src/share/vm/opto/subnode.hpp

Mon, 26 Apr 2010 11:27:21 -0700

author
never
date
Mon, 26 Apr 2010 11:27:21 -0700
changeset 1831
d7f654633cfe
parent 631
d1605aabd0a1
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6946040: add intrinsic for short and char reverseBytes
Reviewed-by: never, twisti
Contributed-by: Hiroshi Yamauchi <yamauchi@google.com>

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 //------------------------------SUBNode----------------------------------------
    28 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
    29 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
    30 // -float, and -double are all inherited from this class.  The compare
    31 // functions behave like subtract functions, except that all negative answers
    32 // are compressed into -1, and all positive answers compressed to 1.
    33 class SubNode : public Node {
    34 public:
    35   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
    36     init_class_id(Class_Sub);
    37   }
    39   // Handle algebraic identities here.  If we have an identity, return the Node
    40   // we are equivalent to.  We look for "add of zero" as an identity.
    41   virtual Node *Identity( PhaseTransform *phase );
    43   // Compute a new Type for this node.  Basically we just do the pre-check,
    44   // then call the virtual add() to set the type.
    45   virtual const Type *Value( PhaseTransform *phase ) const;
    47   // Supplied function returns the subtractend of the inputs.
    48   // This also type-checks the inputs for sanity.  Guaranteed never to
    49   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
    50   virtual const Type *sub( const Type *, const Type * ) const = 0;
    52   // Supplied function to return the additive identity type.
    53   // This is returned whenever the subtracts inputs are the same.
    54   virtual const Type *add_id() const = 0;
    56 };
    59 // NOTE: SubINode should be taken away and replaced by add and negate
    60 //------------------------------SubINode---------------------------------------
    61 // Subtract 2 integers
    62 class SubINode : public SubNode {
    63 public:
    64   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    65   virtual int Opcode() const;
    66   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    67   virtual const Type *sub( const Type *, const Type * ) const;
    68   const Type *add_id() const { return TypeInt::ZERO; }
    69   const Type *bottom_type() const { return TypeInt::INT; }
    70   virtual uint ideal_reg() const { return Op_RegI; }
    71 };
    73 //------------------------------SubLNode---------------------------------------
    74 // Subtract 2 integers
    75 class SubLNode : public SubNode {
    76 public:
    77   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    78   virtual int Opcode() const;
    79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    80   virtual const Type *sub( const Type *, const Type * ) const;
    81   const Type *add_id() const { return TypeLong::ZERO; }
    82   const Type *bottom_type() const { return TypeLong::LONG; }
    83   virtual uint ideal_reg() const { return Op_RegL; }
    84 };
    86 // NOTE: SubFPNode should be taken away and replaced by add and negate
    87 //------------------------------SubFPNode--------------------------------------
    88 // Subtract 2 floats or doubles
    89 class SubFPNode : public SubNode {
    90 protected:
    91   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    92 public:
    93   const Type *Value( PhaseTransform *phase ) const;
    94 };
    96 // NOTE: SubFNode should be taken away and replaced by add and negate
    97 //------------------------------SubFNode---------------------------------------
    98 // Subtract 2 doubles
    99 class SubFNode : public SubFPNode {
   100 public:
   101   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   102   virtual int Opcode() const;
   103   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   104   virtual const Type *sub( const Type *, const Type * ) const;
   105   const Type   *add_id() const { return TypeF::ZERO; }
   106   const Type   *bottom_type() const { return Type::FLOAT; }
   107   virtual uint  ideal_reg() const { return Op_RegF; }
   108 };
   110 // NOTE: SubDNode should be taken away and replaced by add and negate
   111 //------------------------------SubDNode---------------------------------------
   112 // Subtract 2 doubles
   113 class SubDNode : public SubFPNode {
   114 public:
   115   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   116   virtual int Opcode() const;
   117   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   118   virtual const Type *sub( const Type *, const Type * ) const;
   119   const Type   *add_id() const { return TypeD::ZERO; }
   120   const Type   *bottom_type() const { return Type::DOUBLE; }
   121   virtual uint  ideal_reg() const { return Op_RegD; }
   122 };
   124 //------------------------------CmpNode---------------------------------------
   125 // Compare 2 values, returning condition codes (-1, 0 or 1).
