src/os/windows/vm/os_windows.cpp

Tue, 17 Jan 2012 13:08:52 -0500

author
zgu
date
Tue, 17 Jan 2012 13:08:52 -0500
changeset 3430
d7e3846464d0
parent 3384
2b3acb34791f
child 3481
de268c8a8075
child 3499
aa3d708d67c4
permissions
-rw-r--r--

7071311: Decoder enhancement
Summary: Made decoder thread-safe
Reviewed-by: coleenp, kamg

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "jvm_windows.h"
    37 #include "memory/allocation.inline.hpp"
    38 #include "memory/filemap.hpp"
    39 #include "mutex_windows.inline.hpp"
    40 #include "oops/oop.inline.hpp"
    41 #include "os_share_windows.hpp"
    42 #include "prims/jniFastGetField.hpp"
    43 #include "prims/jvm.h"
    44 #include "prims/jvm_misc.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/extendedPC.hpp"
    47 #include "runtime/globals.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "thread_windows.inline.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/growableArray.hpp"
    67 #include "utilities/vmError.hpp"
    68 #ifdef TARGET_ARCH_x86
    69 # include "assembler_x86.inline.hpp"
    70 # include "nativeInst_x86.hpp"
    71 #endif
    72 #ifdef COMPILER1
    73 #include "c1/c1_Runtime1.hpp"
    74 #endif
    75 #ifdef COMPILER2
    76 #include "opto/runtime.hpp"
    77 #endif
    79 #ifdef _DEBUG
    80 #include <crtdbg.h>
    81 #endif
    84 #include <windows.h>
    85 #include <sys/types.h>
    86 #include <sys/stat.h>
    87 #include <sys/timeb.h>
    88 #include <objidl.h>
    89 #include <shlobj.h>
    91 #include <malloc.h>
    92 #include <signal.h>
    93 #include <direct.h>
    94 #include <errno.h>
    95 #include <fcntl.h>
    96 #include <io.h>
    97 #include <process.h>              // For _beginthreadex(), _endthreadex()
    98 #include <imagehlp.h>             // For os::dll_address_to_function_name
   100 /* for enumerating dll libraries */
   101 #include <vdmdbg.h>
   103 // for timer info max values which include all bits
   104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   106 // For DLL loading/load error detection
   107 // Values of PE COFF
   108 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   109 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   111 static HANDLE main_process;
   112 static HANDLE main_thread;
   113 static int    main_thread_id;
   115 static FILETIME process_creation_time;
   116 static FILETIME process_exit_time;
   117 static FILETIME process_user_time;
   118 static FILETIME process_kernel_time;
   120 #ifdef _WIN64
   121 PVOID  topLevelVectoredExceptionHandler = NULL;
   122 #endif
   124 #ifdef _M_IA64
   125 #define __CPU__ ia64
   126 #elif _M_AMD64
   127 #define __CPU__ amd64
   128 #else
   129 #define __CPU__ i486
   130 #endif
   132 // save DLL module handle, used by GetModuleFileName
   134 HINSTANCE vm_lib_handle;
   136 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   137   switch (reason) {
   138     case DLL_PROCESS_ATTACH:
   139       vm_lib_handle = hinst;
   140       if(ForceTimeHighResolution)
   141         timeBeginPeriod(1L);
   142       break;
   143     case DLL_PROCESS_DETACH:
   144       if(ForceTimeHighResolution)
   145         timeEndPeriod(1L);
   146 #ifdef _WIN64
   147       if (topLevelVectoredExceptionHandler != NULL) {
   148         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   149         topLevelVectoredExceptionHandler = NULL;
   150       }
   151 #endif
   152       break;
   153     default:
   154       break;
   155   }
   156   return true;
   157 }
   159 static inline double fileTimeAsDouble(FILETIME* time) {
   160   const double high  = (double) ((unsigned int) ~0);
   161   const double split = 10000000.0;
   162   double result = (time->dwLowDateTime / split) +
   163                    time->dwHighDateTime * (high/split);
   164   return result;
   165 }
   167 // Implementation of os
   169 bool os::getenv(const char* name, char* buffer, int len) {
   170  int result = GetEnvironmentVariable(name, buffer, len);
   171  return result > 0 && result < len;
   172 }
   175 // No setuid programs under Windows.
   176 bool os::have_special_privileges() {
   177   return false;
   178 }
   181 // This method is  a periodic task to check for misbehaving JNI applications
   182 // under CheckJNI, we can add any periodic checks here.
   183 // For Windows at the moment does nothing
   184 void os::run_periodic_checks() {
   185   return;
   186 }
   188 #ifndef _WIN64
   189 // previous UnhandledExceptionFilter, if there is one
   190 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   192 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   193 #endif
   194 void os::init_system_properties_values() {
   195   /* sysclasspath, java_home, dll_dir */
   196   {
   197       char *home_path;
   198       char *dll_path;
   199       char *pslash;
   200       char *bin = "\\bin";
   201       char home_dir[MAX_PATH];
   203       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   204           os::jvm_path(home_dir, sizeof(home_dir));
   205           // Found the full path to jvm[_g].dll.
   206           // Now cut the path to <java_home>/jre if we can.
