub->entry());
  3270   if (flags & LIR_OpArrayCopy::src_range_check) {
  3271     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3272     __ cmpl(tmp, src_length_addr);
  3273     __ jcc(Assembler::above, *stub->entry());
  3275   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3276     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3277     __ cmpl(tmp, dst_length_addr);
  3278     __ jcc(Assembler::above, *stub->entry());
  3281   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3282     __ testl(length, length);
  3283     __ jcc(Assembler::less, *stub->entry());
  3284     __ jcc(Assembler::zero, *stub->continuation());
  3287 #ifdef _LP64
  3288   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3289   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3290 #endif
  3292   if (flags & LIR_OpArrayCopy::type_check) {
  3293     // We don't know the array types are compatible
  3294     if (basic_type != T_OBJECT) {
  3295       // Simple test for basic type arrays
  3296       if (UseCompressedKlassPointers) {
  3297         __ movl(tmp, src_klass_addr);
  3298         __ cmpl(tmp, dst_klass_addr);
  3299       } else {
  3300         __ movptr(tmp, src_klass_addr);
  3301         __ cmpptr(tmp, dst_klass_addr);
  3303       __ jcc(Assembler::notEqual, *stub->entry());
  3304     } else {
  3305       // For object arrays, if src is a sub class of dst then we can
  3306       // safely do the copy.
  3307       Label cont, slow;
  3309       __ push(src);
  3310       __ push(dst);
  3312       __ load_klass(src, src);
  3313       __ load_klass(dst, dst);
  3315       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3317       __ push(src);
  3318       __ push(dst);
  3319       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3320       __ pop(dst);
  3321       __ pop(src);
  3323       __ cmpl(src, 0);
  3324       __ jcc(Assembler::notEqual, cont);
  3326       __ bind(slow);
  3327       __ pop(dst);
  3328       __ pop(src);
  3330       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3331       if (copyfunc_addr != NULL) { // use stub if available
  3332         // src is not a sub class of dst so we have to do a
  3333         // per-element check.
  3335         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3336         if ((flags & mask) != mask) {
  3337           // Check that at least both of them object arrays.
  3338           assert(flags & mask, "one of the two should be known to be an object array");
  3340           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3341             __ load_klass(tmp, src);
  3342           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3343             __ load_klass(tmp, dst);
  3345           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3346           Address klass_lh_addr(tmp, lh_offset);
  3347           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3348           __ cmpl(klass_lh_addr, objArray_lh);
  3349           __ jcc(Assembler::notEqual, *stub->entry());
  3352        // Spill because stubs can use any register they like and it's
  3353        // easier to restore just those that we care about.
  3354        store_parameter(dst, 0);
  3355        store_parameter(dst_pos, 1);
  3356        store_parameter(length, 2);
  3357        store_parameter(src_pos, 3);
  3358        store_parameter(src, 4);
  3360 #ifndef _LP64
  3361         __ movptr(tmp, dst_klass_addr);
  3362         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
  3363         __ push(tmp);
  3364         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3365         __ push(tmp);
  3366         __ push(length);
  3367         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3368         __ push(tmp);
  3369         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3370         __ push(tmp);
  3372         __ call_VM_leaf(copyfunc_addr, 5);
  3373 #else
  3374         __ movl2ptr(length, length); //higher 32bits must be null
  3376         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3377         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3378         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3379         assert_different_registers(c_rarg1, dst, length);
  3381         __ mov(c_rarg2, length);
  3382         assert_different_registers(c_rarg2, dst);
  3384 #ifdef _WIN64
  3385         // Allocate abi space for args but be sure to keep stack aligned
  3386         __ subptr(rsp, 6*wordSize);
  3387         __ load_klass(c_rarg3, dst);
  3388         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
  3389         store_parameter(c_rarg3, 4);
  3390         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3391         __ call(RuntimeAddress(copyfunc_addr));
  3392         __ addptr(rsp, 6*wordSize);
  3393 #else
  3394         __ load_klass(c_rarg4, dst);
  3395         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
  3396         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3397         __ call(RuntimeAddress(copyfunc_addr));
  3398 #endif
  3400 #endif
  3402 #ifndef PRODUCT
  3403         if (PrintC1Statistics) {