   126 class CmpNode : public SubNode {
   127 public:
   128   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
   129     init_class_id(Class_Cmp);
   130   }
   131   virtual Node *Identity( PhaseTransform *phase );
   132   const Type *add_id() const { return TypeInt::ZERO; }
   133   const Type *bottom_type() const { return TypeInt::CC; }
   134   virtual uint ideal_reg() const { return Op_RegFlags; }
   135 };
   137 //------------------------------CmpINode---------------------------------------
   138 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
   139 class CmpINode : public CmpNode {
   140 public:
   141   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   142   virtual int Opcode() const;
   143   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   144   virtual const Type *sub( const Type *, const Type * ) const;
   145 };
   147 //------------------------------CmpUNode---------------------------------------
   148 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
   149 class CmpUNode : public CmpNode {
   150 public:
   151   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   152   virtual int Opcode() const;
   153   virtual const Type *sub( const Type *, const Type * ) const;
   154 };
   156 //------------------------------CmpPNode---------------------------------------
   157 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
   158 class CmpPNode : public CmpNode {
   159 public:
   160   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   161   virtual int Opcode() const;
   162   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   163   virtual const Type *sub( const Type *, const Type * ) const;
   164 };
   166 //------------------------------CmpNNode--------------------------------------
   167 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
   168 class CmpNNode : public CmpNode {
   169 public:
   170   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   171   virtual int Opcode() const;
   172   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   173   virtual const Type *sub( const Type *, const Type * ) const;
   174 };
   176 //------------------------------CmpLNode---------------------------------------
   177 // Compare 2 long values, returning condition codes (-1, 0 or 1).
   178 class CmpLNode : public CmpNode {
   179 public:
   180   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   181   virtual int    Opcode() const;
   182   virtual const Type *sub( const Type *, const Type * ) const;
   183 };
   185 //------------------------------CmpL3Node--------------------------------------
   186 // Compare 2 long values, returning integer value (-1, 0 or 1).
   187 class CmpL3Node : public CmpLNode {
   188 public:
   189   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
   190     // Since it is not consumed by Bools, it is not really a Cmp.
   191     init_class_id(Class_Sub);
   192   }
   193   virtual int    Opcode() const;
   194   virtual uint ideal_reg() const { return Op_RegI; }
   195 };
   197 //------------------------------CmpFNode---------------------------------------
   198 // Compare 2 float values, returning condition codes (-1, 0 or 1).
   199 // This implements the Java bytecode fcmpl, so unordered returns -1.
   200 // Operands may not commute.
   201 class CmpFNode : public CmpNode {
   202 public:
   203   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   204   virtual int Opcode() const;
   205   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   206   const Type *Value( PhaseTransform *phase ) const;
   207 };
   209 //------------------------------CmpF3Node--------------------------------------
   210 // Compare 2 float values, returning integer value (-1, 0 or 1).
   211 // This implements the Java bytecode fcmpl, so unordered returns -1.
   212 // Operands may not commute.
   213 class CmpF3Node : public CmpFNode {
   214 public:
   215   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
   216     // Since it is not consumed by Bools, it is not really a Cmp.
   217     init_class_id(Class_Sub);
   218   }
   219   virtual int Opcode() const;
   220   // Since it is not consumed by Bools, it is not really a Cmp.
   221   virtual uint ideal_reg() const { return Op_RegI; }
   222 };
   225 //------------------------------CmpDNode---------------------------------------
   226 // Compare 2 double values, returning condition codes (-1, 0 or 1).
   227 // This implements the Java bytecode dcmpl, so unordered returns -1.
   228 // Operands may not commute.
