src/cpu/sparc/vm/sparc.ad

Mon, 26 Apr 2010 11:27:21 -0700

author
never
date
Mon, 26 Apr 2010 11:27:21 -0700
changeset 1831
d7f654633cfe
parent 1802
9e321dcfa5b7
child 1907
c18cbe5936b8
child 1922
110501f54a99
permissions
-rw-r--r--

6946040: add intrinsic for short and char reverseBytes
Reviewed-by: never, twisti
Contributed-by: Hiroshi Yamauchi <yamauchi@google.com>

     1 //
     2 // Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   return NativeCall::instruction_size;  // call; delay slot
   538 }
   540 int MachCallDynamicJavaNode::ret_addr_offset() {
   541   int vtable_index = this->_vtable_index;
   542   if (vtable_index < 0) {
   543     // must be invalid_vtable_index, not nonvirtual_vtable_index
   544     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   545     return (NativeMovConstReg::instruction_size +
   546            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   547   } else {
   548     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   549     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   550     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   551     int klass_load_size;
   552     if (UseCompressedOops) {
   553       assert(Universe::heap() != NULL, "java heap should be initialized");
   554       if (Universe::narrow_oop_base() == NULL)
   555         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   556       else
   557         klass_load_size = 3*BytesPerInstWord;
   558     } else {
   559       klass_load_size = 1*BytesPerInstWord;
   560     }
   561     if( Assembler::is_simm13(v_off) ) {
   562       return klass_load_size +
   563              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   564              NativeCall::instruction_size);  // call; delay slot
   565     } else {
   566       return klass_load_size +
   567              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   568              NativeCall::instruction_size);  // call; delay slot
   569     }
   570   }
   571 }
   573 int MachCallRuntimeNode::ret_addr_offset() {
   574 #ifdef _LP64
   575   return NativeFarCall::instruction_size;  // farcall; delay slot
   576 #else
   577   return NativeCall::instruction_size;  // call; delay slot
   578 #endif
   579 }
   581 // Indicate if the safepoint node needs the polling page as an input.
   582 // Since Sparc does not have absolute addressing, it does.
   583 bool SafePointNode::needs_polling_address_input() {
   584   return true;
   585 }
   587 // emit an interrupt that is caught by the debugger (for debugging compiler)
   588 void emit_break(CodeBuffer &cbuf) {
   589   MacroAssembler _masm(&cbuf);
   590   __ breakpoint_trap();
   591 }
   593 #ifndef PRODUCT
   594 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   595   st->print("TA");
   596 }
   597 #endif
   599 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   600   emit_break(cbuf);
   601 }
   603 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   604   return MachNode::size(ra_);
   605 }
   607 // Traceable jump
   608 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   609   MacroAssembler _masm(&cbuf);
   610   Register rdest = reg_to_register_object(jump_target);
   611   __ JMP(rdest, 0);
   612   __ delayed()->nop();
   613 }
   615 // Traceable jump and set exception pc
   616 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   617   MacroAssembler _masm(&cbuf);
   618   Register rdest = reg_to_register_object(jump_target);
   619   __ JMP(rdest, 0);
   620   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   621 }
   623 void emit_nop(CodeBuffer &cbuf) {
   624   MacroAssembler _masm(&cbuf);
   625   __ nop();
   626 }
   628 void emit_illtrap(CodeBuffer &cbuf) {
   629   MacroAssembler _masm(&cbuf);
   630   __ illtrap(0);
   631 }
   634 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   635   assert(n->rule() != loadUB_rule, "");
   637   intptr_t offset = 0;
   638   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   639   const Node* addr = n->get_base_and_disp(offset, adr_type);
   640   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   641   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   642   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   643   atype = atype->add_offset(offset);
   644   assert(disp32 == offset, "wrong disp32");
   645   return atype->_offset;
   646 }
   649 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   650   assert(n->rule() != loadUB_rule, "");
   652   intptr_t offset = 0;
   653   Node* addr = n->in(2);
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   656     Node* a = addr->in(2/*AddPNode::Address*/);
   657     Node* o = addr->in(3/*AddPNode::Offset*/);
   658     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   659     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   660     assert(atype->isa_oop_ptr(), "still an oop");
   661   }
   662   offset = atype->is_ptr()->_offset;
   663   if (offset != Type::OffsetBot)  offset += disp32;
   664   return offset;
   665 }
   667 // Standard Sparc opcode form2 field breakdown
   668 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   669   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   670   int op = (f30 << 30) |
   671            (f29 << 29) |
   672            (f25 << 25) |
   673            (f22 << 22) |
   674            (f20 << 20) |
   675            (f19 << 19) |
   676            (f0  <<  0);
   677   *((int*)(cbuf.code_end())) = op;
   678   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   679 }
   681 // Standard Sparc opcode form2 field breakdown
   682 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   683   f0 >>= 10;           // Drop 10 bits
   684   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   685   int op = (f30 << 30) |
   686            (f25 << 25) |
   687            (f22 << 22) |
   688            (f0  <<  0);
   689   *((int*)(cbuf.code_end())) = op;
   690   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   691 }
   693 // Standard Sparc opcode form3 field breakdown
   694 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   695   int op = (f30 << 30) |
   696            (f25 << 25) |
   697            (f19 << 19) |
   698            (f14 << 14) |
   699            (f5  <<  5) |
   700            (f0  <<  0);
   701   *((int*)(cbuf.code_end())) = op;
   702   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   703 }
   705 // Standard Sparc opcode form3 field breakdown
   706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   707   simm13 &= (1<<13)-1; // Mask to 13 bits
   708   int op = (f30 << 30) |
   709            (f25 << 25) |
   710            (f19 << 19) |
   711            (f14 << 14) |
   712            (1   << 13) | // bit to indicate immediate-mode
   713            (simm13<<0);
   714   *((int*)(cbuf.code_end())) = op;
   715   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   716 }
   718 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   719   simm10 &= (1<<10)-1; // Mask to 10 bits
   720   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   721 }
   723 #ifdef ASSERT
   724 // Helper function for VerifyOops in emit_form3_mem_reg
   725 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   726   warning("VerifyOops encountered unexpected instruction:");
   727   n->dump(2);
   728   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   729 }
   730 #endif
   733 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   734                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   736 #ifdef ASSERT
   737   // The following code implements the +VerifyOops feature.
   738   // It verifies oop values which are loaded into or stored out of
   739   // the current method activation.  +VerifyOops complements techniques
   740   // like ScavengeALot, because it eagerly inspects oops in transit,
   741   // as they enter or leave the stack, as opposed to ScavengeALot,
   742   // which inspects oops "at rest", in the stack or heap, at safepoints.
   743   // For this reason, +VerifyOops can sometimes detect bugs very close
   744   // to their point of creation.  It can also serve as a cross-check
   745   // on the validity of oop maps, when used toegether with ScavengeALot.
   747   // It would be good to verify oops at other points, especially
   748   // when an oop is used as a base pointer for a load or store.
   749   // This is presently difficult, because it is hard to know when
   750   // a base address is biased or not.  (If we had such information,
   751   // it would be easy and useful to make a two-argument version of
   752   // verify_oop which unbiases the base, and performs verification.)
   754   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   755   bool is_verified_oop_base  = false;
   756   bool is_verified_oop_load  = false;
   757   bool is_verified_oop_store = false;
   758   int tmp_enc = -1;
   759   if (VerifyOops && src1_enc != R_SP_enc) {
   760     // classify the op, mainly for an assert check
   761     int st_op = 0, ld_op = 0;
   762     switch (primary) {
   763     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   764     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   765     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   766     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   767     case Assembler::std_op3:  st_op = Op_StoreL; break;
   768     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   769     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   771     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   772     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   773     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   774     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   775     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   776     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   777     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   778     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   779     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   780     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   781     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   783     default: ShouldNotReachHere();
   784     }
   785     if (tertiary == REGP_OP) {
   786       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   787       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   788       else                          ShouldNotReachHere();
   789       if (st_op) {
   790         // a store
   791         // inputs are (0:control, 1:memory, 2:address, 3:value)
   792         Node* n2 = n->in(3);
   793         if (n2 != NULL) {
   794           const Type* t = n2->bottom_type();
   795           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   796         }
   797       } else {
   798         // a load
   799         const Type* t = n->bottom_type();
   800         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   801       }
   802     }
   804     if (ld_op) {
   805       // a Load
   806       // inputs are (0:control, 1:memory, 2:address)
   807       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   808           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   809           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   810           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   811           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   813           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   814           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   815           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   816           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   817           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   818           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   819           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   820           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   821           !(n->rule() == loadUB_rule)) {
   822         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   823       }
   824     } else if (st_op) {
   825       // a Store
   826       // inputs are (0:control, 1:memory, 2:address, 3:value)
   827       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   828           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   829           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   830           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   831           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   832           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   833         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   834       }
   835     }
   837     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   838       Node* addr = n->in(2);
   839       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   840         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   841         if (atype != NULL) {
   842           intptr_t offset = get_offset_from_base(n, atype, disp32);
   843           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   844           if (offset != offset_2) {
   845             get_offset_from_base(n, atype, disp32);
   846             get_offset_from_base_2(n, atype, disp32);
   847           }
   848           assert(offset == offset_2, "different offsets");
   849           if (offset == disp32) {
   850             // we now know that src1 is a true oop pointer
   851             is_verified_oop_base = true;
   852             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   853               if( primary == Assembler::ldd_op3 ) {
   854                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   855               } else {
   856                 tmp_enc = dst_enc;
   857                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   858                 assert(src1_enc != dst_enc, "");
   859               }
   860             }
   861           }
   862           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   863                        || offset == oopDesc::mark_offset_in_bytes())) {
   864                       // loading the mark should not be allowed either, but
   865                       // we don't check this since it conflicts with InlineObjectHash
   866                       // usage of LoadINode to get the mark. We could keep the
   867                       // check if we create a new LoadMarkNode
   868             // but do not verify the object before its header is initialized
   869             ShouldNotReachHere();
   870           }
   871         }
   872       }
   873     }
   874   }
   875 #endif
   877   uint instr;
   878   instr = (Assembler::ldst_op << 30)
   879         | (dst_enc        << 25)
   880         | (primary        << 19)
   881         | (src1_enc       << 14);
   883   uint index = src2_enc;
   884   int disp = disp32;
   886   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   887     disp += STACK_BIAS;
   889   // We should have a compiler bailout here rather than a guarantee.
   890   // Better yet would be some mechanism to handle variable-size matches correctly.
   891   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   893   if( disp == 0 ) {
   894     // use reg-reg form
   895     // bit 13 is already zero
   896     instr |= index;
   897   } else {
   898     // use reg-imm form
   899     instr |= 0x00002000;          // set bit 13 to one
   900     instr |= disp & 0x1FFF;
   901   }
   903   uint *code = (uint*)cbuf.code_end();
   904   *code = instr;
   905   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   907 #ifdef ASSERT
   908   {
   909     MacroAssembler _masm(&cbuf);
   910     if (is_verified_oop_base) {
   911       __ verify_oop(reg_to_register_object(src1_enc));
   912     }
   913     if (is_verified_oop_store) {
   914       __ verify_oop(reg_to_register_object(dst_enc));
   915     }
   916     if (tmp_enc != -1) {
   917       __ mov(O7, reg_to_register_object(tmp_enc));
   918     }
   919     if (is_verified_oop_load) {
   920       __ verify_oop(reg_to_register_object(dst_enc));
   921     }
   922   }
   923 #endif
   924 }
   926 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   927   // The method which records debug information at every safepoint
   928   // expects the call to be the first instruction in the snippet as
   929   // it creates a PcDesc structure which tracks the offset of a call
   930   // from the start of the codeBlob. This offset is computed as
   931   // code_end() - code_begin() of the code which has been emitted
   932   // so far.
   933   // In this particular case we have skirted around the problem by
   934   // putting the "mov" instruction in the delay slot but the problem
   935   // may bite us again at some other point and a cleaner/generic
   936   // solution using relocations would be needed.
   937   MacroAssembler _masm(&cbuf);
   938   __ set_inst_mark();
   940   // We flush the current window just so that there is a valid stack copy
   941   // the fact that the current window becomes active again instantly is
   942   // not a problem there is nothing live in it.
   944 #ifdef ASSERT
   945   int startpos = __ offset();
   946 #endif /* ASSERT */
   948 #ifdef _LP64
   949   // Calls to the runtime or native may not be reachable from compiled code,
   950   // so we generate the far call sequence on 64 bit sparc.
   951   // This code sequence is relocatable to any address, even on LP64.
   952   if ( force_far_call ) {
   953     __ relocate(rtype);
   954     AddressLiteral dest(entry_point);
   955     __ jumpl_to(dest, O7, O7);
   956   }
   957   else
   958 #endif
   959   {
   960      __ call((address)entry_point, rtype);
   961   }
   963   if (preserve_g2)   __ delayed()->mov(G2, L7);
   964   else __ delayed()->nop();
   966   if (preserve_g2)   __ mov(L7, G2);
   968 #ifdef ASSERT
   969   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   970 #ifdef _LP64
   971     // Trash argument dump slots.
   972     __ set(0xb0b8ac0db0b8ac0d, G1);
   973     __ mov(G1, G5);
   974     __ stx(G1, SP, STACK_BIAS + 0x80);
   975     __ stx(G1, SP, STACK_BIAS + 0x88);
   976     __ stx(G1, SP, STACK_BIAS + 0x90);
   977     __ stx(G1, SP, STACK_BIAS + 0x98);
   978     __ stx(G1, SP, STACK_BIAS + 0xA0);
   979     __ stx(G1, SP, STACK_BIAS + 0xA8);
   980 #else // _LP64
   981     // this is also a native call, so smash the first 7 stack locations,
   982     // and the various registers
   984     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   985     // while [SP+0x44..0x58] are the argument dump slots.
   986     __ set((intptr_t)0xbaadf00d, G1);
   987     __ mov(G1, G5);
   988     __ sllx(G1, 32, G1);
   989     __ or3(G1, G5, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, 0x40);
   992     __ stx(G1, SP, 0x48);
   993     __ stx(G1, SP, 0x50);
   994     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
   995 #endif // _LP64
   996   }
   997 #endif /*ASSERT*/
   998 }
  1000 //=============================================================================
  1001 // REQUIRED FUNCTIONALITY for encoding
  1002 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1003 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1006 //=============================================================================
  1008 #ifndef PRODUCT
  1009 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1010   Compile* C = ra_->C;
  1012   for (int i = 0; i < OptoPrologueNops; i++) {
  1013     st->print_cr("NOP"); st->print("\t");
  1016   if( VerifyThread ) {
  1017     st->print_cr("Verify_Thread"); st->print("\t");
  1020   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1022   // Calls to C2R adapters often do not accept exceptional returns.
  1023   // We require that their callers must bang for them.  But be careful, because
  1024   // some VM calls (such as call site linkage) can use several kilobytes of
  1025   // stack.  But the stack safety zone should account for that.
  1026   // See bugs 4446381, 4468289, 4497237.
  1027   if (C->need_stack_bang(framesize)) {
  1028     st->print_cr("! stack bang"); st->print("\t");
  1031   if (Assembler::is_simm13(-framesize)) {
  1032     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1033   } else {
  1034     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1035     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1036     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1040 #endif
  1042 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1043   Compile* C = ra_->C;
  1044   MacroAssembler _masm(&cbuf);
  1046   for (int i = 0; i < OptoPrologueNops; i++) {
  1047     __ nop();
  1050   __ verify_thread();
  1052   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1053   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1054   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1056   // Calls to C2R adapters often do not accept exceptional returns.
  1057   // We require that their callers must bang for them.  But be careful, because
  1058   // some VM calls (such as call site linkage) can use several kilobytes of
  1059   // stack.  But the stack safety zone should account for that.
  1060   // See bugs 4446381, 4468289, 4497237.
  1061   if (C->need_stack_bang(framesize)) {
  1062     __ generate_stack_overflow_check(framesize);
  1065   if (Assembler::is_simm13(-framesize)) {
  1066     __ save(SP, -framesize, SP);
  1067   } else {
  1068     __ sethi(-framesize & ~0x3ff, G3);
  1069     __ add(G3, -framesize & 0x3ff, G3);
  1070     __ save(SP, G3, SP);
  1072   C->set_frame_complete( __ offset() );
  1075 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1076   return MachNode::size(ra_);
  1079 int MachPrologNode::reloc() const {
  1080   return 10; // a large enough number
  1083 //=============================================================================
  1084 #ifndef PRODUCT
  1085 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1086   Compile* C = ra_->C;
  1088   if( do_polling() && ra_->C->is_method_compilation() ) {
  1089     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1090 #ifdef _LP64
  1091     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1092 #else
  1093     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1094 #endif
  1097   if( do_polling() )
  1098     st->print("RET\n\t");
  1100   st->print("RESTORE");
  1102 #endif
  1104 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1105   MacroAssembler _masm(&cbuf);
  1106   Compile* C = ra_->C;
  1108   __ verify_thread();
  1110   // If this does safepoint polling, then do it here
  1111   if( do_polling() && ra_->C->is_method_compilation() ) {
  1112     AddressLiteral polling_page(os::get_polling_page());
  1113     __ sethi(polling_page, L0);
  1114     __ relocate(relocInfo::poll_return_type);
  1115     __ ld_ptr( L0, 0, G0 );
  1118   // If this is a return, then stuff the restore in the delay slot
  1119   if( do_polling() ) {
  1120     __ ret();
  1121     __ delayed()->restore();
  1122   } else {
  1123     __ restore();
  1127 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1128   return MachNode::size(ra_);
  1131 int MachEpilogNode::reloc() const {
  1132   return 16; // a large enough number
  1135 const Pipeline * MachEpilogNode::pipeline() const {
  1136   return MachNode::pipeline_class();
  1139 int MachEpilogNode::safepoint_offset() const {
  1140   assert( do_polling(), "no return for this epilog node");
  1141   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1144 //=============================================================================
  1146 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1147 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1148 static enum RC rc_class( OptoReg::Name reg ) {
  1149   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1150   if (OptoReg::is_stack(reg)) return rc_stack;
  1151   VMReg r = OptoReg::as_VMReg(reg);
  1152   if (r->is_Register()) return rc_int;
  1153   assert(r->is_FloatRegister(), "must be");
  1154   return rc_float;
  1157 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1158   if( cbuf ) {
  1159     // Better yet would be some mechanism to handle variable-size matches correctly
  1160     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1161       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1162     } else {
  1163       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1166 #ifndef PRODUCT
  1167   else if( !do_size ) {
  1168     if( size != 0 ) st->print("\n\t");
  1169     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1170     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1172 #endif
  1173   return size+4;
  1176 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1177   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1178 #ifndef PRODUCT
  1179   else if( !do_size ) {
  1180     if( size != 0 ) st->print("\n\t");
  1181     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1183 #endif
  1184   return size+4;
  1187 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1188                                         PhaseRegAlloc *ra_,
  1189                                         bool do_size,
  1190                                         outputStream* st ) const {
  1191   // Get registers to move
  1192   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1193   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1194   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1195   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1197   enum RC src_second_rc = rc_class(src_second);
  1198   enum RC src_first_rc = rc_class(src_first);
  1199   enum RC dst_second_rc = rc_class(dst_second);
  1200   enum RC dst_first_rc = rc_class(dst_first);
  1202   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1204   // Generate spill code!
  1205   int size = 0;
  1207   if( src_first == dst_first && src_second == dst_second )
  1208     return size;            // Self copy, no move
  1210   // --------------------------------------
  1211   // Check for mem-mem move.  Load into unused float registers and fall into
  1212   // the float-store case.
  1213   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1214     int offset = ra_->reg2offset(src_first);
  1215     // Further check for aligned-adjacent pair, so we can use a double load
  1216     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1217       src_second    = OptoReg::Name(R_F31_num);
  1218       src_second_rc = rc_float;
  1219       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1220     } else {
  1221       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1223     src_first    = OptoReg::Name(R_F30_num);
  1224     src_first_rc = rc_float;
  1227   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1228     int offset = ra_->reg2offset(src_second);
  1229     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1230     src_second    = OptoReg::Name(R_F31_num);
  1231     src_second_rc = rc_float;
  1234   // --------------------------------------
  1235   // Check for float->int copy; requires a trip through memory
  1236   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1237     int offset = frame::register_save_words*wordSize;
  1238     if( cbuf ) {
  1239       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1240       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1241       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1242       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1244 #ifndef PRODUCT
  1245     else if( !do_size ) {
  1246       if( size != 0 ) st->print("\n\t");
  1247       st->print(  "SUB    R_SP,16,R_SP\n");
  1248       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1249       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1250       st->print("\tADD    R_SP,16,R_SP\n");
  1252 #endif
  1253     size += 16;
  1256   // --------------------------------------
  1257   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1258   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1259   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1260   // there.  Misaligned sources only come from native-long-returns (handled
  1261   // special below).
  1262 #ifndef _LP64
  1263   if( src_first_rc == rc_int &&     // source is already big-endian
  1264       src_second_rc != rc_bad &&    // 64-bit move
  1265       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1266     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1267     // Do the big-endian flop.
  1268     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1269     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1271 #endif
  1273   // --------------------------------------
  1274   // Check for integer reg-reg copy
  1275   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1276 #ifndef _LP64
  1277     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1278       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1279       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1280       //       operand contains the least significant word of the 64-bit value and vice versa.
  1281       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1282       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1283       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1284       if( cbuf ) {
  1285         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1286         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1287         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1288 #ifndef PRODUCT
  1289       } else if( !do_size ) {
  1290         if( size != 0 ) st->print("\n\t");
  1291         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1292         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1293         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1294 #endif
  1296       return size+12;
  1298     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1299       // returning a long value in I0/I1
  1300       // a SpillCopy must be able to target a return instruction's reg_class
  1301       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1302       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1303       //       operand contains the least significant word of the 64-bit value and vice versa.
  1304       OptoReg::Name tdest = dst_first;
  1306       if (src_first == dst_first) {
  1307         tdest = OptoReg::Name(R_O7_num);
  1308         size += 4;
  1311       if( cbuf ) {
  1312         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1313         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1314         // ShrL_reg_imm6
  1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1316         // ShrR_reg_imm6  src, 0, dst
  1317         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1318         if (tdest != dst_first) {
  1319           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1322 #ifndef PRODUCT
  1323       else if( !do_size ) {
  1324         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1325         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1326         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1327         if (tdest != dst_first) {
  1328           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1331 #endif // PRODUCT
  1332       return size+8;
  1334 #endif // !_LP64
  1335     // Else normal reg-reg copy
  1336     assert( src_second != dst_first, "smashed second before evacuating it" );
  1337     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1338     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1339     // This moves an aligned adjacent pair.
  1340     // See if we are done.
  1341     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1342       return size;
  1345   // Check for integer store
  1346   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1347     int offset = ra_->reg2offset(dst_first);
  1348     // Further check for aligned-adjacent pair, so we can use a double store
  1349     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1350       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1351     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1354   // Check for integer load
  1355   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_first);
  1357     // Further check for aligned-adjacent pair, so we can use a double load
  1358     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1359       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1360     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1363   // Check for float reg-reg copy
  1364   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1365     // Further check for aligned-adjacent pair, so we can use a double move
  1366     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1367       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1368     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1371   // Check for float store
  1372   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1373     int offset = ra_->reg2offset(dst_first);
  1374     // Further check for aligned-adjacent pair, so we can use a double store
  1375     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1376       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1377     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1380   // Check for float load
  1381   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1382     int offset = ra_->reg2offset(src_first);
  1383     // Further check for aligned-adjacent pair, so we can use a double load
  1384     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1385       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1386     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1389   // --------------------------------------------------------------------
  1390   // Check for hi bits still needing moving.  Only happens for misaligned
  1391   // arguments to native calls.
  1392   if( src_second == dst_second )
  1393     return size;               // Self copy; no move
  1394   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1396 #ifndef _LP64
  1397   // In the LP64 build, all registers can be moved as aligned/adjacent
  1398   // pairs, so there's never any need to move the high bits separately.
  1399   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1400   // all sorts of silly alignment problems.
  1402   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1403   // 32-bits of a 64-bit register, but are needed in low bits of another
  1404   // register (else it's a hi-bits-to-hi-bits copy which should have
  1405   // happened already as part of a 64-bit move)
  1406   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1407     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1408     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1409     // Shift src_second down to dst_second's low bits.
  1410     if( cbuf ) {
  1411       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1412 #ifndef PRODUCT
  1413     } else if( !do_size ) {
  1414       if( size != 0 ) st->print("\n\t");
  1415       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1416 #endif
  1418     return size+4;
  1421   // Check for high word integer store.  Must down-shift the hi bits
  1422   // into a temp register, then fall into the case of storing int bits.
  1423   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1424     // Shift src_second down to dst_second's low bits.
  1425     if( cbuf ) {
  1426       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1427 #ifndef PRODUCT
  1428     } else if( !do_size ) {
  1429       if( size != 0 ) st->print("\n\t");
  1430       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1431 #endif
  1433     size+=4;
  1434     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1437   // Check for high word integer load
  1438   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1439     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1441   // Check for high word integer store
  1442   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1443     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1445   // Check for high word float store
  1446   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1447     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1449 #endif // !_LP64
  1451   Unimplemented();
  1454 #ifndef PRODUCT
  1455 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1456   implementation( NULL, ra_, false, st );
  1458 #endif
  1460 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1461   implementation( &cbuf, ra_, false, NULL );
  1464 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1465   return implementation( NULL, ra_, true, NULL );
  1468 //=============================================================================
  1469 #ifndef PRODUCT
  1470 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1471   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1473 #endif
  1475 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1476   MacroAssembler _masm(&cbuf);
  1477   for(int i = 0; i < _count; i += 1) {
  1478     __ nop();
  1482 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1483   return 4 * _count;
  1487 //=============================================================================
  1488 #ifndef PRODUCT
  1489 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1490   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1491   int reg = ra_->get_reg_first(this);
  1492   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1494 #endif
  1496 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1497   MacroAssembler _masm(&cbuf);
  1498   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1499   int reg = ra_->get_encode(this);
  1501   if (Assembler::is_simm13(offset)) {
  1502      __ add(SP, offset, reg_to_register_object(reg));
  1503   } else {
  1504      __ set(offset, O7);
  1505      __ add(SP, O7, reg_to_register_object(reg));
  1509 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1510   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1511   assert(ra_ == ra_->C->regalloc(), "sanity");
  1512   return ra_->C->scratch_emit_size(this);
  1515 //=============================================================================
  1517 // emit call stub, compiled java to interpretor
  1518 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1520   // Stub is fixed up when the corresponding call is converted from calling
  1521   // compiled code to calling interpreted code.
  1522   // set (empty), G5
  1523   // jmp -1
  1525   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1527   MacroAssembler _masm(&cbuf);
  1529   address base =
  1530   __ start_a_stub(Compile::MAX_stubs_size);
  1531   if (base == NULL)  return;  // CodeBuffer::expand failed
  1533   // static stub relocation stores the instruction address of the call
  1534   __ relocate(static_stub_Relocation::spec(mark));
  1536   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1538   __ set_inst_mark();
  1539   AddressLiteral addrlit(-1);
  1540   __ JUMP(addrlit, G3, 0);
  1542   __ delayed()->nop();
  1544   // Update current stubs pointer and restore code_end.
  1545   __ end_a_stub();
  1548 // size of call stub, compiled java to interpretor
  1549 uint size_java_to_interp() {
  1550   // This doesn't need to be accurate but it must be larger or equal to
  1551   // the real size of the stub.
  1552   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1553           NativeJump::instruction_size + // sethi; jmp; nop
  1554           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1556 // relocation entries for call stub, compiled java to interpretor
  1557 uint reloc_java_to_interp() {
  1558   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1562 //=============================================================================
  1563 #ifndef PRODUCT
  1564 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1565   st->print_cr("\nUEP:");
  1566 #ifdef    _LP64
  1567   if (UseCompressedOops) {
  1568     assert(Universe::heap() != NULL, "java heap should be initialized");
  1569     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1570     st->print_cr("\tSLL    R_G5,3,R_G5");
  1571     if (Universe::narrow_oop_base() != NULL)
  1572       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1573   } else {
  1574     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1576   st->print_cr("\tCMP    R_G5,R_G3" );
  1577   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1578 #else  // _LP64
  1579   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1580   st->print_cr("\tCMP    R_G5,R_G3" );
  1581   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1582 #endif // _LP64
  1584 #endif
  1586 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1587   MacroAssembler _masm(&cbuf);
  1588   Label L;
  1589   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1590   Register temp_reg   = G3;
  1591   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1593   // Load klass from receiver
  1594   __ load_klass(O0, temp_reg);
  1595   // Compare against expected klass
  1596   __ cmp(temp_reg, G5_ic_reg);
  1597   // Branch to miss code, checks xcc or icc depending
  1598   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1601 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1602   return MachNode::size(ra_);
  1606 //=============================================================================
  1608 uint size_exception_handler() {
  1609   if (TraceJumps) {
  1610     return (400); // just a guess
  1612   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1615 uint size_deopt_handler() {
  1616   if (TraceJumps) {
  1617     return (400); // just a guess
  1619   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1622 // Emit exception handler code.
  1623 int emit_exception_handler(CodeBuffer& cbuf) {
  1624   Register temp_reg = G3;
  1625   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
  1626   MacroAssembler _masm(&cbuf);
  1628   address base =
  1629   __ start_a_stub(size_exception_handler());
  1630   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1632   int offset = __ offset();
  1634   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1635   __ delayed()->nop();
  1637   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1639   __ end_a_stub();
  1641   return offset;
  1644 int emit_deopt_handler(CodeBuffer& cbuf) {
  1645   // Can't use any of the current frame's registers as we may have deopted
  1646   // at a poll and everything (including G3) can be live.
  1647   Register temp_reg = L0;
  1648   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1649   MacroAssembler _masm(&cbuf);
  1651   address base =
  1652   __ start_a_stub(size_deopt_handler());
  1653   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1655   int offset = __ offset();
  1656   __ save_frame(0);
  1657   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1658   __ delayed()->restore();
  1660   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1662   __ end_a_stub();
  1663   return offset;
  1667 // Given a register encoding, produce a Integer Register object
  1668 static Register reg_to_register_object(int register_encoding) {
  1669   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1670   return as_Register(register_encoding);
  1673 // Given a register encoding, produce a single-precision Float Register object
  1674 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1675   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1676   return as_SingleFloatRegister(register_encoding);
  1679 // Given a register encoding, produce a double-precision Float Register object
  1680 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1681   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1682   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1683   return as_DoubleFloatRegister(register_encoding);
  1686 const bool Matcher::match_rule_supported(int opcode) {
  1687   if (!has_match_rule(opcode))
  1688     return false;
  1690   switch (opcode) {
  1691   case Op_CountLeadingZerosI:
  1692   case Op_CountLeadingZerosL:
  1693   case Op_CountTrailingZerosI:
  1694   case Op_CountTrailingZerosL:
  1695     if (!UsePopCountInstruction)
  1696       return false;
  1697     break;
  1700   return true;  // Per default match rules are supported.
  1703 int Matcher::regnum_to_fpu_offset(int regnum) {
  1704   return regnum - 32; // The FP registers are in the second chunk
  1707 #ifdef ASSERT
  1708 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1709 #endif
  1711 // Vector width in bytes
  1712 const uint Matcher::vector_width_in_bytes(void) {
  1713   return 8;
  1716 // Vector ideal reg
  1717 const uint Matcher::vector_ideal_reg(void) {
  1718   return Op_RegD;
  1721 // USII supports fxtof through the whole range of number, USIII doesn't
  1722 const bool Matcher::convL2FSupported(void) {
  1723   return VM_Version::has_fast_fxtof();
  1726 // Is this branch offset short enough that a short branch can be used?
  1727 //
  1728 // NOTE: If the platform does not provide any short branch variants, then
  1729 //       this method should return false for offset 0.
  1730 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1731   return false;
  1734 const bool Matcher::isSimpleConstant64(jlong value) {
  1735   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1736   // Depends on optimizations in MacroAssembler::setx.
  1737   int hi = (int)(value >> 32);
  1738   int lo = (int)(value & ~0);
  1739   return (hi == 0) || (hi == -1) || (lo == 0);
  1742 // No scaling for the parameter the ClearArray node.
  1743 const bool Matcher::init_array_count_is_in_bytes = true;
  1745 // Threshold size for cleararray.
  1746 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1748 // Should the Matcher clone shifts on addressing modes, expecting them to
  1749 // be subsumed into complex addressing expressions or compute them into
  1750 // registers?  True for Intel but false for most RISCs
  1751 const bool Matcher::clone_shift_expressions = false;
  1753 // Is it better to copy float constants, or load them directly from memory?
  1754 // Intel can load a float constant from a direct address, requiring no
  1755 // extra registers.  Most RISCs will have to materialize an address into a
  1756 // register first, so they would do better to copy the constant from stack.
  1757 const bool Matcher::rematerialize_float_constants = false;
  1759 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1760 // needed.  Else we split the double into 2 integer pieces and move it
  1761 // piece-by-piece.  Only happens when passing doubles into C code as the
  1762 // Java calling convention forces doubles to be aligned.
  1763 #ifdef _LP64
  1764 const bool Matcher::misaligned_doubles_ok = true;
  1765 #else
  1766 const bool Matcher::misaligned_doubles_ok = false;
  1767 #endif
  1769 // No-op on SPARC.
  1770 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1773 // Advertise here if the CPU requires explicit rounding operations
  1774 // to implement the UseStrictFP mode.