  3404           Label failed;
  3405           __ testl(rax, rax);
  3406           __ jcc(Assembler::notZero, failed);
  3407           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3408           __ bind(failed);
  3410 #endif
  3412         __ testl(rax, rax);
  3413         __ jcc(Assembler::zero, *stub->continuation());
  3415 #ifndef PRODUCT
  3416         if (PrintC1Statistics) {
  3417           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3419 #endif
  3421         __ mov(tmp, rax);
  3423         __ xorl(tmp, -1);
  3425         // Restore previously spilled arguments
  3426         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3427         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3428         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3429         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3430         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3433         __ subl(length, tmp);
  3434         __ addl(src_pos, tmp);
  3435         __ addl(dst_pos, tmp);
  3438       __ jmp(*stub->entry());
  3440       __ bind(cont);
  3441       __ pop(dst);
  3442       __ pop(src);
  3446 #ifdef ASSERT
  3447   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3448     // Sanity check the known type with the incoming class.  For the
  3449     // primitive case the types must match exactly with src.klass and
  3450     // dst.klass each exactly matching the default type.  For the
  3451     // object array case, if no type check is needed then either the
  3452     // dst type is exactly the expected type and the src type is a
  3453     // subtype which we can't check or src is the same array as dst
  3454     // but not necessarily exactly of type default_type.
  3455     Label known_ok, halt;
  3456     __ mov_metadata(tmp, default_type->constant_encoding());
  3457 #ifdef _LP64
  3458     if (UseCompressedKlassPointers) {
  3459       __ encode_klass_not_null(tmp);
  3461 #endif
  3463     if (basic_type != T_OBJECT) {
  3465       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3466       else                   __ cmpptr(tmp, dst_klass_addr);
  3467       __ jcc(Assembler::notEqual, halt);
  3468       if (UseCompressedKlassPointers)          __ cmpl(tmp, src_klass_addr);
  3469       else                   __ cmpptr(tmp, src_klass_addr);
  3470       __ jcc(Assembler::equal, known_ok);
  3471     } else {
  3472       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3473       else                   __ cmpptr(tmp, dst_klass_addr);
  3474       __ jcc(Assembler::equal, known_ok);
  3475       __ cmpptr(src, dst);
  3476       __ jcc(Assembler::equal, known_ok);
  3478     __ bind(halt);
  3479     __ stop("incorrect type information in arraycopy");
  3480     __ bind(known_ok);
  3482 #endif
  3484 #ifndef PRODUCT
  3485   if (PrintC1Statistics) {
  3486     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3488 #endif
  3490 #ifdef _LP64
  3491   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3492   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3493   assert_different_registers(c_rarg1, length);
  3494   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3495   __ mov(c_rarg2, length);
  3497 #else
  3498   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3499   store_parameter(tmp, 0);
  3500   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3501   store_parameter(tmp, 1);
  3502   store_parameter(length, 2);
  3503 #endif // _LP64
  3505   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3506   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3507   const char *name;
  3508   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3509   __ call_VM_leaf(entry, 0);
  3511   __ bind(*stub->continuation());
  3515 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3516   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3517   Register hdr = op->hdr_opr()->as_register();
  3518   Register lock = op->lock_opr()->as_register();
  3519   if (!UseFastLocking) {
  3520     __ jmp(*op->stub()->entry());
  3521   } else if (op->code() == lir_lock) {
  3522     Register scratch = noreg;
  3523     if (UseBiasedLocking) {
  3524       scratch = op->scratch_opr()->as_register();
  3526     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3527     // add debug info for NullPointerException only if one is possible
  3528     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3529     if (op->info() != NULL) {
  3530       add_debug_info_for_null_check(null_check_offset, op->info());
  3532     // done
  3533   } else if (op->code() == lir_unlock) {
  3534     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3535     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3536   } else {
  3537     Unimplemented();
  3539   __ bind(*op->stub()->continuation());
  3543 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3544   ciMethod* method = op->profiled_method();
  3545   int bci          = op->profiled_bci();
  3546   ciMethod* callee = op->profiled_callee();
  3548   // Update counter for all call types
  3549   ciMethodData* md = method->method_data_or_null();