   229 class CmpDNode : public CmpNode {
   230 public:
   231   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   232   virtual int Opcode() const;
   233   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   234   const Type *Value( PhaseTransform *phase ) const;
   235   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
   236 };
   238 //------------------------------CmpD3Node--------------------------------------
   239 // Compare 2 double values, returning integer value (-1, 0 or 1).
   240 // This implements the Java bytecode dcmpl, so unordered returns -1.
   241 // Operands may not commute.
   242 class CmpD3Node : public CmpDNode {
   243 public:
   244   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
   245     // Since it is not consumed by Bools, it is not really a Cmp.
   246     init_class_id(Class_Sub);
   247   }
   248   virtual int Opcode() const;
   249   virtual uint ideal_reg() const { return Op_RegI; }
   250 };
   253 //------------------------------BoolTest---------------------------------------
   254 // Convert condition codes to a boolean test value (0 or -1).
   255 // We pick the values as 3 bits; the low order 2 bits we compare against the
   256 // condition codes, the high bit flips the sense of the result.
   257 struct BoolTest VALUE_OBJ_CLASS_SPEC {
   258   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
   259   mask _test;
   260   BoolTest( mask btm ) : _test(btm) {}
   261   const Type *cc2logical( const Type *CC ) const;
   262   // Commute the test.  I use a small table lookup.  The table is created as
   263   // a simple char array where each element is the ASCII version of a 'mask'
   264   // enum from above.
   265   mask commute( ) const { return mask("038147858"[_test]-'0'); }
   266   mask negate( ) const { return mask(_test^4); }
   267   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
   268 #ifndef PRODUCT
   269   void dump_on(outputStream *st) const;
   270 #endif
   271 };
   273 //------------------------------BoolNode---------------------------------------
   274 // A Node to convert a Condition Codes to a Logical result.
   275 class BoolNode : public Node {
   276   virtual uint hash() const;
   277   virtual uint cmp( const Node &n ) const;
   278   virtual uint size_of() const;
   279 public:
   280   const BoolTest _test;
   281   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
   282     init_class_id(Class_Bool);
   283   }
   284   // Convert an arbitrary int value to a Bool or other suitable predicate.
   285   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
   286   // Convert self back to an integer value.
   287   Node* as_int_value(PhaseGVN* phase);
   288   // Invert sense of self, returning new Bool.
   289   BoolNode* negate(PhaseGVN* phase);
   290   virtual int Opcode() const;
   291   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   292   virtual const Type *Value( PhaseTransform *phase ) const;
   293   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   294   uint match_edge(uint idx) const { return 0; }
   295   virtual uint ideal_reg() const { return Op_RegI; }
   297   bool is_counted_loop_exit_test();
   298 #ifndef PRODUCT
   299   virtual void dump_spec(outputStream *st) const;
   300 #endif
   301 };
   303 //------------------------------AbsNode----------------------------------------
   304 // Abstract class for absolute value.  Mostly used to get a handy wrapper
   305 // for finding this pattern in the graph.
   306 class AbsNode : public Node {
   307 public:
   308   AbsNode( Node *value ) : Node(0,value) {}
   309 };
   311 //------------------------------AbsINode---------------------------------------
   312 // Absolute value an integer.  Since a naive graph involves control flow, we
   313 // "match" it in the ideal world (so the control flow can be removed).
   314 class AbsINode : public AbsNode {
   315 public:
   316   AbsINode( Node *in1 ) : AbsNode(in1) {}
   317   virtual int Opcode() const;
   318   const Type *bottom_type() const { return TypeInt::INT; }
   319   virtual uint ideal_reg() const { return Op_RegI; }
   320 };
   322 //------------------------------AbsFNode---------------------------------------
   323 // Absolute value a float, a common float-point idiom with a cheap hardware
   324 // implemention on most chips.  Since a naive graph involves control flow, we
   325 // "match" it in the ideal world (so the control flow can be removed).