   207           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   208           pslash = strrchr(home_dir, '\\');
   209           if (pslash != NULL) {
   210               *pslash = '\0';                 /* get rid of \{client|server} */
   211               pslash = strrchr(home_dir, '\\');
   212               if (pslash != NULL)
   213                   *pslash = '\0';             /* get rid of \bin */
   214           }
   215       }
   217       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   218       if (home_path == NULL)
   219           return;
   220       strcpy(home_path, home_dir);
   221       Arguments::set_java_home(home_path);
   223       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   224       if (dll_path == NULL)
   225           return;
   226       strcpy(dll_path, home_dir);
   227       strcat(dll_path, bin);
   228       Arguments::set_dll_dir(dll_path);
   230       if (!set_boot_path('\\', ';'))
   231           return;
   232   }
   234   /* library_path */
   235   #define EXT_DIR "\\lib\\ext"
   236   #define BIN_DIR "\\bin"
   237   #define PACKAGE_DIR "\\Sun\\Java"
   238   {
   239     /* Win32 library search order (See the documentation for LoadLibrary):
   240      *
   241      * 1. The directory from which application is loaded.
   242      * 2. The system wide Java Extensions directory (Java only)
   243      * 3. System directory (GetSystemDirectory)
   244      * 4. Windows directory (GetWindowsDirectory)
   245      * 5. The PATH environment variable
   246      * 6. The current directory
   247      */
   249     char *library_path;
   250     char tmp[MAX_PATH];
   251     char *path_str = ::getenv("PATH");
   253     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   254         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   256     library_path[0] = '\0';
   258     GetModuleFileName(NULL, tmp, sizeof(tmp));
   259     *(strrchr(tmp, '\\')) = '\0';
   260     strcat(library_path, tmp);
   262     GetWindowsDirectory(tmp, sizeof(tmp));
   263     strcat(library_path, ";");
   264     strcat(library_path, tmp);
   265     strcat(library_path, PACKAGE_DIR BIN_DIR);
   267     GetSystemDirectory(tmp, sizeof(tmp));
   268     strcat(library_path, ";");
   269     strcat(library_path, tmp);
   271     GetWindowsDirectory(tmp, sizeof(tmp));
   272     strcat(library_path, ";");
   273     strcat(library_path, tmp);
   275     if (path_str) {
   276         strcat(library_path, ";");
   277         strcat(library_path, path_str);
   278     }
   280     strcat(library_path, ";.");
   282     Arguments::set_library_path(library_path);
   283     FREE_C_HEAP_ARRAY(char, library_path);
   284   }
   286   /* Default extensions directory */
   287   {
   288     char path[MAX_PATH];
   289     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   290     GetWindowsDirectory(path, MAX_PATH);
   291     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   292         path, PACKAGE_DIR, EXT_DIR);
   293     Arguments::set_ext_dirs(buf);
   294   }
   295   #undef EXT_DIR
   296   #undef BIN_DIR
   297   #undef PACKAGE_DIR
   299   /* Default endorsed standards directory. */
   300   {
   301     #define ENDORSED_DIR "\\lib\\endorsed"
   302     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   303     char * buf = NEW_C_HEAP_ARRAY(char, len);
   304     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   305     Arguments::set_endorsed_dirs(buf);
   306     #undef ENDORSED_DIR
   307   }
   309 #ifndef _WIN64
   310   // set our UnhandledExceptionFilter and save any previous one
   311   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   312 #endif
   314   // Done
   315   return;
   316 }
   318 void os::breakpoint() {
   319   DebugBreak();
   320 }
   322 // Invoked from the BREAKPOINT Macro
   323 extern "C" void breakpoint() {
   324   os::breakpoint();
   325 }
   327 // Returns an estimate of the current stack pointer. Result must be guaranteed
   328 // to point into the calling threads stack, and be no lower than the current
   329 // stack pointer.
   331 address os::current_stack_pointer() {
   332   int dummy;
   333   address sp = (address)&dummy;
   334   return sp;
   335 }
   337 // os::current_stack_base()
   338 //
   339 //   Returns the base of the stack, which is the stack's
   340 //   starting address.  This function must be called
   341 //   while running on the stack of the thread being queried.
   343 address os::current_stack_base() {
   344   MEMORY_BASIC_INFORMATION minfo;
   345   address stack_bottom;
   346   size_t stack_size;
   348   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   349   stack_bottom =  (address)minfo.AllocationBase;
   350   stack_size = minfo.RegionSize;
   352   // Add up the sizes of all the regions with the same
   353   // AllocationBase.
   354   while( 1 )
   355   {
   356     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   357     if ( stack_bottom == (address)minfo.AllocationBase )
   358       stack_size += minfo.RegionSize;
   359     else
   360       break;
   361   }
   363 #ifdef _M_IA64
   364   // IA64 has memory and register stacks
   365   stack_size = stack_size / 2;
   366 #endif
   367   return stack_bottom + stack_size;
   368 }
   370 size_t os::current_stack_size() {
   371   size_t sz;
   372   MEMORY_BASIC_INFORMATION minfo;
   373   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   374   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   375   return sz;
   376 }
   378 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   379   const struct tm* time_struct_ptr = localtime(clock);
   380   if (time_struct_ptr != NULL) {
   381     *res = *time_struct_ptr;
   382     return res;
   383   }
   384   return NULL;
   385 }
   387 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   389 // Thread start routine for all new Java threads
   390 static unsigned __stdcall java_start(Thread* thread) {
   391   // Try to randomize the cache line index of hot stack frames.
   392   // This helps when threads of the same stack traces evict each other's
   393   // cache lines. The threads can be either from the same JVM instance, or
   394   // from different JVM instances. The benefit is especially true for
   395   // processors with hyperthreading technology.