  1775 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1777 // Are floats conerted to double when stored to stack during deoptimization?
  1778 // Sparc does not handle callee-save floats.
  1779 bool Matcher::float_in_double() { return false; }
  1781 // Do ints take an entire long register or just half?
  1782 // Note that we if-def off of _LP64.
  1783 // The relevant question is how the int is callee-saved.  In _LP64
  1784 // the whole long is written but de-opt'ing will have to extract
  1785 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1786 #ifdef _LP64
  1787 const bool Matcher::int_in_long = true;
  1788 #else
  1789 const bool Matcher::int_in_long = false;
  1790 #endif
  1792 // Return whether or not this register is ever used as an argument.  This
  1793 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1794 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1795 // arguments in those registers not be available to the callee.
  1796 bool Matcher::can_be_java_arg( int reg ) {
  1797   // Standard sparc 6 args in registers
  1798   if( reg == R_I0_num ||
  1799       reg == R_I1_num ||
  1800       reg == R_I2_num ||
  1801       reg == R_I3_num ||
  1802       reg == R_I4_num ||
  1803       reg == R_I5_num ) return true;
  1804 #ifdef _LP64
  1805   // 64-bit builds can pass 64-bit pointers and longs in
  1806   // the high I registers
  1807   if( reg == R_I0H_num ||
  1808       reg == R_I1H_num ||
  1809       reg == R_I2H_num ||
  1810       reg == R_I3H_num ||
  1811       reg == R_I4H_num ||
  1812       reg == R_I5H_num ) return true;
  1814   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1815     return true;
  1818 #else
  1819   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1820   // Longs cannot be passed in O regs, because O regs become I regs
  1821   // after a 'save' and I regs get their high bits chopped off on
  1822   // interrupt.
  1823   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1824   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1825 #endif
  1826   // A few float args in registers
  1827   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1829   return false;
  1832 bool Matcher::is_spillable_arg( int reg ) {
  1833   return can_be_java_arg(reg);
  1836 // Register for DIVI projection of divmodI
  1837 RegMask Matcher::divI_proj_mask() {
  1838   ShouldNotReachHere();
  1839   return RegMask();
  1842 // Register for MODI projection of divmodI
  1843 RegMask Matcher::modI_proj_mask() {
  1844   ShouldNotReachHere();
  1845   return RegMask();
  1848 // Register for DIVL projection of divmodL
  1849 RegMask Matcher::divL_proj_mask() {
  1850   ShouldNotReachHere();
  1851   return RegMask();
  1854 // Register for MODL projection of divmodL
  1855 RegMask Matcher::modL_proj_mask() {
  1856   ShouldNotReachHere();
  1857   return RegMask();
  1860 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1861   return RegMask();
  1864 %}
  1867 // The intptr_t operand types, defined by textual substitution.
  1868 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1869 #ifdef _LP64
  1870 #define immX      immL
  1871 #define immX13    immL13
  1872 #define immX13m7  immL13m7
  1873 #define iRegX     iRegL
  1874 #define g1RegX    g1RegL
  1875 #else
  1876 #define immX      immI
  1877 #define immX13    immI13
  1878 #define immX13m7  immI13m7
  1879 #define iRegX     iRegI
  1880 #define g1RegX    g1RegI
  1881 #endif
  1883 //----------ENCODING BLOCK-----------------------------------------------------
  1884 // This block specifies the encoding classes used by the compiler to output
  1885 // byte streams.  Encoding classes are parameterized macros used by
  1886 // Machine Instruction Nodes in order to generate the bit encoding of the
  1887 // instruction.  Operands specify their base encoding interface with the
  1888 // interface keyword.  There are currently supported four interfaces,
  1889 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1890 // operand to generate a function which returns its register number when
  1891 // queried.   CONST_INTER causes an operand to generate a function which
  1892 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1893 // operand to generate four functions which return the Base Register, the
  1894 // Index Register, the Scale Value, and the Offset Value of the operand when
  1895 // queried.  COND_INTER causes an operand to generate six functions which
  1896 // return the encoding code (ie - encoding bits for the instruction)
  1897 // associated with each basic boolean condition for a conditional instruction.
  1898 //
  1899 // Instructions specify two basic values for encoding.  Again, a function
  1900 // is available to check if the constant displacement is an oop. They use the
  1901 // ins_encode keyword to specify their encoding classes (which must be
  1902 // a sequence of enc_class names, and their parameters, specified in
  1903 // the encoding block), and they use the
  1904 // opcode keyword to specify, in order, their primary, secondary, and
  1905 // tertiary opcode.  Only the opcode sections which a particular instruction
  1906 // needs for encoding need to be specified.
  1907 encode %{
  1908   enc_class enc_untested %{
  1909 #ifdef ASSERT
  1910     MacroAssembler _masm(&cbuf);
  1911     __ untested("encoding");
  1912 #endif
  1913   %}
  1915   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1916     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1917                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1918   %}
  1920   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1921     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1922                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1923   %}
  1925   enc_class form3_mem_prefetch_read( memory mem ) %{
  1926     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1927                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1928   %}
  1930   enc_class form3_mem_prefetch_write( memory mem ) %{
  1931     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1932                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1933   %}
  1935   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1936     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1937     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1938     guarantee($mem$$index == R_G0_enc, "double index?");
  1939     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1940     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1941     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1942     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1943   %}
  1945   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1946     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1947     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1948     guarantee($mem$$index == R_G0_enc, "double index?");
  1949     // Load long with 2 instructions
  1950     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1951     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1952   %}
  1954   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1955   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1956     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1957     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1958   %}
  1960   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1961     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1962     if( $rs2$$reg != $rd$$reg )
  1963       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1964   %}
  1966   // Target lo half of long
  1967   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1968     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1969     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1970       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1971   %}
  1973   // Source lo half of long
  1974   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1975     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1976     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1977       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1978   %}
  1980   // Target hi half of long
  1981   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1982     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1983   %}
  1985   // Source lo half of long, and leave it sign extended.
  1986   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  1987     // Sign extend low half
  1988     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  1989   %}
  1991   // Source hi half of long, and leave it sign extended.
  1992   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  1993     // Shift high half to low half
  1994     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  1995   %}
  1997   // Source hi half of long
  1998   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  1999     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2000     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2001       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2002   %}
  2004   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2005     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2006   %}
  2008   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2009     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2010     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2011   %}
  2013   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2014     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2015     // clear if nothing else is happening
  2016     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2017     // blt,a,pn done
  2018     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2019     // mov dst,-1 in delay slot
  2020     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2021   %}
  2023   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2024     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2025   %}
  2027   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2028     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2029   %}
  2031   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2032     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2033   %}
  2035   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2036     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2037   %}
  2039   enc_class move_return_pc_to_o1() %{
  2040     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2041   %}
  2043 #ifdef _LP64
  2044   /* %%% merge with enc_to_bool */
  2045   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2046     MacroAssembler _masm(&cbuf);
  2048     Register   src_reg = reg_to_register_object($src$$reg);
  2049     Register   dst_reg = reg_to_register_object($dst$$reg);
  2050     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2051   %}
  2052 #endif
  2054   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2055     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2056     MacroAssembler _masm(&cbuf);
  2058     Register   p_reg = reg_to_register_object($p$$reg);
  2059     Register   q_reg = reg_to_register_object($q$$reg);
  2060     Register   y_reg = reg_to_register_object($y$$reg);
  2061     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2063     __ subcc( p_reg, q_reg,   p_reg );
  2064     __ add  ( p_reg, y_reg, tmp_reg );
  2065     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2066   %}
  2068   enc_class form_d2i_helper(regD src, regF dst) %{
  2069     // fcmp %fcc0,$src,$src
  2070     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2071     // branch %fcc0 not-nan, predict taken
  2072     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2073     // fdtoi $src,$dst
  2074     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2075     // fitos $dst,$dst (if nan)
  2076     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2077     // clear $dst (if nan)
  2078     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2079     // carry on here...
  2080   %}
  2082   enc_class form_d2l_helper(regD src, regD dst) %{
  2083     // fcmp %fcc0,$src,$src  check for NAN
  2084     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2085     // branch %fcc0 not-nan, predict taken
  2086     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2087     // fdtox $src,$dst   convert in delay slot
  2088     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2089     // fxtod $dst,$dst  (if nan)
  2090     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2091     // clear $dst (if nan)
  2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2093     // carry on here...
  2094   %}
  2096   enc_class form_f2i_helper(regF src, regF dst) %{
  2097     // fcmps %fcc0,$src,$src
  2098     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2099     // branch %fcc0 not-nan, predict taken
  2100     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2101     // fstoi $src,$dst
  2102     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2103     // fitos $dst,$dst (if nan)
  2104     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2105     // clear $dst (if nan)
  2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2107     // carry on here...
  2108   %}
  2110   enc_class form_f2l_helper(regF src, regD dst) %{
  2111     // fcmps %fcc0,$src,$src
  2112     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2113     // branch %fcc0 not-nan, predict taken
  2114     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2115     // fstox $src,$dst
  2116     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2117     // fxtod $dst,$dst (if nan)
  2118     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2119     // clear $dst (if nan)
  2120     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2121     // carry on here...
  2122   %}
  2124   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2125   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2126   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2127   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2129   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2131   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2132   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2134   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2135     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2136   %}
  2138   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2139     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2140   %}
  2142   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2143     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2144   %}
  2146   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2147     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2148   %}
  2150   enc_class form3_convI2F(regF rs2, regF rd) %{
  2151     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2152   %}
  2154   // Encloding class for traceable jumps
  2155   enc_class form_jmpl(g3RegP dest) %{
  2156     emit_jmpl(cbuf, $dest$$reg);
  2157   %}
  2159   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2160     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2161   %}
  2163   enc_class form2_nop() %{
  2164     emit_nop(cbuf);
  2165   %}
  2167   enc_class form2_illtrap() %{
  2168     emit_illtrap(cbuf);
  2169   %}
  2172   // Compare longs and convert into -1, 0, 1.
  2173   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2174     // CMP $src1,$src2
  2175     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2176     // blt,a,pn done
  2177     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2178     // mov dst,-1 in delay slot
  2179     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2180     // bgt,a,pn done
  2181     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2182     // mov dst,1 in delay slot
  2183     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2184     // CLR    $dst
  2185     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2186   %}
  2188   enc_class enc_PartialSubtypeCheck() %{
  2189     MacroAssembler _masm(&cbuf);
  2190     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2191     __ delayed()->nop();
  2192   %}
  2194   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2195     MacroAssembler _masm(&cbuf);
  2196     Label &L = *($labl$$label);
  2197     Assembler::Predict predict_taken =
  2198       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2200     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2201     __ delayed()->nop();
  2202   %}
  2204   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2205     MacroAssembler _masm(&cbuf);
  2206     Label &L = *($labl$$label);
  2207     Assembler::Predict predict_taken =
  2208       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2210     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2211     __ delayed()->nop();
  2212   %}
  2214   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2215     MacroAssembler _masm(&cbuf);
  2216     Label &L = *($labl$$label);
  2217     Assembler::Predict predict_taken =
  2218       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2220     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2221     __ delayed()->nop();
  2222   %}
  2224   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2225     MacroAssembler _masm(&cbuf);
  2226     Label &L = *($labl$$label);
  2227     Assembler::Predict predict_taken =
  2228       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2230     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2231     __ delayed()->nop();
  2232   %}
  2234   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2235     MacroAssembler _masm(&cbuf);
  2237     Register switch_reg       = as_Register($switch_val$$reg);
  2238     Register table_reg        = O7;
  2240     address table_base = __ address_table_constant(_index2label);
  2241     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2243     // Move table address into a register.
  2244     __ set(table_base, table_reg, rspec);
  2246     // Jump to base address + switch value
  2247     __ ld_ptr(table_reg, switch_reg, table_reg);
  2248     __ jmp(table_reg, G0);
  2249     __ delayed()->nop();
  2251   %}
  2253   enc_class enc_ba( Label labl ) %{
  2254     MacroAssembler _masm(&cbuf);
  2255     Label &L = *($labl$$label);
  2256     __ ba(false, L);
  2257     __ delayed()->nop();
  2258   %}
  2260   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2261     MacroAssembler _masm(&cbuf);
  2262     Label &L = *$labl$$label;
  2263     Assembler::Predict predict_taken =
  2264       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2266     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2267     __ delayed()->nop();
  2268   %}
  2270   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2271     int op = (Assembler::arith_op << 30) |
  2272              ($dst$$reg << 25) |
  2273              (Assembler::movcc_op3 << 19) |
  2274              (1 << 18) |                    // cc2 bit for 'icc'
  2275              ($cmp$$cmpcode << 14) |
  2276              (0 << 13) |                    // select register move
  2277              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2278              ($src$$reg << 0);
  2279     *((int*)(cbuf.code_end())) = op;
  2280     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2281   %}
  2283   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2284     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2285     int op = (Assembler::arith_op << 30) |
  2286              ($dst$$reg << 25) |
  2287              (Assembler::movcc_op3 << 19) |
  2288              (1 << 18) |                    // cc2 bit for 'icc'
  2289              ($cmp$$cmpcode << 14) |
  2290              (1 << 13) |                    // select immediate move
  2291              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2292              (simm11 << 0);
  2293     *((int*)(cbuf.code_end())) = op;
  2294     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2295   %}
  2297   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2298     int op = (Assembler::arith_op << 30) |
  2299              ($dst$$reg << 25) |
  2300              (Assembler::movcc_op3 << 19) |
  2301              (0 << 18) |                    // cc2 bit for 'fccX'
  2302              ($cmp$$cmpcode << 14) |
  2303              (0 << 13) |                    // select register move
  2304              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2305              ($src$$reg << 0);
  2306     *((int*)(cbuf.code_end())) = op;
  2307     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2308   %}
  2310   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2311     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2312     int op = (Assembler::arith_op << 30) |
  2313              ($dst$$reg << 25) |
  2314              (Assembler::movcc_op3 << 19) |
  2315              (0 << 18) |                    // cc2 bit for 'fccX'
  2316              ($cmp$$cmpcode << 14) |
  2317              (1 << 13) |                    // select immediate move
  2318              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2319              (simm11 << 0);
  2320     *((int*)(cbuf.code_end())) = op;
  2321     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2322   %}
  2324   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2325     int op = (Assembler::arith_op << 30) |
  2326              ($dst$$reg << 25) |
  2327              (Assembler::fpop2_op3 << 19) |
  2328              (0 << 18) |
  2329              ($cmp$$cmpcode << 14) |
  2330              (1 << 13) |                    // select register move
  2331              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2332              ($primary << 5) |              // select single, double or quad
  2333              ($src$$reg << 0);
  2334     *((int*)(cbuf.code_end())) = op;
  2335     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2336   %}
  2338   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2339     int op = (Assembler::arith_op << 30) |
  2340              ($dst$$reg << 25) |
  2341              (Assembler::fpop2_op3 << 19) |
  2342              (0 << 18) |
  2343              ($cmp$$cmpcode << 14) |
  2344              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2345              ($primary << 5) |              // select single, double or quad
  2346              ($src$$reg << 0);
  2347     *((int*)(cbuf.code_end())) = op;
  2348     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2349   %}
  2351   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2352   // the condition comes from opcode-field instead of an argument.
  2353   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2354     int op = (Assembler::arith_op << 30) |
  2355              ($dst$$reg << 25) |
  2356              (Assembler::movcc_op3 << 19) |
  2357              (1 << 18) |                    // cc2 bit for 'icc'
  2358              ($primary << 14) |
  2359              (0 << 13) |                    // select register move
  2360              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2361              ($src$$reg << 0);
  2362     *((int*)(cbuf.code_end())) = op;
  2363     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2364   %}
  2366   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2367     int op = (Assembler::arith_op << 30) |
  2368              ($dst$$reg << 25) |
  2369              (Assembler::movcc_op3 << 19) |
  2370              (6 << 16) |                    // cc2 bit for 'xcc'
  2371              ($primary << 14) |
  2372              (0 << 13) |                    // select register move
  2373              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2374              ($src$$reg << 0);
  2375     *((int*)(cbuf.code_end())) = op;
  2376     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2377   %}
  2379   // Utility encoding for loading a 64 bit Pointer into a register
  2380   // The 64 bit pointer is stored in the generated code stream
  2381   enc_class SetPtr( immP src, iRegP rd ) %{
  2382     Register dest = reg_to_register_object($rd$$reg);
  2383     MacroAssembler _masm(&cbuf);
  2384     // [RGV] This next line should be generated from ADLC
  2385     if ( _opnds[1]->constant_is_oop() ) {
  2386       intptr_t val = $src$$constant;
  2387       __ set_oop_constant((jobject)val, dest);
  2388     } else {          // non-oop pointers, e.g. card mark base, heap top
  2389       __ set($src$$constant, dest);
  2391   %}
  2393   enc_class Set13( immI13 src, iRegI rd ) %{
  2394     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2395   %}
  2397   enc_class SetHi22( immI src, iRegI rd ) %{
  2398     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2399   %}
  2401   enc_class Set32( immI src, iRegI rd ) %{
  2402     MacroAssembler _masm(&cbuf);
  2403     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2404   %}
  2406   enc_class SetNull( iRegI rd ) %{
  2407     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2408   %}
  2410   enc_class call_epilog %{
  2411     if( VerifyStackAtCalls ) {
  2412       MacroAssembler _masm(&cbuf);
  2413       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2414       Register temp_reg = G3;
  2415       __ add(SP, framesize, temp_reg);
  2416       __ cmp(temp_reg, FP);
  2417       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2419   %}
  2421   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2422   // to G1 so the register allocator will not have to deal with the misaligned register
  2423   // pair.
  2424   enc_class adjust_long_from_native_call %{
  2425 #ifndef _LP64
  2426     if (returns_long()) {
  2427       //    sllx  O0,32,O0
  2428       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2429       //    srl   O1,0,O1
  2430       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2431       //    or    O0,O1,G1
  2432       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2434 #endif
  2435   %}
  2437   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2438     // CALL directly to the runtime
  2439     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2440     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2441                     /*preserve_g2=*/true, /*force far call*/true);
  2442   %}
  2444   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2445     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2446     // who we intended to call.
  2447     if ( !_method ) {
  2448       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2449     } else if (_optimized_virtual) {
  2450       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2451     } else {
  2452       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2454     if( _method ) {  // Emit stub for static call
  2455       emit_java_to_interp(cbuf);
  2457   %}
  2459   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2460     MacroAssembler _masm(&cbuf);
  2461     __ set_inst_mark();
  2462     int vtable_index = this->_vtable_index;
  2463     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2464     if (vtable_index < 0) {
  2465       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2466       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2467       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2468       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2469       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2470       // !!!!!
  2471       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2472       // emit_call_dynamic_prologue( cbuf );
  2473       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2475       address  virtual_call_oop_addr = __ inst_mark();
  2476       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2477       // who we intended to call.
  2478       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2479       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2480     } else {
  2481       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2482       // Just go thru the vtable
  2483       // get receiver klass (receiver already checked for non-null)
  2484       // If we end up going thru a c2i adapter interpreter expects method in G5
  2485       int off = __ offset();
  2486       __ load_klass(O0, G3_scratch);
  2487       int klass_load_size;
  2488       if (UseCompressedOops) {
  2489         assert(Universe::heap() != NULL, "java heap should be initialized");
  2490         if (Universe::narrow_oop_base() == NULL)
  2491           klass_load_size = 2*BytesPerInstWord;
  2492         else
  2493           klass_load_size = 3*BytesPerInstWord;
  2494       } else {
  2495         klass_load_size = 1*BytesPerInstWord;
  2497       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2498       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2499       if( __ is_simm13(v_off) ) {
  2500         __ ld_ptr(G3, v_off, G5_method);
  2501       } else {
  2502         // Generate 2 instructions
  2503         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2504         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2505         // ld_ptr, set_hi, set
  2506         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2507                "Unexpected instruction size(s)");
  2508         __ ld_ptr(G3, G5_method, G5_method);
  2510       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2511       // However it may very well end up in handle_wrong_method if the
  2512       // method is abstract for the particular class.
  2513       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2514       // jump to target (either compiled code or c2iadapter)
  2515       __ jmpl(G3_scratch, G0, O7);
  2516       __ delayed()->nop();
  2518   %}
  2520   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2521     MacroAssembler _masm(&cbuf);
  2523     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2524     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2525                               // we might be calling a C2I adapter which needs it.
  2527     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2528     // Load nmethod
  2529     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2531     // CALL to compiled java, indirect the contents of G3
  2532     __ set_inst_mark();
  2533     __ callr(temp_reg, G0);
  2534     __ delayed()->nop();
  2535   %}
  2537 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2538     MacroAssembler _masm(&cbuf);
  2539     Register Rdividend = reg_to_register_object($src1$$reg);
  2540     Register Rdivisor = reg_to_register_object($src2$$reg);
  2541     Register Rresult = reg_to_register_object($dst$$reg);
  2543     __ sra(Rdivisor, 0, Rdivisor);
  2544     __ sra(Rdividend, 0, Rdividend);
  2545     __ sdivx(Rdividend, Rdivisor, Rresult);
  2546 %}
  2548 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2549     MacroAssembler _masm(&cbuf);
  2551     Register Rdividend = reg_to_register_object($src1$$reg);
  2552     int divisor = $imm$$constant;
  2553     Register Rresult = reg_to_register_object($dst$$reg);
  2555     __ sra(Rdividend, 0, Rdividend);
  2556     __ sdivx(Rdividend, divisor, Rresult);
  2557 %}
  2559 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2560     MacroAssembler _masm(&cbuf);
  2561     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2562     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2563     Register Rdst  = reg_to_register_object($dst$$reg);
  2565     __ sra( Rsrc1, 0, Rsrc1 );
  2566     __ sra( Rsrc2, 0, Rsrc2 );
  2567     __ mulx( Rsrc1, Rsrc2, Rdst );
  2568     __ srlx( Rdst, 32, Rdst );
  2569 %}
  2571 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2572     MacroAssembler _masm(&cbuf);
  2573     Register Rdividend = reg_to_register_object($src1$$reg);
  2574     Register Rdivisor = reg_to_register_object($src2$$reg);
  2575     Register Rresult = reg_to_register_object($dst$$reg);
  2576     Register Rscratch = reg_to_register_object($scratch$$reg);
  2578     assert(Rdividend != Rscratch, "");
  2579     assert(Rdivisor  != Rscratch, "");
  2581     __ sra(Rdividend, 0, Rdividend);
  2582     __ sra(Rdivisor, 0, Rdivisor);
  2583     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2584     __ mulx(Rscratch, Rdivisor, Rscratch);
  2585     __ sub(Rdividend, Rscratch, Rresult);
  2586 %}
  2588 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2589     MacroAssembler _masm(&cbuf);
  2591     Register Rdividend = reg_to_register_object($src1$$reg);
  2592     int divisor = $imm$$constant;
  2593     Register Rresult = reg_to_register_object($dst$$reg);
  2594     Register Rscratch = reg_to_register_object($scratch$$reg);
  2596     assert(Rdividend != Rscratch, "");
  2598     __ sra(Rdividend, 0, Rdividend);
  2599     __ sdivx(Rdividend, divisor, Rscratch);
  2600     __ mulx(Rscratch, divisor, Rscratch);
  2601     __ sub(Rdividend, Rscratch, Rresult);
  2602 %}
  2604 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2605     MacroAssembler _masm(&cbuf);
  2607     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2608     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2610     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2611 %}
  2613 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2614     MacroAssembler _masm(&cbuf);
  2616     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2617     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2619     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2620 %}
  2622 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2623     MacroAssembler _masm(&cbuf);
  2625     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2626     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2628     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2629 %}
  2631 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2632     MacroAssembler _masm(&cbuf);
  2634     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2635     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2637     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2638 %}
  2640 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2641     MacroAssembler _masm(&cbuf);
  2643     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2644     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2646     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2647 %}
  2649 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2650     MacroAssembler _masm(&cbuf);
  2652     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2653     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2655     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2656 %}
  2658 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2659     MacroAssembler _masm(&cbuf);
  2661     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2662     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2664     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2665 %}
  2667 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2668     MacroAssembler _masm(&cbuf);
  2670     Register Roop  = reg_to_register_object($oop$$reg);
  2671     Register Rbox  = reg_to_register_object($box$$reg);
  2672     Register Rscratch = reg_to_register_object($scratch$$reg);
  2673     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2675     assert(Roop  != Rscratch, "");
  2676     assert(Roop  != Rmark, "");
  2677     assert(Rbox  != Rscratch, "");
  2678     assert(Rbox  != Rmark, "");
  2680     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2681 %}
  2683 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2684     MacroAssembler _masm(&cbuf);
  2686     Register Roop  = reg_to_register_object($oop$$reg);
  2687     Register Rbox  = reg_to_register_object($box$$reg);
  2688     Register Rscratch = reg_to_register_object($scratch$$reg);
  2689     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2691     assert(Roop  != Rscratch, "");
  2692     assert(Roop  != Rmark, "");
  2693     assert(Rbox  != Rscratch, "");
  2694     assert(Rbox  != Rmark, "");
  2696     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2697   %}
  2699   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2700     MacroAssembler _masm(&cbuf);
  2701     Register Rmem = reg_to_register_object($mem$$reg);
  2702     Register Rold = reg_to_register_object($old$$reg);
  2703     Register Rnew = reg_to_register_object($new$$reg);
  2705     // casx_under_lock picks 1 of 3 encodings:
  2706     // For 32-bit pointers you get a 32-bit CAS
  2707     // For 64-bit pointers you get a 64-bit CASX
  2708     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2709     __ cmp( Rold, Rnew );
  2710   %}
  2712   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2713     Register Rmem = reg_to_register_object($mem$$reg);
  2714     Register Rold = reg_to_register_object($old$$reg);
  2715     Register Rnew = reg_to_register_object($new$$reg);
  2717     MacroAssembler _masm(&cbuf);
  2718     __ mov(Rnew, O7);
  2719     __ casx(Rmem, Rold, O7);
  2720     __ cmp( Rold, O7 );
  2721   %}
  2723   // raw int cas, used for compareAndSwap
  2724   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2725     Register Rmem = reg_to_register_object($mem$$reg);
  2726     Register Rold = reg_to_register_object($old$$reg);
  2727     Register Rnew = reg_to_register_object($new$$reg);
  2729     MacroAssembler _masm(&cbuf);
  2730     __ mov(Rnew, O7);
  2731     __ cas(Rmem, Rold, O7);
  2732     __ cmp( Rold, O7 );
  2733   %}
  2735   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2736     Register Rres = reg_to_register_object($res$$reg);
  2738     MacroAssembler _masm(&cbuf);
  2739     __ mov(1, Rres);
  2740     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2741   %}
  2743   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2744     Register Rres = reg_to_register_object($res$$reg);
  2746     MacroAssembler _masm(&cbuf);
  2747     __ mov(1, Rres);
  2748     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2749   %}
  2751   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2752     MacroAssembler _masm(&cbuf);
  2753     Register Rdst = reg_to_register_object($dst$$reg);
  2754     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2755                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2756     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2757                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2759     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2760     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2761   %}
  2763   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2764     MacroAssembler _masm(&cbuf);
  2765     Register dest = reg_to_register_object($dst$$reg);
  2766     Register temp = reg_to_register_object($tmp$$reg);
  2767     __ set64( $src$$constant, dest, temp );
  2768   %}
  2770   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2771     // Load a constant replicated "count" times with width "width"
  2772     int bit_width = $width$$constant * 8;
  2773     jlong elt_val = $src$$constant;
  2774     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2775     jlong val = elt_val;
  2776     for (int i = 0; i < $count$$constant - 1; i++) {
  2777         val <<= bit_width;
  2778         val |= elt_val;
  2780     jdouble dval = *(jdouble*)&val; // coerce to double type
  2781     MacroAssembler _masm(&cbuf);
  2782     address double_address = __ double_constant(dval);
  2783     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2784     AddressLiteral addrlit(double_address, rspec);
  2786     __ sethi(addrlit, $tmp$$Register);
  2787     // XXX This is a quick fix for 6833573.
  2788     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  2789     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  2790   %}
  2792   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2793   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2794     MacroAssembler _masm(&cbuf);
  2795     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2796     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2797     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2799     Label loop;
  2800     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2802     // Loop and clear, walking backwards through the array.
  2803     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2804     __ bind(loop);
  2805     __ deccc(nof_bytes_tmp, 8);
  2806     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2807     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2808     // %%%% this mini-loop must not cross a cache boundary!
  2809   %}
  2812   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2813     Label Ldone, Lloop;
  2814     MacroAssembler _masm(&cbuf);
  2816     Register   str1_reg = reg_to_register_object($str1$$reg);
  2817     Register   str2_reg = reg_to_register_object($str2$$reg);
  2818     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2819     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2820     Register result_reg = reg_to_register_object($result$$reg);
  2822     assert(result_reg != str1_reg &&
  2823            result_reg != str2_reg &&
  2824            result_reg != cnt1_reg &&
  2825            result_reg != cnt2_reg ,
  2826            "need different registers");
  2828     // Compute the minimum of the string lengths(str1_reg) and the
  2829     // difference of the string lengths (stack)
  2831     // See if the lengths are different, and calculate min in str1_reg.
  2832     // Stash diff in O7 in case we need it for a tie-breaker.
  2833     Label Lskip;
  2834     __ subcc(cnt1_reg, cnt2_reg, O7);
  2835     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2836     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2837     // cnt2 is shorter, so use its count:
  2838     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2839     __ bind(Lskip);
  2841     // reallocate cnt1_reg, cnt2_reg, result_reg
  2842     // Note:  limit_reg holds the string length pre-scaled by 2
  2843     Register limit_reg =   cnt1_reg;
  2844     Register  chr2_reg =   cnt2_reg;
  2845     Register  chr1_reg = result_reg;
  2846     // str{12} are the base pointers
  2848     // Is the minimum length zero?
  2849     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2850     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2851     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2853     // Load first characters
  2854     __ lduh(str1_reg, 0, chr1_reg);
  2855     __ lduh(str2_reg, 0, chr2_reg);
  2857     // Compare first characters
  2858     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2859     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2860     assert(chr1_reg == result_reg, "result must be pre-placed");
  2861     __ delayed()->nop();
  2864       // Check after comparing first character to see if strings are equivalent
  2865       Label LSkip2;
  2866       // Check if the strings start at same location
  2867       __ cmp(str1_reg, str2_reg);
  2868       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2869       __ delayed()->nop();
  2871       // Check if the length difference is zero (in O7)
  2872       __ cmp(G0, O7);
  2873       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2874       __ delayed()->mov(G0, result_reg);  // result is zero
  2876       // Strings might not be equal
  2877       __ bind(LSkip2);
  2880     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2881     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2882     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2884     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2885     __ add(str1_reg, limit_reg, str1_reg);
  2886     __ add(str2_reg, limit_reg, str2_reg);
  2887     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2889     // Compare the rest of the characters
  2890     __ lduh(str1_reg, limit_reg, chr1_reg);
  2891     __ bind(Lloop);
  2892     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2893     __ lduh(str2_reg, limit_reg, chr2_reg);
  2894     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2895     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2896     assert(chr1_reg == result_reg, "result must be pre-placed");
  2897     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2898     // annul LDUH if branch is not taken to prevent access past end of string
  2899     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2900     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2902     // If strings are equal up to min length, return the length difference.
  2903     __ mov(O7, result_reg);
  2905     // Otherwise, return the difference between the first mismatched chars.
  2906     __ bind(Ldone);
  2907   %}
  2909 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2910     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2911     MacroAssembler _masm(&cbuf);
  2913     Register   str1_reg = reg_to_register_object($str1$$reg);
  2914     Register   str2_reg = reg_to_register_object($str2$$reg);
  2915     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2916     Register   tmp1_reg = O7;
  2917     Register result_reg = reg_to_register_object($result$$reg);
  2919     assert(result_reg != str1_reg &&
  2920            result_reg != str2_reg &&
  2921            result_reg !=  cnt_reg &&
  2922            result_reg != tmp1_reg ,
  2923            "need different registers");
  2925     __ cmp(str1_reg, str2_reg); //same char[] ?
  2926     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2927     __ delayed()->add(G0, 1, result_reg);
  2929     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2930     __ delayed()->add(G0, 1, result_reg); // count == 0
  2932     //rename registers
  2933     Register limit_reg =    cnt_reg;
  2934     Register  chr1_reg = result_reg;
  2935     Register  chr2_reg =   tmp1_reg;
  2937     //check for alignment and position the pointers to the ends
  2938     __ or3(str1_reg, str2_reg, chr1_reg);
  2939     __ andcc(chr1_reg, 0x3, chr1_reg);
  2940     // notZero means at least one not 4-byte aligned.
  2941     // We could optimize the case when both arrays are not aligned
  2942     // but it is not frequent case and it requires additional checks.
  2943     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2944     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2946     // Compare char[] arrays aligned to 4 bytes.