  3550   assert(md != NULL, "Sanity");
  3551   ciProfileData* data = md->bci_to_data(bci);
  3552   assert(data->is_CounterData(), "need CounterData for calls");
  3553   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3554   Register mdo  = op->mdo()->as_register();
  3555   __ mov_metadata(mdo, md->constant_encoding());
  3556   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3557   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3558   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3559   // Perform additional virtual call profiling for invokevirtual and
  3560   // invokeinterface bytecodes
  3561   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3562       !callee_is_static &&  // required for optimized MH invokes
  3563       C1ProfileVirtualCalls) {
  3564     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3565     Register recv = op->recv()->as_register();
  3566     assert_different_registers(mdo, recv);
  3567     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3568     ciKlass* known_klass = op->known_holder();
  3569     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3570       // We know the type that will be seen at this call site; we can
  3571       // statically update the MethodData* rather than needing to do
  3572       // dynamic tests on the receiver type
  3574       // NOTE: we should probably put a lock around this search to
  3575       // avoid collisions by concurrent compilations
  3576       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3577       uint i;
  3578       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3579         ciKlass* receiver = vc_data->receiver(i);
  3580         if (known_klass->equals(receiver)) {
  3581           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3582           __ addptr(data_addr, DataLayout::counter_increment);
  3583           return;
  3587       // Receiver type not found in profile data; select an empty slot
  3589       // Note that this is less efficient than it should be because it
  3590       // always does a write to the receiver part of the
  3591       // VirtualCallData rather than just the first time
  3592       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3593         ciKlass* receiver = vc_data->receiver(i);
  3594         if (receiver == NULL) {
  3595           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3596           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3597           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3598           __ addptr(data_addr, DataLayout::counter_increment);
  3599           return;
  3602     } else {
  3603       __ load_klass(recv, recv);
  3604       Label update_done;
  3605       type_profile_helper(mdo, md, data, recv, &update_done);
  3606       // Receiver did not match any saved receiver and there is no empty row for it.
  3607       // Increment total counter to indicate polymorphic case.
  3608       __ addptr(counter_addr, DataLayout::counter_increment);
  3610       __ bind(update_done);
  3612   } else {
  3613     // Static call
  3614     __ addptr(counter_addr, DataLayout::counter_increment);
  3618 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3619   Unimplemented();
  3623 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3624   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3628 void LIR_Assembler::align_backward_branch_target() {
  3629   __ align(BytesPerWord);
  3633 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3634   if (left->is_single_cpu()) {
  3635     __ negl(left->as_register());
  3636     move_regs(left->as_register(), dest->as_register());
  3638   } else if (left->is_double_cpu()) {
  3639     Register lo = left->as_register_lo();
  3640 #ifdef _LP64
  3641     Register dst = dest->as_register_lo();
  3642     __ movptr(dst, lo);
  3643     __ negptr(dst);
  3644 #else
  3645     Register hi = left->as_register_hi();
  3646     __ lneg(hi, lo);
  3647     if (dest->as_register_lo() == hi) {
  3648       assert(dest->as_register_hi() != lo, "destroying register");
  3649       move_regs(hi, dest->as_register_hi());
  3650       move_regs(lo, dest->as_register_lo());
  3651     } else {
  3652       move_regs(lo, dest->as_register_lo());
  3653       move_regs(hi, dest->as_register_hi());
  3655 #endif // _LP64
  3657   } else if (dest->is_single_xmm()) {
  3658     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3659       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3661     __ xorps(dest->as_xmm_float_reg(),
  3662              ExternalAddress((address)float_signflip_pool));
  3664   } else if (dest->is_double_xmm()) {
  3665     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3666       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3668     __ xorpd(dest->as_xmm_double_reg(),
  3669              ExternalAddress((address)double_signflip_pool));
  3671   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3672     assert(left->fpu() == 0, "arg must be on TOS");
  3673     assert(dest->fpu() == 0, "dest must be TOS");
  3674     __ fchs();
  3676   } else {
  3677     ShouldNotReachHere();