   396   static int counter = 0;
   397   int pid = os::current_process_id();
   398   _alloca(((pid ^ counter++) & 7) * 128);
   400   OSThread* osthr = thread->osthread();
   401   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   403   if (UseNUMA) {
   404     int lgrp_id = os::numa_get_group_id();
   405     if (lgrp_id != -1) {
   406       thread->set_lgrp_id(lgrp_id);
   407     }
   408   }
   411   if (UseVectoredExceptions) {
   412     // If we are using vectored exception we don't need to set a SEH
   413     thread->run();
   414   }
   415   else {
   416     // Install a win32 structured exception handler around every thread created
   417     // by VM, so VM can genrate error dump when an exception occurred in non-
   418     // Java thread (e.g. VM thread).
   419     __try {
   420        thread->run();
   421     } __except(topLevelExceptionFilter(
   422                (_EXCEPTION_POINTERS*)_exception_info())) {
   423         // Nothing to do.
   424     }
   425   }
   427   // One less thread is executing
   428   // When the VMThread gets here, the main thread may have already exited
   429   // which frees the CodeHeap containing the Atomic::add code
   430   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   431     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   432   }
   434   return 0;
   435 }
   437 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   438   // Allocate the OSThread object
   439   OSThread* osthread = new OSThread(NULL, NULL);
   440   if (osthread == NULL) return NULL;
   442   // Initialize support for Java interrupts
   443   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   444   if (interrupt_event == NULL) {
   445     delete osthread;
   446     return NULL;
   447   }
   448   osthread->set_interrupt_event(interrupt_event);
   450   // Store info on the Win32 thread into the OSThread
   451   osthread->set_thread_handle(thread_handle);
   452   osthread->set_thread_id(thread_id);
   454   if (UseNUMA) {
   455     int lgrp_id = os::numa_get_group_id();
   456     if (lgrp_id != -1) {
   457       thread->set_lgrp_id(lgrp_id);
   458     }
   459   }
   461   // Initial thread state is INITIALIZED, not SUSPENDED
   462   osthread->set_state(INITIALIZED);
   464   return osthread;
   465 }
   468 bool os::create_attached_thread(JavaThread* thread) {
   469 #ifdef ASSERT
   470   thread->verify_not_published();
   471 #endif
   472   HANDLE thread_h;
   473   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   474                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   475     fatal("DuplicateHandle failed\n");
   476   }
   477   OSThread* osthread = create_os_thread(thread, thread_h,
   478                                         (int)current_thread_id());
   479   if (osthread == NULL) {
   480      return false;
   481   }
   483   // Initial thread state is RUNNABLE
   484   osthread->set_state(RUNNABLE);
   486   thread->set_osthread(osthread);
   487   return true;
   488 }
   490 bool os::create_main_thread(JavaThread* thread) {
   491 #ifdef ASSERT
   492   thread->verify_not_published();
   493 #endif
   494   if (_starting_thread == NULL) {
   495     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   496      if (_starting_thread == NULL) {
   497         return false;
   498      }
   499   }
   501   // The primordial thread is runnable from the start)
   502   _starting_thread->set_state(RUNNABLE);
   504   thread->set_osthread(_starting_thread);
   505   return true;
   506 }
   508 // Allocate and initialize a new OSThread
   509 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   510   unsigned thread_id;
   512   // Allocate the OSThread object
   513   OSThread* osthread = new OSThread(NULL, NULL);
   514   if (osthread == NULL) {
   515     return false;
   516   }
   518   // Initialize support for Java interrupts
   519   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   520   if (interrupt_event == NULL) {
   521     delete osthread;
   522     return NULL;
   523   }
   524   osthread->set_interrupt_event(interrupt_event);
   525   osthread->set_interrupted(false);
   527   thread->set_osthread(osthread);
   529   if (stack_size == 0) {
   530     switch (thr_type) {
   531     case os::java_thread:
   532       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   533       if (JavaThread::stack_size_at_create() > 0)
   534         stack_size = JavaThread::stack_size_at_create();
   535       break;
   536     case os::compiler_thread:
   537       if (CompilerThreadStackSize > 0) {
   538         stack_size = (size_t)(CompilerThreadStackSize * K);
   539         break;
   540       } // else fall through:
   541         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   542     case os::vm_thread:
   543     case os::pgc_thread:
   544     case os::cgc_thread:
   545     case os::watcher_thread:
   546       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   547       break;
   548     }
   549   }
   551   // Create the Win32 thread
   552   //
   553   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   554   // does not specify stack size. Instead, it specifies the size of
   555   // initially committed space. The stack size is determined by
   556   // PE header in the executable. If the committed "stack_size" is larger
   557   // than default value in the PE header, the stack is rounded up to the
   558   // nearest multiple of 1MB. For example if the launcher has default
   559   // stack size of 320k, specifying any size less than 320k does not
   560   // affect the actual stack size at all, it only affects the initial
   561   // commitment. On the other hand, specifying 'stack_size' larger than
   562   // default value may cause significant increase in memory usage, because
   563   // not only the stack space will be rounded up to MB, but also the
   564   // entire space is committed upfront.
   565   //
   566   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   567   // for CreateThread() that can treat 'stack_size' as stack size. However we
   568   // are not supposed to call CreateThread() directly according to MSDN
   569   // document because JVM uses C runtime library. The good news is that the
   570   // flag appears to work with _beginthredex() as well.
   572 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   573 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   574 #endif
   576   HANDLE thread_handle =
   577     (HANDLE)_beginthreadex(NULL,
   578                            (unsigned)stack_size,
   579                            (unsigned (__stdcall *)(void*)) java_start,
   580                            thread,
   581                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   582                            &thread_id);
   583   if (thread_handle == NULL) {
   584     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   585     // without the flag.