  2947     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2948                           chr1_reg, chr2_reg, Ldone);
  2949     __ ba(false,Ldone);
  2950     __ delayed()->add(G0, 1, result_reg);
  2952     // char by char compare
  2953     __ bind(Lchar);
  2954     __ add(str1_reg, limit_reg, str1_reg);
  2955     __ add(str2_reg, limit_reg, str2_reg);
  2956     __ neg(limit_reg); //negate count
  2958     __ lduh(str1_reg, limit_reg, chr1_reg);
  2959     // Lchar_loop
  2960     __ bind(Lchar_loop);
  2961     __ lduh(str2_reg, limit_reg, chr2_reg);
  2962     __ cmp(chr1_reg, chr2_reg);
  2963     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2964     __ delayed()->mov(G0, result_reg); //not equal
  2965     __ inccc(limit_reg, sizeof(jchar));
  2966     // annul LDUH if branch is not taken to prevent access past end of string
  2967     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2968     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2970     __ add(G0, 1, result_reg);  //equal
  2972     __ bind(Ldone);
  2973   %}
  2975 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2976     Label Lvector, Ldone, Lloop;
  2977     MacroAssembler _masm(&cbuf);
  2979     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2980     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  2981     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2982     Register   tmp2_reg = O7;
  2983     Register result_reg = reg_to_register_object($result$$reg);
  2985     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  2986     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  2988     // return true if the same array
  2989     __ cmp(ary1_reg, ary2_reg);
  2990     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2991     __ delayed()->add(G0, 1, result_reg); // equal
  2993     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  2994     __ delayed()->mov(G0, result_reg);    // not equal
  2996     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  2997     __ delayed()->mov(G0, result_reg);    // not equal
  2999     //load the lengths of arrays
  3000     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3001     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3003     // return false if the two arrays are not equal length
  3004     __ cmp(tmp1_reg, tmp2_reg);
  3005     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3006     __ delayed()->mov(G0, result_reg);     // not equal
  3008     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3009     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3011     // load array addresses
  3012     __ add(ary1_reg, base_offset, ary1_reg);
  3013     __ add(ary2_reg, base_offset, ary2_reg);
  3015     // renaming registers
  3016     Register chr1_reg  =  result_reg; // for characters in ary1
  3017     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3018     Register limit_reg =  tmp1_reg;   // length
  3020     // set byte count
  3021     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3023     // Compare char[] arrays aligned to 4 bytes.
  3024     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3025                           chr1_reg, chr2_reg, Ldone);
  3026     __ add(G0, 1, result_reg); // equals
  3028     __ bind(Ldone);
  3029   %}
  3031   enc_class enc_rethrow() %{
  3032     cbuf.set_inst_mark();
  3033     Register temp_reg = G3;
  3034     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3035     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3036     MacroAssembler _masm(&cbuf);
  3037 #ifdef ASSERT
  3038     __ save_frame(0);
  3039     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3040     __ sethi(last_rethrow_addrlit, L1);
  3041     Address addr(L1, last_rethrow_addrlit.low10());
  3042     __ get_pc(L2);
  3043     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3044     __ st_ptr(L2, addr);
  3045     __ restore();
  3046 #endif
  3047     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3048     __ delayed()->nop();
  3049   %}
  3051   enc_class emit_mem_nop() %{
  3052     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3053     unsigned int *code = (unsigned int*)cbuf.code_end();
  3054     *code = (unsigned int)0xc0839040;
  3055     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3056   %}
  3058   enc_class emit_fadd_nop() %{
  3059     // Generates the instruction FMOVS f31,f31
  3060     unsigned int *code = (unsigned int*)cbuf.code_end();
  3061     *code = (unsigned int)0xbfa0003f;
  3062     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3063   %}
  3065   enc_class emit_br_nop() %{
  3066     // Generates the instruction BPN,PN .
  3067     unsigned int *code = (unsigned int*)cbuf.code_end();
  3068     *code = (unsigned int)0x00400000;
  3069     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3070   %}
  3072   enc_class enc_membar_acquire %{
  3073     MacroAssembler _masm(&cbuf);
  3074     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3075   %}
  3077   enc_class enc_membar_release %{
  3078     MacroAssembler _masm(&cbuf);
  3079     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3080   %}
  3082   enc_class enc_membar_volatile %{
  3083     MacroAssembler _masm(&cbuf);
  3084     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3085   %}
  3087   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3088     MacroAssembler _masm(&cbuf);
  3089     Register src_reg = reg_to_register_object($src$$reg);
  3090     Register dst_reg = reg_to_register_object($dst$$reg);
  3091     __ sllx(src_reg, 56, dst_reg);
  3092     __ srlx(dst_reg,  8, O7);
  3093     __ or3 (dst_reg, O7, dst_reg);
  3094     __ srlx(dst_reg, 16, O7);
  3095     __ or3 (dst_reg, O7, dst_reg);
  3096     __ srlx(dst_reg, 32, O7);
  3097     __ or3 (dst_reg, O7, dst_reg);
  3098   %}
  3100   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3101     MacroAssembler _masm(&cbuf);
  3102     Register src_reg = reg_to_register_object($src$$reg);
  3103     Register dst_reg = reg_to_register_object($dst$$reg);
  3104     __ sll(src_reg, 24, dst_reg);
  3105     __ srl(dst_reg,  8, O7);
  3106     __ or3(dst_reg, O7, dst_reg);
  3107     __ srl(dst_reg, 16, O7);
  3108     __ or3(dst_reg, O7, dst_reg);
  3109   %}
  3111   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3112     MacroAssembler _masm(&cbuf);
  3113     Register src_reg = reg_to_register_object($src$$reg);
  3114     Register dst_reg = reg_to_register_object($dst$$reg);
  3115     __ sllx(src_reg, 48, dst_reg);
  3116     __ srlx(dst_reg, 16, O7);
  3117     __ or3 (dst_reg, O7, dst_reg);
  3118     __ srlx(dst_reg, 32, O7);
  3119     __ or3 (dst_reg, O7, dst_reg);
  3120   %}
  3122   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3123     MacroAssembler _masm(&cbuf);
  3124     Register src_reg = reg_to_register_object($src$$reg);
  3125     Register dst_reg = reg_to_register_object($dst$$reg);
  3126     __ sllx(src_reg, 32, dst_reg);
  3127     __ srlx(dst_reg, 32, O7);
  3128     __ or3 (dst_reg, O7, dst_reg);
  3129   %}
  3131 %}
  3133 //----------FRAME--------------------------------------------------------------
  3134 // Definition of frame structure and management information.
  3135 //
  3136 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3137 //                             |   (to get allocators register number
  3138 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3139 //  r   CALLER     |        |
  3140 //  o     |        +--------+      pad to even-align allocators stack-slot
  3141 //  w     V        |  pad0  |        numbers; owned by CALLER
  3142 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3143 //  h     ^        |   in   |  5
  3144 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3145 //  |     |        |        |  3
  3146 //  |     |        +--------+
  3147 //  V     |        | old out|      Empty on Intel, window on Sparc
  3148 //        |    old |preserve|      Must be even aligned.
  3149 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3150 //        |        |   in   |  3   area for Intel ret address
  3151 //     Owned by    |preserve|      Empty on Sparc.
  3152 //       SELF      +--------+
  3153 //        |        |  pad2  |  2   pad to align old SP
  3154 //        |        +--------+  1
  3155 //        |        | locks  |  0
  3156 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3157 //        |        |  pad1  | 11   pad to align new SP
  3158 //        |        +--------+
  3159 //        |        |        | 10
  3160 //        |        | spills |  9   spills
  3161 //        V        |        |  8   (pad0 slot for callee)
  3162 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3163 //        ^        |  out   |  7
  3164 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3165 //     Owned by    +--------+
  3166 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3167 //        |    new |preserve|      Must be even-aligned.
  3168 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3169 //        |        |        |
  3170 //
  3171 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3172 //         known from SELF's arguments and the Java calling convention.
  3173 //         Region 6-7 is determined per call site.
  3174 // Note 2: If the calling convention leaves holes in the incoming argument
  3175 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3176 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3177 //         incoming area, as the Java calling convention is completely under
  3178 //         the control of the AD file.  Doubles can be sorted and packed to
  3179 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3180 //         varargs C calling conventions.
  3181 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3182 //         even aligned with pad0 as needed.
  3183 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3184 //         region 6-11 is even aligned; it may be padded out more so that
  3185 //         the region from SP to FP meets the minimum stack alignment.
  3187 frame %{
  3188   // What direction does stack grow in (assumed to be same for native & Java)
  3189   stack_direction(TOWARDS_LOW);
  3191   // These two registers define part of the calling convention
  3192   // between compiled code and the interpreter.
  3193   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3194   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3196   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3197   cisc_spilling_operand_name(indOffset);
  3199   // Number of stack slots consumed by a Monitor enter
  3200 #ifdef _LP64
  3201   sync_stack_slots(2);
  3202 #else
  3203   sync_stack_slots(1);
  3204 #endif
  3206   // Compiled code's Frame Pointer
  3207   frame_pointer(R_SP);
  3209   // Stack alignment requirement
  3210   stack_alignment(StackAlignmentInBytes);
  3211   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3212   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3214   // Number of stack slots between incoming argument block and the start of
  3215   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3216   // EPILOG must remove this many slots.
  3217   in_preserve_stack_slots(0);
  3219   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3220   // for calls to C.  Supports the var-args backing area for register parms.
  3221   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3222 #ifdef _LP64
  3223   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3224   varargs_C_out_slots_killed(12);
  3225 #else
  3226   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3227   varargs_C_out_slots_killed( 7);
  3228 #endif
  3230   // The after-PROLOG location of the return address.  Location of
  3231   // return address specifies a type (REG or STACK) and a number
  3232   // representing the register number (i.e. - use a register name) or
  3233   // stack slot.
  3234   return_addr(REG R_I7);          // Ret Addr is in register I7
  3236   // Body of function which returns an OptoRegs array locating
  3237   // arguments either in registers or in stack slots for calling
  3238   // java
  3239   calling_convention %{
  3240     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3242   %}
  3244   // Body of function which returns an OptoRegs array locating
  3245   // arguments either in registers or in stack slots for callin
  3246   // C.
  3247   c_calling_convention %{
  3248     // This is obviously always outgoing
  3249     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3250   %}
  3252   // Location of native (C/C++) and interpreter return values.  This is specified to
  3253   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3254   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3255   // to and from the register pairs is done by the appropriate call and epilog
  3256   // opcodes.  This simplifies the register allocator.
  3257   c_return_value %{
  3258     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3259 #ifdef     _LP64
  3260     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3261     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3262     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3263     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3264 #else  // !_LP64
  3265     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3266     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3267     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3268     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3269 #endif
  3270     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3271                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3272   %}
  3274   // Location of compiled Java return values.  Same as C
  3275   return_value %{
  3276     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3277 #ifdef     _LP64
  3278     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3279     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3280     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3281     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3282 #else  // !_LP64
  3283     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3284     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3285     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3286     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3287 #endif
  3288     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3289                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3290   %}
  3292 %}
  3295 //----------ATTRIBUTES---------------------------------------------------------
  3296 //----------Operand Attributes-------------------------------------------------
  3297 op_attrib op_cost(1);          // Required cost attribute
  3299 //----------Instruction Attributes---------------------------------------------
  3300 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3301 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3302 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3303 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3304                                 // non-matching short branch variant of some
  3305                                                             // long branch?
  3307 //----------OPERANDS-----------------------------------------------------------
  3308 // Operand definitions must precede instruction definitions for correct parsing
  3309 // in the ADLC because operands constitute user defined types which are used in
  3310 // instruction definitions.
  3312 //----------Simple Operands----------------------------------------------------
  3313 // Immediate Operands
  3314 // Integer Immediate: 32-bit
  3315 operand immI() %{
  3316   match(ConI);
  3318   op_cost(0);
  3319   // formats are generated automatically for constants and base registers
  3320   format %{ %}
  3321   interface(CONST_INTER);
  3322 %}
  3324 // Integer Immediate: 8-bit
  3325 operand immI8() %{
  3326   predicate(Assembler::is_simm(n->get_int(), 8));
  3327   match(ConI);
  3328   op_cost(0);
  3329   format %{ %}
  3330   interface(CONST_INTER);
  3331 %}
  3333 // Integer Immediate: 13-bit
  3334 operand immI13() %{
  3335   predicate(Assembler::is_simm13(n->get_int()));
  3336   match(ConI);
  3337   op_cost(0);
  3339   format %{ %}
  3340   interface(CONST_INTER);
  3341 %}
  3343 // Integer Immediate: 13-bit minus 7
  3344 operand immI13m7() %{
  3345   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3346   match(ConI);
  3347   op_cost(0);
  3349   format %{ %}
  3350   interface(CONST_INTER);
  3351 %}
  3353 // Integer Immediate: 16-bit
  3354 operand immI16() %{
  3355   predicate(Assembler::is_simm(n->get_int(), 16));
  3356   match(ConI);
  3357   op_cost(0);
  3358   format %{ %}
  3359   interface(CONST_INTER);
  3360 %}
  3362 // Unsigned (positive) Integer Immediate: 13-bit
  3363 operand immU13() %{
  3364   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3365   match(ConI);
  3366   op_cost(0);
  3368   format %{ %}
  3369   interface(CONST_INTER);
  3370 %}
  3372 // Integer Immediate: 6-bit
  3373 operand immU6() %{
  3374   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3375   match(ConI);
  3376   op_cost(0);
  3377   format %{ %}
  3378   interface(CONST_INTER);
  3379 %}
  3381 // Integer Immediate: 11-bit
  3382 operand immI11() %{
  3383   predicate(Assembler::is_simm(n->get_int(),11));
  3384   match(ConI);
  3385   op_cost(0);
  3386   format %{ %}
  3387   interface(CONST_INTER);
  3388 %}
  3390 // Integer Immediate: 0-bit
  3391 operand immI0() %{
  3392   predicate(n->get_int() == 0);
  3393   match(ConI);
  3394   op_cost(0);
  3396   format %{ %}
  3397   interface(CONST_INTER);
  3398 %}
  3400 // Integer Immediate: the value 10
  3401 operand immI10() %{
  3402   predicate(n->get_int() == 10);
  3403   match(ConI);
  3404   op_cost(0);
  3406   format %{ %}
  3407   interface(CONST_INTER);
  3408 %}
  3410 // Integer Immediate: the values 0-31
  3411 operand immU5() %{
  3412   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3413   match(ConI);
  3414   op_cost(0);
  3416   format %{ %}
  3417   interface(CONST_INTER);
  3418 %}
  3420 // Integer Immediate: the values 1-31
  3421 operand immI_1_31() %{
  3422   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3423   match(ConI);
  3424   op_cost(0);
  3426   format %{ %}
  3427   interface(CONST_INTER);
  3428 %}
  3430 // Integer Immediate: the values 32-63
  3431 operand immI_32_63() %{
  3432   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3433   match(ConI);
  3434   op_cost(0);
  3436   format %{ %}
  3437   interface(CONST_INTER);
  3438 %}
  3440 // Immediates for special shifts (sign extend)
  3442 // Integer Immediate: the value 16
  3443 operand immI_16() %{
  3444   predicate(n->get_int() == 16);
  3445   match(ConI);
  3446   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Integer Immediate: the value 24
  3453 operand immI_24() %{
  3454   predicate(n->get_int() == 24);
  3455   match(ConI);
  3456   op_cost(0);
  3458   format %{ %}
  3459   interface(CONST_INTER);
  3460 %}
  3462 // Integer Immediate: the value 255
  3463 operand immI_255() %{
  3464   predicate( n->get_int() == 255 );
  3465   match(ConI);
  3466   op_cost(0);
  3468   format %{ %}
  3469   interface(CONST_INTER);
  3470 %}
  3472 // Integer Immediate: the value 65535
  3473 operand immI_65535() %{
  3474   predicate(n->get_int() == 65535);
  3475   match(ConI);
  3476   op_cost(0);
  3478   format %{ %}
  3479   interface(CONST_INTER);
  3480 %}
  3482 // Long Immediate: the value FF
  3483 operand immL_FF() %{
  3484   predicate( n->get_long() == 0xFFL );
  3485   match(ConL);
  3486   op_cost(0);
  3488   format %{ %}
  3489   interface(CONST_INTER);
  3490 %}
  3492 // Long Immediate: the value FFFF
  3493 operand immL_FFFF() %{
  3494   predicate( n->get_long() == 0xFFFFL );
  3495   match(ConL);
  3496   op_cost(0);
  3498   format %{ %}
  3499   interface(CONST_INTER);
  3500 %}
  3502 // Pointer Immediate: 32 or 64-bit
  3503 operand immP() %{
  3504   match(ConP);
  3506   op_cost(5);
  3507   // formats are generated automatically for constants and base registers
  3508   format %{ %}
  3509   interface(CONST_INTER);
  3510 %}
  3512 operand immP13() %{
  3513   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3514   match(ConP);
  3515   op_cost(0);
  3517   format %{ %}
  3518   interface(CONST_INTER);
  3519 %}
  3521 operand immP0() %{
  3522   predicate(n->get_ptr() == 0);
  3523   match(ConP);
  3524   op_cost(0);
  3526   format %{ %}
  3527   interface(CONST_INTER);
  3528 %}
  3530 operand immP_poll() %{
  3531   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3532   match(ConP);
  3534   // formats are generated automatically for constants and base registers
  3535   format %{ %}
  3536   interface(CONST_INTER);
  3537 %}
  3539 // Pointer Immediate
  3540 operand immN()
  3541 %{
  3542   match(ConN);
  3544   op_cost(10);
  3545   format %{ %}
  3546   interface(CONST_INTER);
  3547 %}
  3549 // NULL Pointer Immediate
  3550 operand immN0()
  3551 %{
  3552   predicate(n->get_narrowcon() == 0);
  3553   match(ConN);
  3555   op_cost(0);
  3556   format %{ %}
  3557   interface(CONST_INTER);
  3558 %}
  3560 operand immL() %{
  3561   match(ConL);
  3562   op_cost(40);
  3563   // formats are generated automatically for constants and base registers
  3564   format %{ %}
  3565   interface(CONST_INTER);
  3566 %}
  3568 operand immL0() %{
  3569   predicate(n->get_long() == 0L);
  3570   match(ConL);
  3571   op_cost(0);
  3572   // formats are generated automatically for constants and base registers
  3573   format %{ %}
  3574   interface(CONST_INTER);
  3575 %}
  3577 // Long Immediate: 13-bit
  3578 operand immL13() %{
  3579   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3580   match(ConL);
  3581   op_cost(0);
  3583   format %{ %}
  3584   interface(CONST_INTER);
  3585 %}
  3587 // Long Immediate: 13-bit minus 7
  3588 operand immL13m7() %{
  3589   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3590   match(ConL);
  3591   op_cost(0);
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 // Long Immediate: low 32-bit mask
  3598 operand immL_32bits() %{
  3599   predicate(n->get_long() == 0xFFFFFFFFL);
  3600   match(ConL);
  3601   op_cost(0);
  3603   format %{ %}
  3604   interface(CONST_INTER);
  3605 %}
  3607 // Double Immediate
  3608 operand immD() %{
  3609   match(ConD);
  3611   op_cost(40);
  3612   format %{ %}
  3613   interface(CONST_INTER);
  3614 %}
  3616 operand immD0() %{
  3617 #ifdef _LP64
  3618   // on 64-bit architectures this comparision is faster
  3619   predicate(jlong_cast(n->getd()) == 0);
  3620 #else
  3621   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3622 #endif
  3623   match(ConD);
  3625   op_cost(0);
  3626   format %{ %}
  3627   interface(CONST_INTER);
  3628 %}
  3630 // Float Immediate
  3631 operand immF() %{
  3632   match(ConF);
  3634   op_cost(20);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 // Float Immediate: 0
  3640 operand immF0() %{
  3641   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3642   match(ConF);
  3644   op_cost(0);
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 // Integer Register Operands
  3650 // Integer Register
  3651 operand iRegI() %{
  3652   constraint(ALLOC_IN_RC(int_reg));
  3653   match(RegI);
  3655   match(notemp_iRegI);
  3656   match(g1RegI);
  3657   match(o0RegI);
  3658   match(iRegIsafe);
  3660   format %{ %}
  3661   interface(REG_INTER);
  3662 %}
  3664 operand notemp_iRegI() %{
  3665   constraint(ALLOC_IN_RC(notemp_int_reg));
  3666   match(RegI);
  3668   match(o0RegI);
  3670   format %{ %}
  3671   interface(REG_INTER);
  3672 %}
  3674 operand o0RegI() %{
  3675   constraint(ALLOC_IN_RC(o0_regI));
  3676   match(iRegI);
  3678   format %{ %}
  3679   interface(REG_INTER);
  3680 %}
  3682 // Pointer Register
  3683 operand iRegP() %{
  3684   constraint(ALLOC_IN_RC(ptr_reg));
  3685   match(RegP);
  3687   match(lock_ptr_RegP);
  3688   match(g1RegP);
  3689   match(g2RegP);
  3690   match(g3RegP);
  3691   match(g4RegP);
  3692   match(i0RegP);
  3693   match(o0RegP);
  3694   match(o1RegP);
  3695   match(l7RegP);
  3697   format %{ %}
  3698   interface(REG_INTER);
  3699 %}
  3701 operand sp_ptr_RegP() %{
  3702   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3703   match(RegP);
  3704   match(iRegP);
  3706   format %{ %}
  3707   interface(REG_INTER);
  3708 %}
  3710 operand lock_ptr_RegP() %{
  3711   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3712   match(RegP);
  3713   match(i0RegP);
  3714   match(o0RegP);
  3715   match(o1RegP);
  3716   match(l7RegP);
  3718   format %{ %}
  3719   interface(REG_INTER);
  3720 %}
  3722 operand g1RegP() %{
  3723   constraint(ALLOC_IN_RC(g1_regP));
  3724   match(iRegP);
  3726   format %{ %}
  3727   interface(REG_INTER);
  3728 %}
  3730 operand g2RegP() %{
  3731   constraint(ALLOC_IN_RC(g2_regP));
  3732   match(iRegP);
  3734   format %{ %}
  3735   interface(REG_INTER);
  3736 %}
  3738 operand g3RegP() %{
  3739   constraint(ALLOC_IN_RC(g3_regP));
  3740   match(iRegP);
  3742   format %{ %}
  3743   interface(REG_INTER);
  3744 %}
  3746 operand g1RegI() %{
  3747   constraint(ALLOC_IN_RC(g1_regI));
  3748   match(iRegI);
  3750   format %{ %}
  3751   interface(REG_INTER);
  3752 %}
  3754 operand g3RegI() %{
  3755   constraint(ALLOC_IN_RC(g3_regI));
  3756   match(iRegI);
  3758   format %{ %}
  3759   interface(REG_INTER);
  3760 %}
  3762 operand g4RegI() %{
  3763   constraint(ALLOC_IN_RC(g4_regI));
  3764   match(iRegI);
  3766   format %{ %}
  3767   interface(REG_INTER);
  3768 %}
  3770 operand g4RegP() %{
  3771   constraint(ALLOC_IN_RC(g4_regP));
  3772   match(iRegP);
  3774   format %{ %}
  3775   interface(REG_INTER);
  3776 %}
  3778 operand i0RegP() %{
  3779   constraint(ALLOC_IN_RC(i0_regP));
  3780   match(iRegP);
  3782   format %{ %}
  3783   interface(REG_INTER);
  3784 %}
  3786 operand o0RegP() %{
  3787   constraint(ALLOC_IN_RC(o0_regP));
  3788   match(iRegP);
  3790   format %{ %}
  3791   interface(REG_INTER);
  3792 %}
  3794 operand o1RegP() %{
  3795   constraint(ALLOC_IN_RC(o1_regP));
  3796   match(iRegP);
  3798   format %{ %}
  3799   interface(REG_INTER);
  3800 %}
  3802 operand o2RegP() %{
  3803   constraint(ALLOC_IN_RC(o2_regP));
  3804   match(iRegP);
  3806   format %{ %}
  3807   interface(REG_INTER);
  3808 %}
  3810 operand o7RegP() %{
  3811   constraint(ALLOC_IN_RC(o7_regP));
  3812   match(iRegP);
  3814   format %{ %}
  3815   interface(REG_INTER);
  3816 %}
  3818 operand l7RegP() %{
  3819   constraint(ALLOC_IN_RC(l7_regP));
  3820   match(iRegP);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand o7RegI() %{
  3827   constraint(ALLOC_IN_RC(o7_regI));
  3828   match(iRegI);
  3830   format %{ %}
  3831   interface(REG_INTER);
  3832 %}
  3834 operand iRegN() %{
  3835   constraint(ALLOC_IN_RC(int_reg));
  3836   match(RegN);
  3838   format %{ %}
  3839   interface(REG_INTER);
  3840 %}
  3842 // Long Register
  3843 operand iRegL() %{
  3844   constraint(ALLOC_IN_RC(long_reg));
  3845   match(RegL);
  3847   format %{ %}
  3848   interface(REG_INTER);
  3849 %}
  3851 operand o2RegL() %{
  3852   constraint(ALLOC_IN_RC(o2_regL));
  3853   match(iRegL);
  3855   format %{ %}
  3856   interface(REG_INTER);
  3857 %}
  3859 operand o7RegL() %{
  3860   constraint(ALLOC_IN_RC(o7_regL));
  3861   match(iRegL);
  3863   format %{ %}
  3864   interface(REG_INTER);
  3865 %}
  3867 operand g1RegL() %{
  3868   constraint(ALLOC_IN_RC(g1_regL));
  3869   match(iRegL);
  3871   format %{ %}
  3872   interface(REG_INTER);
  3873 %}
  3875 operand g3RegL() %{
  3876   constraint(ALLOC_IN_RC(g3_regL));
  3877   match(iRegL);
  3879   format %{ %}
  3880   interface(REG_INTER);
  3881 %}
  3883 // Int Register safe
  3884 // This is 64bit safe
  3885 operand iRegIsafe() %{
  3886   constraint(ALLOC_IN_RC(long_reg));
  3888   match(iRegI);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 // Condition Code Flag Register
  3895 operand flagsReg() %{
  3896   constraint(ALLOC_IN_RC(int_flags));
  3897   match(RegFlags);
  3899   format %{ "ccr" %} // both ICC and XCC
  3900   interface(REG_INTER);
  3901 %}
  3903 // Condition Code Register, unsigned comparisons.
  3904 operand flagsRegU() %{
  3905   constraint(ALLOC_IN_RC(int_flags));
  3906   match(RegFlags);
  3908   format %{ "icc_U" %}
  3909   interface(REG_INTER);
  3910 %}
  3912 // Condition Code Register, pointer comparisons.
  3913 operand flagsRegP() %{
  3914   constraint(ALLOC_IN_RC(int_flags));
  3915   match(RegFlags);
  3917 #ifdef _LP64
  3918   format %{ "xcc_P" %}
  3919 #else
  3920   format %{ "icc_P" %}
  3921 #endif
  3922   interface(REG_INTER);
  3923 %}
  3925 // Condition Code Register, long comparisons.
  3926 operand flagsRegL() %{
  3927   constraint(ALLOC_IN_RC(int_flags));
  3928   match(RegFlags);
  3930   format %{ "xcc_L" %}
  3931   interface(REG_INTER);
  3932 %}
  3934 // Condition Code Register, floating comparisons, unordered same as "less".
  3935 operand flagsRegF() %{
  3936   constraint(ALLOC_IN_RC(float_flags));
  3937   match(RegFlags);
  3938   match(flagsRegF0);
  3940   format %{ %}
  3941   interface(REG_INTER);
  3942 %}
  3944 operand flagsRegF0() %{
  3945   constraint(ALLOC_IN_RC(float_flag0));
  3946   match(RegFlags);
  3948   format %{ %}
  3949   interface(REG_INTER);
  3950 %}
  3953 // Condition Code Flag Register used by long compare
  3954 operand flagsReg_long_LTGE() %{
  3955   constraint(ALLOC_IN_RC(int_flags));
  3956   match(RegFlags);
  3957   format %{ "icc_LTGE" %}
  3958   interface(REG_INTER);
  3959 %}
  3960 operand flagsReg_long_EQNE() %{
  3961   constraint(ALLOC_IN_RC(int_flags));
  3962   match(RegFlags);
  3963   format %{ "icc_EQNE" %}
  3964   interface(REG_INTER);
  3965 %}
  3966 operand flagsReg_long_LEGT() %{
  3967   constraint(ALLOC_IN_RC(int_flags));
  3968   match(RegFlags);
  3969   format %{ "icc_LEGT" %}
  3970   interface(REG_INTER);
  3971 %}
  3974 operand regD() %{
  3975   constraint(ALLOC_IN_RC(dflt_reg));
  3976   match(RegD);
  3978   match(regD_low);
  3980   format %{ %}
  3981   interface(REG_INTER);
  3982 %}
  3984 operand regF() %{
  3985   constraint(ALLOC_IN_RC(sflt_reg));
  3986   match(RegF);
  3988   format %{ %}
  3989   interface(REG_INTER);
  3990 %}
  3992 operand regD_low() %{
  3993   constraint(ALLOC_IN_RC(dflt_low_reg));
  3994   match(regD);
  3996   format %{ %}
  3997   interface(REG_INTER);
  3998 %}
  4000 // Special Registers
  4002 // Method Register
  4003 operand inline_cache_regP(iRegP reg) %{
  4004   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4005   match(reg);
  4006   format %{ %}
  4007   interface(REG_INTER);
  4008 %}
  4010 operand interpreter_method_oop_regP(iRegP reg) %{
  4011   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4012   match(reg);
  4013   format %{ %}
  4014   interface(REG_INTER);
  4015 %}
  4018 //----------Complex Operands---------------------------------------------------
  4019 // Indirect Memory Reference
  4020 operand indirect(sp_ptr_RegP reg) %{
  4021   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4022   match(reg);
  4024   op_cost(100);
  4025   format %{ "[$reg]" %}
  4026   interface(MEMORY_INTER) %{
  4027     base($reg);
  4028     index(0x0);
  4029     scale(0x0);
  4030     disp(0x0);
  4031   %}
  4032 %}
  4034 // Indirect with simm13 Offset
  4035 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4036   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4037   match(AddP reg offset);
  4039   op_cost(100);
  4040   format %{ "[$reg + $offset]" %}
  4041   interface(MEMORY_INTER) %{
  4042     base($reg);
  4043     index(0x0);
  4044     scale(0x0);
  4045     disp($offset);
  4046   %}
  4047 %}
  4049 // Indirect with simm13 Offset minus 7
  4050 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4051   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4052   match(AddP reg offset);
  4054   op_cost(100);
  4055   format %{ "[$reg + $offset]" %}
  4056   interface(MEMORY_INTER) %{
  4057     base($reg);
  4058     index(0x0);
  4059     scale(0x0);
  4060     disp($offset);
  4061   %}
  4062 %}
  4064 // Note:  Intel has a swapped version also, like this:
  4065 //operand indOffsetX(iRegI reg, immP offset) %{
  4066 //  constraint(ALLOC_IN_RC(int_reg));
  4067 //  match(AddP offset reg);
  4068 //
  4069 //  op_cost(100);
  4070 //  format %{ "[$reg + $offset]" %}
  4071 //  interface(MEMORY_INTER) %{
  4072 //    base($reg);
  4073 //    index(0x0);
  4074 //    scale(0x0);
  4075 //    disp($offset);
  4076 //  %}
  4077 //%}
  4078 //// However, it doesn't make sense for SPARC, since
  4079 // we have no particularly good way to embed oops in
  4080 // single instructions.
  4082 // Indirect with Register Index
  4083 operand indIndex(iRegP addr, iRegX index) %{
  4084   constraint(ALLOC_IN_RC(ptr_reg));
  4085   match(AddP addr index);
  4087   op_cost(100);
  4088   format %{ "[$addr + $index]" %}
  4089   interface(MEMORY_INTER) %{
  4090     base($addr);
  4091     index($index);
  4092     scale(0x0);
  4093     disp(0x0);
  4094   %}
  4095 %}
  4097 //----------Special Memory Operands--------------------------------------------
  4098 // Stack Slot Operand - This operand is used for loading and storing temporary
  4099 //                      values on the stack where a match requires a value to
  4100 //                      flow through memory.
  4101 operand stackSlotI(sRegI reg) %{
  4102   constraint(ALLOC_IN_RC(stack_slots));
  4103   op_cost(100);
  4104   //match(RegI);
  4105   format %{ "[$reg]" %}
  4106   interface(MEMORY_INTER) %{
  4107     base(0xE);   // R_SP
  4108     index(0x0);
  4109     scale(0x0);
  4110     disp($reg);  // Stack Offset
  4111   %}
  4112 %}
  4114 operand stackSlotP(sRegP reg) %{
  4115   constraint(ALLOC_IN_RC(stack_slots));
  4116   op_cost(100);
  4117   //match(RegP);
  4118   format %{ "[$reg]" %}
  4119   interface(MEMORY_INTER) %{
  4120     base(0xE);   // R_SP
  4121     index(0x0);
  4122     scale(0x0);
  4123     disp($reg);  // Stack Offset
  4124   %}
  4125 %}
  4127 operand stackSlotF(sRegF reg) %{
  4128   constraint(ALLOC_IN_RC(stack_slots));
  4129   op_cost(100);
  4130   //match(RegF);
  4131   format %{ "[$reg]" %}
  4132   interface(MEMORY_INTER) %{
  4133     base(0xE);   // R_SP
  4134     index(0x0);
  4135     scale(0x0);
  4136     disp($reg);  // Stack Offset
  4137   %}
  4138 %}
  4139 operand stackSlotD(sRegD reg) %{
  4140   constraint(ALLOC_IN_RC(stack_slots));
  4141   op_cost(100);
  4142   //match(RegD);
  4143   format %{ "[$reg]" %}
  4144   interface(MEMORY_INTER) %{
  4145     base(0xE);   // R_SP
  4146     index(0x0);
  4147     scale(0x0);
  4148     disp($reg);  // Stack Offset
  4149   %}
  4150 %}
  4151 operand stackSlotL(sRegL reg) %{
  4152   constraint(ALLOC_IN_RC(stack_slots));
  4153   op_cost(100);
  4154   //match(RegL);
  4155   format %{ "[$reg]" %}
  4156   interface(MEMORY_INTER) %{
  4157     base(0xE);   // R_SP
  4158     index(0x0);
  4159     scale(0x0);
  4160     disp($reg);  // Stack Offset
  4161   %}
  4162 %}
  4164 // Operands for expressing Control Flow
  4165 // NOTE:  Label is a predefined operand which should not be redefined in
  4166 //        the AD file.  It is generically handled within the ADLC.