  3682 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3683   assert(addr->is_address() && dest->is_register(), "check");
  3684   Register reg;
  3685   reg = dest->as_pointer_register();
  3686   __ lea(reg, as_Address(addr->as_address_ptr()));
  3691 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3692   assert(!tmp->is_valid(), "don't need temporary");
  3693   __ call(RuntimeAddress(dest));
  3694   if (info != NULL) {
  3695     add_call_info_here(info);
  3700 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3701   assert(type == T_LONG, "only for volatile long fields");
  3703   if (info != NULL) {
  3704     add_debug_info_for_null_check_here(info);
  3707   if (src->is_double_xmm()) {
  3708     if (dest->is_double_cpu()) {
  3709 #ifdef _LP64
  3710       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3711 #else
  3712       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3713       __ psrlq(src->as_xmm_double_reg(), 32);
  3714       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3715 #endif // _LP64
  3716     } else if (dest->is_double_stack()) {
  3717       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3718     } else if (dest->is_address()) {
  3719       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3720     } else {
  3721       ShouldNotReachHere();
  3724   } else if (dest->is_double_xmm()) {
  3725     if (src->is_double_stack()) {
  3726       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3727     } else if (src->is_address()) {
  3728       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3729     } else {
  3730       ShouldNotReachHere();
  3733   } else if (src->is_double_fpu()) {
  3734     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3735     if (dest->is_double_stack()) {
  3736       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3737     } else if (dest->is_address()) {
  3738       __ fistp_d(as_Address(dest->as_address_ptr()));
  3739     } else {
  3740       ShouldNotReachHere();
  3743   } else if (dest->is_double_fpu()) {
  3744     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3745     if (src->is_double_stack()) {
  3746       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3747     } else if (src->is_address()) {
  3748       __ fild_d(as_Address(src->as_address_ptr()));
  3749     } else {
  3750       ShouldNotReachHere();
  3752   } else {
  3753     ShouldNotReachHere();
  3758 void LIR_Assembler::membar() {
  3759   // QQQ sparc TSO uses this,
  3760   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3763 void LIR_Assembler::membar_acquire() {
  3764   // No x86 machines currently require load fences
  3765   // __ load_fence();
  3768 void LIR_Assembler::membar_release() {
  3769   // No x86 machines currently require store fences
  3770   // __ store_fence();
  3773 void LIR_Assembler::membar_loadload() {
  3774   // no-op
  3775   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3778 void LIR_Assembler::membar_storestore() {
  3779   // no-op
  3780   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3783 void LIR_Assembler::membar_loadstore() {
  3784   // no-op
  3785   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3788 void LIR_Assembler::membar_storeload() {
  3789   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3792 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3793   assert(result_reg->is_register(), "check");
  3794 #ifdef _LP64
  3795   // __ get_thread(result_reg->as_register_lo());
  3796   __ mov(result_reg->as_register(), r15_thread);
  3797 #else
  3798   __ get_thread(result_reg->as_register());
  3799 #endif // _LP64
  3803 void LIR_Assembler::peephole(LIR_List*) {
  3804   // do nothing for now
  3807 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3808   assert(data == dest, "xchg/xadd uses only 2 operands");
  3810   if (data->type() == T_INT) {
  3811     if (code == lir_xadd) {
  3812       if (os::is_MP()) {
  3813         __ lock();
  3815       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  3816     } else {
  3817       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  3819   } else if (data->is_oop()) {
  3820     assert (code == lir_xchg, "xadd for oops");
  3821     Register obj = data->as_register();
  3822 #ifdef _LP64
  3823     if (UseCompressedOops) {
  3824       __ encode_heap_oop(obj);
  3825       __ xchgl(obj, as_Address(src->as_address_ptr()));
  3826       __ decode_heap_oop(obj);
  3827     } else {
  3828       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  3830 #else
  3831     __ xchgl(obj, as_Address(src->as_address_ptr()));
  3832 #endif
  3833   } else if (data->type() == T_LONG) {
  3834 #ifdef _LP64
  3835     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  3836     if (code == lir_xadd) {
  3837       if (os::is_MP()) {
  3838         __ lock();
  3840       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  3841     } else {
  3842       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  3844 #else
  3845     ShouldNotReachHere();
  3846 #endif
  3847   } else {
  3848     ShouldNotReachHere();
  3852 #undef __

mercurial