   586     thread_handle =
   587     (HANDLE)_beginthreadex(NULL,
   588                            (unsigned)stack_size,
   589                            (unsigned (__stdcall *)(void*)) java_start,
   590                            thread,
   591                            CREATE_SUSPENDED,
   592                            &thread_id);
   593   }
   594   if (thread_handle == NULL) {
   595     // Need to clean up stuff we've allocated so far
   596     CloseHandle(osthread->interrupt_event());
   597     thread->set_osthread(NULL);
   598     delete osthread;
   599     return NULL;
   600   }
   602   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   604   // Store info on the Win32 thread into the OSThread
   605   osthread->set_thread_handle(thread_handle);
   606   osthread->set_thread_id(thread_id);
   608   // Initial thread state is INITIALIZED, not SUSPENDED
   609   osthread->set_state(INITIALIZED);
   611   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   612   return true;
   613 }
   616 // Free Win32 resources related to the OSThread
   617 void os::free_thread(OSThread* osthread) {
   618   assert(osthread != NULL, "osthread not set");
   619   CloseHandle(osthread->thread_handle());
   620   CloseHandle(osthread->interrupt_event());
   621   delete osthread;
   622 }
   625 static int    has_performance_count = 0;
   626 static jlong first_filetime;
   627 static jlong initial_performance_count;
   628 static jlong performance_frequency;
   631 jlong as_long(LARGE_INTEGER x) {
   632   jlong result = 0; // initialization to avoid warning
   633   set_high(&result, x.HighPart);
   634   set_low(&result,  x.LowPart);
   635   return result;
   636 }
   639 jlong os::elapsed_counter() {
   640   LARGE_INTEGER count;
   641   if (has_performance_count) {
   642     QueryPerformanceCounter(&count);
   643     return as_long(count) - initial_performance_count;
   644   } else {
   645     FILETIME wt;
   646     GetSystemTimeAsFileTime(&wt);
   647     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   648   }
   649 }
   652 jlong os::elapsed_frequency() {
   653   if (has_performance_count) {
   654     return performance_frequency;
   655   } else {
   656    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   657    return 10000000;
   658   }
   659 }
   662 julong os::available_memory() {
   663   return win32::available_memory();
   664 }
   666 julong os::win32::available_memory() {
   667   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   668   // value if total memory is larger than 4GB
   669   MEMORYSTATUSEX ms;
   670   ms.dwLength = sizeof(ms);
   671   GlobalMemoryStatusEx(&ms);
   673   return (julong)ms.ullAvailPhys;
   674 }
   676 julong os::physical_memory() {
   677   return win32::physical_memory();
   678 }
   680 julong os::allocatable_physical_memory(julong size) {
   681 #ifdef _LP64
   682   return size;
   683 #else
   684   // Limit to 1400m because of the 2gb address space wall
   685   return MIN2(size, (julong)1400*M);
   686 #endif
   687 }
   689 // VC6 lacks DWORD_PTR
   690 #if _MSC_VER < 1300
   691 typedef UINT_PTR DWORD_PTR;
   692 #endif
   694 int os::active_processor_count() {
   695   DWORD_PTR lpProcessAffinityMask = 0;
   696   DWORD_PTR lpSystemAffinityMask = 0;
   697   int proc_count = processor_count();
   698   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   699       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   700     // Nof active processors is number of bits in process affinity mask
   701     int bitcount = 0;
   702     while (lpProcessAffinityMask != 0) {
   703       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   704       bitcount++;
   705     }
   706     return bitcount;
   707   } else {
   708     return proc_count;
   709   }
   710 }
   712 void os::set_native_thread_name(const char *name) {
   713   // Not yet implemented.
   714   return;
   715 }
   717 bool os::distribute_processes(uint length, uint* distribution) {
   718   // Not yet implemented.
   719   return false;
   720 }
   722 bool os::bind_to_processor(uint processor_id) {
   723   // Not yet implemented.
   724   return false;
   725 }
   727 static void initialize_performance_counter() {
   728   LARGE_INTEGER count;
   729   if (QueryPerformanceFrequency(&count)) {
   730     has_performance_count = 1;
   731     performance_frequency = as_long(count);
   732     QueryPerformanceCounter(&count);
   733     initial_performance_count = as_long(count);
   734   } else {
   735     has_performance_count = 0;
   736     FILETIME wt;
   737     GetSystemTimeAsFileTime(&wt);
   738     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   739   }
   740 }
   743 double os::elapsedTime() {
   744   return (double) elapsed_counter() / (double) elapsed_frequency();
   745 }
   748 // Windows format:
   749 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   750 // Java format:
   751 //   Java standards require the number of milliseconds since 1/1/1970
   753 // Constant offset - calculated using offset()
   754 static jlong  _offset   = 116444736000000000;
   755 // Fake time counter for reproducible results when debugging
   756 static jlong  fake_time = 0;
   758 #ifdef ASSERT
   759 // Just to be safe, recalculate the offset in debug mode
   760 static jlong _calculated_offset = 0;
   761 static int   _has_calculated_offset = 0;
   763 jlong offset() {
   764   if (_has_calculated_offset) return _calculated_offset;
   765   SYSTEMTIME java_origin;
   766   java_origin.wYear          = 1970;
   767   java_origin.wMonth         = 1;
   768   java_origin.wDayOfWeek     = 0; // ignored
   769   java_origin.wDay           = 1;
   770   java_origin.wHour          = 0;
   771   java_origin.wMinute        = 0;
   772   java_origin.wSecond        = 0;
   773   java_origin.wMilliseconds  = 0;
   774   FILETIME jot;
   775   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   776     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   777   }
   778   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   779   _has_calculated_offset = 1;
   780   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   781   return _calculated_offset;
   782 }
   783 #else
   784 jlong offset() {
   785   return _offset;
   786 }
   787 #endif
   789 jlong windows_to_java_time(FILETIME wt) {
   790   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   791   return (a - offset()) / 10000;
   792 }
   794 FILETIME java_to_windows_time(jlong l) {
   795   jlong a = (l * 10000) + offset();
   796   FILETIME result;
   797   result.dwHighDateTime = high(a);
   798   result.dwLowDateTime  = low(a);
   799   return result;
   800 }
   802 // For now, we say that Windows does not support vtime.  I have no idea
   803 // whether it can actually be made to (DLD, 9/13/05).