  4168 //----------Conditional Branch Operands----------------------------------------
  4169 // Comparison Op  - This is the operation of the comparison, and is limited to
  4170 //                  the following set of codes:
  4171 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4172 //
  4173 // Other attributes of the comparison, such as unsignedness, are specified
  4174 // by the comparison instruction that sets a condition code flags register.
  4175 // That result is represented by a flags operand whose subtype is appropriate
  4176 // to the unsignedness (etc.) of the comparison.
  4177 //
  4178 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4179 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4180 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4182 operand cmpOp() %{
  4183   match(Bool);
  4185   format %{ "" %}
  4186   interface(COND_INTER) %{
  4187     equal(0x1);
  4188     not_equal(0x9);
  4189     less(0x3);
  4190     greater_equal(0xB);
  4191     less_equal(0x2);
  4192     greater(0xA);
  4193   %}
  4194 %}
  4196 // Comparison Op, unsigned
  4197 operand cmpOpU() %{
  4198   match(Bool);
  4200   format %{ "u" %}
  4201   interface(COND_INTER) %{
  4202     equal(0x1);
  4203     not_equal(0x9);
  4204     less(0x5);
  4205     greater_equal(0xD);
  4206     less_equal(0x4);
  4207     greater(0xC);
  4208   %}
  4209 %}
  4211 // Comparison Op, pointer (same as unsigned)
  4212 operand cmpOpP() %{
  4213   match(Bool);
  4215   format %{ "p" %}
  4216   interface(COND_INTER) %{
  4217     equal(0x1);
  4218     not_equal(0x9);
  4219     less(0x5);
  4220     greater_equal(0xD);
  4221     less_equal(0x4);
  4222     greater(0xC);
  4223   %}
  4224 %}
  4226 // Comparison Op, branch-register encoding
  4227 operand cmpOp_reg() %{
  4228   match(Bool);
  4230   format %{ "" %}
  4231   interface(COND_INTER) %{
  4232     equal        (0x1);
  4233     not_equal    (0x5);
  4234     less         (0x3);
  4235     greater_equal(0x7);
  4236     less_equal   (0x2);
  4237     greater      (0x6);
  4238   %}
  4239 %}
  4241 // Comparison Code, floating, unordered same as less
  4242 operand cmpOpF() %{
  4243   match(Bool);
  4245   format %{ "fl" %}
  4246   interface(COND_INTER) %{
  4247     equal(0x9);
  4248     not_equal(0x1);
  4249     less(0x3);
  4250     greater_equal(0xB);
  4251     less_equal(0xE);
  4252     greater(0x6);
  4253   %}
  4254 %}
  4256 // Used by long compare
  4257 operand cmpOp_commute() %{
  4258   match(Bool);
  4260   format %{ "" %}
  4261   interface(COND_INTER) %{
  4262     equal(0x1);
  4263     not_equal(0x9);
  4264     less(0xA);
  4265     greater_equal(0x2);
  4266     less_equal(0xB);
  4267     greater(0x3);
  4268   %}
  4269 %}
  4271 //----------OPERAND CLASSES----------------------------------------------------
  4272 // Operand Classes are groups of operands that are used to simplify
  4273 // instruction definitions by not requiring the AD writer to specify separate
  4274 // instructions for every form of operand when the instruction accepts
  4275 // multiple operand types with the same basic encoding and format.  The classic
  4276 // case of this is memory operands.
  4277 opclass memory( indirect, indOffset13, indIndex );
  4278 opclass indIndexMemory( indIndex );
  4280 //----------PIPELINE-----------------------------------------------------------
  4281 pipeline %{
  4283 //----------ATTRIBUTES---------------------------------------------------------
  4284 attributes %{
  4285   fixed_size_instructions;           // Fixed size instructions
  4286   branch_has_delay_slot;             // Branch has delay slot following
  4287   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4288   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4289   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4290   instruction_fetch_units = 1;       // of 16 bytes
  4292   // List of nop instructions
  4293   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4294 %}
  4296 //----------RESOURCES----------------------------------------------------------
  4297 // Resources are the functional units available to the machine
  4298 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4300 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4301 // Pipeline Description specifies the stages in the machine's pipeline
  4303 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4305 //----------PIPELINE CLASSES---------------------------------------------------
  4306 // Pipeline Classes describe the stages in which input and output are
  4307 // referenced by the hardware pipeline.
  4309 // Integer ALU reg-reg operation
  4310 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4311     single_instruction;
  4312     dst   : E(write);
  4313     src1  : R(read);
  4314     src2  : R(read);
  4315     IALU  : R;
  4316 %}
  4318 // Integer ALU reg-reg long operation
  4319 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4320     instruction_count(2);
  4321     dst   : E(write);
  4322     src1  : R(read);
  4323     src2  : R(read);
  4324     IALU  : R;
  4325     IALU  : R;
  4326 %}
  4328 // Integer ALU reg-reg long dependent operation
  4329 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4330     instruction_count(1); multiple_bundles;
  4331     dst   : E(write);
  4332     src1  : R(read);
  4333     src2  : R(read);
  4334     cr    : E(write);
  4335     IALU  : R(2);
  4336 %}
  4338 // Integer ALU reg-imm operaion
  4339 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4340     single_instruction;
  4341     dst   : E(write);
  4342     src1  : R(read);
  4343     IALU  : R;
  4344 %}
  4346 // Integer ALU reg-reg operation with condition code
  4347 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4348     single_instruction;
  4349     dst   : E(write);
  4350     cr    : E(write);
  4351     src1  : R(read);
  4352     src2  : R(read);
  4353     IALU  : R;
  4354 %}
  4356 // Integer ALU reg-imm operation with condition code
  4357 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4358     single_instruction;
  4359     dst   : E(write);
  4360     cr    : E(write);
  4361     src1  : R(read);
  4362     IALU  : R;
  4363 %}
  4365 // Integer ALU zero-reg operation
  4366 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4367     single_instruction;
  4368     dst   : E(write);
  4369     src2  : R(read);
  4370     IALU  : R;
  4371 %}
  4373 // Integer ALU zero-reg operation with condition code only
  4374 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4375     single_instruction;
  4376     cr    : E(write);
  4377     src   : R(read);
  4378     IALU  : R;
  4379 %}
  4381 // Integer ALU reg-reg operation with condition code only
  4382 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4383     single_instruction;
  4384     cr    : E(write);
  4385     src1  : R(read);
  4386     src2  : R(read);
  4387     IALU  : R;
  4388 %}
  4390 // Integer ALU reg-imm operation with condition code only
  4391 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4392     single_instruction;
  4393     cr    : E(write);
  4394     src1  : R(read);
  4395     IALU  : R;
  4396 %}
  4398 // Integer ALU reg-reg-zero operation with condition code only
  4399 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4400     single_instruction;
  4401     cr    : E(write);
  4402     src1  : R(read);
  4403     src2  : R(read);
  4404     IALU  : R;
  4405 %}
  4407 // Integer ALU reg-imm-zero operation with condition code only
  4408 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4409     single_instruction;
  4410     cr    : E(write);
  4411     src1  : R(read);
  4412     IALU  : R;
  4413 %}
  4415 // Integer ALU reg-reg operation with condition code, src1 modified
  4416 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4417     single_instruction;
  4418     cr    : E(write);
  4419     src1  : E(write);
  4420     src1  : R(read);
  4421     src2  : R(read);
  4422     IALU  : R;
  4423 %}
  4425 // Integer ALU reg-imm operation with condition code, src1 modified
  4426 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4427     single_instruction;
  4428     cr    : E(write);
  4429     src1  : E(write);
  4430     src1  : R(read);
  4431     IALU  : R;
  4432 %}
  4434 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4435     multiple_bundles;
  4436     dst   : E(write)+4;
  4437     cr    : E(write);
  4438     src1  : R(read);
  4439     src2  : R(read);
  4440     IALU  : R(3);
  4441     BR    : R(2);
  4442 %}
  4444 // Integer ALU operation
  4445 pipe_class ialu_none(iRegI dst) %{
  4446     single_instruction;
  4447     dst   : E(write);
  4448     IALU  : R;
  4449 %}
  4451 // Integer ALU reg operation
  4452 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4453     single_instruction; may_have_no_code;
  4454     dst   : E(write);
  4455     src   : R(read);
  4456     IALU  : R;
  4457 %}
  4459 // Integer ALU reg conditional operation
  4460 // This instruction has a 1 cycle stall, and cannot execute
  4461 // in the same cycle as the instruction setting the condition
  4462 // code. We kludge this by pretending to read the condition code
  4463 // 1 cycle earlier, and by marking the functional units as busy
  4464 // for 2 cycles with the result available 1 cycle later than
  4465 // is really the case.
  4466 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4467     single_instruction;
  4468     op2_out : C(write);
  4469     op1     : R(read);
  4470     cr      : R(read);       // This is really E, with a 1 cycle stall
  4471     BR      : R(2);
  4472     MS      : R(2);
  4473 %}
  4475 #ifdef _LP64
  4476 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4477     instruction_count(1); multiple_bundles;
  4478     dst     : C(write)+1;
  4479     src     : R(read)+1;
  4480     IALU    : R(1);
  4481     BR      : E(2);
  4482     MS      : E(2);
  4483 %}
  4484 #endif
  4486 // Integer ALU reg operation
  4487 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4488     single_instruction; may_have_no_code;
  4489     dst   : E(write);
  4490     src   : R(read);
  4491     IALU  : R;
  4492 %}
  4493 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4494     single_instruction; may_have_no_code;
  4495     dst   : E(write);
  4496     src   : R(read);
  4497     IALU  : R;
  4498 %}
  4500 // Two integer ALU reg operations
  4501 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4502     instruction_count(2);
  4503     dst   : E(write);
  4504     src   : R(read);
  4505     A0    : R;
  4506     A1    : R;
  4507 %}
  4509 // Two integer ALU reg operations
  4510 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4511     instruction_count(2); may_have_no_code;
  4512     dst   : E(write);
  4513     src   : R(read);
  4514     A0    : R;
  4515     A1    : R;
  4516 %}
  4518 // Integer ALU imm operation
  4519 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4520     single_instruction;
  4521     dst   : E(write);
  4522     IALU  : R;
  4523 %}
  4525 // Integer ALU reg-reg with carry operation
  4526 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4527     single_instruction;
  4528     dst   : E(write);
  4529     src1  : R(read);
  4530     src2  : R(read);
  4531     IALU  : R;
  4532 %}
  4534 // Integer ALU cc operation
  4535 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4536     single_instruction;
  4537     dst   : E(write);
  4538     cc    : R(read);
  4539     IALU  : R;
  4540 %}
  4542 // Integer ALU cc / second IALU operation
  4543 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4544     instruction_count(1); multiple_bundles;
  4545     dst   : E(write)+1;
  4546     src   : R(read);
  4547     IALU  : R;
  4548 %}
  4550 // Integer ALU cc / second IALU operation
  4551 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4552     instruction_count(1); multiple_bundles;
  4553     dst   : E(write)+1;
  4554     p     : R(read);
  4555     q     : R(read);
  4556     IALU  : R;
  4557 %}
  4559 // Integer ALU hi-lo-reg operation
  4560 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4561     instruction_count(1); multiple_bundles;
  4562     dst   : E(write)+1;
  4563     IALU  : R(2);
  4564 %}
  4566 // Float ALU hi-lo-reg operation (with temp)
  4567 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4568     instruction_count(1); multiple_bundles;
  4569     dst   : E(write)+1;
  4570     IALU  : R(2);
  4571 %}
  4573 // Long Constant
  4574 pipe_class loadConL( iRegL dst, immL src ) %{
  4575     instruction_count(2); multiple_bundles;
  4576     dst   : E(write)+1;
  4577     IALU  : R(2);
  4578     IALU  : R(2);
  4579 %}
  4581 // Pointer Constant
  4582 pipe_class loadConP( iRegP dst, immP src ) %{
  4583     instruction_count(0); multiple_bundles;
  4584     fixed_latency(6);
  4585 %}
  4587 // Polling Address
  4588 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4589 #ifdef _LP64
  4590     instruction_count(0); multiple_bundles;
  4591     fixed_latency(6);
  4592 #else
  4593     dst   : E(write);
  4594     IALU  : R;
  4595 #endif
  4596 %}
  4598 // Long Constant small
  4599 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4600     instruction_count(2);
  4601     dst   : E(write);
  4602     IALU  : R;
  4603     IALU  : R;
  4604 %}
  4606 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4607 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4608     instruction_count(1); multiple_bundles;
  4609     src   : R(read);
  4610     dst   : M(write)+1;
  4611     IALU  : R;
  4612     MS    : E;
  4613 %}
  4615 // Integer ALU nop operation
  4616 pipe_class ialu_nop() %{
  4617     single_instruction;
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU nop operation
  4622 pipe_class ialu_nop_A0() %{
  4623     single_instruction;
  4624     A0    : R;
  4625 %}
  4627 // Integer ALU nop operation
  4628 pipe_class ialu_nop_A1() %{
  4629     single_instruction;
  4630     A1    : R;
  4631 %}
  4633 // Integer Multiply reg-reg operation
  4634 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4635     single_instruction;
  4636     dst   : E(write);
  4637     src1  : R(read);
  4638     src2  : R(read);
  4639     MS    : R(5);
  4640 %}
  4642 // Integer Multiply reg-imm operation
  4643 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4644     single_instruction;
  4645     dst   : E(write);
  4646     src1  : R(read);
  4647     MS    : R(5);
  4648 %}
  4650 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4651     single_instruction;
  4652     dst   : E(write)+4;
  4653     src1  : R(read);
  4654     src2  : R(read);
  4655     MS    : R(6);
  4656 %}
  4658 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4659     single_instruction;
  4660     dst   : E(write)+4;
  4661     src1  : R(read);
  4662     MS    : R(6);
  4663 %}
  4665 // Integer Divide reg-reg
  4666 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4667     instruction_count(1); multiple_bundles;
  4668     dst   : E(write);
  4669     temp  : E(write);
  4670     src1  : R(read);
  4671     src2  : R(read);
  4672     temp  : R(read);
  4673     MS    : R(38);
  4674 %}
  4676 // Integer Divide reg-imm
  4677 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4678     instruction_count(1); multiple_bundles;
  4679     dst   : E(write);
  4680     temp  : E(write);
  4681     src1  : R(read);
  4682     temp  : R(read);
  4683     MS    : R(38);
  4684 %}
  4686 // Long Divide
  4687 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4688     dst  : E(write)+71;
  4689     src1 : R(read);
  4690     src2 : R(read)+1;
  4691     MS   : R(70);
  4692 %}
  4694 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4695     dst  : E(write)+71;
  4696     src1 : R(read);
  4697     MS   : R(70);
  4698 %}
  4700 // Floating Point Add Float
  4701 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4702     single_instruction;
  4703     dst   : X(write);
  4704     src1  : E(read);
  4705     src2  : E(read);
  4706     FA    : R;
  4707 %}
  4709 // Floating Point Add Double
  4710 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4711     single_instruction;
  4712     dst   : X(write);
  4713     src1  : E(read);
  4714     src2  : E(read);
  4715     FA    : R;
  4716 %}
  4718 // Floating Point Conditional Move based on integer flags
  4719 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4720     single_instruction;
  4721     dst   : X(write);
  4722     src   : E(read);
  4723     cr    : R(read);
  4724     FA    : R(2);
  4725     BR    : R(2);
  4726 %}
  4728 // Floating Point Conditional Move based on integer flags
  4729 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4730     single_instruction;
  4731     dst   : X(write);
  4732     src   : E(read);
  4733     cr    : R(read);
  4734     FA    : R(2);
  4735     BR    : R(2);
  4736 %}
  4738 // Floating Point Multiply Float
  4739 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4740     single_instruction;
  4741     dst   : X(write);
  4742     src1  : E(read);
  4743     src2  : E(read);
  4744     FM    : R;
  4745 %}
  4747 // Floating Point Multiply Double
  4748 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4749     single_instruction;
  4750     dst   : X(write);
  4751     src1  : E(read);
  4752     src2  : E(read);
  4753     FM    : R;
  4754 %}
  4756 // Floating Point Divide Float
  4757 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4758     single_instruction;
  4759     dst   : X(write);
  4760     src1  : E(read);
  4761     src2  : E(read);
  4762     FM    : R;
  4763     FDIV  : C(14);
  4764 %}
  4766 // Floating Point Divide Double
  4767 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4768     single_instruction;
  4769     dst   : X(write);
  4770     src1  : E(read);
  4771     src2  : E(read);
  4772     FM    : R;
  4773     FDIV  : C(17);
  4774 %}
  4776 // Floating Point Move/Negate/Abs Float
  4777 pipe_class faddF_reg(regF dst, regF src) %{
  4778     single_instruction;
  4779     dst   : W(write);
  4780     src   : E(read);
  4781     FA    : R(1);
  4782 %}
  4784 // Floating Point Move/Negate/Abs Double
  4785 pipe_class faddD_reg(regD dst, regD src) %{
  4786     single_instruction;
  4787     dst   : W(write);
  4788     src   : E(read);
  4789     FA    : R;
  4790 %}
  4792 // Floating Point Convert F->D
  4793 pipe_class fcvtF2D(regD dst, regF src) %{
  4794     single_instruction;
  4795     dst   : X(write);
  4796     src   : E(read);
  4797     FA    : R;
  4798 %}
  4800 // Floating Point Convert I->D
  4801 pipe_class fcvtI2D(regD dst, regF src) %{
  4802     single_instruction;
  4803     dst   : X(write);
  4804     src   : E(read);
  4805     FA    : R;
  4806 %}
  4808 // Floating Point Convert LHi->D
  4809 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4810     single_instruction;
  4811     dst   : X(write);
  4812     src   : E(read);
  4813     FA    : R;
  4814 %}
  4816 // Floating Point Convert L->D
  4817 pipe_class fcvtL2D(regD dst, regF src) %{
  4818     single_instruction;
  4819     dst   : X(write);
  4820     src   : E(read);
  4821     FA    : R;
  4822 %}
  4824 // Floating Point Convert L->F
  4825 pipe_class fcvtL2F(regD dst, regF src) %{
  4826     single_instruction;
  4827     dst   : X(write);
  4828     src   : E(read);
  4829     FA    : R;
  4830 %}
  4832 // Floating Point Convert D->F
  4833 pipe_class fcvtD2F(regD dst, regF src) %{
  4834     single_instruction;
  4835     dst   : X(write);
  4836     src   : E(read);
  4837     FA    : R;
  4838 %}
  4840 // Floating Point Convert I->L
  4841 pipe_class fcvtI2L(regD dst, regF src) %{
  4842     single_instruction;
  4843     dst   : X(write);
  4844     src   : E(read);
  4845     FA    : R;
  4846 %}
  4848 // Floating Point Convert D->F
  4849 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4850     instruction_count(1); multiple_bundles;
  4851     dst   : X(write)+6;
  4852     src   : E(read);
  4853     FA    : R;
  4854 %}
  4856 // Floating Point Convert D->L
  4857 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4858     instruction_count(1); multiple_bundles;
  4859     dst   : X(write)+6;
  4860     src   : E(read);
  4861     FA    : R;
  4862 %}
  4864 // Floating Point Convert F->I
  4865 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4866     instruction_count(1); multiple_bundles;
  4867     dst   : X(write)+6;
  4868     src   : E(read);
  4869     FA    : R;
  4870 %}
  4872 // Floating Point Convert F->L
  4873 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4874     instruction_count(1); multiple_bundles;
  4875     dst   : X(write)+6;
  4876     src   : E(read);
  4877     FA    : R;
  4878 %}
  4880 // Floating Point Convert I->F
  4881 pipe_class fcvtI2F(regF dst, regF src) %{
  4882     single_instruction;
  4883     dst   : X(write);
  4884     src   : E(read);
  4885     FA    : R;
  4886 %}
  4888 // Floating Point Compare
  4889 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4890     single_instruction;
  4891     cr    : X(write);
  4892     src1  : E(read);
  4893     src2  : E(read);
  4894     FA    : R;
  4895 %}
  4897 // Floating Point Compare
  4898 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4899     single_instruction;
  4900     cr    : X(write);
  4901     src1  : E(read);
  4902     src2  : E(read);
  4903     FA    : R;
  4904 %}
  4906 // Floating Add Nop
  4907 pipe_class fadd_nop() %{
  4908     single_instruction;
  4909     FA  : R;
  4910 %}
  4912 // Integer Store to Memory
  4913 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4914     single_instruction;
  4915     mem   : R(read);
  4916     src   : C(read);
  4917     MS    : R;
  4918 %}
  4920 // Integer Store to Memory
  4921 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4922     single_instruction;
  4923     mem   : R(read);
  4924     src   : C(read);
  4925     MS    : R;
  4926 %}
  4928 // Integer Store Zero to Memory
  4929 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4930     single_instruction;
  4931     mem   : R(read);
  4932     MS    : R;
  4933 %}
  4935 // Special Stack Slot Store
  4936 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4937     single_instruction;
  4938     stkSlot : R(read);
  4939     src     : C(read);
  4940     MS      : R;
  4941 %}
  4943 // Special Stack Slot Store
  4944 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4945     instruction_count(2); multiple_bundles;
  4946     stkSlot : R(read);
  4947     src     : C(read);
  4948     MS      : R(2);
  4949 %}
  4951 // Float Store
  4952 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4953     single_instruction;
  4954     mem : R(read);
  4955     src : C(read);
  4956     MS  : R;
  4957 %}
  4959 // Float Store
  4960 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4961     single_instruction;
  4962     mem : R(read);
  4963     MS  : R;
  4964 %}
  4966 // Double Store
  4967 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4968     instruction_count(1);
  4969     mem : R(read);
  4970     src : C(read);
  4971     MS  : R;
  4972 %}
  4974 // Double Store
  4975 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4976     single_instruction;
  4977     mem : R(read);
  4978     MS  : R;
  4979 %}
  4981 // Special Stack Slot Float Store
  4982 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4983     single_instruction;
  4984     stkSlot : R(read);
  4985     src     : C(read);
  4986     MS      : R;
  4987 %}
  4989 // Special Stack Slot Double Store
  4990 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4991     single_instruction;
  4992     stkSlot : R(read);
  4993     src     : C(read);
  4994     MS      : R;
  4995 %}
  4997 // Integer Load (when sign bit propagation not needed)
  4998 pipe_class iload_mem(iRegI dst, memory mem) %{
  4999     single_instruction;
  5000     mem : R(read);
  5001     dst : C(write);
  5002     MS  : R;
  5003 %}
  5005 // Integer Load from stack operand
  5006 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5007     single_instruction;
  5008     mem : R(read);
  5009     dst : C(write);
  5010     MS  : R;
  5011 %}
  5013 // Integer Load (when sign bit propagation or masking is needed)
  5014 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5015     single_instruction;
  5016     mem : R(read);
  5017     dst : M(write);
  5018     MS  : R;
  5019 %}
  5021 // Float Load
  5022 pipe_class floadF_mem(regF dst, memory mem) %{
  5023     single_instruction;
  5024     mem : R(read);
  5025     dst : M(write);
  5026     MS  : R;
  5027 %}
  5029 // Float Load
  5030 pipe_class floadD_mem(regD dst, memory mem) %{
  5031     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5032     mem : R(read);
  5033     dst : M(write);
  5034     MS  : R;
  5035 %}
  5037 // Float Load
  5038 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5039     single_instruction;
  5040     stkSlot : R(read);
  5041     dst : M(write);
  5042     MS  : R;
  5043 %}
  5045 // Float Load
  5046 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5047     single_instruction;
  5048     stkSlot : R(read);
  5049     dst : M(write);
  5050     MS  : R;
  5051 %}
  5053 // Memory Nop
  5054 pipe_class mem_nop() %{
  5055     single_instruction;
  5056     MS  : R;
  5057 %}
  5059 pipe_class sethi(iRegP dst, immI src) %{
  5060     single_instruction;
  5061     dst  : E(write);
  5062     IALU : R;
  5063 %}
  5065 pipe_class loadPollP(iRegP poll) %{
  5066     single_instruction;
  5067     poll : R(read);
  5068     MS   : R;
  5069 %}
  5071 pipe_class br(Universe br, label labl) %{
  5072     single_instruction_with_delay_slot;
  5073     BR  : R;
  5074 %}
  5076 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5077     single_instruction_with_delay_slot;
  5078     cr    : E(read);
  5079     BR    : R;
  5080 %}
  5082 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5083     single_instruction_with_delay_slot;
  5084     op1 : E(read);
  5085     BR  : R;
  5086     MS  : R;
  5087 %}
  5089 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5090     single_instruction_with_delay_slot;
  5091     cr    : E(read);
  5092     BR    : R;
  5093 %}
  5095 pipe_class br_nop() %{
  5096     single_instruction;
  5097     BR  : R;
  5098 %}
  5100 pipe_class simple_call(method meth) %{
  5101     instruction_count(2); multiple_bundles; force_serialization;
  5102     fixed_latency(100);
  5103     BR  : R(1);
  5104     MS  : R(1);
  5105     A0  : R(1);
  5106 %}
  5108 pipe_class compiled_call(method meth) %{
  5109     instruction_count(1); multiple_bundles; force_serialization;
  5110     fixed_latency(100);
  5111     MS  : R(1);
  5112 %}
  5114 pipe_class call(method meth) %{
  5115     instruction_count(0); multiple_bundles; force_serialization;
  5116     fixed_latency(100);
  5117 %}
  5119 pipe_class tail_call(Universe ignore, label labl) %{
  5120     single_instruction; has_delay_slot;
  5121     fixed_latency(100);
  5122     BR  : R(1);
  5123     MS  : R(1);
  5124 %}
  5126 pipe_class ret(Universe ignore) %{
  5127     single_instruction; has_delay_slot;
  5128     BR  : R(1);
  5129     MS  : R(1);
  5130 %}
  5132 pipe_class ret_poll(g3RegP poll) %{
  5133     instruction_count(3); has_delay_slot;
  5134     poll : E(read);
  5135     MS   : R;
  5136 %}
  5138 // The real do-nothing guy
  5139 pipe_class empty( ) %{
  5140     instruction_count(0);
  5141 %}
  5143 pipe_class long_memory_op() %{
  5144     instruction_count(0); multiple_bundles; force_serialization;
  5145     fixed_latency(25);
  5146     MS  : R(1);
  5147 %}
  5149 // Check-cast
  5150 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5151     array : R(read);
  5152     match  : R(read);
  5153     IALU   : R(2);
  5154     BR     : R(2);
  5155     MS     : R;
  5156 %}
  5158 // Convert FPU flags into +1,0,-1
  5159 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5160     src1  : E(read);
  5161     src2  : E(read);
  5162     dst   : E(write);
  5163     FA    : R;
  5164     MS    : R(2);
  5165     BR    : R(2);
  5166 %}
  5168 // Compare for p < q, and conditionally add y
  5169 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5170     p     : E(read);
  5171     q     : E(read);
  5172     y     : E(read);
  5173     IALU  : R(3)
  5174 %}
  5176 // Perform a compare, then move conditionally in a branch delay slot.
  5177 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5178     src2   : E(read);
  5179     srcdst : E(read);
  5180     IALU   : R;
  5181     BR     : R;
  5182 %}
  5184 // Define the class for the Nop node
  5185 define %{
  5186    MachNop = ialu_nop;
  5187 %}
  5189 %}
  5191 //----------INSTRUCTIONS-------------------------------------------------------
  5193 //------------Special Stack Slot instructions - no match rules-----------------
  5194 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5195   // No match rule to avoid chain rule match.
  5196   effect(DEF dst, USE src);
  5197   ins_cost(MEMORY_REF_COST);
  5198   size(4);
  5199   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5200   opcode(Assembler::ldf_op3);
  5201   ins_encode(simple_form3_mem_reg(src, dst));
  5202   ins_pipe(floadF_stk);
  5203 %}
  5205 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5206   // No match rule to avoid chain rule match.
  5207   effect(DEF dst, USE src);
  5208   ins_cost(MEMORY_REF_COST);
  5209   size(4);
  5210   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5211   opcode(Assembler::lddf_op3);
  5212   ins_encode(simple_form3_mem_reg(src, dst));
  5213   ins_pipe(floadD_stk);
  5214 %}
  5216 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5217   // No match rule to avoid chain rule match.
  5218   effect(DEF dst, USE src);
  5219   ins_cost(MEMORY_REF_COST);
  5220   size(4);
  5221   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5222   opcode(Assembler::stf_op3);
  5223   ins_encode(simple_form3_mem_reg(dst, src));
  5224   ins_pipe(fstoreF_stk_reg);
  5225 %}
  5227 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5228   // No match rule to avoid chain rule match.
  5229   effect(DEF dst, USE src);
  5230   ins_cost(MEMORY_REF_COST);
  5231   size(4);
  5232   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5233   opcode(Assembler::stdf_op3);
  5234   ins_encode(simple_form3_mem_reg(dst, src));
  5235   ins_pipe(fstoreD_stk_reg);
  5236 %}
  5238 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5239   effect(DEF dst, USE src);
  5240   ins_cost(MEMORY_REF_COST*2);
  5241   size(8);
  5242   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5243             "STW    R_G0,$dst.lo" %}
  5244   opcode(Assembler::stw_op3);
  5245   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5246   ins_pipe(lstoreI_stk_reg);
  5247 %}
  5249 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5250   // No match rule to avoid chain rule match.