   326 class AbsFNode : public AbsNode {
   327 public:
   328   AbsFNode( Node *in1 ) : AbsNode(in1) {}
   329   virtual int Opcode() const;
   330   const Type *bottom_type() const { return Type::FLOAT; }
   331   virtual uint ideal_reg() const { return Op_RegF; }
   332 };
   334 //------------------------------AbsDNode---------------------------------------
   335 // Absolute value a double, a common float-point idiom with a cheap hardware
   336 // implemention on most chips.  Since a naive graph involves control flow, we
   337 // "match" it in the ideal world (so the control flow can be removed).
   338 class AbsDNode : public AbsNode {
   339 public:
   340   AbsDNode( Node *in1 ) : AbsNode(in1) {}
   341   virtual int Opcode() const;
   342   const Type *bottom_type() const { return Type::DOUBLE; }
   343   virtual uint ideal_reg() const { return Op_RegD; }
   344 };
   347 //------------------------------CmpLTMaskNode----------------------------------
   348 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
   349 class CmpLTMaskNode : public Node {
   350 public:
   351   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
   352   virtual int Opcode() const;
   353   const Type *bottom_type() const { return TypeInt::INT; }
   354   virtual uint ideal_reg() const { return Op_RegI; }
   355 };
   358 //------------------------------NegNode----------------------------------------
   359 class NegNode : public Node {
   360 public:
   361   NegNode( Node *in1 ) : Node(0,in1) {}
   362 };
   364 //------------------------------NegFNode---------------------------------------
   365 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
   366 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
   367 // cannot be used to replace negation we have to implement negation as ideal
   368 // node; note that negation and addition can replace subtraction.
   369 class NegFNode : public NegNode {
   370 public:
   371   NegFNode( Node *in1 ) : NegNode(in1) {}
   372   virtual int Opcode() const;
   373   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   374   const Type *bottom_type() const { return Type::FLOAT; }
   375   virtual uint ideal_reg() const { return Op_RegF; }
   376 };
   378 //------------------------------NegDNode---------------------------------------
   379 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
   380 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
   381 // cannot be used to replace negation we have to implement negation as ideal
   382 // node; note that negation and addition can replace subtraction.
   383 class NegDNode : public NegNode {
   384 public:
   385   NegDNode( Node *in1 ) : NegNode(in1) {}
   386   virtual int Opcode() const;
   387   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   388   const Type *bottom_type() const { return Type::DOUBLE; }
   389   virtual uint ideal_reg() const { return Op_RegD; }
   390 };
   392 //------------------------------CosDNode---------------------------------------
   393 // Cosinus of a double
   394 class CosDNode : public Node {
   395 public:
   396   CosDNode( Node *in1  ) : Node(0, in1) {}
   397   virtual int Opcode() const;
   398   const Type *bottom_type() const { return Type::DOUBLE; }
   399   virtual uint ideal_reg() const { return Op_RegD; }
   400   virtual const Type *Value( PhaseTransform *phase ) const;
   401 };
   403 //------------------------------CosDNode---------------------------------------
   404 // Sinus of a double
   405 class SinDNode : public Node {
   406 public:
   407   SinDNode( Node *in1  ) : Node(0, in1) {}
   408   virtual int Opcode() const;
   409   const Type *bottom_type() const { return Type::DOUBLE; }
   410   virtual uint ideal_reg() const { return Op_RegD; }
   411   virtual const Type *Value( PhaseTransform *phase ) const;
   412 };
   415 //------------------------------TanDNode---------------------------------------
   416 // tangens of a double
   417 class TanDNode : public Node {
   418 public:
   419   TanDNode(Node *in1  ) : Node(0, in1) {}
   420   virtual int Opcode() const;
   421   const Type *bottom_type() const { return Type::DOUBLE; }
   422   virtual uint ideal_reg() const { return Op_RegD; }
   423   virtual const Type *Value( PhaseTransform *phase ) const;
   424 };
   427 //------------------------------AtanDNode--------------------------------------