   805 bool os::supports_vtime() { return false; }
   806 bool os::enable_vtime() { return false; }
   807 bool os::vtime_enabled() { return false; }
   808 double os::elapsedVTime() {
   809   // better than nothing, but not much
   810   return elapsedTime();
   811 }
   813 jlong os::javaTimeMillis() {
   814   if (UseFakeTimers) {
   815     return fake_time++;
   816   } else {
   817     FILETIME wt;
   818     GetSystemTimeAsFileTime(&wt);
   819     return windows_to_java_time(wt);
   820   }
   821 }
   823 jlong os::javaTimeNanos() {
   824   if (!has_performance_count) {
   825     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   826   } else {
   827     LARGE_INTEGER current_count;
   828     QueryPerformanceCounter(&current_count);
   829     double current = as_long(current_count);
   830     double freq = performance_frequency;
   831     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   832     return time;
   833   }
   834 }
   836 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   837   if (!has_performance_count) {
   838     // javaTimeMillis() doesn't have much percision,
   839     // but it is not going to wrap -- so all 64 bits
   840     info_ptr->max_value = ALL_64_BITS;
   842     // this is a wall clock timer, so may skip
   843     info_ptr->may_skip_backward = true;
   844     info_ptr->may_skip_forward = true;
   845   } else {
   846     jlong freq = performance_frequency;
   847     if (freq < NANOSECS_PER_SEC) {
   848       // the performance counter is 64 bits and we will
   849       // be multiplying it -- so no wrap in 64 bits
   850       info_ptr->max_value = ALL_64_BITS;
   851     } else if (freq > NANOSECS_PER_SEC) {
   852       // use the max value the counter can reach to
   853       // determine the max value which could be returned
   854       julong max_counter = (julong)ALL_64_BITS;
   855       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   856     } else {
   857       // the performance counter is 64 bits and we will
   858       // be using it directly -- so no wrap in 64 bits
   859       info_ptr->max_value = ALL_64_BITS;
   860     }
   862     // using a counter, so no skipping
   863     info_ptr->may_skip_backward = false;
   864     info_ptr->may_skip_forward = false;
   865   }
   866   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   867 }
   869 char* os::local_time_string(char *buf, size_t buflen) {
   870   SYSTEMTIME st;
   871   GetLocalTime(&st);
   872   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   873                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   874   return buf;
   875 }
   877 bool os::getTimesSecs(double* process_real_time,
   878                      double* process_user_time,
   879                      double* process_system_time) {
   880   HANDLE h_process = GetCurrentProcess();
   881   FILETIME create_time, exit_time, kernel_time, user_time;
   882   BOOL result = GetProcessTimes(h_process,
   883                                &create_time,
   884                                &exit_time,
   885                                &kernel_time,
   886                                &user_time);
   887   if (result != 0) {
   888     FILETIME wt;
   889     GetSystemTimeAsFileTime(&wt);
   890     jlong rtc_millis = windows_to_java_time(wt);
   891     jlong user_millis = windows_to_java_time(user_time);
   892     jlong system_millis = windows_to_java_time(kernel_time);
   893     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   894     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   895     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   896     return true;
   897   } else {
   898     return false;
   899   }
   900 }
   902 void os::shutdown() {
   904   // allow PerfMemory to attempt cleanup of any persistent resources
   905   perfMemory_exit();
   907   // flush buffered output, finish log files
   908   ostream_abort();
   910   // Check for abort hook
   911   abort_hook_t abort_hook = Arguments::abort_hook();
   912   if (abort_hook != NULL) {
   913     abort_hook();
   914   }
   915 }
   918 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   919                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   921 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   922   HINSTANCE dbghelp;
   923   EXCEPTION_POINTERS ep;
   924   MINIDUMP_EXCEPTION_INFORMATION mei;
   925   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   927   HANDLE hProcess = GetCurrentProcess();
   928   DWORD processId = GetCurrentProcessId();
   929   HANDLE dumpFile;
   930   MINIDUMP_TYPE dumpType;
   931   static const char* cwd;
   933   // If running on a client version of Windows and user has not explicitly enabled dumping
   934   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   935     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   936     return;
   937     // If running on a server version of Windows and user has explictly disabled dumping
   938   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   939     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   940     return;
   941   }
   943   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   945   if (dbghelp == NULL) {
   946     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   947     return;
   948   }
   950   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   951     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   952     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   953     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   955   if (_MiniDumpWriteDump == NULL) {
   956     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   957     return;
   958   }
   960   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
   962 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
   963 // API_VERSION_NUMBER 11 or higher contains the ones we want though
   964 #if API_VERSION_NUMBER >= 11
   965   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
   966     MiniDumpWithUnloadedModules);
   967 #endif
   969   cwd = get_current_directory(NULL, 0);
   970   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
   971   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
   973   if (dumpFile == INVALID_HANDLE_VALUE) {
   974     VMError::report_coredump_status("Failed to create file for dumping", false);
   975     return;
   976   }
   977   if (exceptionRecord != NULL && contextRecord != NULL) {
   978     ep.ContextRecord = (PCONTEXT) contextRecord;
   979     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
   981     mei.ThreadId = GetCurrentThreadId();
   982     mei.ExceptionPointers = &ep;
   983     pmei = &mei;
   984   } else {
   985     pmei = NULL;
   986   }
   989   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
   990   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
   991   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
   992       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
   993     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
   994   } else {
   995     VMError::report_coredump_status(buffer, true);
   996   }
   998   CloseHandle(dumpFile);
   999 }
  1003 void os::abort(bool dump_core)
  1005   os::shutdown();
  1006   // no core dump on Windows
  1007   ::exit(1);
  1010 // Die immediately, no exit hook, no abort hook, no cleanup.