  5251   effect(DEF dst, USE src);
  5252   ins_cost(MEMORY_REF_COST);
  5253   size(4);
  5254   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5255   opcode(Assembler::stx_op3);
  5256   ins_encode(simple_form3_mem_reg( dst, src ) );
  5257   ins_pipe(istore_stk_reg);
  5258 %}
  5260 //---------- Chain stack slots between similar types --------
  5262 // Load integer from stack slot
  5263 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5264   match(Set dst src);
  5265   ins_cost(MEMORY_REF_COST);
  5267   size(4);
  5268   format %{ "LDUW   $src,$dst\t!stk" %}
  5269   opcode(Assembler::lduw_op3);
  5270   ins_encode(simple_form3_mem_reg( src, dst ) );
  5271   ins_pipe(iload_mem);
  5272 %}
  5274 // Store integer to stack slot
  5275 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5276   match(Set dst src);
  5277   ins_cost(MEMORY_REF_COST);
  5279   size(4);
  5280   format %{ "STW    $src,$dst\t!stk" %}
  5281   opcode(Assembler::stw_op3);
  5282   ins_encode(simple_form3_mem_reg( dst, src ) );
  5283   ins_pipe(istore_mem_reg);
  5284 %}
  5286 // Load long from stack slot
  5287 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5288   match(Set dst src);
  5290   ins_cost(MEMORY_REF_COST);
  5291   size(4);
  5292   format %{ "LDX    $src,$dst\t! long" %}
  5293   opcode(Assembler::ldx_op3);
  5294   ins_encode(simple_form3_mem_reg( src, dst ) );
  5295   ins_pipe(iload_mem);
  5296 %}
  5298 // Store long to stack slot
  5299 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5300   match(Set dst src);
  5302   ins_cost(MEMORY_REF_COST);
  5303   size(4);
  5304   format %{ "STX    $src,$dst\t! long" %}
  5305   opcode(Assembler::stx_op3);
  5306   ins_encode(simple_form3_mem_reg( dst, src ) );
  5307   ins_pipe(istore_mem_reg);
  5308 %}
  5310 #ifdef _LP64
  5311 // Load pointer from stack slot, 64-bit encoding
  5312 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5313   match(Set dst src);
  5314   ins_cost(MEMORY_REF_COST);
  5315   size(4);
  5316   format %{ "LDX    $src,$dst\t!ptr" %}
  5317   opcode(Assembler::ldx_op3);
  5318   ins_encode(simple_form3_mem_reg( src, dst ) );
  5319   ins_pipe(iload_mem);
  5320 %}
  5322 // Store pointer to stack slot
  5323 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5324   match(Set dst src);
  5325   ins_cost(MEMORY_REF_COST);
  5326   size(4);
  5327   format %{ "STX    $src,$dst\t!ptr" %}
  5328   opcode(Assembler::stx_op3);
  5329   ins_encode(simple_form3_mem_reg( dst, src ) );
  5330   ins_pipe(istore_mem_reg);
  5331 %}
  5332 #else // _LP64
  5333 // Load pointer from stack slot, 32-bit encoding
  5334 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5335   match(Set dst src);
  5336   ins_cost(MEMORY_REF_COST);
  5337   format %{ "LDUW   $src,$dst\t!ptr" %}
  5338   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5339   ins_encode(simple_form3_mem_reg( src, dst ) );
  5340   ins_pipe(iload_mem);
  5341 %}
  5343 // Store pointer to stack slot
  5344 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5345   match(Set dst src);
  5346   ins_cost(MEMORY_REF_COST);
  5347   format %{ "STW    $src,$dst\t!ptr" %}
  5348   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5349   ins_encode(simple_form3_mem_reg( dst, src ) );
  5350   ins_pipe(istore_mem_reg);
  5351 %}
  5352 #endif // _LP64
  5354 //------------Special Nop instructions for bundling - no match rules-----------
  5355 // Nop using the A0 functional unit
  5356 instruct Nop_A0() %{
  5357   ins_cost(0);
  5359   format %{ "NOP    ! Alu Pipeline" %}
  5360   opcode(Assembler::or_op3, Assembler::arith_op);
  5361   ins_encode( form2_nop() );
  5362   ins_pipe(ialu_nop_A0);
  5363 %}
  5365 // Nop using the A1 functional unit
  5366 instruct Nop_A1( ) %{
  5367   ins_cost(0);
  5369   format %{ "NOP    ! Alu Pipeline" %}
  5370   opcode(Assembler::or_op3, Assembler::arith_op);
  5371   ins_encode( form2_nop() );
  5372   ins_pipe(ialu_nop_A1);
  5373 %}
  5375 // Nop using the memory functional unit
  5376 instruct Nop_MS( ) %{
  5377   ins_cost(0);
  5379   format %{ "NOP    ! Memory Pipeline" %}
  5380   ins_encode( emit_mem_nop );
  5381   ins_pipe(mem_nop);
  5382 %}
  5384 // Nop using the floating add functional unit
  5385 instruct Nop_FA( ) %{
  5386   ins_cost(0);
  5388   format %{ "NOP    ! Floating Add Pipeline" %}
  5389   ins_encode( emit_fadd_nop );
  5390   ins_pipe(fadd_nop);
  5391 %}
  5393 // Nop using the branch functional unit
  5394 instruct Nop_BR( ) %{
  5395   ins_cost(0);
  5397   format %{ "NOP    ! Branch Pipeline" %}
  5398   ins_encode( emit_br_nop );
  5399   ins_pipe(br_nop);
  5400 %}
  5402 //----------Load/Store/Move Instructions---------------------------------------
  5403 //----------Load Instructions--------------------------------------------------
  5404 // Load Byte (8bit signed)
  5405 instruct loadB(iRegI dst, memory mem) %{
  5406   match(Set dst (LoadB mem));
  5407   ins_cost(MEMORY_REF_COST);
  5409   size(4);
  5410   format %{ "LDSB   $mem,$dst\t! byte" %}
  5411   ins_encode %{
  5412     __ ldsb($mem$$Address, $dst$$Register);
  5413   %}
  5414   ins_pipe(iload_mask_mem);
  5415 %}
  5417 // Load Byte (8bit signed) into a Long Register
  5418 instruct loadB2L(iRegL dst, memory mem) %{
  5419   match(Set dst (ConvI2L (LoadB mem)));
  5420   ins_cost(MEMORY_REF_COST);
  5422   size(4);
  5423   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5424   ins_encode %{
  5425     __ ldsb($mem$$Address, $dst$$Register);
  5426   %}
  5427   ins_pipe(iload_mask_mem);
  5428 %}
  5430 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5431 instruct loadUB(iRegI dst, memory mem) %{
  5432   match(Set dst (LoadUB mem));
  5433   ins_cost(MEMORY_REF_COST);
  5435   size(4);
  5436   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5437   ins_encode %{
  5438     __ ldub($mem$$Address, $dst$$Register);
  5439   %}
  5440   ins_pipe(iload_mem);
  5441 %}
  5443 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5444 instruct loadUB2L(iRegL dst, memory mem) %{
  5445   match(Set dst (ConvI2L (LoadUB mem)));
  5446   ins_cost(MEMORY_REF_COST);
  5448   size(4);
  5449   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5450   ins_encode %{
  5451     __ ldub($mem$$Address, $dst$$Register);
  5452   %}
  5453   ins_pipe(iload_mem);
  5454 %}
  5456 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5457 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5458   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5459   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5461   size(2*4);
  5462   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5463             "AND    $dst,$mask,$dst" %}
  5464   ins_encode %{
  5465     __ ldub($mem$$Address, $dst$$Register);
  5466     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5467   %}
  5468   ins_pipe(iload_mem);
  5469 %}
  5471 // Load Short (16bit signed)
  5472 instruct loadS(iRegI dst, memory mem) %{
  5473   match(Set dst (LoadS mem));
  5474   ins_cost(MEMORY_REF_COST);
  5476   size(4);
  5477   format %{ "LDSH   $mem,$dst\t! short" %}
  5478   ins_encode %{
  5479     __ ldsh($mem$$Address, $dst$$Register);
  5480   %}
  5481   ins_pipe(iload_mask_mem);
  5482 %}
  5484 // Load Short (16 bit signed) to Byte (8 bit signed)
  5485 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5486   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5487   ins_cost(MEMORY_REF_COST);
  5489   size(4);
  5491   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5492   ins_encode %{
  5493     __ ldsb($mem$$Address, $dst$$Register, 1);
  5494   %}
  5495   ins_pipe(iload_mask_mem);
  5496 %}
  5498 // Load Short (16bit signed) into a Long Register
  5499 instruct loadS2L(iRegL dst, memory mem) %{
  5500   match(Set dst (ConvI2L (LoadS mem)));
  5501   ins_cost(MEMORY_REF_COST);
  5503   size(4);
  5504   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5505   ins_encode %{
  5506     __ ldsh($mem$$Address, $dst$$Register);
  5507   %}
  5508   ins_pipe(iload_mask_mem);
  5509 %}
  5511 // Load Unsigned Short/Char (16bit UNsigned)
  5512 instruct loadUS(iRegI dst, memory mem) %{
  5513   match(Set dst (LoadUS mem));
  5514   ins_cost(MEMORY_REF_COST);
  5516   size(4);
  5517   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5518   ins_encode %{
  5519     __ lduh($mem$$Address, $dst$$Register);
  5520   %}
  5521   ins_pipe(iload_mem);
  5522 %}
  5524 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5525 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5526   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5527   ins_cost(MEMORY_REF_COST);
  5529   size(4);
  5530   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5531   ins_encode %{
  5532     __ ldsb($mem$$Address, $dst$$Register, 1);
  5533   %}
  5534   ins_pipe(iload_mask_mem);
  5535 %}
  5537 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5538 instruct loadUS2L(iRegL dst, memory mem) %{
  5539   match(Set dst (ConvI2L (LoadUS mem)));
  5540   ins_cost(MEMORY_REF_COST);
  5542   size(4);
  5543   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5544   ins_encode %{
  5545     __ lduh($mem$$Address, $dst$$Register);
  5546   %}
  5547   ins_pipe(iload_mem);
  5548 %}
  5550 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5551 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5552   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5553   ins_cost(MEMORY_REF_COST);
  5555   size(4);
  5556   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5557   ins_encode %{
  5558     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5559   %}
  5560   ins_pipe(iload_mem);
  5561 %}
  5563 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5564 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5565   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5566   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5568   size(2*4);
  5569   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5570             "AND    $dst,$mask,$dst" %}
  5571   ins_encode %{
  5572     Register Rdst = $dst$$Register;
  5573     __ lduh($mem$$Address, Rdst);
  5574     __ and3(Rdst, $mask$$constant, Rdst);
  5575   %}
  5576   ins_pipe(iload_mem);
  5577 %}
  5579 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5580 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5581   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5582   effect(TEMP dst, TEMP tmp);
  5583   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5585   size((3+1)*4);  // set may use two instructions.
  5586   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5587             "SET    $mask,$tmp\n\t"
  5588             "AND    $dst,$tmp,$dst" %}
  5589   ins_encode %{
  5590     Register Rdst = $dst$$Register;
  5591     Register Rtmp = $tmp$$Register;
  5592     __ lduh($mem$$Address, Rdst);
  5593     __ set($mask$$constant, Rtmp);
  5594     __ and3(Rdst, Rtmp, Rdst);
  5595   %}
  5596   ins_pipe(iload_mem);
  5597 %}
  5599 // Load Integer
  5600 instruct loadI(iRegI dst, memory mem) %{
  5601   match(Set dst (LoadI mem));
  5602   ins_cost(MEMORY_REF_COST);
  5604   size(4);
  5605   format %{ "LDUW   $mem,$dst\t! int" %}
  5606   ins_encode %{
  5607     __ lduw($mem$$Address, $dst$$Register);
  5608   %}
  5609   ins_pipe(iload_mem);
  5610 %}
  5612 // Load Integer to Byte (8 bit signed)
  5613 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5614   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5615   ins_cost(MEMORY_REF_COST);
  5617   size(4);
  5619   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5620   ins_encode %{
  5621     __ ldsb($mem$$Address, $dst$$Register, 3);
  5622   %}
  5623   ins_pipe(iload_mask_mem);
  5624 %}
  5626 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5627 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5628   match(Set dst (AndI (LoadI mem) mask));
  5629   ins_cost(MEMORY_REF_COST);
  5631   size(4);
  5633   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5634   ins_encode %{
  5635     __ ldub($mem$$Address, $dst$$Register, 3);
  5636   %}
  5637   ins_pipe(iload_mask_mem);
  5638 %}
  5640 // Load Integer to Short (16 bit signed)
  5641 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5642   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5643   ins_cost(MEMORY_REF_COST);
  5645   size(4);
  5647   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5648   ins_encode %{
  5649     __ ldsh($mem$$Address, $dst$$Register, 2);
  5650   %}
  5651   ins_pipe(iload_mask_mem);
  5652 %}
  5654 // Load Integer to Unsigned Short (16 bit UNsigned)
  5655 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5656   match(Set dst (AndI (LoadI mem) mask));
  5657   ins_cost(MEMORY_REF_COST);
  5659   size(4);
  5661   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5662   ins_encode %{
  5663     __ lduh($mem$$Address, $dst$$Register, 2);
  5664   %}
  5665   ins_pipe(iload_mask_mem);
  5666 %}
  5668 // Load Integer into a Long Register
  5669 instruct loadI2L(iRegL dst, memory mem) %{
  5670   match(Set dst (ConvI2L (LoadI mem)));
  5671   ins_cost(MEMORY_REF_COST);
  5673   size(4);
  5674   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5675   ins_encode %{
  5676     __ ldsw($mem$$Address, $dst$$Register);
  5677   %}
  5678   ins_pipe(iload_mask_mem);
  5679 %}
  5681 // Load Integer with mask 0xFF into a Long Register
  5682 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5683   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5684   ins_cost(MEMORY_REF_COST);
  5686   size(4);
  5687   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5688   ins_encode %{
  5689     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5690   %}
  5691   ins_pipe(iload_mem);
  5692 %}
  5694 // Load Integer with mask 0xFFFF into a Long Register
  5695 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5696   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5697   ins_cost(MEMORY_REF_COST);
  5699   size(4);
  5700   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5701   ins_encode %{
  5702     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5703   %}
  5704   ins_pipe(iload_mem);
  5705 %}
  5707 // Load Integer with a 13-bit mask into a Long Register
  5708 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5709   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5710   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5712   size(2*4);
  5713   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5714             "AND    $dst,$mask,$dst" %}
  5715   ins_encode %{
  5716     Register Rdst = $dst$$Register;
  5717     __ lduw($mem$$Address, Rdst);
  5718     __ and3(Rdst, $mask$$constant, Rdst);
  5719   %}
  5720   ins_pipe(iload_mem);
  5721 %}
  5723 // Load Integer with a 32-bit mask into a Long Register
  5724 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5725   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5726   effect(TEMP dst, TEMP tmp);
  5727   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5729   size((3+1)*4);  // set may use two instructions.
  5730   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5731             "SET    $mask,$tmp\n\t"
  5732             "AND    $dst,$tmp,$dst" %}
  5733   ins_encode %{
  5734     Register Rdst = $dst$$Register;
  5735     Register Rtmp = $tmp$$Register;
  5736     __ lduw($mem$$Address, Rdst);
  5737     __ set($mask$$constant, Rtmp);
  5738     __ and3(Rdst, Rtmp, Rdst);
  5739   %}
  5740   ins_pipe(iload_mem);
  5741 %}
  5743 // Load Unsigned Integer into a Long Register
  5744 instruct loadUI2L(iRegL dst, memory mem) %{
  5745   match(Set dst (LoadUI2L mem));
  5746   ins_cost(MEMORY_REF_COST);
  5748   size(4);
  5749   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5750   ins_encode %{
  5751     __ lduw($mem$$Address, $dst$$Register);
  5752   %}
  5753   ins_pipe(iload_mem);
  5754 %}
  5756 // Load Long - aligned
  5757 instruct loadL(iRegL dst, memory mem ) %{
  5758   match(Set dst (LoadL mem));
  5759   ins_cost(MEMORY_REF_COST);
  5761   size(4);
  5762   format %{ "LDX    $mem,$dst\t! long" %}
  5763   ins_encode %{
  5764     __ ldx($mem$$Address, $dst$$Register);
  5765   %}
  5766   ins_pipe(iload_mem);
  5767 %}
  5769 // Load Long - UNaligned
  5770 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5771   match(Set dst (LoadL_unaligned mem));
  5772   effect(KILL tmp);
  5773   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5774   size(16);
  5775   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5776           "\tLDUW   $mem  ,$dst\n"
  5777           "\tSLLX   #32, $dst, $dst\n"
  5778           "\tOR     $dst, R_O7, $dst" %}
  5779   opcode(Assembler::lduw_op3);
  5780   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5781   ins_pipe(iload_mem);
  5782 %}
  5784 // Load Aligned Packed Byte into a Double Register
  5785 instruct loadA8B(regD dst, memory mem) %{
  5786   match(Set dst (Load8B mem));
  5787   ins_cost(MEMORY_REF_COST);
  5788   size(4);
  5789   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5790   opcode(Assembler::lddf_op3);
  5791   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5792   ins_pipe(floadD_mem);
  5793 %}
  5795 // Load Aligned Packed Char into a Double Register
  5796 instruct loadA4C(regD dst, memory mem) %{
  5797   match(Set dst (Load4C mem));
  5798   ins_cost(MEMORY_REF_COST);
  5799   size(4);
  5800   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5801   opcode(Assembler::lddf_op3);
  5802   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5803   ins_pipe(floadD_mem);
  5804 %}
  5806 // Load Aligned Packed Short into a Double Register
  5807 instruct loadA4S(regD dst, memory mem) %{
  5808   match(Set dst (Load4S mem));
  5809   ins_cost(MEMORY_REF_COST);
  5810   size(4);
  5811   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5812   opcode(Assembler::lddf_op3);
  5813   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5814   ins_pipe(floadD_mem);
  5815 %}
  5817 // Load Aligned Packed Int into a Double Register
  5818 instruct loadA2I(regD dst, memory mem) %{
  5819   match(Set dst (Load2I mem));
  5820   ins_cost(MEMORY_REF_COST);
  5821   size(4);
  5822   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5823   opcode(Assembler::lddf_op3);
  5824   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5825   ins_pipe(floadD_mem);
  5826 %}
  5828 // Load Range
  5829 instruct loadRange(iRegI dst, memory mem) %{
  5830   match(Set dst (LoadRange mem));
  5831   ins_cost(MEMORY_REF_COST);
  5833   size(4);
  5834   format %{ "LDUW   $mem,$dst\t! range" %}
  5835   opcode(Assembler::lduw_op3);
  5836   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5837   ins_pipe(iload_mem);
  5838 %}
  5840 // Load Integer into %f register (for fitos/fitod)
  5841 instruct loadI_freg(regF dst, memory mem) %{
  5842   match(Set dst (LoadI mem));
  5843   ins_cost(MEMORY_REF_COST);
  5844   size(4);
  5846   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5847   opcode(Assembler::ldf_op3);
  5848   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5849   ins_pipe(floadF_mem);
  5850 %}
  5852 // Load Pointer
  5853 instruct loadP(iRegP dst, memory mem) %{
  5854   match(Set dst (LoadP mem));
  5855   ins_cost(MEMORY_REF_COST);
  5856   size(4);
  5858 #ifndef _LP64
  5859   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5860   ins_encode %{
  5861     __ lduw($mem$$Address, $dst$$Register);
  5862   %}
  5863 #else
  5864   format %{ "LDX    $mem,$dst\t! ptr" %}
  5865   ins_encode %{
  5866     __ ldx($mem$$Address, $dst$$Register);
  5867   %}
  5868 #endif
  5869   ins_pipe(iload_mem);
  5870 %}
  5872 // Load Compressed Pointer
  5873 instruct loadN(iRegN dst, memory mem) %{
  5874   match(Set dst (LoadN mem));
  5875   ins_cost(MEMORY_REF_COST);
  5876   size(4);
  5878   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5879   ins_encode %{
  5880     __ lduw($mem$$Address, $dst$$Register);
  5881   %}
  5882   ins_pipe(iload_mem);
  5883 %}
  5885 // Load Klass Pointer
  5886 instruct loadKlass(iRegP dst, memory mem) %{
  5887   match(Set dst (LoadKlass mem));
  5888   ins_cost(MEMORY_REF_COST);
  5889   size(4);
  5891 #ifndef _LP64
  5892   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5893   ins_encode %{
  5894     __ lduw($mem$$Address, $dst$$Register);
  5895   %}
  5896 #else
  5897   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5898   ins_encode %{
  5899     __ ldx($mem$$Address, $dst$$Register);
  5900   %}
  5901 #endif
  5902   ins_pipe(iload_mem);
  5903 %}
  5905 // Load narrow Klass Pointer
  5906 instruct loadNKlass(iRegN dst, memory mem) %{
  5907   match(Set dst (LoadNKlass mem));
  5908   ins_cost(MEMORY_REF_COST);
  5909   size(4);
  5911   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5912   ins_encode %{
  5913     __ lduw($mem$$Address, $dst$$Register);
  5914   %}
  5915   ins_pipe(iload_mem);
  5916 %}
  5918 // Load Double
  5919 instruct loadD(regD dst, memory mem) %{
  5920   match(Set dst (LoadD mem));
  5921   ins_cost(MEMORY_REF_COST);
  5923   size(4);
  5924   format %{ "LDDF   $mem,$dst" %}
  5925   opcode(Assembler::lddf_op3);
  5926   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5927   ins_pipe(floadD_mem);
  5928 %}
  5930 // Load Double - UNaligned
  5931 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5932   match(Set dst (LoadD_unaligned mem));
  5933   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5934   size(8);
  5935   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5936           "\tLDF    $mem+4,$dst.lo\t!" %}
  5937   opcode(Assembler::ldf_op3);
  5938   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5939   ins_pipe(iload_mem);
  5940 %}
  5942 // Load Float
  5943 instruct loadF(regF dst, memory mem) %{
  5944   match(Set dst (LoadF mem));
  5945   ins_cost(MEMORY_REF_COST);
  5947   size(4);
  5948   format %{ "LDF    $mem,$dst" %}
  5949   opcode(Assembler::ldf_op3);
  5950   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5951   ins_pipe(floadF_mem);
  5952 %}
  5954 // Load Constant
  5955 instruct loadConI( iRegI dst, immI src ) %{
  5956   match(Set dst src);
  5957   ins_cost(DEFAULT_COST * 3/2);
  5958   format %{ "SET    $src,$dst" %}
  5959   ins_encode( Set32(src, dst) );
  5960   ins_pipe(ialu_hi_lo_reg);
  5961 %}
  5963 instruct loadConI13( iRegI dst, immI13 src ) %{
  5964   match(Set dst src);
  5966   size(4);
  5967   format %{ "MOV    $src,$dst" %}
  5968   ins_encode( Set13( src, dst ) );
  5969   ins_pipe(ialu_imm);
  5970 %}
  5972 instruct loadConP(iRegP dst, immP src) %{
  5973   match(Set dst src);
  5974   ins_cost(DEFAULT_COST * 3/2);
  5975   format %{ "SET    $src,$dst\t!ptr" %}
  5976   // This rule does not use "expand" unlike loadConI because then
  5977   // the result type is not known to be an Oop.  An ADLC
  5978   // enhancement will be needed to make that work - not worth it!
  5980   ins_encode( SetPtr( src, dst ) );
  5981   ins_pipe(loadConP);
  5983 %}
  5985 instruct loadConP0(iRegP dst, immP0 src) %{
  5986   match(Set dst src);
  5988   size(4);
  5989   format %{ "CLR    $dst\t!ptr" %}
  5990   ins_encode( SetNull( dst ) );
  5991   ins_pipe(ialu_imm);
  5992 %}
  5994 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5995   match(Set dst src);
  5996   ins_cost(DEFAULT_COST);
  5997   format %{ "SET    $src,$dst\t!ptr" %}
  5998   ins_encode %{
  5999     AddressLiteral polling_page(os::get_polling_page());
  6000     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6001   %}
  6002   ins_pipe(loadConP_poll);
  6003 %}
  6005 instruct loadConN0(iRegN dst, immN0 src) %{
  6006   match(Set dst src);
  6008   size(4);
  6009   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6010   ins_encode( SetNull( dst ) );
  6011   ins_pipe(ialu_imm);
  6012 %}
  6014 instruct loadConN(iRegN dst, immN src) %{
  6015   match(Set dst src);
  6016   ins_cost(DEFAULT_COST * 3/2);
  6017   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6018   ins_encode %{
  6019     Register dst = $dst$$Register;
  6020     __ set_narrow_oop((jobject)$src$$constant, dst);
  6021   %}
  6022   ins_pipe(ialu_hi_lo_reg);
  6023 %}
  6025 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  6026   // %%% maybe this should work like loadConD
  6027   match(Set dst src);
  6028   effect(KILL tmp);
  6029   ins_cost(DEFAULT_COST * 4);
  6030   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  6031   ins_encode( LdImmL(src, dst, tmp) );
  6032   ins_pipe(loadConL);
  6033 %}
  6035 instruct loadConL0( iRegL dst, immL0 src ) %{
  6036   match(Set dst src);
  6037   ins_cost(DEFAULT_COST);
  6038   size(4);
  6039   format %{ "CLR    $dst\t! long" %}
  6040   ins_encode( Set13( src, dst ) );
  6041   ins_pipe(ialu_imm);
  6042 %}
  6044 instruct loadConL13( iRegL dst, immL13 src ) %{
  6045   match(Set dst src);
  6046   ins_cost(DEFAULT_COST * 2);
  6048   size(4);
  6049   format %{ "MOV    $src,$dst\t! long" %}
  6050   ins_encode( Set13( src, dst ) );
  6051   ins_pipe(ialu_imm);
  6052 %}
  6054 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  6055   match(Set dst src);
  6056   effect(KILL tmp);
  6058 #ifdef _LP64
  6059   size(8*4);
  6060 #else
  6061   size(2*4);
  6062 #endif
  6064   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  6065             "LDF    [$tmp+lo(&$src)],$dst" %}
  6066   ins_encode %{
  6067     address float_address = __ float_constant($src$$constant);
  6068     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  6069     AddressLiteral addrlit(float_address, rspec);
  6071     __ sethi(addrlit, $tmp$$Register);
  6072     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6073   %}
  6074   ins_pipe(loadConFD);
  6075 %}
  6077 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  6078   match(Set dst src);
  6079   effect(KILL tmp);
  6081 #ifdef _LP64
  6082   size(8*4);
  6083 #else
  6084   size(2*4);
  6085 #endif
  6087   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  6088             "LDDF   [$tmp+lo(&$src)],$dst" %}
  6089   ins_encode %{
  6090     address double_address = __ double_constant($src$$constant);
  6091     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  6092     AddressLiteral addrlit(double_address, rspec);
  6094     __ sethi(addrlit, $tmp$$Register);
  6095     // XXX This is a quick fix for 6833573.
  6096     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6097     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  6098   %}
  6099   ins_pipe(loadConFD);
  6100 %}
  6102 // Prefetch instructions.
  6103 // Must be safe to execute with invalid address (cannot fault).
  6105 instruct prefetchr( memory mem ) %{
  6106   match( PrefetchRead mem );
  6107   ins_cost(MEMORY_REF_COST);
  6109   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6110   opcode(Assembler::prefetch_op3);
  6111   ins_encode( form3_mem_prefetch_read( mem ) );
  6112   ins_pipe(iload_mem);
  6113 %}
  6115 instruct prefetchw( memory mem ) %{
  6116   predicate(AllocatePrefetchStyle != 3 );
  6117   match( PrefetchWrite mem );
  6118   ins_cost(MEMORY_REF_COST);
  6120   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6121   opcode(Assembler::prefetch_op3);
  6122   ins_encode( form3_mem_prefetch_write( mem ) );
  6123   ins_pipe(iload_mem);
  6124 %}
  6126 // Use BIS instruction to prefetch.
  6127 instruct prefetchw_bis( memory mem ) %{
  6128   predicate(AllocatePrefetchStyle == 3);
  6129   match( PrefetchWrite mem );
  6130   ins_cost(MEMORY_REF_COST);
  6132   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6133   ins_encode %{
  6134      Register base = as_Register($mem$$base);
  6135      int disp = $mem$$disp;
  6136      if (disp != 0) {
  6137        __ add(base, AllocatePrefetchStepSize, base);
  6139      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6140   %}
  6141   ins_pipe(istore_mem_reg);
  6142 %}
  6144 //----------Store Instructions-------------------------------------------------
  6145 // Store Byte
  6146 instruct storeB(memory mem, iRegI src) %{
  6147   match(Set mem (StoreB mem src));
  6148   ins_cost(MEMORY_REF_COST);
  6150   size(4);
  6151   format %{ "STB    $src,$mem\t! byte" %}
  6152   opcode(Assembler::stb_op3);
  6153   ins_encode(simple_form3_mem_reg( mem, src ) );
  6154   ins_pipe(istore_mem_reg);
  6155 %}
  6157 instruct storeB0(memory mem, immI0 src) %{
  6158   match(Set mem (StoreB mem src));
  6159   ins_cost(MEMORY_REF_COST);
  6161   size(4);
  6162   format %{ "STB    $src,$mem\t! byte" %}
  6163   opcode(Assembler::stb_op3);
  6164   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6165   ins_pipe(istore_mem_zero);
  6166 %}
  6168 instruct storeCM0(memory mem, immI0 src) %{
  6169   match(Set mem (StoreCM mem src));
  6170   ins_cost(MEMORY_REF_COST);
  6172   size(4);
  6173   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6174   opcode(Assembler::stb_op3);
  6175   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6176   ins_pipe(istore_mem_zero);
  6177 %}
  6179 // Store Char/Short
  6180 instruct storeC(memory mem, iRegI src) %{
  6181   match(Set mem (StoreC mem src));
  6182   ins_cost(MEMORY_REF_COST);
  6184   size(4);
  6185   format %{ "STH    $src,$mem\t! short" %}
  6186   opcode(Assembler::sth_op3);
  6187   ins_encode(simple_form3_mem_reg( mem, src ) );
  6188   ins_pipe(istore_mem_reg);
  6189 %}
  6191 instruct storeC0(memory mem, immI0 src) %{
  6192   match(Set mem (StoreC mem src));
  6193   ins_cost(MEMORY_REF_COST);
  6195   size(4);
  6196   format %{ "STH    $src,$mem\t! short" %}
  6197   opcode(Assembler::sth_op3);
  6198   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6199   ins_pipe(istore_mem_zero);
  6200 %}
  6202 // Store Integer
  6203 instruct storeI(memory mem, iRegI src) %{
  6204   match(Set mem (StoreI mem src));
  6205   ins_cost(MEMORY_REF_COST);
  6207   size(4);
  6208   format %{ "STW    $src,$mem" %}
  6209   opcode(Assembler::stw_op3);
  6210   ins_encode(simple_form3_mem_reg( mem, src ) );
  6211   ins_pipe(istore_mem_reg);
  6212 %}
  6214 // Store Long
  6215 instruct storeL(memory mem, iRegL src) %{
  6216   match(Set mem (StoreL mem src));
  6217   ins_cost(MEMORY_REF_COST);
  6218   size(4);
  6219   format %{ "STX    $src,$mem\t! long" %}
  6220   opcode(Assembler::stx_op3);
  6221   ins_encode(simple_form3_mem_reg( mem, src ) );
  6222   ins_pipe(istore_mem_reg);
  6223 %}
  6225 instruct storeI0(memory mem, immI0 src) %{
  6226   match(Set mem (StoreI mem src));
  6227   ins_cost(MEMORY_REF_COST);
  6229   size(4);
  6230   format %{ "STW    $src,$mem" %}
  6231   opcode(Assembler::stw_op3);
  6232   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6233   ins_pipe(istore_mem_zero);
  6234 %}
  6236 instruct storeL0(memory mem, immL0 src) %{
  6237   match(Set mem (StoreL mem src));
  6238   ins_cost(MEMORY_REF_COST);
  6240   size(4);
  6241   format %{ "STX    $src,$mem" %}
  6242   opcode(Assembler::stx_op3);
  6243   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6244   ins_pipe(istore_mem_zero);
  6245 %}
  6247 // Store Integer from float register (used after fstoi)
  6248 instruct storeI_Freg(memory mem, regF src) %{
  6249   match(Set mem (StoreI mem src));
  6250   ins_cost(MEMORY_REF_COST);
  6252   size(4);
  6253   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6254   opcode(Assembler::stf_op3);
  6255   ins_encode(simple_form3_mem_reg( mem, src ) );
  6256   ins_pipe(fstoreF_mem_reg);
  6257 %}
  6259 // Store Pointer
  6260 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6261   match(Set dst (StoreP dst src));
  6262   ins_cost(MEMORY_REF_COST);
  6263   size(4);
  6265 #ifndef _LP64
  6266   format %{ "STW    $src,$dst\t! ptr" %}
  6267   opcode(Assembler::stw_op3, 0, REGP_OP);
  6268 #else
  6269   format %{ "STX    $src,$dst\t! ptr" %}
  6270   opcode(Assembler::stx_op3, 0, REGP_OP);
  6271 #endif
  6272   ins_encode( form3_mem_reg( dst, src ) );
  6273   ins_pipe(istore_mem_spORreg);
  6274 %}
  6276 instruct storeP0(memory dst, immP0 src) %{
  6277   match(Set dst (StoreP dst src));
  6278   ins_cost(MEMORY_REF_COST);
  6279   size(4);
  6281 #ifndef _LP64
  6282   format %{ "STW    $src,$dst\t! ptr" %}
  6283   opcode(Assembler::stw_op3, 0, REGP_OP);
  6284 #else
  6285   format %{ "STX    $src,$dst\t! ptr" %}
  6286   opcode(Assembler::stx_op3, 0, REGP_OP);
  6287 #endif
  6288   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6289   ins_pipe(istore_mem_zero);
  6290 %}
  6292 // Store Compressed Pointer
  6293 instruct storeN(memory dst, iRegN src) %{
  6294    match(Set dst (StoreN dst src));
  6295    ins_cost(MEMORY_REF_COST);
  6296    size(4);
  6298    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6299    ins_encode %{
  6300      Register base = as_Register($dst$$base);
  6301      Register index = as_Register($dst$$index);
  6302      Register src = $src$$Register;
  6303      if (index != G0) {
  6304        __ stw(src, base, index);
  6305      } else {
  6306        __ stw(src, base, $dst$$disp);
  6308    %}
  6309    ins_pipe(istore_mem_spORreg);
  6310 %}
  6312 instruct storeN0(memory dst, immN0 src) %{
  6313    match(Set dst (StoreN dst src));
  6314    ins_cost(MEMORY_REF_COST);
  6315    size(4);
  6317    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6318    ins_encode %{
  6319      Register base = as_Register($dst$$base);
  6320      Register index = as_Register($dst$$index);
  6321      if (index != G0) {
  6322        __ stw(0, base, index);
  6323      } else {
  6324        __ stw(0, base, $dst$$disp);
  6326    %}
  6327    ins_pipe(istore_mem_zero);
  6328 %}
  6330 // Store Double
  6331 instruct storeD( memory mem, regD src) %{
  6332   match(Set mem (StoreD mem src));
  6333   ins_cost(MEMORY_REF_COST);
  6335   size(4);
  6336   format %{ "STDF   $src,$mem" %}
  6337   opcode(Assembler::stdf_op3);
  6338   ins_encode(simple_form3_mem_reg( mem, src ) );
  6339   ins_pipe(fstoreD_mem_reg);
  6340 %}
  6342 instruct storeD0( memory mem, immD0 src) %{
  6343   match(Set mem (StoreD mem src));
  6344   ins_cost(MEMORY_REF_COST);
  6346   size(4);
  6347   format %{ "STX    $src,$mem" %}
  6348   opcode(Assembler::stx_op3);
  6349   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6350   ins_pipe(fstoreD_mem_zero);
  6351 %}
  6353 // Store Float
  6354 instruct storeF( memory mem, regF src) %{
  6355   match(Set mem (StoreF mem src));
  6356   ins_cost(MEMORY_REF_COST);
  6358   size(4);
  6359   format %{ "STF    $src,$mem" %}
  6360   opcode(Assembler::stf_op3);
  6361   ins_encode(simple_form3_mem_reg( mem, src ) );
  6362   ins_pipe(fstoreF_mem_reg);
  6363 %}
  6365 instruct storeF0( memory mem, immF0 src) %{
  6366   match(Set mem (StoreF mem src));
  6367   ins_cost(MEMORY_REF_COST);
  6369   size(4);
  6370   format %{ "STW    $src,$mem\t! storeF0" %}
  6371   opcode(Assembler::stw_op3);
  6372   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6373   ins_pipe(fstoreF_mem_zero);
  6374 %}
  6376 // Store Aligned Packed Bytes in Double register to memory
  6377 instruct storeA8B(memory mem, regD src) %{
  6378   match(Set mem (Store8B mem src));
  6379   ins_cost(MEMORY_REF_COST);
  6380   size(4);
  6381   format %{ "STDF   $src,$mem\t! packed8B" %}
  6382   opcode(Assembler::stdf_op3);
  6383   ins_encode(simple_form3_mem_reg( mem, src ) );
  6384   ins_pipe(fstoreD_mem_reg);
  6385 %}
  6387 // Convert oop pointer into compressed form
  6388 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6389   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6390   match(Set dst (EncodeP src));
  6391   format %{ "encode_heap_oop $src, $dst" %}
  6392   ins_encode %{
  6393     __ encode_heap_oop($src$$Register, $dst$$Register);
  6394   %}
  6395   ins_pipe(ialu_reg);
  6396 %}
  6398 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6399   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6400   match(Set dst (EncodeP src));
  6401   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6402   ins_encode %{
  6403     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6404   %}
  6405   ins_pipe(ialu_reg);
  6406 %}
  6408 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6409   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6410             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6411   match(Set dst (DecodeN src));
  6412   format %{ "decode_heap_oop $src, $dst" %}
  6413   ins_encode %{
  6414     __ decode_heap_oop($src$$Register, $dst$$Register);
  6415   %}
  6416   ins_pipe(ialu_reg);
  6417 %}
  6419 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6420   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6421             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6422   match(Set dst (DecodeN src));
  6423   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6424   ins_encode %{
  6425     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6426   %}
  6427   ins_pipe(ialu_reg);
  6428 %}
  6431 // Store Zero into Aligned Packed Bytes
  6432 instruct storeA8B0(memory mem, immI0 zero) %{
  6433   match(Set mem (Store8B mem zero));
  6434   ins_cost(MEMORY_REF_COST);
  6435   size(4);
  6436   format %{ "STX    $zero,$mem\t! packed8B" %}
  6437   opcode(Assembler::stx_op3);
  6438   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6439   ins_pipe(fstoreD_mem_zero);
  6440 %}
  6442 // Store Aligned Packed Chars/Shorts in Double register to memory
  6443 instruct storeA4C(memory mem, regD src) %{
  6444   match(Set mem (Store4C mem src));
  6445   ins_cost(MEMORY_REF_COST);
  6446   size(4);
  6447   format %{ "STDF   $src,$mem\t! packed4C" %}
  6448   opcode(Assembler::stdf_op3);
  6449   ins_encode(simple_form3_mem_reg( mem, src ) );
  6450   ins_pipe(fstoreD_mem_reg);
  6451 %}
  6453 // Store Zero into Aligned Packed Chars/Shorts
  6454 instruct storeA4C0(memory mem, immI0 zero) %{
  6455   match(Set mem (Store4C mem (Replicate4C zero)));
  6456   ins_cost(MEMORY_REF_COST);
  6457   size(4);
  6458   format %{ "STX    $zero,$mem\t! packed4C" %}
  6459   opcode(Assembler::stx_op3);
  6460   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6461   ins_pipe(fstoreD_mem_zero);
  6462 %}
  6464 // Store Aligned Packed Ints in Double register to memory
  6465 instruct storeA2I(memory mem, regD src) %{
  6466   match(Set mem (Store2I mem src));
  6467   ins_cost(MEMORY_REF_COST);
  6468   size(4);
  6469   format %{ "STDF   $src,$mem\t! packed2I" %}
  6470   opcode(Assembler::stdf_op3);
  6471   ins_encode(simple_form3_mem_reg( mem, src ) );
  6472   ins_pipe(fstoreD_mem_reg);
  6473 %}
  6475 // Store Zero into Aligned Packed Ints
  6476 instruct storeA2I0(memory mem, immI0 zero) %{
  6477   match(Set mem (Store2I mem zero));
  6478   ins_cost(MEMORY_REF_COST);
  6479   size(4);
  6480   format %{ "STX    $zero,$mem\t! packed2I" %}
  6481   opcode(Assembler::stx_op3);
  6482   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6483   ins_pipe(fstoreD_mem_zero);
  6484 %}
  6487 //----------MemBar Instructions-----------------------------------------------
  6488 // Memory barrier flavors
  6490 instruct membar_acquire() %{
  6491   match(MemBarAcquire);
  6492   ins_cost(4*MEMORY_REF_COST);
  6494   size(0);
  6495   format %{ "MEMBAR-acquire" %}
  6496   ins_encode( enc_membar_acquire );
  6497   ins_pipe(long_memory_op);
  6498 %}
  6500 instruct membar_acquire_lock() %{
  6501   match(MemBarAcquire);
  6502   predicate(Matcher::prior_fast_lock(n));
  6503   ins_cost(0);
  6505   size(0);
  6506   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6507   ins_encode( );
  6508   ins_pipe(empty);
  6509 %}
  6511 instruct membar_release() %{
  6512   match(MemBarRelease);
  6513   ins_cost(4*MEMORY_REF_COST);
  6515   size(0);
  6516   format %{ "MEMBAR-release" %}
  6517   ins_encode( enc_membar_release );
  6518   ins_pipe(long_memory_op);
  6519 %}
  6521 instruct membar_release_lock() %{
  6522   match(MemBarRelease);
  6523   predicate(Matcher::post_fast_unlock(n));
  6524   ins_cost(0);
  6526   size(0);
  6527   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6528   ins_encode( );
  6529   ins_pipe(empty);
  6530 %}
  6532 instruct membar_volatile() %{
  6533   match(MemBarVolatile);
  6534   ins_cost(4*MEMORY_REF_COST);
  6536   size(4);
  6537   format %{ "MEMBAR-volatile" %}
  6538   ins_encode( enc_membar_volatile );
  6539   ins_pipe(long_memory_op);
  6540 %}
  6542 instruct unnecessary_membar_volatile() %{
  6543   match(MemBarVolatile);
  6544   predicate(Matcher::post_store_load_barrier(n));
  6545   ins_cost(0);
  6547   size(0);
  6548   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6549   ins_encode( );
  6550   ins_pipe(empty);
  6551 %}
  6553 //----------Register Move Instructions-----------------------------------------
  6554 instruct roundDouble_nop(regD dst) %{
  6555   match(Set dst (RoundDouble dst));
  6556   ins_cost(0);
  6557   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6558   ins_encode( );
  6559   ins_pipe(empty);
  6560 %}
  6563 instruct roundFloat_nop(regF dst) %{
  6564   match(Set dst (RoundFloat dst));
  6565   ins_cost(0);
  6566   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6567   ins_encode( );
  6568   ins_pipe(empty);
  6569 %}
  6572 // Cast Index to Pointer for unsafe natives
  6573 instruct castX2P(iRegX src, iRegP dst) %{
  6574   match(Set dst (CastX2P src));
  6576   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6577   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6578   ins_pipe(ialu_reg);
  6579 %}
  6581 // Cast Pointer to Index for unsafe natives
  6582 instruct castP2X(iRegP src, iRegX dst) %{
  6583   match(Set dst (CastP2X src));
  6585   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6586   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6587   ins_pipe(ialu_reg);
  6588 %}
  6590 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6591   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6592   match(Set stkSlot src);   // chain rule
  6593   ins_cost(MEMORY_REF_COST);
  6594   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6595   opcode(Assembler::stdf_op3);
  6596   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6597   ins_pipe(fstoreD_stk_reg);
  6598 %}
  6600 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6601   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6602   match(Set dst stkSlot);   // chain rule
  6603   ins_cost(MEMORY_REF_COST);
  6604   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6605   opcode(Assembler::lddf_op3);
  6606   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6607   ins_pipe(floadD_stk);
  6608 %}
  6610 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6611   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6612   match(Set stkSlot src);   // chain rule
  6613   ins_cost(MEMORY_REF_COST);
  6614   format %{ "STF   $src,$stkSlot\t!stk" %}
  6615   opcode(Assembler::stf_op3);
  6616   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6617   ins_pipe(fstoreF_stk_reg);
  6618 %}
  6620 //----------Conditional Move---------------------------------------------------
  6621 // Conditional move
  6622 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6623   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6624   ins_cost(150);
  6625   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6626   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6627   ins_pipe(ialu_reg);
  6628 %}
  6630 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6631   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6632   ins_cost(140);
  6633   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6634   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6635   ins_pipe(ialu_imm);
  6636 %}
  6638 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6639   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6640   ins_cost(150);
  6641   size(4);
  6642   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6643   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6644   ins_pipe(ialu_reg);
  6645 %}
  6647 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6648   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6649   ins_cost(140);
  6650   size(4);
  6651   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6652   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6653   ins_pipe(ialu_imm);
  6654 %}
  6656 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6657   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6658   ins_cost(150);
  6659   size(4);
  6660   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6661   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6662   ins_pipe(ialu_reg);
  6663 %}
  6665 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6666   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6667   ins_cost(140);
  6668   size(4);
  6669   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6670   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6671   ins_pipe(ialu_imm);
  6672 %}
  6674 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6675   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6676   ins_cost(150);
  6677   size(4);
  6678   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6679   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6680   ins_pipe(ialu_reg);
  6681 %}
  6683 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6684   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6685   ins_cost(140);
  6686   size(4);
  6687   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6688   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6689   ins_pipe(ialu_imm);
  6690 %}
  6692 // Conditional move for RegN. Only cmov(reg,reg).