   428 // arcus tangens of a double
   429 class AtanDNode : public Node {
   430 public:
   431   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
   432   virtual int Opcode() const;
   433   const Type *bottom_type() const { return Type::DOUBLE; }
   434   virtual uint ideal_reg() const { return Op_RegD; }
   435 };
   438 //------------------------------SqrtDNode--------------------------------------
   439 // square root a double
   440 class SqrtDNode : public Node {
   441 public:
   442   SqrtDNode(Node *c, Node *in1  ) : Node(c, in1) {}
   443   virtual int Opcode() const;
   444   const Type *bottom_type() const { return Type::DOUBLE; }
   445   virtual uint ideal_reg() const { return Op_RegD; }
   446   virtual const Type *Value( PhaseTransform *phase ) const;
   447 };
   449 //------------------------------ExpDNode---------------------------------------
   450 //  Exponentiate a double
   451 class ExpDNode : public Node {
   452 public:
   453   ExpDNode( Node *c, Node *in1 ) : Node(c, in1) {}
   454   virtual int Opcode() const;
   455   const Type *bottom_type() const { return Type::DOUBLE; }
   456   virtual uint ideal_reg() const { return Op_RegD; }
   457   virtual const Type *Value( PhaseTransform *phase ) const;
   458 };
   460 //------------------------------LogDNode---------------------------------------
   461 // Log_e of a double
   462 class LogDNode : public Node {
   463 public:
   464   LogDNode( Node *in1 ) : Node(0, in1) {}
   465   virtual int Opcode() const;
   466   const Type *bottom_type() const { return Type::DOUBLE; }
   467   virtual uint ideal_reg() const { return Op_RegD; }
   468   virtual const Type *Value( PhaseTransform *phase ) const;
   469 };
   471 //------------------------------Log10DNode---------------------------------------
   472 // Log_10 of a double
   473 class Log10DNode : public Node {
   474 public:
   475   Log10DNode( Node *in1 ) : Node(0, in1) {}
   476   virtual int Opcode() const;
   477   const Type *bottom_type() const { return Type::DOUBLE; }
   478   virtual uint ideal_reg() const { return Op_RegD; }
   479   virtual const Type *Value( PhaseTransform *phase ) const;
   480 };
   482 //------------------------------PowDNode---------------------------------------
   483 // Raise a double to a double power
   484 class PowDNode : public Node {
   485 public:
   486   PowDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
   487   virtual int Opcode() const;
   488   const Type *bottom_type() const { return Type::DOUBLE; }
   489   virtual uint ideal_reg() const { return Op_RegD; }
   490   virtual const Type *Value( PhaseTransform *phase ) const;
   491 };
   493 //-------------------------------ReverseBytesINode--------------------------------
   494 // reverse bytes of an integer
   495 class ReverseBytesINode : public Node {
   496 public:
   497   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
   498   virtual int Opcode() const;
   499   const Type *bottom_type() const { return TypeInt::INT; }
   500   virtual uint ideal_reg() const { return Op_RegI; }
   501 };
   503 //-------------------------------ReverseBytesLNode--------------------------------
   504 // reverse bytes of a long
   505 class ReverseBytesLNode : public Node {
   506 public:
   507   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
   508   virtual int Opcode() const;
   509   const Type *bottom_type() const { return TypeLong::LONG; }
   510   virtual uint ideal_reg() const { return Op_RegL; }
   511 };
   513 //-------------------------------ReverseBytesUSNode--------------------------------
   514 // reverse bytes of an unsigned short / char
   515 class ReverseBytesUSNode : public Node {
   516 public:
   517   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
   518   virtual int Opcode() const;
   519   const Type *bottom_type() const { return TypeInt::CHAR; }
   520   virtual uint ideal_reg() const { return Op_RegI; }
   521 };
   523 //-------------------------------ReverseBytesSNode--------------------------------
   524 // reverse bytes of a short
   525 class ReverseBytesSNode : public Node {
   526 public:
   527   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
   528   virtual int Opcode() const;
   529   const Type *bottom_type() const { return TypeInt::SHORT; }
   530   virtual uint ideal_reg() const { return Op_RegI; }
   531 };

mercurial