  1011 void os::die() {
  1012   _exit(-1);
  1015 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1016 //  * dirent_md.c       1.15 00/02/02
  1017 //
  1018 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1020 /* Caller must have already run dirname through JVM_NativePath, which removes
  1021    duplicate slashes and converts all instances of '/' into '\\'. */
  1023 DIR *
  1024 os::opendir(const char *dirname)
  1026     assert(dirname != NULL, "just checking");   // hotspot change
  1027     DIR *dirp = (DIR *)malloc(sizeof(DIR));
  1028     DWORD fattr;                                // hotspot change
  1029     char alt_dirname[4] = { 0, 0, 0, 0 };
  1031     if (dirp == 0) {
  1032         errno = ENOMEM;
  1033         return 0;
  1036     /*
  1037      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1038      * as a directory in FindFirstFile().  We detect this case here and
  1039      * prepend the current drive name.
  1040      */
  1041     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1042         alt_dirname[0] = _getdrive() + 'A' - 1;
  1043         alt_dirname[1] = ':';
  1044         alt_dirname[2] = '\\';
  1045         alt_dirname[3] = '\0';
  1046         dirname = alt_dirname;
  1049     dirp->path = (char *)malloc(strlen(dirname) + 5);
  1050     if (dirp->path == 0) {
  1051         free(dirp);
  1052         errno = ENOMEM;
  1053         return 0;
  1055     strcpy(dirp->path, dirname);
  1057     fattr = GetFileAttributes(dirp->path);
  1058     if (fattr == 0xffffffff) {
  1059         free(dirp->path);
  1060         free(dirp);
  1061         errno = ENOENT;
  1062         return 0;
  1063     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1064         free(dirp->path);
  1065         free(dirp);
  1066         errno = ENOTDIR;
  1067         return 0;
  1070     /* Append "*.*", or possibly "\\*.*", to path */
  1071     if (dirp->path[1] == ':'
  1072         && (dirp->path[2] == '\0'
  1073             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1074         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1075         strcat(dirp->path, "*.*");
  1076     } else {
  1077         strcat(dirp->path, "\\*.*");
  1080     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1081     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1082         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1083             free(dirp->path);
  1084             free(dirp);
  1085             errno = EACCES;
  1086             return 0;
  1089     return dirp;
  1092 /* parameter dbuf unused on Windows */
  1094 struct dirent *
  1095 os::readdir(DIR *dirp, dirent *dbuf)
  1097     assert(dirp != NULL, "just checking");      // hotspot change
  1098     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1099         return 0;
  1102     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1104     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1105         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1106             errno = EBADF;
  1107             return 0;
  1109         FindClose(dirp->handle);
  1110         dirp->handle = INVALID_HANDLE_VALUE;
  1113     return &dirp->dirent;
  1116 int
  1117 os::closedir(DIR *dirp)
  1119     assert(dirp != NULL, "just checking");      // hotspot change
  1120     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1121         if (!FindClose(dirp->handle)) {
  1122             errno = EBADF;
  1123             return -1;
  1125         dirp->handle = INVALID_HANDLE_VALUE;
  1127     free(dirp->path);
  1128     free(dirp);
  1129     return 0;
  1132 // This must be hard coded because it's the system's temporary
  1133 // directory not the java application's temp directory, ala java.io.tmpdir.
  1134 const char* os::get_temp_directory() {
  1135   static char path_buf[MAX_PATH];
  1136   if (GetTempPath(MAX_PATH, path_buf)>0)
  1137     return path_buf;
  1138   else{
  1139     path_buf[0]='\0';
  1140     return path_buf;
  1144 static bool file_exists(const char* filename) {
  1145   if (filename == NULL || strlen(filename) == 0) {
  1146     return false;
  1148   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1151 void os::dll_build_name(char *buffer, size_t buflen,
  1152                         const char* pname, const char* fname) {
  1153   const size_t pnamelen = pname ? strlen(pname) : 0;
  1154   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1156   // Quietly truncates on buffer overflow. Should be an error.