  6693 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6694   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6695   ins_cost(150);
  6696   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6697   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6698   ins_pipe(ialu_reg);
  6699 %}
  6701 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6702 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6703   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6704   ins_cost(150);
  6705   size(4);
  6706   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6707   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6708   ins_pipe(ialu_reg);
  6709 %}
  6711 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6712 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6713   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6714   ins_cost(150);
  6715   size(4);
  6716   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6717   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6718   ins_pipe(ialu_reg);
  6719 %}
  6721 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6722   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6723   ins_cost(150);
  6724   size(4);
  6725   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6726   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6727   ins_pipe(ialu_reg);
  6728 %}
  6730 // Conditional move
  6731 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6732   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6733   ins_cost(150);
  6734   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6735   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6736   ins_pipe(ialu_reg);
  6737 %}
  6739 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6740   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6741   ins_cost(140);
  6742   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6743   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6744   ins_pipe(ialu_imm);
  6745 %}
  6747 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6748 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6749   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6750   ins_cost(150);
  6752   size(4);
  6753   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6754   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6755   ins_pipe(ialu_reg);
  6756 %}
  6758 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6759   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6760   ins_cost(150);
  6762   size(4);
  6763   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6764   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6765   ins_pipe(ialu_reg);
  6766 %}
  6768 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6769   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6770   ins_cost(140);
  6772   size(4);
  6773   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6774   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6775   ins_pipe(ialu_imm);
  6776 %}
  6778 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6779   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6780   ins_cost(140);
  6782   size(4);
  6783   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6784   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6785   ins_pipe(ialu_imm);
  6786 %}
  6788 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6789   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6790   ins_cost(150);
  6791   size(4);
  6792   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6793   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6794   ins_pipe(ialu_imm);
  6795 %}
  6797 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6798   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6799   ins_cost(140);
  6800   size(4);
  6801   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6802   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6803   ins_pipe(ialu_imm);
  6804 %}
  6806 // Conditional move
  6807 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6808   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6809   ins_cost(150);
  6810   opcode(0x101);
  6811   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6812   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6813   ins_pipe(int_conditional_float_move);
  6814 %}
  6816 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6817   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6818   ins_cost(150);
  6820   size(4);
  6821   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6822   opcode(0x101);
  6823   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6824   ins_pipe(int_conditional_float_move);
  6825 %}
  6827 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6828   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6829   ins_cost(150);
  6831   size(4);
  6832   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6833   opcode(0x101);
  6834   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6835   ins_pipe(int_conditional_float_move);
  6836 %}
  6838 // Conditional move,
  6839 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6840   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6841   ins_cost(150);
  6842   size(4);
  6843   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6844   opcode(0x1);
  6845   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6846   ins_pipe(int_conditional_double_move);
  6847 %}
  6849 // Conditional move
  6850 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6851   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6852   ins_cost(150);
  6853   size(4);
  6854   opcode(0x102);
  6855   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6856   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6857   ins_pipe(int_conditional_double_move);
  6858 %}
  6860 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6861   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6862   ins_cost(150);
  6864   size(4);
  6865   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6866   opcode(0x102);
  6867   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6868   ins_pipe(int_conditional_double_move);
  6869 %}
  6871 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6872   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6873   ins_cost(150);
  6875   size(4);
  6876   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6877   opcode(0x102);
  6878   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6879   ins_pipe(int_conditional_double_move);
  6880 %}
  6882 // Conditional move,
  6883 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6884   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6885   ins_cost(150);
  6886   size(4);
  6887   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6888   opcode(0x2);
  6889   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6890   ins_pipe(int_conditional_double_move);
  6891 %}
  6893 // Conditional move
  6894 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6895   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6896   ins_cost(150);
  6897   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6898   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6899   ins_pipe(ialu_reg);
  6900 %}
  6902 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6903   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6904   ins_cost(140);
  6905   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6907   ins_pipe(ialu_imm);
  6908 %}
  6910 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6911   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6912   ins_cost(150);
  6914   size(4);
  6915   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6917   ins_pipe(ialu_reg);
  6918 %}
  6921 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  6922   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6923   ins_cost(150);
  6925   size(4);
  6926   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6927   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6928   ins_pipe(ialu_reg);
  6929 %}
  6932 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6933   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6934   ins_cost(150);
  6936   size(4);
  6937   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6938   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6939   ins_pipe(ialu_reg);
  6940 %}
  6944 //----------OS and Locking Instructions----------------------------------------
  6946 // This name is KNOWN by the ADLC and cannot be changed.
  6947 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6948 // for this guy.
  6949 instruct tlsLoadP(g2RegP dst) %{
  6950   match(Set dst (ThreadLocal));
  6952   size(0);
  6953   ins_cost(0);
  6954   format %{ "# TLS is in G2" %}
  6955   ins_encode( /*empty encoding*/ );
  6956   ins_pipe(ialu_none);
  6957 %}
  6959 instruct checkCastPP( iRegP dst ) %{
  6960   match(Set dst (CheckCastPP dst));
  6962   size(0);
  6963   format %{ "# checkcastPP of $dst" %}
  6964   ins_encode( /*empty encoding*/ );
  6965   ins_pipe(empty);
  6966 %}
  6969 instruct castPP( iRegP dst ) %{
  6970   match(Set dst (CastPP dst));
  6971   format %{ "# castPP of $dst" %}
  6972   ins_encode( /*empty encoding*/ );
  6973   ins_pipe(empty);
  6974 %}
  6976 instruct castII( iRegI dst ) %{
  6977   match(Set dst (CastII dst));
  6978   format %{ "# castII of $dst" %}
  6979   ins_encode( /*empty encoding*/ );
  6980   ins_cost(0);
  6981   ins_pipe(empty);
  6982 %}
  6984 //----------Arithmetic Instructions--------------------------------------------
  6985 // Addition Instructions
  6986 // Register Addition
  6987 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6988   match(Set dst (AddI src1 src2));
  6990   size(4);
  6991   format %{ "ADD    $src1,$src2,$dst" %}
  6992   ins_encode %{
  6993     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6994   %}
  6995   ins_pipe(ialu_reg_reg);
  6996 %}
  6998 // Immediate Addition
  6999 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7000   match(Set dst (AddI src1 src2));
  7002   size(4);
  7003   format %{ "ADD    $src1,$src2,$dst" %}
  7004   opcode(Assembler::add_op3, Assembler::arith_op);
  7005   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7006   ins_pipe(ialu_reg_imm);
  7007 %}
  7009 // Pointer Register Addition
  7010 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7011   match(Set dst (AddP src1 src2));
  7013   size(4);
  7014   format %{ "ADD    $src1,$src2,$dst" %}
  7015   opcode(Assembler::add_op3, Assembler::arith_op);
  7016   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7017   ins_pipe(ialu_reg_reg);
  7018 %}
  7020 // Pointer Immediate Addition
  7021 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7022   match(Set dst (AddP src1 src2));
  7024   size(4);
  7025   format %{ "ADD    $src1,$src2,$dst" %}
  7026   opcode(Assembler::add_op3, Assembler::arith_op);
  7027   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7028   ins_pipe(ialu_reg_imm);
  7029 %}
  7031 // Long Addition
  7032 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7033   match(Set dst (AddL src1 src2));
  7035   size(4);
  7036   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7037   opcode(Assembler::add_op3, Assembler::arith_op);
  7038   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7039   ins_pipe(ialu_reg_reg);
  7040 %}
  7042 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7043   match(Set dst (AddL src1 con));
  7045   size(4);
  7046   format %{ "ADD    $src1,$con,$dst" %}
  7047   opcode(Assembler::add_op3, Assembler::arith_op);
  7048   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7049   ins_pipe(ialu_reg_imm);
  7050 %}
  7052 //----------Conditional_store--------------------------------------------------
  7053 // Conditional-store of the updated heap-top.
  7054 // Used during allocation of the shared heap.
  7055 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7057 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7058 instruct loadPLocked(iRegP dst, memory mem) %{
  7059   match(Set dst (LoadPLocked mem));
  7060   ins_cost(MEMORY_REF_COST);
  7062 #ifndef _LP64
  7063   size(4);
  7064   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7065   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7066 #else
  7067   format %{ "LDX    $mem,$dst\t! ptr" %}
  7068   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7069 #endif
  7070   ins_encode( form3_mem_reg( mem, dst ) );
  7071   ins_pipe(iload_mem);
  7072 %}
  7074 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7075 instruct loadLLocked(iRegL dst, memory mem) %{
  7076   match(Set dst (LoadLLocked mem));
  7077   ins_cost(MEMORY_REF_COST);
  7078   size(4);
  7079   format %{ "LDX    $mem,$dst\t! long" %}
  7080   opcode(Assembler::ldx_op3);
  7081   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7082   ins_pipe(iload_mem);
  7083 %}
  7085 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7086   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7087   effect( KILL newval );
  7088   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7089             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7090   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7091   ins_pipe( long_memory_op );
  7092 %}
  7094 // Conditional-store of an int value.
  7095 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7096   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7097   effect( KILL newval );
  7098   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7099             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7100   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7101   ins_pipe( long_memory_op );
  7102 %}
  7104 // Conditional-store of a long value.
  7105 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7106   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7107   effect( KILL newval );
  7108   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7109             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7110   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7111   ins_pipe( long_memory_op );
  7112 %}
  7114 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7116 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7117   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7118   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7119   format %{
  7120             "MOV    $newval,O7\n\t"
  7121             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7122             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7123             "MOV    1,$res\n\t"
  7124             "MOVne  xcc,R_G0,$res"
  7125   %}
  7126   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7127               enc_lflags_ne_to_boolean(res) );
  7128   ins_pipe( long_memory_op );
  7129 %}
  7132 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7133   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7134   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7135   format %{
  7136             "MOV    $newval,O7\n\t"
  7137             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7138             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7139             "MOV    1,$res\n\t"
  7140             "MOVne  icc,R_G0,$res"
  7141   %}
  7142   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7143               enc_iflags_ne_to_boolean(res) );
  7144   ins_pipe( long_memory_op );
  7145 %}
  7147 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7148   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7149   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7150   format %{
  7151             "MOV    $newval,O7\n\t"
  7152             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7153             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7154             "MOV    1,$res\n\t"
  7155             "MOVne  xcc,R_G0,$res"
  7156   %}
  7157 #ifdef _LP64
  7158   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7159               enc_lflags_ne_to_boolean(res) );
  7160 #else
  7161   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7162               enc_iflags_ne_to_boolean(res) );
  7163 #endif
  7164   ins_pipe( long_memory_op );
  7165 %}
  7167 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7168   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7169   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7170   format %{
  7171             "MOV    $newval,O7\n\t"
  7172             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7173             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7174             "MOV    1,$res\n\t"
  7175             "MOVne  icc,R_G0,$res"
  7176   %}
  7177   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7178               enc_iflags_ne_to_boolean(res) );
  7179   ins_pipe( long_memory_op );
  7180 %}
  7182 //---------------------
  7183 // Subtraction Instructions
  7184 // Register Subtraction
  7185 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7186   match(Set dst (SubI src1 src2));
  7188   size(4);
  7189   format %{ "SUB    $src1,$src2,$dst" %}
  7190   opcode(Assembler::sub_op3, Assembler::arith_op);
  7191   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7192   ins_pipe(ialu_reg_reg);
  7193 %}
  7195 // Immediate Subtraction
  7196 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7197   match(Set dst (SubI src1 src2));
  7199   size(4);
  7200   format %{ "SUB    $src1,$src2,$dst" %}
  7201   opcode(Assembler::sub_op3, Assembler::arith_op);
  7202   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7203   ins_pipe(ialu_reg_imm);
  7204 %}
  7206 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7207   match(Set dst (SubI zero src2));
  7209   size(4);
  7210   format %{ "NEG    $src2,$dst" %}
  7211   opcode(Assembler::sub_op3, Assembler::arith_op);
  7212   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7213   ins_pipe(ialu_zero_reg);
  7214 %}
  7216 // Long subtraction
  7217 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7218   match(Set dst (SubL src1 src2));
  7220   size(4);
  7221   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7222   opcode(Assembler::sub_op3, Assembler::arith_op);
  7223   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7224   ins_pipe(ialu_reg_reg);
  7225 %}
  7227 // Immediate Subtraction
  7228 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7229   match(Set dst (SubL src1 con));
  7231   size(4);
  7232   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7233   opcode(Assembler::sub_op3, Assembler::arith_op);
  7234   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7235   ins_pipe(ialu_reg_imm);
  7236 %}
  7238 // Long negation
  7239 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7240   match(Set dst (SubL zero src2));
  7242   size(4);
  7243   format %{ "NEG    $src2,$dst\t! long" %}
  7244   opcode(Assembler::sub_op3, Assembler::arith_op);
  7245   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7246   ins_pipe(ialu_zero_reg);
  7247 %}
  7249 // Multiplication Instructions
  7250 // Integer Multiplication
  7251 // Register Multiplication
  7252 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7253   match(Set dst (MulI src1 src2));
  7255   size(4);
  7256   format %{ "MULX   $src1,$src2,$dst" %}
  7257   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7258   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7259   ins_pipe(imul_reg_reg);
  7260 %}
  7262 // Immediate Multiplication
  7263 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7264   match(Set dst (MulI src1 src2));
  7266   size(4);
  7267   format %{ "MULX   $src1,$src2,$dst" %}
  7268   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7269   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7270   ins_pipe(imul_reg_imm);
  7271 %}
  7273 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7274   match(Set dst (MulL src1 src2));
  7275   ins_cost(DEFAULT_COST * 5);
  7276   size(4);
  7277   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7278   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7279   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7280   ins_pipe(mulL_reg_reg);
  7281 %}
  7283 // Immediate Multiplication
  7284 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7285   match(Set dst (MulL src1 src2));
  7286   ins_cost(DEFAULT_COST * 5);
  7287   size(4);
  7288   format %{ "MULX   $src1,$src2,$dst" %}
  7289   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7290   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7291   ins_pipe(mulL_reg_imm);
  7292 %}
  7294 // Integer Division
  7295 // Register Division
  7296 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7297   match(Set dst (DivI src1 src2));
  7298   ins_cost((2+71)*DEFAULT_COST);
  7300   format %{ "SRA     $src2,0,$src2\n\t"
  7301             "SRA     $src1,0,$src1\n\t"
  7302             "SDIVX   $src1,$src2,$dst" %}
  7303   ins_encode( idiv_reg( src1, src2, dst ) );
  7304   ins_pipe(sdiv_reg_reg);
  7305 %}
  7307 // Immediate Division
  7308 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7309   match(Set dst (DivI src1 src2));
  7310   ins_cost((2+71)*DEFAULT_COST);
  7312   format %{ "SRA     $src1,0,$src1\n\t"
  7313             "SDIVX   $src1,$src2,$dst" %}
  7314   ins_encode( idiv_imm( src1, src2, dst ) );
  7315   ins_pipe(sdiv_reg_imm);
  7316 %}
  7318 //----------Div-By-10-Expansion------------------------------------------------
  7319 // Extract hi bits of a 32x32->64 bit multiply.
  7320 // Expand rule only, not matched
  7321 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7322   effect( DEF dst, USE src1, USE src2 );
  7323   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7324             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7325   ins_encode( enc_mul_hi(dst,src1,src2));
  7326   ins_pipe(sdiv_reg_reg);
  7327 %}
  7329 // Magic constant, reciprocal of 10
  7330 instruct loadConI_x66666667(iRegIsafe dst) %{
  7331   effect( DEF dst );
  7333   size(8);
  7334   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7335   ins_encode( Set32(0x66666667, dst) );
  7336   ins_pipe(ialu_hi_lo_reg);
  7337 %}
  7339 // Register Shift Right Arithmetic Long by 32-63
  7340 instruct sra_31( iRegI dst, iRegI src ) %{
  7341   effect( DEF dst, USE src );
  7342   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7343   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7344   ins_pipe(ialu_reg_reg);
  7345 %}
  7347 // Arithmetic Shift Right by 8-bit immediate
  7348 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7349   effect( DEF dst, USE src );
  7350   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7351   opcode(Assembler::sra_op3, Assembler::arith_op);
  7352   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7353   ins_pipe(ialu_reg_imm);
  7354 %}
  7356 // Integer DIV with 10
  7357 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7358   match(Set dst (DivI src div));
  7359   ins_cost((6+6)*DEFAULT_COST);
  7360   expand %{
  7361     iRegIsafe tmp1;               // Killed temps;
  7362     iRegIsafe tmp2;               // Killed temps;
  7363     iRegI tmp3;                   // Killed temps;
  7364     iRegI tmp4;                   // Killed temps;
  7365     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7366     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7367     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7368     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7369     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7370   %}
  7371 %}
  7373 // Register Long Division
  7374 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7375   match(Set dst (DivL src1 src2));
  7376   ins_cost(DEFAULT_COST*71);
  7377   size(4);
  7378   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7379   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7380   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7381   ins_pipe(divL_reg_reg);
  7382 %}
  7384 // Register Long Division
  7385 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7386   match(Set dst (DivL src1 src2));
  7387   ins_cost(DEFAULT_COST*71);
  7388   size(4);
  7389   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7390   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7391   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7392   ins_pipe(divL_reg_imm);
  7393 %}
  7395 // Integer Remainder
  7396 // Register Remainder
  7397 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7398   match(Set dst (ModI src1 src2));
  7399   effect( KILL ccr, KILL temp);
  7401   format %{ "SREM   $src1,$src2,$dst" %}
  7402   ins_encode( irem_reg(src1, src2, dst, temp) );
  7403   ins_pipe(sdiv_reg_reg);
  7404 %}
  7406 // Immediate Remainder
  7407 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7408   match(Set dst (ModI src1 src2));
  7409   effect( KILL ccr, KILL temp);
  7411   format %{ "SREM   $src1,$src2,$dst" %}
  7412   ins_encode( irem_imm(src1, src2, dst, temp) );
  7413   ins_pipe(sdiv_reg_imm);
  7414 %}
  7416 // Register Long Remainder
  7417 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7418   effect(DEF dst, USE src1, USE src2);
  7419   size(4);
  7420   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7421   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7422   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7423   ins_pipe(divL_reg_reg);
  7424 %}
  7426 // Register Long Division
  7427 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7428   effect(DEF dst, USE src1, USE src2);
  7429   size(4);
  7430   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7431   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7432   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7433   ins_pipe(divL_reg_imm);
  7434 %}
  7436 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7437   effect(DEF dst, USE src1, USE src2);
  7438   size(4);
  7439   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7440   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7441   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7442   ins_pipe(mulL_reg_reg);
  7443 %}
  7445 // Immediate Multiplication
  7446 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7447   effect(DEF dst, USE src1, USE src2);
  7448   size(4);
  7449   format %{ "MULX   $src1,$src2,$dst" %}
  7450   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7451   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7452   ins_pipe(mulL_reg_imm);
  7453 %}
  7455 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7456   effect(DEF dst, USE src1, USE src2);
  7457   size(4);
  7458   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7459   opcode(Assembler::sub_op3, Assembler::arith_op);
  7460   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7461   ins_pipe(ialu_reg_reg);
  7462 %}
  7464 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7465   effect(DEF dst, USE src1, USE src2);
  7466   size(4);
  7467   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7468   opcode(Assembler::sub_op3, Assembler::arith_op);
  7469   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7470   ins_pipe(ialu_reg_reg);
  7471 %}
  7473 // Register Long Remainder
  7474 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7475   match(Set dst (ModL src1 src2));
  7476   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7477   expand %{
  7478     iRegL tmp1;
  7479     iRegL tmp2;
  7480     divL_reg_reg_1(tmp1, src1, src2);
  7481     mulL_reg_reg_1(tmp2, tmp1, src2);
  7482     subL_reg_reg_1(dst,  src1, tmp2);
  7483   %}
  7484 %}
  7486 // Register Long Remainder
  7487 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7488   match(Set dst (ModL src1 src2));
  7489   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7490   expand %{
  7491     iRegL tmp1;
  7492     iRegL tmp2;
  7493     divL_reg_imm13_1(tmp1, src1, src2);
  7494     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7495     subL_reg_reg_2  (dst,  src1, tmp2);
  7496   %}
  7497 %}
  7499 // Integer Shift Instructions
  7500 // Register Shift Left
  7501 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7502   match(Set dst (LShiftI src1 src2));
  7504   size(4);
  7505   format %{ "SLL    $src1,$src2,$dst" %}
  7506   opcode(Assembler::sll_op3, Assembler::arith_op);
  7507   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7508   ins_pipe(ialu_reg_reg);
  7509 %}
  7511 // Register Shift Left Immediate
  7512 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7513   match(Set dst (LShiftI src1 src2));
  7515   size(4);
  7516   format %{ "SLL    $src1,$src2,$dst" %}
  7517   opcode(Assembler::sll_op3, Assembler::arith_op);
  7518   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7519   ins_pipe(ialu_reg_imm);
  7520 %}
  7522 // Register Shift Left
  7523 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7524   match(Set dst (LShiftL src1 src2));
  7526   size(4);
  7527   format %{ "SLLX   $src1,$src2,$dst" %}
  7528   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7529   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7530   ins_pipe(ialu_reg_reg);
  7531 %}
  7533 // Register Shift Left Immediate
  7534 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7535   match(Set dst (LShiftL src1 src2));
  7537   size(4);
  7538   format %{ "SLLX   $src1,$src2,$dst" %}
  7539   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7540   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7541   ins_pipe(ialu_reg_imm);
  7542 %}
  7544 // Register Arithmetic Shift Right
  7545 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7546   match(Set dst (RShiftI src1 src2));
  7547   size(4);
  7548   format %{ "SRA    $src1,$src2,$dst" %}
  7549   opcode(Assembler::sra_op3, Assembler::arith_op);
  7550   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7551   ins_pipe(ialu_reg_reg);
  7552 %}
  7554 // Register Arithmetic Shift Right Immediate
  7555 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7556   match(Set dst (RShiftI src1 src2));
  7558   size(4);
  7559   format %{ "SRA    $src1,$src2,$dst" %}
  7560   opcode(Assembler::sra_op3, Assembler::arith_op);
  7561   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7562   ins_pipe(ialu_reg_imm);
  7563 %}
  7565 // Register Shift Right Arithmatic Long
  7566 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7567   match(Set dst (RShiftL src1 src2));
  7569   size(4);
  7570   format %{ "SRAX   $src1,$src2,$dst" %}
  7571   opcode(Assembler::srax_op3, Assembler::arith_op);
  7572   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7573   ins_pipe(ialu_reg_reg);
  7574 %}
  7576 // Register Shift Left Immediate
  7577 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7578   match(Set dst (RShiftL src1 src2));
  7580   size(4);
  7581   format %{ "SRAX   $src1,$src2,$dst" %}
  7582   opcode(Assembler::srax_op3, Assembler::arith_op);
  7583   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7584   ins_pipe(ialu_reg_imm);
  7585 %}
  7587 // Register Shift Right
  7588 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7589   match(Set dst (URShiftI src1 src2));
  7591   size(4);
  7592   format %{ "SRL    $src1,$src2,$dst" %}
  7593   opcode(Assembler::srl_op3, Assembler::arith_op);
  7594   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7595   ins_pipe(ialu_reg_reg);
  7596 %}
  7598 // Register Shift Right Immediate
  7599 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7600   match(Set dst (URShiftI src1 src2));
  7602   size(4);
  7603   format %{ "SRL    $src1,$src2,$dst" %}
  7604   opcode(Assembler::srl_op3, Assembler::arith_op);
  7605   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7606   ins_pipe(ialu_reg_imm);
  7607 %}
  7609 // Register Shift Right
  7610 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7611   match(Set dst (URShiftL src1 src2));
  7613   size(4);
  7614   format %{ "SRLX   $src1,$src2,$dst" %}
  7615   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7616   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7617   ins_pipe(ialu_reg_reg);
  7618 %}
  7620 // Register Shift Right Immediate
  7621 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7622   match(Set dst (URShiftL src1 src2));
  7624   size(4);
  7625   format %{ "SRLX   $src1,$src2,$dst" %}
  7626   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7627   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7628   ins_pipe(ialu_reg_imm);
  7629 %}
  7631 // Register Shift Right Immediate with a CastP2X
  7632 #ifdef _LP64
  7633 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7634   match(Set dst (URShiftL (CastP2X src1) src2));
  7635   size(4);
  7636   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7637   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7638   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7639   ins_pipe(ialu_reg_imm);
  7640 %}
  7641 #else
  7642 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7643   match(Set dst (URShiftI (CastP2X src1) src2));
  7644   size(4);
  7645   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7646   opcode(Assembler::srl_op3, Assembler::arith_op);
  7647   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7648   ins_pipe(ialu_reg_imm);
  7649 %}
  7650 #endif
  7653 //----------Floating Point Arithmetic Instructions-----------------------------
  7655 //  Add float single precision
  7656 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7657   match(Set dst (AddF src1 src2));
  7659   size(4);
  7660   format %{ "FADDS  $src1,$src2,$dst" %}
  7661   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7662   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7663   ins_pipe(faddF_reg_reg);
  7664 %}
  7666 //  Add float double precision
  7667 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7668   match(Set dst (AddD src1 src2));
  7670   size(4);
  7671   format %{ "FADDD  $src1,$src2,$dst" %}
  7672   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7673   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7674   ins_pipe(faddD_reg_reg);
  7675 %}
  7677 //  Sub float single precision
  7678 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7679   match(Set dst (SubF src1 src2));
  7681   size(4);
  7682   format %{ "FSUBS  $src1,$src2,$dst" %}
  7683   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7684   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7685   ins_pipe(faddF_reg_reg);
  7686 %}
  7688 //  Sub float double precision
  7689 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7690   match(Set dst (SubD src1 src2));
  7692   size(4);
  7693   format %{ "FSUBD  $src1,$src2,$dst" %}
  7694   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7695   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7696   ins_pipe(faddD_reg_reg);
  7697 %}
  7699 //  Mul float single precision
  7700 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7701   match(Set dst (MulF src1 src2));
  7703   size(4);
  7704   format %{ "FMULS  $src1,$src2,$dst" %}
  7705   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7706   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7707   ins_pipe(fmulF_reg_reg);
  7708 %}
  7710 //  Mul float double precision
  7711 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7712   match(Set dst (MulD src1 src2));
  7714   size(4);
  7715   format %{ "FMULD  $src1,$src2,$dst" %}
  7716   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7717   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7718   ins_pipe(fmulD_reg_reg);
  7719 %}
  7721 //  Div float single precision
  7722 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7723   match(Set dst (DivF src1 src2));
  7725   size(4);
  7726   format %{ "FDIVS  $src1,$src2,$dst" %}
  7727   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7728   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7729   ins_pipe(fdivF_reg_reg);
  7730 %}
  7732 //  Div float double precision
  7733 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7734   match(Set dst (DivD src1 src2));
  7736   size(4);
  7737   format %{ "FDIVD  $src1,$src2,$dst" %}
  7738   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7739   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7740   ins_pipe(fdivD_reg_reg);
  7741 %}
  7743 //  Absolute float double precision
  7744 instruct absD_reg(regD dst, regD src) %{
  7745   match(Set dst (AbsD src));
  7747   format %{ "FABSd  $src,$dst" %}
  7748   ins_encode(fabsd(dst, src));
  7749   ins_pipe(faddD_reg);
  7750 %}
  7752 //  Absolute float single precision
  7753 instruct absF_reg(regF dst, regF src) %{
  7754   match(Set dst (AbsF src));
  7756   format %{ "FABSs  $src,$dst" %}
  7757   ins_encode(fabss(dst, src));
  7758   ins_pipe(faddF_reg);
  7759 %}
  7761 instruct negF_reg(regF dst, regF src) %{
  7762   match(Set dst (NegF src));
  7764   size(4);
  7765   format %{ "FNEGs  $src,$dst" %}
  7766   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7767   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7768   ins_pipe(faddF_reg);
  7769 %}
  7771 instruct negD_reg(regD dst, regD src) %{
  7772   match(Set dst (NegD src));
  7774   format %{ "FNEGd  $src,$dst" %}
  7775   ins_encode(fnegd(dst, src));
  7776   ins_pipe(faddD_reg);
  7777 %}
  7779 //  Sqrt float double precision
  7780 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7781   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7783   size(4);
  7784   format %{ "FSQRTS $src,$dst" %}
  7785   ins_encode(fsqrts(dst, src));
  7786   ins_pipe(fdivF_reg_reg);
  7787 %}
  7789 //  Sqrt float double precision
  7790 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7791   match(Set dst (SqrtD src));
  7793   size(4);
  7794   format %{ "FSQRTD $src,$dst" %}
  7795   ins_encode(fsqrtd(dst, src));
  7796   ins_pipe(fdivD_reg_reg);
  7797 %}
  7799 //----------Logical Instructions-----------------------------------------------
  7800 // And Instructions
  7801 // Register And
  7802 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7803   match(Set dst (AndI src1 src2));
  7805   size(4);
  7806   format %{ "AND    $src1,$src2,$dst" %}
  7807   opcode(Assembler::and_op3, Assembler::arith_op);
  7808   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7809   ins_pipe(ialu_reg_reg);
  7810 %}
  7812 // Immediate And
  7813 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7814   match(Set dst (AndI src1 src2));
  7816   size(4);
  7817   format %{ "AND    $src1,$src2,$dst" %}
  7818   opcode(Assembler::and_op3, Assembler::arith_op);
  7819   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7820   ins_pipe(ialu_reg_imm);
  7821 %}
  7823 // Register And Long
  7824 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7825   match(Set dst (AndL src1 src2));
  7827   ins_cost(DEFAULT_COST);
  7828   size(4);
  7829   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7830   opcode(Assembler::and_op3, Assembler::arith_op);
  7831   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7832   ins_pipe(ialu_reg_reg);
  7833 %}
  7835 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7836   match(Set dst (AndL src1 con));
  7838   ins_cost(DEFAULT_COST);
  7839   size(4);
  7840   format %{ "AND    $src1,$con,$dst\t! long" %}
  7841   opcode(Assembler::and_op3, Assembler::arith_op);
  7842   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7843   ins_pipe(ialu_reg_imm);
  7844 %}
  7846 // Or Instructions
  7847 // Register Or
  7848 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7849   match(Set dst (OrI src1 src2));
  7851   size(4);
  7852   format %{ "OR     $src1,$src2,$dst" %}
  7853   opcode(Assembler::or_op3, Assembler::arith_op);
  7854   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7855   ins_pipe(ialu_reg_reg);
  7856 %}
  7858 // Immediate Or
  7859 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7860   match(Set dst (OrI src1 src2));
  7862   size(4);
  7863   format %{ "OR     $src1,$src2,$dst" %}
  7864   opcode(Assembler::or_op3, Assembler::arith_op);
  7865   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7866   ins_pipe(ialu_reg_imm);
  7867 %}
  7869 // Register Or Long
  7870 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7871   match(Set dst (OrL src1 src2));
  7873   ins_cost(DEFAULT_COST);
  7874   size(4);
  7875   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7876   opcode(Assembler::or_op3, Assembler::arith_op);
  7877   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7878   ins_pipe(ialu_reg_reg);
  7879 %}
  7881 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7882   match(Set dst (OrL src1 con));
  7883   ins_cost(DEFAULT_COST*2);
  7885   ins_cost(DEFAULT_COST);
  7886   size(4);
  7887   format %{ "OR     $src1,$con,$dst\t! long" %}
  7888   opcode(Assembler::or_op3, Assembler::arith_op);
  7889   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7890   ins_pipe(ialu_reg_imm);
  7891 %}
  7893 #ifndef _LP64
  7895 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7896 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7897   match(Set dst (OrI src1 (CastP2X src2)));
  7899   size(4);
  7900   format %{ "OR     $src1,$src2,$dst" %}
  7901   opcode(Assembler::or_op3, Assembler::arith_op);
  7902   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7903   ins_pipe(ialu_reg_reg);
  7904 %}
  7906 #else
  7908 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7909   match(Set dst (OrL src1 (CastP2X src2)));
  7911   ins_cost(DEFAULT_COST);
  7912   size(4);
  7913   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7914   opcode(Assembler::or_op3, Assembler::arith_op);
  7915   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7916   ins_pipe(ialu_reg_reg);
  7917 %}
  7919 #endif
  7921 // Xor Instructions
  7922 // Register Xor
  7923 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7924   match(Set dst (XorI src1 src2));
  7926   size(4);
  7927   format %{ "XOR    $src1,$src2,$dst" %}
  7928   opcode(Assembler::xor_op3, Assembler::arith_op);
  7929   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7930   ins_pipe(ialu_reg_reg);
  7931 %}
  7933 // Immediate Xor
  7934 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7935   match(Set dst (XorI src1 src2));
  7937   size(4);
  7938   format %{ "XOR    $src1,$src2,$dst" %}
  7939   opcode(Assembler::xor_op3, Assembler::arith_op);
  7940   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7941   ins_pipe(ialu_reg_imm);
  7942 %}
  7944 // Register Xor Long
  7945 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7946   match(Set dst (XorL src1 src2));
  7948   ins_cost(DEFAULT_COST);
  7949   size(4);
  7950   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7951   opcode(Assembler::xor_op3, Assembler::arith_op);
  7952   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7953   ins_pipe(ialu_reg_reg);
  7954 %}
  7956 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7957   match(Set dst (XorL src1 con));
  7959   ins_cost(DEFAULT_COST);
  7960   size(4);
  7961   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7962   opcode(Assembler::xor_op3, Assembler::arith_op);
  7963   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7964   ins_pipe(ialu_reg_imm);
  7965 %}
  7967 //----------Convert to Boolean-------------------------------------------------
  7968 // Nice hack for 32-bit tests but doesn't work for
  7969 // 64-bit pointers.
  7970 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7971   match(Set dst (Conv2B src));
  7972   effect( KILL ccr );
  7973   ins_cost(DEFAULT_COST*2);
  7974   format %{ "CMP    R_G0,$src\n\t"
  7975             "ADDX   R_G0,0,$dst" %}
  7976   ins_encode( enc_to_bool( src, dst ) );
  7977   ins_pipe(ialu_reg_ialu);
  7978 %}
  7980 #ifndef _LP64
  7981 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7982   match(Set dst (Conv2B src));
  7983   effect( KILL ccr );
  7984   ins_cost(DEFAULT_COST*2);
  7985   format %{ "CMP    R_G0,$src\n\t"
  7986             "ADDX   R_G0,0,$dst" %}
  7987   ins_encode( enc_to_bool( src, dst ) );
  7988   ins_pipe(ialu_reg_ialu);
  7989 %}
  7990 #else
  7991 instruct convP2B( iRegI dst, iRegP src ) %{
  7992   match(Set dst (Conv2B src));
  7993   ins_cost(DEFAULT_COST*2);
  7994   format %{ "MOV    $src,$dst\n\t"
  7995             "MOVRNZ $src,1,$dst" %}
  7996   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7997   ins_pipe(ialu_clr_and_mover);
  7998 %}
  7999 #endif
  8001 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8002   match(Set dst (CmpLTMask p q));
  8003   effect( KILL ccr );
  8004   ins_cost(DEFAULT_COST*4);
  8005   format %{ "CMP    $p,$q\n\t"
  8006             "MOV    #0,$dst\n\t"
  8007             "BLT,a  .+8\n\t"
  8008             "MOV    #-1,$dst" %}
  8009   ins_encode( enc_ltmask(p,q,dst) );
  8010   ins_pipe(ialu_reg_reg_ialu);
  8011 %}
  8013 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8014   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8015   effect(KILL ccr, TEMP tmp);
  8016   ins_cost(DEFAULT_COST*3);
  8018   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8019             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8020             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8021   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8022   ins_pipe( cadd_cmpltmask );
  8023 %}
  8025 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8026   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  8027   effect( KILL ccr, TEMP tmp);
  8028   ins_cost(DEFAULT_COST*3);
  8030   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8031             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8032             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8033   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8034   ins_pipe( cadd_cmpltmask );
  8035 %}
  8037 //----------Arithmetic Conversion Instructions---------------------------------
  8038 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8040 instruct convD2F_reg(regF dst, regD src) %{
  8041   match(Set dst (ConvD2F src));
  8042   size(4);
  8043   format %{ "FDTOS  $src,$dst" %}
  8044   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8045   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8046   ins_pipe(fcvtD2F);
  8047 %}
  8050 // Convert a double to an int in a float register.
  8051 // If the double is a NAN, stuff a zero in instead.
  8052 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8053   effect(DEF dst, USE src, KILL fcc0);
  8054   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8055             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8056             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8057             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8058             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8059       "skip:" %}
  8060   ins_encode(form_d2i_helper(src,dst));
  8061   ins_pipe(fcvtD2I);
  8062 %}
  8064 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8065   match(Set dst (ConvD2I src));
  8066   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8067   expand %{
  8068     regF tmp;
  8069     convD2I_helper(tmp, src);
  8070     regF_to_stkI(dst, tmp);
  8071   %}
  8072 %}
  8074 // Convert a double to a long in a double register.
  8075 // If the double is a NAN, stuff a zero in instead.
  8076 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8077   effect(DEF dst, USE src, KILL fcc0);
  8078   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8079             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8080             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8081             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8082             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8083       "skip:" %}
  8084   ins_encode(form_d2l_helper(src,dst));
  8085   ins_pipe(fcvtD2L);
  8086 %}
  8089 // Double to Long conversion
  8090 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8091   match(Set dst (ConvD2L src));
  8092   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8093   expand %{
  8094     regD tmp;
  8095     convD2L_helper(tmp, src);
  8096     regD_to_stkL(dst, tmp);
  8097   %}
  8098 %}
  8101 instruct convF2D_reg(regD dst, regF src) %{
  8102   match(Set dst (ConvF2D src));
  8103   format %{ "FSTOD  $src,$dst" %}
  8104   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8105   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8106   ins_pipe(fcvtF2D);
  8107 %}
  8110 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8111   effect(DEF dst, USE src, KILL fcc0);
  8112   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8113             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8114             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8115             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8116             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8117       "skip:" %}
  8118   ins_encode(form_f2i_helper(src,dst));
  8119   ins_pipe(fcvtF2I);
  8120 %}
  8122 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8123   match(Set dst (ConvF2I src));
  8124   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8125   expand %{
  8126     regF tmp;
  8127     convF2I_helper(tmp, src);
  8128     regF_to_stkI(dst, tmp);
  8129   %}
  8130 %}
  8133 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8134   effect(DEF dst, USE src, KILL fcc0);
  8135   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8136             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8137             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8138             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8139             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8140       "skip:" %}
  8141   ins_encode(form_f2l_helper(src,dst));
  8142   ins_pipe(fcvtF2L);
  8143 %}
  8145 // Float to Long conversion
  8146 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8147   match(Set dst (ConvF2L src));
  8148   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8149   expand %{
  8150     regD tmp;
  8151     convF2L_helper(tmp, src);
  8152     regD_to_stkL(dst, tmp);
  8153   %}
  8154 %}
  8157 instruct convI2D_helper(regD dst, regF tmp) %{
  8158   effect(USE tmp, DEF dst);
  8159   format %{ "FITOD  $tmp,$dst" %}
  8160   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8161   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8162   ins_pipe(fcvtI2D);
  8163 %}
  8165 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8166   match(Set dst (ConvI2D src));
  8167   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8168   expand %{
  8169     regF tmp;
  8170     stkI_to_regF( tmp, src);
  8171     convI2D_helper( dst, tmp);
  8172   %}
  8173 %}
  8175 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8176   match(Set dst (ConvI2D (LoadI mem)));
  8177   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8178   size(8);
  8179   format %{ "LDF    $mem,$dst\n\t"
  8180             "FITOD  $dst,$dst" %}
  8181   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8182   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8183   ins_pipe(floadF_mem);
  8184 %}
  8187 instruct convI2F_helper(regF dst, regF tmp) %{
  8188   effect(DEF dst, USE tmp);
  8189   format %{ "FITOS  $tmp,$dst" %}
  8190   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8191   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8192   ins_pipe(fcvtI2F);
  8193 %}
  8195 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8196   match(Set dst (ConvI2F src));
  8197   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8198   expand %{
  8199     regF tmp;
  8200     stkI_to_regF(tmp,src);
  8201     convI2F_helper(dst, tmp);
  8202   %}
  8203 %}
  8205 instruct convI2F_mem( regF dst, memory mem ) %{
  8206   match(Set dst (ConvI2F (LoadI mem)));
  8207   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8208   size(8);
  8209   format %{ "LDF    $mem,$dst\n\t"
  8210             "FITOS  $dst,$dst" %}
  8211   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8212   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8213   ins_pipe(floadF_mem);
  8214 %}
  8217 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8218   match(Set dst (ConvI2L src));
  8219   size(4);
  8220   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8221   opcode(Assembler::sra_op3, Assembler::arith_op);
  8222   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8223   ins_pipe(ialu_reg_reg);
  8224 %}
  8226 // Zero-extend convert int to long
  8227 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8228   match(Set dst (AndL (ConvI2L src) mask) );
  8229   size(4);
  8230   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8231   opcode(Assembler::srl_op3, Assembler::arith_op);
  8232   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8233   ins_pipe(ialu_reg_reg);
  8234 %}
  8236 // Zero-extend long
  8237 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8238   match(Set dst (AndL src mask) );
  8239   size(4);
  8240   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8241   opcode(Assembler::srl_op3, Assembler::arith_op);
  8242   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8243   ins_pipe(ialu_reg_reg);
  8244 %}
  8246 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8247   match(Set dst (MoveF2I src));
  8248   effect(DEF dst, USE src);
  8249   ins_cost(MEMORY_REF_COST);
  8251   size(4);
  8252   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8253   opcode(Assembler::lduw_op3);
  8254   ins_encode(simple_form3_mem_reg( src, dst ) );
  8255   ins_pipe(iload_mem);
  8256 %}
  8258 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8259   match(Set dst (MoveI2F src));
  8260   effect(DEF dst, USE src);
  8261   ins_cost(MEMORY_REF_COST);
  8263   size(4);
  8264   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8265   opcode(Assembler::ldf_op3);
  8266   ins_encode(simple_form3_mem_reg(src, dst));
  8267   ins_pipe(floadF_stk);
  8268 %}
  8270 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8271   match(Set dst (MoveD2L src));
  8272   effect(DEF dst, USE src);
  8273   ins_cost(MEMORY_REF_COST);
  8275   size(4);
  8276   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8277   opcode(Assembler::ldx_op3);
  8278   ins_encode(simple_form3_mem_reg( src, dst ) );
  8279   ins_pipe(iload_mem);
  8280 %}
  8282 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8283   match(Set dst (MoveL2D src));
  8284   effect(DEF dst, USE src);
  8285   ins_cost(MEMORY_REF_COST);
  8287   size(4);
  8288   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8289   opcode(Assembler::lddf_op3);
  8290   ins_encode(simple_form3_mem_reg(src, dst));
  8291   ins_pipe(floadD_stk);
  8292 %}
  8294 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8295   match(Set dst (MoveF2I src));
  8296   effect(DEF dst, USE src);
  8297   ins_cost(MEMORY_REF_COST);
  8299   size(4);
  8300   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8301   opcode(Assembler::stf_op3);
  8302   ins_encode(simple_form3_mem_reg(dst, src));
  8303   ins_pipe(fstoreF_stk_reg);
  8304 %}
  8306 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8307   match(Set dst (MoveI2F src));
  8308   effect(DEF dst, USE src);
  8309   ins_cost(MEMORY_REF_COST);
  8311   size(4);
  8312   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8313   opcode(Assembler::stw_op3);
  8314   ins_encode(simple_form3_mem_reg( dst, src ) );
  8315   ins_pipe(istore_mem_reg);
  8316 %}
  8318 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8319   match(Set dst (MoveD2L src));
  8320   effect(DEF dst, USE src);
  8321   ins_cost(MEMORY_REF_COST);
  8323   size(4);
  8324   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8325   opcode(Assembler::stdf_op3);
  8326   ins_encode(simple_form3_mem_reg(dst, src));
  8327   ins_pipe(fstoreD_stk_reg);
  8328 %}
  8330 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8331   match(Set dst (MoveL2D src));
  8332   effect(DEF dst, USE src);
  8333   ins_cost(MEMORY_REF_COST);
  8335   size(4);
  8336   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8337   opcode(Assembler::stx_op3);
  8338   ins_encode(simple_form3_mem_reg( dst, src ) );
  8339   ins_pipe(istore_mem_reg);
  8340 %}
  8343 //-----------
  8344 // Long to Double conversion using V8 opcodes.
  8345 // Still useful because cheetah traps and becomes
  8346 // amazingly slow for some common numbers.
  8348 // Magic constant, 0x43300000
  8349 instruct loadConI_x43300000(iRegI dst) %{
  8350   effect(DEF dst);
  8351   size(4);
  8352   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8353   ins_encode(SetHi22(0x43300000, dst));
  8354   ins_pipe(ialu_none);
  8355 %}
  8357 // Magic constant, 0x41f00000
  8358 instruct loadConI_x41f00000(iRegI dst) %{
  8359   effect(DEF dst);
  8360   size(4);
  8361   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8362   ins_encode(SetHi22(0x41f00000, dst));
  8363   ins_pipe(ialu_none);
  8364 %}
  8366 // Construct a double from two float halves
  8367 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8368   effect(DEF dst, USE src1, USE src2);
  8369   size(8);
  8370   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8371             "FMOVS  $src2.lo,$dst.lo" %}
  8372   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8373   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8374   ins_pipe(faddD_reg_reg);
  8375 %}
  8377 // Convert integer in high half of a double register (in the lower half of
  8378 // the double register file) to double
  8379 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8380   effect(DEF dst, USE src);
  8381   size(4);
  8382   format %{ "FITOD  $src,$dst" %}
  8383   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8384   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8385   ins_pipe(fcvtLHi2D);
  8386 %}
  8388 // Add float double precision
  8389 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8390   effect(DEF dst, USE src1, USE src2);
  8391   size(4);
  8392   format %{ "FADDD  $src1,$src2,$dst" %}
  8393   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8394   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8395   ins_pipe(faddD_reg_reg);
  8396 %}
  8398 // Sub float double precision
  8399 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8400   effect(DEF dst, USE src1, USE src2);
  8401   size(4);
  8402   format %{ "FSUBD  $src1,$src2,$dst" %}
  8403   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8404   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8405   ins_pipe(faddD_reg_reg);
  8406 %}
  8408 // Mul float double precision
  8409 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8410   effect(DEF dst, USE src1, USE src2);
  8411   size(4);
  8412   format %{ "FMULD  $src1,$src2,$dst" %}
  8413   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8414   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8415   ins_pipe(fmulD_reg_reg);
  8416 %}
  8418 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8419   match(Set dst (ConvL2D src));
  8420   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8422   expand %{
  8423     regD_low   tmpsrc;
  8424     iRegI      ix43300000;
  8425     iRegI      ix41f00000;
  8426     stackSlotL lx43300000;
  8427     stackSlotL lx41f00000;
  8428     regD_low   dx43300000;
  8429     regD       dx41f00000;
  8430     regD       tmp1;
  8431     regD_low   tmp2;
  8432     regD       tmp3;
  8433     regD       tmp4;
  8435     stkL_to_regD(tmpsrc, src);
  8437     loadConI_x43300000(ix43300000);
  8438     loadConI_x41f00000(ix41f00000);
  8439     regI_to_stkLHi(lx43300000, ix43300000);
  8440     regI_to_stkLHi(lx41f00000, ix41f00000);
  8441     stkL_to_regD(dx43300000, lx43300000);
  8442     stkL_to_regD(dx41f00000, lx41f00000);
  8444     convI2D_regDHi_regD(tmp1, tmpsrc);
  8445     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8446     subD_regD_regD(tmp3, tmp2, dx43300000);
  8447     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8448     addD_regD_regD(dst, tmp3, tmp4);
  8449   %}
  8450 %}
  8452 // Long to Double conversion using fast fxtof
  8453 instruct convL2D_helper(regD dst, regD tmp) %{
  8454   effect(DEF dst, USE tmp);
  8455   size(4);
  8456   format %{ "FXTOD  $tmp,$dst" %}
  8457   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8458   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8459   ins_pipe(fcvtL2D);
  8460 %}
  8462 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8463   predicate(VM_Version::has_fast_fxtof());
  8464   match(Set dst (ConvL2D src));
  8465   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8466   expand %{
  8467     regD tmp;
  8468     stkL_to_regD(tmp, src);
  8469     convL2D_helper(dst, tmp);
  8470   %}
  8471 %}
  8473 //-----------
  8474 // Long to Float conversion using V8 opcodes.
  8475 // Still useful because cheetah traps and becomes
  8476 // amazingly slow for some common numbers.
  8478 // Long to Float conversion using fast fxtof
  8479 instruct convL2F_helper(regF dst, regD tmp) %{
  8480   effect(DEF dst, USE tmp);
  8481   size(4);
  8482   format %{ "FXTOS  $tmp,$dst" %}
  8483   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8484   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8485   ins_pipe(fcvtL2F);
  8486 %}
  8488 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8489   match(Set dst (ConvL2F src));
  8490   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8491   expand %{
  8492     regD tmp;
  8493     stkL_to_regD(tmp, src);
  8494     convL2F_helper(dst, tmp);
  8495   %}
  8496 %}
  8497 //-----------
  8499 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8500   match(Set dst (ConvL2I src));
  8501 #ifndef _LP64
  8502   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8503   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8504   ins_pipe(ialu_move_reg_I_to_L);
  8505 #else
  8506   size(4);
  8507   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8508   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8509   ins_pipe(ialu_reg);
  8510 #endif
  8511 %}
  8513 // Register Shift Right Immediate
  8514 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8515   match(Set dst (ConvL2I (RShiftL src cnt)));
  8517   size(4);
  8518   format %{ "SRAX   $src,$cnt,$dst" %}
  8519   opcode(Assembler::srax_op3, Assembler::arith_op);
  8520   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8521   ins_pipe(ialu_reg_imm);
  8522 %}
  8524 // Replicate scalar to packed byte values in Double register
  8525 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8526   effect(DEF dst, USE src);
  8527   format %{ "SLLX  $src,56,$dst\n\t"
  8528             "SRLX  $dst, 8,O7\n\t"
  8529             "OR    $dst,O7,$dst\n\t"
  8530             "SRLX  $dst,16,O7\n\t"
  8531             "OR    $dst,O7,$dst\n\t"
  8532             "SRLX  $dst,32,O7\n\t"
  8533             "OR    $dst,O7,$dst\t! replicate8B" %}
  8534   ins_encode( enc_repl8b(src, dst));
  8535   ins_pipe(ialu_reg);
  8536 %}
  8538 // Replicate scalar to packed byte values in Double register
  8539 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8540   match(Set dst (Replicate8B src));
  8541   expand %{
  8542     iRegL tmp;
  8543     Repl8B_reg_helper(tmp, src);
  8544     regL_to_stkD(dst, tmp);
  8545   %}
  8546 %}
  8548 // Replicate scalar constant to packed byte values in Double register
  8549 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8550   match(Set dst (Replicate8B src));
  8551 #ifdef _LP64
  8552   size(36);
  8553 #else
  8554   size(8);
  8555 #endif
  8556   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8557             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8558   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8559   ins_pipe(loadConFD);
  8560 %}
  8562 // Replicate scalar to packed char values into stack slot
  8563 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8564   effect(DEF dst, USE src);
  8565   format %{ "SLLX  $src,48,$dst\n\t"
  8566             "SRLX  $dst,16,O7\n\t"
  8567             "OR    $dst,O7,$dst\n\t"
  8568             "SRLX  $dst,32,O7\n\t"
  8569             "OR    $dst,O7,$dst\t! replicate4C" %}
  8570   ins_encode( enc_repl4s(src, dst) );
  8571   ins_pipe(ialu_reg);
  8572 %}
  8574 // Replicate scalar to packed char values into stack slot
  8575 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8576   match(Set dst (Replicate4C src));
  8577   expand %{
  8578     iRegL tmp;
  8579     Repl4C_reg_helper(tmp, src);
  8580     regL_to_stkD(dst, tmp);
  8581   %}
  8582 %}
  8584 // Replicate scalar constant to packed char values in Double register
  8585 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8586   match(Set dst (Replicate4C src));
  8587 #ifdef _LP64
  8588   size(36);
  8589 #else
  8590   size(8);
  8591 #endif
  8592   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8593             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8594   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8595   ins_pipe(loadConFD);
  8596 %}
  8598 // Replicate scalar to packed short values into stack slot
  8599 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8600   effect(DEF dst, USE src);
  8601   format %{ "SLLX  $src,48,$dst\n\t"
  8602             "SRLX  $dst,16,O7\n\t"
  8603             "OR    $dst,O7,$dst\n\t"
  8604             "SRLX  $dst,32,O7\n\t"
  8605             "OR    $dst,O7,$dst\t! replicate4S" %}
  8606   ins_encode( enc_repl4s(src, dst) );
  8607   ins_pipe(ialu_reg);
  8608 %}
  8610 // Replicate scalar to packed short values into stack slot
  8611 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8612   match(Set dst (Replicate4S src));
  8613   expand %{
  8614     iRegL tmp;
  8615     Repl4S_reg_helper(tmp, src);
  8616     regL_to_stkD(dst, tmp);
  8617   %}
  8618 %}
  8620 // Replicate scalar constant to packed short values in Double register
  8621 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8622   match(Set dst (Replicate4S src));
  8623 #ifdef _LP64
  8624   size(36);
  8625 #else
  8626   size(8);
  8627 #endif
  8628   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8629             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8630   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8631   ins_pipe(loadConFD);
  8632 %}
  8634 // Replicate scalar to packed int values in Double register
  8635 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8636   effect(DEF dst, USE src);
  8637   format %{ "SLLX  $src,32,$dst\n\t"
  8638             "SRLX  $dst,32,O7\n\t"
  8639             "OR    $dst,O7,$dst\t! replicate2I" %}
  8640   ins_encode( enc_repl2i(src, dst));
  8641   ins_pipe(ialu_reg);
  8642 %}
  8644 // Replicate scalar to packed int values in Double register
  8645 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8646   match(Set dst (Replicate2I src));
  8647   expand %{
  8648     iRegL tmp;
  8649     Repl2I_reg_helper(tmp, src);
  8650     regL_to_stkD(dst, tmp);
  8651   %}
  8652 %}
  8654 // Replicate scalar zero constant to packed int values in Double register
  8655 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8656   match(Set dst (Replicate2I src));
  8657 #ifdef _LP64
  8658   size(36);
  8659 #else
  8660   size(8);
  8661 #endif
  8662   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8663             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8664   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8665   ins_pipe(loadConFD);
  8666 %}
  8668 //----------Control Flow Instructions------------------------------------------
  8669 // Compare Instructions
  8670 // Compare Integers
  8671 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8672   match(Set icc (CmpI op1 op2));
  8673   effect( DEF icc, USE op1, USE op2 );
  8675   size(4);
  8676   format %{ "CMP    $op1,$op2" %}
  8677   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8678   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8679   ins_pipe(ialu_cconly_reg_reg);
  8680 %}
  8682 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8683   match(Set icc (CmpU op1 op2));
  8685   size(4);
  8686   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8687   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8688   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8689   ins_pipe(ialu_cconly_reg_reg);
  8690 %}
  8692 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8693   match(Set icc (CmpI op1 op2));
  8694   effect( DEF icc, USE op1 );
  8696   size(4);
  8697   format %{ "CMP    $op1,$op2" %}
  8698   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8699   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8700   ins_pipe(ialu_cconly_reg_imm);
  8701 %}
  8703 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8704   match(Set icc (CmpI (AndI op1 op2) zero));
  8706   size(4);
  8707   format %{ "BTST   $op2,$op1" %}
  8708   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8709   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8710   ins_pipe(ialu_cconly_reg_reg_zero);
  8711 %}
  8713 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8714   match(Set icc (CmpI (AndI op1 op2) zero));
  8716   size(4);
  8717   format %{ "BTST   $op2,$op1" %}
  8718   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8719   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8720   ins_pipe(ialu_cconly_reg_imm_zero);
  8721 %}
  8723 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8724   match(Set xcc (CmpL op1 op2));
  8725   effect( DEF xcc, USE op1, USE op2 );
  8727   size(4);
  8728   format %{ "CMP    $op1,$op2\t\t! long" %}
  8729   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8730   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8731   ins_pipe(ialu_cconly_reg_reg);
  8732 %}
  8734 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8735   match(Set xcc (CmpL op1 con));
  8736   effect( DEF xcc, USE op1, USE con );
  8738   size(4);
  8739   format %{ "CMP    $op1,$con\t\t! long" %}
  8740   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8741   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8742   ins_pipe(ialu_cconly_reg_reg);
  8743 %}
  8745 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8746   match(Set xcc (CmpL (AndL op1 op2) zero));
  8747   effect( DEF xcc, USE op1, USE op2 );
  8749   size(4);
  8750   format %{ "BTST   $op1,$op2\t\t! long" %}
  8751   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8752   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8753   ins_pipe(ialu_cconly_reg_reg);
  8754 %}
  8756 // useful for checking the alignment of a pointer:
  8757 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8758   match(Set xcc (CmpL (AndL op1 con) zero));
  8759   effect( DEF xcc, USE op1, USE con );
  8761   size(4);
  8762   format %{ "BTST   $op1,$con\t\t! long" %}
  8763   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8764   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8765   ins_pipe(ialu_cconly_reg_reg);
  8766 %}
  8768 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8769   match(Set icc (CmpU op1 op2));
  8771   size(4);
  8772   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8773   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8774   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8775   ins_pipe(ialu_cconly_reg_imm);
  8776 %}
  8778 // Compare Pointers
  8779 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8780   match(Set pcc (CmpP op1 op2));
  8782   size(4);
  8783   format %{ "CMP    $op1,$op2\t! ptr" %}
  8784   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8785   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8786   ins_pipe(ialu_cconly_reg_reg);
  8787 %}
  8789 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8790   match(Set pcc (CmpP op1 op2));
  8792   size(4);
  8793   format %{ "CMP    $op1,$op2\t! ptr" %}
  8794   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8795   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8796   ins_pipe(ialu_cconly_reg_imm);
  8797 %}
  8799 // Compare Narrow oops
  8800 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8801   match(Set icc (CmpN op1 op2));
  8803   size(4);
  8804   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8805   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8806   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8807   ins_pipe(ialu_cconly_reg_reg);
  8808 %}
  8810 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8811   match(Set icc (CmpN op1 op2));
  8813   size(4);
  8814   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8815   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8816   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8817   ins_pipe(ialu_cconly_reg_imm);
  8818 %}
  8820 //----------Max and Min--------------------------------------------------------
  8821 // Min Instructions
  8822 // Conditional move for min
  8823 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8824   effect( USE_DEF op2, USE op1, USE icc );
  8826   size(4);
  8827   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8828   opcode(Assembler::less);
  8829   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8830   ins_pipe(ialu_reg_flags);
  8831 %}
  8833 // Min Register with Register.