  1157   if (pnamelen + strlen(fname) + 10 > buflen) {
  1158     *buffer = '\0';
  1159     return;
  1162   if (pnamelen == 0) {
  1163     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1164   } else if (c == ':' || c == '\\') {
  1165     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1166   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1167     int n;
  1168     char** pelements = split_path(pname, &n);
  1169     for (int i = 0 ; i < n ; i++) {
  1170       char* path = pelements[i];
  1171       // Really shouldn't be NULL, but check can't hurt
  1172       size_t plen = (path == NULL) ? 0 : strlen(path);
  1173       if (plen == 0) {
  1174         continue; // skip the empty path values
  1176       const char lastchar = path[plen - 1];
  1177       if (lastchar == ':' || lastchar == '\\') {
  1178         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1179       } else {
  1180         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1182       if (file_exists(buffer)) {
  1183         break;
  1186     // release the storage
  1187     for (int i = 0 ; i < n ; i++) {
  1188       if (pelements[i] != NULL) {
  1189         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1192     if (pelements != NULL) {
  1193       FREE_C_HEAP_ARRAY(char*, pelements);
  1195   } else {
  1196     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1200 // Needs to be in os specific directory because windows requires another
  1201 // header file <direct.h>
  1202 const char* os::get_current_directory(char *buf, int buflen) {
  1203   return _getcwd(buf, buflen);
  1206 //-----------------------------------------------------------
  1207 // Helper functions for fatal error handler
  1208 #ifdef _WIN64
  1209 // Helper routine which returns true if address in
  1210 // within the NTDLL address space.
  1211 //
  1212 static bool _addr_in_ntdll( address addr )
  1214   HMODULE hmod;
  1215   MODULEINFO minfo;
  1217   hmod = GetModuleHandle("NTDLL.DLL");
  1218   if ( hmod == NULL ) return false;
  1219   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1220                                &minfo, sizeof(MODULEINFO)) )
  1221     return false;
  1223   if ( (addr >= minfo.lpBaseOfDll) &&
  1224        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1225     return true;
  1226   else
  1227     return false;
  1229 #endif
  1232 // Enumerate all modules for a given process ID
  1233 //
  1234 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1235 // different API for doing this. We use PSAPI.DLL on NT based
  1236 // Windows and ToolHelp on 95/98/Me.
  1238 // Callback function that is called by enumerate_modules() on
  1239 // every DLL module.
  1240 // Input parameters:
  1241 //    int       pid,
  1242 //    char*     module_file_name,
  1243 //    address   module_base_addr,
  1244 //    unsigned  module_size,
  1245 //    void*     param
  1246 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1248 // enumerate_modules for Windows NT, using PSAPI
  1249 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1251   HANDLE   hProcess ;
  1253 # define MAX_NUM_MODULES 128
  1254   HMODULE     modules[MAX_NUM_MODULES];
  1255   static char filename[ MAX_PATH ];
  1256   int         result = 0;
  1258   if (!os::PSApiDll::PSApiAvailable()) {
  1259     return 0;
  1262   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1263                          FALSE, pid ) ;
  1264   if (hProcess == NULL) return 0;
  1266   DWORD size_needed;
  1267   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1268                            sizeof(modules), &size_needed)) {
  1269       CloseHandle( hProcess );
  1270       return 0;
  1273   // number of modules that are currently loaded
  1274   int num_modules = size_needed / sizeof(HMODULE);
  1276   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1277     // Get Full pathname:
  1278     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1279                              filename, sizeof(filename))) {
  1280         filename[0] = '\0';
  1283     MODULEINFO modinfo;
  1284     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1285                                &modinfo, sizeof(modinfo))) {
  1286         modinfo.lpBaseOfDll = NULL;
  1287         modinfo.SizeOfImage = 0;
  1290     // Invoke callback function
  1291     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1292                   modinfo.SizeOfImage, param);
  1293     if (result) break;
  1296   CloseHandle( hProcess ) ;
  1297   return result;
  1301 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1302 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1304   HANDLE                hSnapShot ;
  1305   static MODULEENTRY32  modentry ;
  1306   int                   result = 0;
  1308   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1309     return 0;
  1312   // Get a handle to a Toolhelp snapshot of the system
  1313   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1314   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1315       return FALSE ;
  1318   // iterate through all modules
  1319   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1320   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1322   while( not_done ) {
  1323     // invoke the callback
  1324     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1325                 modentry.modBaseSize, param);
  1326     if (result) break;
  1328     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1329     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1332   CloseHandle(hSnapShot);
  1333   return result;
  1336 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1338   // Get current process ID if caller doesn't provide it.
  1339   if (!pid) pid = os::current_process_id();
  1341   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1342   else                    return _enumerate_modules_windows(pid, func, param);
  1345 struct _modinfo {
  1346    address addr;
  1347    char*   full_path;   // point to a char buffer
  1348    int     buflen;      // size of the buffer
  1349    address base_addr;
  1350 };
  1352 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1353                                   unsigned size, void * param) {
  1354    struct _modinfo *pmod = (struct _modinfo *)param;
  1355    if (!pmod) return -1;
  1357    if (base_addr     <= pmod->addr &&
  1358        base_addr+size > pmod->addr) {
  1359      // if a buffer is provided, copy path name to the buffer
  1360      if (pmod->full_path) {
  1361        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1363      pmod->base_addr = base_addr;
  1364      return 1;
  1366    return 0;
  1369 bool os::dll_address_to_library_name(address addr, char* buf,
  1370                                      int buflen, int* offset) {
  1371 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1372 //       return the full path to the DLL file, sometimes it returns path
  1373 //       to the corresponding PDB file (debug info); sometimes it only
  1374 //       returns partial path, which makes life painful.