  8834 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8835   match(Set op2 (MinI op1 op2));
  8836   ins_cost(DEFAULT_COST*2);
  8837   expand %{
  8838     flagsReg icc;
  8839     compI_iReg(icc,op1,op2);
  8840     cmovI_reg_lt(op2,op1,icc);
  8841   %}
  8842 %}
  8844 // Max Instructions
  8845 // Conditional move for max
  8846 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8847   effect( USE_DEF op2, USE op1, USE icc );
  8848   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8849   opcode(Assembler::greater);
  8850   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8851   ins_pipe(ialu_reg_flags);
  8852 %}
  8854 // Max Register with Register
  8855 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8856   match(Set op2 (MaxI op1 op2));
  8857   ins_cost(DEFAULT_COST*2);
  8858   expand %{
  8859     flagsReg icc;
  8860     compI_iReg(icc,op1,op2);
  8861     cmovI_reg_gt(op2,op1,icc);
  8862   %}
  8863 %}
  8866 //----------Float Compares----------------------------------------------------
  8867 // Compare floating, generate condition code
  8868 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8869   match(Set fcc (CmpF src1 src2));
  8871   size(4);
  8872   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8873   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8874   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8875   ins_pipe(faddF_fcc_reg_reg_zero);
  8876 %}
  8878 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8879   match(Set fcc (CmpD src1 src2));
  8881   size(4);
  8882   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8883   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8884   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8885   ins_pipe(faddD_fcc_reg_reg_zero);
  8886 %}
  8889 // Compare floating, generate -1,0,1
  8890 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8891   match(Set dst (CmpF3 src1 src2));
  8892   effect(KILL fcc0);
  8893   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8894   format %{ "fcmpl  $dst,$src1,$src2" %}
  8895   // Primary = float
  8896   opcode( true );
  8897   ins_encode( floating_cmp( dst, src1, src2 ) );
  8898   ins_pipe( floating_cmp );
  8899 %}
  8901 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8902   match(Set dst (CmpD3 src1 src2));
  8903   effect(KILL fcc0);
  8904   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8905   format %{ "dcmpl  $dst,$src1,$src2" %}
  8906   // Primary = double (not float)
  8907   opcode( false );
  8908   ins_encode( floating_cmp( dst, src1, src2 ) );
  8909   ins_pipe( floating_cmp );
  8910 %}
  8912 //----------Branches---------------------------------------------------------
  8913 // Jump
  8914 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8915 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8916   match(Jump switch_val);
  8918   ins_cost(350);
  8920   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8921              "ADD    O7, lo(table_base), O7\n\t"
  8922              "LD     [O7+$switch_val], O7\n\t"
  8923              "JUMP   O7"
  8924          %}
  8925   ins_encode( jump_enc( switch_val, table) );
  8926   ins_pc_relative(1);
  8927   ins_pipe(ialu_reg_reg);
  8928 %}
  8930 // Direct Branch.  Use V8 version with longer range.
  8931 instruct branch(label labl) %{
  8932   match(Goto);
  8933   effect(USE labl);
  8935   size(8);
  8936   ins_cost(BRANCH_COST);
  8937   format %{ "BA     $labl" %}
  8938   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8939   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8940   ins_encode( enc_ba( labl ) );
  8941   ins_pc_relative(1);
  8942   ins_pipe(br);
  8943 %}
  8945 // Conditional Direct Branch
  8946 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8947   match(If cmp icc);
  8948   effect(USE labl);
  8950   size(8);
  8951   ins_cost(BRANCH_COST);
  8952   format %{ "BP$cmp   $icc,$labl" %}
  8953   // Prim = bits 24-22, Secnd = bits 31-30
  8954   ins_encode( enc_bp( labl, cmp, icc ) );
  8955   ins_pc_relative(1);
  8956   ins_pipe(br_cc);
  8957 %}
  8959 // Branch-on-register tests all 64 bits.  We assume that values
  8960 // in 64-bit registers always remains zero or sign extended
  8961 // unless our code munges the high bits.  Interrupts can chop
  8962 // the high order bits to zero or sign at any time.
  8963 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8964   match(If cmp (CmpI op1 zero));
  8965   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8966   effect(USE labl);
  8968   size(8);
  8969   ins_cost(BRANCH_COST);
  8970   format %{ "BR$cmp   $op1,$labl" %}
  8971   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8972   ins_pc_relative(1);
  8973   ins_pipe(br_reg);
  8974 %}
  8976 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8977   match(If cmp (CmpP op1 null));
  8978   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8979   effect(USE labl);
  8981   size(8);
  8982   ins_cost(BRANCH_COST);
  8983   format %{ "BR$cmp   $op1,$labl" %}
  8984   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8985   ins_pc_relative(1);
  8986   ins_pipe(br_reg);
  8987 %}
  8989 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8990   match(If cmp (CmpL op1 zero));
  8991   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8992   effect(USE labl);
  8994   size(8);
  8995   ins_cost(BRANCH_COST);
  8996   format %{ "BR$cmp   $op1,$labl" %}
  8997   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8998   ins_pc_relative(1);
  8999   ins_pipe(br_reg);
  9000 %}
  9002 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9003   match(If cmp icc);
  9004   effect(USE labl);
  9006   format %{ "BP$cmp  $icc,$labl" %}
  9007   // Prim = bits 24-22, Secnd = bits 31-30
  9008   ins_encode( enc_bp( labl, cmp, icc ) );
  9009   ins_pc_relative(1);
  9010   ins_pipe(br_cc);
  9011 %}
  9013 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9014   match(If cmp pcc);
  9015   effect(USE labl);
  9017   size(8);
  9018   ins_cost(BRANCH_COST);
  9019   format %{ "BP$cmp  $pcc,$labl" %}
  9020   // Prim = bits 24-22, Secnd = bits 31-30
  9021   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9022   ins_pc_relative(1);
  9023   ins_pipe(br_cc);
  9024 %}
  9026 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9027   match(If cmp fcc);
  9028   effect(USE labl);
  9030   size(8);
  9031   ins_cost(BRANCH_COST);
  9032   format %{ "FBP$cmp $fcc,$labl" %}
  9033   // Prim = bits 24-22, Secnd = bits 31-30
  9034   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9035   ins_pc_relative(1);
  9036   ins_pipe(br_fcc);
  9037 %}
  9039 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9040   match(CountedLoopEnd cmp icc);
  9041   effect(USE labl);
  9043   size(8);
  9044   ins_cost(BRANCH_COST);
  9045   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9046   // Prim = bits 24-22, Secnd = bits 31-30
  9047   ins_encode( enc_bp( labl, cmp, icc ) );
  9048   ins_pc_relative(1);
  9049   ins_pipe(br_cc);
  9050 %}
  9052 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9053   match(CountedLoopEnd cmp icc);
  9054   effect(USE labl);
  9056   size(8);
  9057   ins_cost(BRANCH_COST);
  9058   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9059   // Prim = bits 24-22, Secnd = bits 31-30
  9060   ins_encode( enc_bp( labl, cmp, icc ) );
  9061   ins_pc_relative(1);
  9062   ins_pipe(br_cc);
  9063 %}
  9065 // ============================================================================
  9066 // Long Compare
  9067 //
  9068 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9069 // is tricky.  The flavor of compare used depends on whether we are testing
  9070 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9071 // The GE test is the negated LT test.  The LE test can be had by commuting
  9072 // the operands (yielding a GE test) and then negating; negate again for the
  9073 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9074 // NE test is negated from that.
  9076 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9077 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9078 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9079 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9080 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9081 // foo match ends up with the wrong leaf.  One fix is to not match both
  9082 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9083 // both forms beat the trinary form of long-compare and both are very useful
  9084 // on Intel which has so few registers.
  9086 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9087   match(If cmp xcc);
  9088   effect(USE labl);
  9090   size(8);
  9091   ins_cost(BRANCH_COST);
  9092   format %{ "BP$cmp   $xcc,$labl" %}
  9093   // Prim = bits 24-22, Secnd = bits 31-30
  9094   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9095   ins_pc_relative(1);
  9096   ins_pipe(br_cc);
  9097 %}
  9099 // Manifest a CmpL3 result in an integer register.  Very painful.
  9100 // This is the test to avoid.
  9101 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9102   match(Set dst (CmpL3 src1 src2) );
  9103   effect( KILL ccr );
  9104   ins_cost(6*DEFAULT_COST);
  9105   size(24);
  9106   format %{ "CMP    $src1,$src2\t\t! long\n"
  9107           "\tBLT,a,pn done\n"
  9108           "\tMOV    -1,$dst\t! delay slot\n"
  9109           "\tBGT,a,pn done\n"
  9110           "\tMOV    1,$dst\t! delay slot\n"
  9111           "\tCLR    $dst\n"
  9112     "done:"     %}
  9113   ins_encode( cmpl_flag(src1,src2,dst) );
  9114   ins_pipe(cmpL_reg);
  9115 %}
  9117 // Conditional move
  9118 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9119   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9120   ins_cost(150);
  9121   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9122   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9123   ins_pipe(ialu_reg);
  9124 %}
  9126 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9127   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9128   ins_cost(140);
  9129   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9130   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9131   ins_pipe(ialu_imm);
  9132 %}
  9134 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9135   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9136   ins_cost(150);
  9137   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9138   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9139   ins_pipe(ialu_reg);
  9140 %}
  9142 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9143   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9144   ins_cost(140);
  9145   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9146   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9147   ins_pipe(ialu_imm);
  9148 %}
  9150 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9151   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9152   ins_cost(150);
  9153   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9154   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9155   ins_pipe(ialu_reg);
  9156 %}
  9158 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9159   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9160   ins_cost(150);
  9161   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9162   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9163   ins_pipe(ialu_reg);
  9164 %}
  9166 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9167   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9168   ins_cost(140);
  9169   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9170   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9171   ins_pipe(ialu_imm);
  9172 %}
  9174 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9175   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9176   ins_cost(150);
  9177   opcode(0x101);
  9178   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9179   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9180   ins_pipe(int_conditional_float_move);
  9181 %}
  9183 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9184   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9185   ins_cost(150);
  9186   opcode(0x102);
  9187   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9188   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9189   ins_pipe(int_conditional_float_move);
  9190 %}
  9192 // ============================================================================
  9193 // Safepoint Instruction
  9194 instruct safePoint_poll(iRegP poll) %{
  9195   match(SafePoint poll);
  9196   effect(USE poll);
  9198   size(4);
  9199 #ifdef _LP64
  9200   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9201 #else
  9202   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9203 #endif
  9204   ins_encode %{
  9205     __ relocate(relocInfo::poll_type);
  9206     __ ld_ptr($poll$$Register, 0, G0);
  9207   %}
  9208   ins_pipe(loadPollP);
  9209 %}
  9211 // ============================================================================
  9212 // Call Instructions
  9213 // Call Java Static Instruction
  9214 instruct CallStaticJavaDirect( method meth ) %{
  9215   match(CallStaticJava);
  9216   effect(USE meth);
  9218   size(8);
  9219   ins_cost(CALL_COST);
  9220   format %{ "CALL,static  ; NOP ==> " %}
  9221   ins_encode( Java_Static_Call( meth ), call_epilog );
  9222   ins_pc_relative(1);
  9223   ins_pipe(simple_call);
  9224 %}
  9226 // Call Java Dynamic Instruction
  9227 instruct CallDynamicJavaDirect( method meth ) %{
  9228   match(CallDynamicJava);
  9229   effect(USE meth);
  9231   ins_cost(CALL_COST);
  9232   format %{ "SET    (empty),R_G5\n\t"
  9233             "CALL,dynamic  ; NOP ==> " %}
  9234   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9235   ins_pc_relative(1);
  9236   ins_pipe(call);
  9237 %}
  9239 // Call Runtime Instruction
  9240 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9241   match(CallRuntime);
  9242   effect(USE meth, KILL l7);
  9243   ins_cost(CALL_COST);
  9244   format %{ "CALL,runtime" %}
  9245   ins_encode( Java_To_Runtime( meth ),
  9246               call_epilog, adjust_long_from_native_call );
  9247   ins_pc_relative(1);
  9248   ins_pipe(simple_call);
  9249 %}
  9251 // Call runtime without safepoint - same as CallRuntime
  9252 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9253   match(CallLeaf);
  9254   effect(USE meth, KILL l7);
  9255   ins_cost(CALL_COST);
  9256   format %{ "CALL,runtime leaf" %}
  9257   ins_encode( Java_To_Runtime( meth ),
  9258               call_epilog,
  9259               adjust_long_from_native_call );
  9260   ins_pc_relative(1);
  9261   ins_pipe(simple_call);
  9262 %}
  9264 // Call runtime without safepoint - same as CallLeaf
  9265 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9266   match(CallLeafNoFP);
  9267   effect(USE meth, KILL l7);
  9268   ins_cost(CALL_COST);
  9269   format %{ "CALL,runtime leaf nofp" %}
  9270   ins_encode( Java_To_Runtime( meth ),
  9271               call_epilog,
  9272               adjust_long_from_native_call );
  9273   ins_pc_relative(1);
  9274   ins_pipe(simple_call);
  9275 %}
  9277 // Tail Call; Jump from runtime stub to Java code.
  9278 // Also known as an 'interprocedural jump'.
  9279 // Target of jump will eventually return to caller.
  9280 // TailJump below removes the return address.
  9281 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9282   match(TailCall jump_target method_oop );
  9284   ins_cost(CALL_COST);
  9285   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9286   ins_encode(form_jmpl(jump_target));
  9287   ins_pipe(tail_call);
  9288 %}
  9291 // Return Instruction
  9292 instruct Ret() %{
  9293   match(Return);
  9295   // The epilogue node did the ret already.
  9296   size(0);
  9297   format %{ "! return" %}
  9298   ins_encode();
  9299   ins_pipe(empty);
  9300 %}
  9303 // Tail Jump; remove the return address; jump to target.
  9304 // TailCall above leaves the return address around.
  9305 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9306 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9307 // "restore" before this instruction (in Epilogue), we need to materialize it
  9308 // in %i0.
  9309 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9310   match( TailJump jump_target ex_oop );
  9311   ins_cost(CALL_COST);
  9312   format %{ "! discard R_O7\n\t"
  9313             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9314   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9315   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9316   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9317   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9318   ins_pipe(tail_call);
  9319 %}
  9321 // Create exception oop: created by stack-crawling runtime code.
  9322 // Created exception is now available to this handler, and is setup
  9323 // just prior to jumping to this handler.  No code emitted.
  9324 instruct CreateException( o0RegP ex_oop )
  9325 %{
  9326   match(Set ex_oop (CreateEx));
  9327   ins_cost(0);
  9329   size(0);
  9330   // use the following format syntax
  9331   format %{ "! exception oop is in R_O0; no code emitted" %}
  9332   ins_encode();
  9333   ins_pipe(empty);
  9334 %}
  9337 // Rethrow exception:
  9338 // The exception oop will come in the first argument position.
  9339 // Then JUMP (not call) to the rethrow stub code.
  9340 instruct RethrowException()
  9341 %{
  9342   match(Rethrow);
  9343   ins_cost(CALL_COST);
  9345   // use the following format syntax
  9346   format %{ "Jmp    rethrow_stub" %}
  9347   ins_encode(enc_rethrow);
  9348   ins_pipe(tail_call);
  9349 %}
  9352 // Die now
  9353 instruct ShouldNotReachHere( )
  9354 %{
  9355   match(Halt);
  9356   ins_cost(CALL_COST);
  9358   size(4);
  9359   // Use the following format syntax
  9360   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9361   ins_encode( form2_illtrap() );
  9362   ins_pipe(tail_call);
  9363 %}
  9365 // ============================================================================
  9366 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9367 // array for an instance of the superklass.  Set a hidden internal cache on a
  9368 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9369 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9370 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9371   match(Set index (PartialSubtypeCheck sub super));
  9372   effect( KILL pcc, KILL o7 );
  9373   ins_cost(DEFAULT_COST*10);
  9374   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9375   ins_encode( enc_PartialSubtypeCheck() );
  9376   ins_pipe(partial_subtype_check_pipe);
  9377 %}
  9379 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9380   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9381   effect( KILL idx, KILL o7 );
  9382   ins_cost(DEFAULT_COST*10);
  9383   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9384   ins_encode( enc_PartialSubtypeCheck() );
  9385   ins_pipe(partial_subtype_check_pipe);
  9386 %}
  9389 // ============================================================================
  9390 // inlined locking and unlocking
  9392 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9393   match(Set pcc (FastLock object box));
  9395   effect(KILL scratch, TEMP scratch2);
  9396   ins_cost(100);
  9398   size(4*112);       // conservative overestimation ...
  9399   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9400   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9401   ins_pipe(long_memory_op);
  9402 %}
  9405 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9406   match(Set pcc (FastUnlock object box));
  9407   effect(KILL scratch, TEMP scratch2);
  9408   ins_cost(100);
  9410   size(4*120);       // conservative overestimation ...
  9411   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9412   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9413   ins_pipe(long_memory_op);
  9414 %}
  9416 // Count and Base registers are fixed because the allocator cannot
  9417 // kill unknown registers.  The encodings are generic.
  9418 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9419   match(Set dummy (ClearArray cnt base));
  9420   effect(TEMP temp, KILL ccr);
  9421   ins_cost(300);
  9422   format %{ "MOV    $cnt,$temp\n"
  9423     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9424     "        BRge   loop\t\t! Clearing loop\n"
  9425     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9426   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9427   ins_pipe(long_memory_op);
  9428 %}
  9430 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9431                         o7RegI tmp, flagsReg ccr) %{
  9432   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9433   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9434   ins_cost(300);
  9435   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9436   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9437   ins_pipe(long_memory_op);
  9438 %}
  9440 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9441                        o7RegI tmp, flagsReg ccr) %{
  9442   match(Set result (StrEquals (Binary str1 str2) cnt));
  9443   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9444   ins_cost(300);
  9445   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9446   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9447   ins_pipe(long_memory_op);
  9448 %}
  9450 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9451                       o7RegI tmp2, flagsReg ccr) %{
  9452   match(Set result (AryEq ary1 ary2));
  9453   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9454   ins_cost(300);
  9455   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9456   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9457   ins_pipe(long_memory_op);
  9458 %}
  9461 //---------- Zeros Count Instructions ------------------------------------------
  9463 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9464   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9465   match(Set dst (CountLeadingZerosI src));
  9466   effect(TEMP dst, TEMP tmp, KILL cr);
  9468   // x |= (x >> 1);
  9469   // x |= (x >> 2);
  9470   // x |= (x >> 4);
  9471   // x |= (x >> 8);
  9472   // x |= (x >> 16);
  9473   // return (WORDBITS - popc(x));
  9474   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9475             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9476             "OR      $dst,$tmp,$dst\n\t"
  9477             "SRL     $dst,2,$tmp\n\t"
  9478             "OR      $dst,$tmp,$dst\n\t"
  9479             "SRL     $dst,4,$tmp\n\t"
  9480             "OR      $dst,$tmp,$dst\n\t"
  9481             "SRL     $dst,8,$tmp\n\t"
  9482             "OR      $dst,$tmp,$dst\n\t"
  9483             "SRL     $dst,16,$tmp\n\t"
  9484             "OR      $dst,$tmp,$dst\n\t"
  9485             "POPC    $dst,$dst\n\t"
  9486             "MOV     32,$tmp\n\t"
  9487             "SUB     $tmp,$dst,$dst" %}
  9488   ins_encode %{
  9489     Register Rdst = $dst$$Register;
  9490     Register Rsrc = $src$$Register;
  9491     Register Rtmp = $tmp$$Register;
  9492     __ srl(Rsrc, 1, Rtmp);
  9493     __ srl(Rsrc, 0, Rdst);
  9494     __ or3(Rdst, Rtmp, Rdst);
  9495     __ srl(Rdst, 2, Rtmp);
  9496     __ or3(Rdst, Rtmp, Rdst);
  9497     __ srl(Rdst, 4, Rtmp);
  9498     __ or3(Rdst, Rtmp, Rdst);
  9499     __ srl(Rdst, 8, Rtmp);
  9500     __ or3(Rdst, Rtmp, Rdst);
  9501     __ srl(Rdst, 16, Rtmp);
  9502     __ or3(Rdst, Rtmp, Rdst);
  9503     __ popc(Rdst, Rdst);
  9504     __ mov(BitsPerInt, Rtmp);
  9505     __ sub(Rtmp, Rdst, Rdst);
  9506   %}
  9507   ins_pipe(ialu_reg);
  9508 %}
  9510 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9511   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9512   match(Set dst (CountLeadingZerosL src));
  9513   effect(TEMP dst, TEMP tmp, KILL cr);
  9515   // x |= (x >> 1);
  9516   // x |= (x >> 2);
  9517   // x |= (x >> 4);
  9518   // x |= (x >> 8);
  9519   // x |= (x >> 16);
  9520   // x |= (x >> 32);
  9521   // return (WORDBITS - popc(x));
  9522   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9523             "OR      $src,$tmp,$dst\n\t"
  9524             "SRLX    $dst,2,$tmp\n\t"
  9525             "OR      $dst,$tmp,$dst\n\t"
  9526             "SRLX    $dst,4,$tmp\n\t"
  9527             "OR      $dst,$tmp,$dst\n\t"
  9528             "SRLX    $dst,8,$tmp\n\t"
  9529             "OR      $dst,$tmp,$dst\n\t"
  9530             "SRLX    $dst,16,$tmp\n\t"
  9531             "OR      $dst,$tmp,$dst\n\t"
  9532             "SRLX    $dst,32,$tmp\n\t"
  9533             "OR      $dst,$tmp,$dst\n\t"
  9534             "POPC    $dst,$dst\n\t"
  9535             "MOV     64,$tmp\n\t"
  9536             "SUB     $tmp,$dst,$dst" %}
  9537   ins_encode %{
  9538     Register Rdst = $dst$$Register;
  9539     Register Rsrc = $src$$Register;
  9540     Register Rtmp = $tmp$$Register;
  9541     __ srlx(Rsrc, 1, Rtmp);
  9542     __ or3(Rsrc, Rtmp, Rdst);
  9543     __ srlx(Rdst, 2, Rtmp);
  9544     __ or3(Rdst, Rtmp, Rdst);
  9545     __ srlx(Rdst, 4, Rtmp);
  9546     __ or3(Rdst, Rtmp, Rdst);
  9547     __ srlx(Rdst, 8, Rtmp);
  9548     __ or3(Rdst, Rtmp, Rdst);
  9549     __ srlx(Rdst, 16, Rtmp);
  9550     __ or3(Rdst, Rtmp, Rdst);
  9551     __ srlx(Rdst, 32, Rtmp);
  9552     __ or3(Rdst, Rtmp, Rdst);
  9553     __ popc(Rdst, Rdst);
  9554     __ mov(BitsPerLong, Rtmp);
  9555     __ sub(Rtmp, Rdst, Rdst);
  9556   %}
  9557   ins_pipe(ialu_reg);
  9558 %}
  9560 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9561   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9562   match(Set dst (CountTrailingZerosI src));
  9563   effect(TEMP dst, KILL cr);
  9565   // return popc(~x & (x - 1));
  9566   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9567             "ANDN    $dst,$src,$dst\n\t"
  9568             "SRL     $dst,R_G0,$dst\n\t"
  9569             "POPC    $dst,$dst" %}
  9570   ins_encode %{
  9571     Register Rdst = $dst$$Register;
  9572     Register Rsrc = $src$$Register;
  9573     __ sub(Rsrc, 1, Rdst);
  9574     __ andn(Rdst, Rsrc, Rdst);
  9575     __ srl(Rdst, G0, Rdst);
  9576     __ popc(Rdst, Rdst);
  9577   %}
  9578   ins_pipe(ialu_reg);
  9579 %}
  9581 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9582   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9583   match(Set dst (CountTrailingZerosL src));
  9584   effect(TEMP dst, KILL cr);
  9586   // return popc(~x & (x - 1));
  9587   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9588             "ANDN    $dst,$src,$dst\n\t"
  9589             "POPC    $dst,$dst" %}
  9590   ins_encode %{
  9591     Register Rdst = $dst$$Register;
  9592     Register Rsrc = $src$$Register;
  9593     __ sub(Rsrc, 1, Rdst);
  9594     __ andn(Rdst, Rsrc, Rdst);
  9595     __ popc(Rdst, Rdst);
  9596   %}
  9597   ins_pipe(ialu_reg);
  9598 %}
  9601 //---------- Population Count Instructions -------------------------------------
  9603 instruct popCountI(iRegI dst, iRegI src) %{
  9604   predicate(UsePopCountInstruction);
  9605   match(Set dst (PopCountI src));
  9607   format %{ "POPC   $src, $dst" %}
  9608   ins_encode %{
  9609     __ popc($src$$Register, $dst$$Register);
  9610   %}
  9611   ins_pipe(ialu_reg);
  9612 %}
  9614 // Note: Long.bitCount(long) returns an int.
  9615 instruct popCountL(iRegI dst, iRegL src) %{
  9616   predicate(UsePopCountInstruction);
  9617   match(Set dst (PopCountL src));
  9619   format %{ "POPC   $src, $dst" %}
  9620   ins_encode %{
  9621     __ popc($src$$Register, $dst$$Register);
  9622   %}
  9623   ins_pipe(ialu_reg);
  9624 %}
  9627 // ============================================================================
  9628 //------------Bytes reverse--------------------------------------------------
  9630 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9631   match(Set dst (ReverseBytesI src));
  9633   // Op cost is artificially doubled to make sure that load or store
  9634   // instructions are preferred over this one which requires a spill
  9635   // onto a stack slot.
  9636   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9637   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9639   ins_encode %{
  9640     __ set($src$$disp + STACK_BIAS, O7);
  9641     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9642   %}
  9643   ins_pipe( iload_mem );
  9644 %}
  9646 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9647   match(Set dst (ReverseBytesL src));
  9649   // Op cost is artificially doubled to make sure that load or store
  9650   // instructions are preferred over this one which requires a spill
  9651   // onto a stack slot.
  9652   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9653   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9655   ins_encode %{
  9656     __ set($src$$disp + STACK_BIAS, O7);
  9657     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9658   %}
  9659   ins_pipe( iload_mem );
  9660 %}
  9662 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9663   match(Set dst (ReverseBytesUS src));
  9665   // Op cost is artificially doubled to make sure that load or store
  9666   // instructions are preferred over this one which requires a spill
  9667   // onto a stack slot.
  9668   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9669   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9671   ins_encode %{
  9672     // the value was spilled as an int so bias the load
  9673     __ set($src$$disp + STACK_BIAS + 2, O7);
  9674     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9675   %}
  9676   ins_pipe( iload_mem );
  9677 %}
  9679 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9680   match(Set dst (ReverseBytesS src));
  9682   // Op cost is artificially doubled to make sure that load or store
  9683   // instructions are preferred over this one which requires a spill
  9684   // onto a stack slot.
  9685   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9686   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9688   ins_encode %{
  9689     // the value was spilled as an int so bias the load
  9690     __ set($src$$disp + STACK_BIAS + 2, O7);
  9691     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9692   %}
  9693   ins_pipe( iload_mem );
  9694 %}
  9696 // Load Integer reversed byte order
  9697 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9698   match(Set dst (ReverseBytesI (LoadI src)));
  9700   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9701   size(4);
  9702   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9704   ins_encode %{
  9705     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9706   %}
  9707   ins_pipe(iload_mem);
  9708 %}
  9710 // Load Long - aligned and reversed
  9711 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9712   match(Set dst (ReverseBytesL (LoadL src)));
  9714   ins_cost(MEMORY_REF_COST);
  9715   size(4);
  9716   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9718   ins_encode %{
  9719     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9720   %}
  9721   ins_pipe(iload_mem);
  9722 %}
  9724 // Load unsigned short / char reversed byte order
  9725 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9726   match(Set dst (ReverseBytesUS (LoadUS src)));
  9728   ins_cost(MEMORY_REF_COST);
  9729   size(4);
  9730   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9732   ins_encode %{
  9733     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9734   %}
  9735   ins_pipe(iload_mem);
  9736 %}
  9738 // Load short reversed byte order
  9739 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9740   match(Set dst (ReverseBytesS (LoadS src)));
  9742   ins_cost(MEMORY_REF_COST);
  9743   size(4);
  9744   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9746   ins_encode %{
  9747     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9748   %}
  9749   ins_pipe(iload_mem);
  9750 %}
  9752 // Store Integer reversed byte order
  9753 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9754   match(Set dst (StoreI dst (ReverseBytesI src)));
  9756   ins_cost(MEMORY_REF_COST);
  9757   size(4);
  9758   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9760   ins_encode %{
  9761     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9762   %}
  9763   ins_pipe(istore_mem_reg);
  9764 %}
  9766 // Store Long reversed byte order
  9767 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9768   match(Set dst (StoreL dst (ReverseBytesL src)));
  9770   ins_cost(MEMORY_REF_COST);
  9771   size(4);
  9772   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9774   ins_encode %{
  9775     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9776   %}
  9777   ins_pipe(istore_mem_reg);
  9778 %}
  9780 // Store unsighed short/char reversed byte order
  9781 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9782   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9784   ins_cost(MEMORY_REF_COST);
  9785   size(4);
  9786   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9788   ins_encode %{
  9789     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9790   %}
  9791   ins_pipe(istore_mem_reg);
  9792 %}
  9794 // Store short reversed byte order
  9795 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9796   match(Set dst (StoreC dst (ReverseBytesS src)));
  9798   ins_cost(MEMORY_REF_COST);
  9799   size(4);
  9800   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9802   ins_encode %{
  9803     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9804   %}
  9805   ins_pipe(istore_mem_reg);
  9806 %}
  9808 //----------PEEPHOLE RULES-----------------------------------------------------
  9809 // These must follow all instruction definitions as they use the names
  9810 // defined in the instructions definitions.
  9811 //
  9812 // peepmatch ( root_instr_name [preceding_instruction]* );
  9813 //
  9814 // peepconstraint %{
  9815 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9816 //  [, ...] );
  9817 // // instruction numbers are zero-based using left to right order in peepmatch
  9818 //
  9819 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9820 // // provide an instruction_number.operand_name for each operand that appears
  9821 // // in the replacement instruction's match rule
  9822 //
  9823 // ---------VM FLAGS---------------------------------------------------------
  9824 //
  9825 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9826 //
  9827 // Each peephole rule is given an identifying number starting with zero and
  9828 // increasing by one in the order seen by the parser.  An individual peephole
  9829 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9830 // on the command-line.
  9831 //
  9832 // ---------CURRENT LIMITATIONS----------------------------------------------
  9833 //
  9834 // Only match adjacent instructions in same basic block
  9835 // Only equality constraints
  9836 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9837 // Only one replacement instruction
  9838 //
  9839 // ---------EXAMPLE----------------------------------------------------------
  9840 //
  9841 // // pertinent parts of existing instructions in architecture description
  9842 // instruct movI(eRegI dst, eRegI src) %{
  9843 //   match(Set dst (CopyI src));
  9844 // %}
  9845 //
  9846 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9847 //   match(Set dst (AddI dst src));
  9848 //   effect(KILL cr);
  9849 // %}
  9850 //
  9851 // // Change (inc mov) to lea
  9852 // peephole %{
  9853 //   // increment preceeded by register-register move
  9854 //   peepmatch ( incI_eReg movI );
  9855 //   // require that the destination register of the increment
  9856 //   // match the destination register of the move
  9857 //   peepconstraint ( 0.dst == 1.dst );
  9858 //   // construct a replacement instruction that sets
  9859 //   // the destination to ( move's source register + one )
  9860 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9861 // %}
  9862 //
  9864 // // Change load of spilled value to only a spill
  9865 // instruct storeI(memory mem, eRegI src) %{
  9866 //   match(Set mem (StoreI mem src));
  9867 // %}
  9868 //
  9869 // instruct loadI(eRegI dst, memory mem) %{
  9870 //   match(Set dst (LoadI mem));
  9871 // %}
  9872 //
  9873 // peephole %{
  9874 //   peepmatch ( loadI storeI );
  9875 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9876 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9877 // %}
  9879 //----------SMARTSPILL RULES---------------------------------------------------
  9880 // These must follow all instruction definitions as they use the names
  9881 // defined in the instructions definitions.
  9882 //
  9883 // SPARC will probably not have any of these rules due to RISC instruction set.
  9885 //----------PIPELINE-----------------------------------------------------------
  9886 // Rules which define the behavior of the target architectures pipeline.

mercurial