  1376    struct _modinfo mi;
  1377    mi.addr      = addr;
  1378    mi.full_path = buf;
  1379    mi.buflen    = buflen;
  1380    int pid = os::current_process_id();
  1381    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1382       // buf already contains path name
  1383       if (offset) *offset = addr - mi.base_addr;
  1384       return true;
  1385    } else {
  1386       if (buf) buf[0] = '\0';
  1387       if (offset) *offset = -1;
  1388       return false;
  1392 bool os::dll_address_to_function_name(address addr, char *buf,
  1393                                       int buflen, int *offset) {
  1394   if (Decoder::decode(addr, buf, buflen, offset)) {
  1395     return true;
  1397   if (offset != NULL)  *offset  = -1;
  1398   if (buf != NULL) buf[0] = '\0';
  1399   return false;
  1402 // save the start and end address of jvm.dll into param[0] and param[1]
  1403 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1404                     unsigned size, void * param) {
  1405    if (!param) return -1;
  1407    if (base_addr     <= (address)_locate_jvm_dll &&
  1408        base_addr+size > (address)_locate_jvm_dll) {
  1409          ((address*)param)[0] = base_addr;
  1410          ((address*)param)[1] = base_addr + size;
  1411          return 1;
  1413    return 0;
  1416 address vm_lib_location[2];    // start and end address of jvm.dll
  1418 // check if addr is inside jvm.dll
  1419 bool os::address_is_in_vm(address addr) {
  1420   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1421     int pid = os::current_process_id();
  1422     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1423       assert(false, "Can't find jvm module.");
  1424       return false;
  1428   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1431 // print module info; param is outputStream*
  1432 static int _print_module(int pid, char* fname, address base,
  1433                          unsigned size, void* param) {
  1434    if (!param) return -1;
  1436    outputStream* st = (outputStream*)param;
  1438    address end_addr = base + size;
  1439    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1440    return 0;
  1443 // Loads .dll/.so and
  1444 // in case of error it checks if .dll/.so was built for the
  1445 // same architecture as Hotspot is running on
  1446 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1448   void * result = LoadLibrary(name);
  1449   if (result != NULL)
  1451     return result;
  1454   DWORD errcode = GetLastError();
  1455   if (errcode == ERROR_MOD_NOT_FOUND) {
  1456     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1457     ebuf[ebuflen-1]='\0';
  1458     return NULL;
  1461   // Parsing dll below
  1462   // If we can read dll-info and find that dll was built
  1463   // for an architecture other than Hotspot is running in
  1464   // - then print to buffer "DLL was built for a different architecture"
  1465   // else call os::lasterror to obtain system error message
  1467   // Read system error message into ebuf
  1468   // It may or may not be overwritten below (in the for loop and just above)
  1469   lasterror(ebuf, (size_t) ebuflen);
  1470   ebuf[ebuflen-1]='\0';
  1471   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1472   if (file_descriptor<0)
  1474     return NULL;
  1477   uint32_t signature_offset;
  1478   uint16_t lib_arch=0;
  1479   bool failed_to_get_lib_arch=
  1481     //Go to position 3c in the dll
  1482     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1483     ||
  1484     // Read loacation of signature
  1485     (sizeof(signature_offset)!=
  1486       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1487     ||
  1488     //Go to COFF File Header in dll
  1489     //that is located after"signature" (4 bytes long)
  1490     (os::seek_to_file_offset(file_descriptor,
  1491       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1492     ||
  1493     //Read field that contains code of architecture
  1494     // that dll was build for
  1495     (sizeof(lib_arch)!=
  1496       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1497   );
  1499   ::close(file_descriptor);
  1500   if (failed_to_get_lib_arch)
  1502     // file i/o error - report os::lasterror(...) msg
  1503     return NULL;
  1506   typedef struct
  1508     uint16_t arch_code;
  1509     char* arch_name;
  1510   } arch_t;
  1512   static const arch_t arch_array[]={
  1513     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1514     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1515     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1516   };
  1517   #if   (defined _M_IA64)
  1518     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1519   #elif (defined _M_AMD64)
  1520     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1521   #elif (defined _M_IX86)
  1522     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1523   #else
  1524     #error Method os::dll_load requires that one of following \
  1525            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1526   #endif
  1529   // Obtain a string for printf operation
  1530   // lib_arch_str shall contain string what platform this .dll was built for
  1531   // running_arch_str shall string contain what platform Hotspot was built for
  1532   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1533   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1535     if (lib_arch==arch_array[i].arch_code)
  1536       lib_arch_str=arch_array[i].arch_name;
  1537     if (running_arch==arch_array[i].arch_code)
  1538       running_arch_str=arch_array[i].arch_name;
  1541   assert(running_arch_str,
  1542     "Didn't find runing architecture code in arch_array");
  1544   // If the architure is right
  1545   // but some other error took place - report os::lasterror(...) msg
  1546   if (lib_arch == running_arch)
  1548     return NULL;
  1551   if (lib_arch_str!=NULL)
  1553     ::_snprintf(ebuf, ebuflen-1,
  1554       "Can't load %s-bit .dll on a %s-bit platform",
  1555       lib_arch_str,running_arch_str);
  1557   else
  1559     // don't know what architecture this dll was build for
  1560     ::_snprintf(ebuf, ebuflen-1,
  1561       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1562       lib_arch,running_arch_str);
  1565   return NULL;
  1569 void os::print_dll_info(outputStream *st) {
  1570    int pid = os::current_process_id();
  1571    st->print_cr("Dynamic libraries:");
  1572    enumerate_modules(pid, _print_module, (void *)st);
  1575 void os::print_os_info(outputStream* st) {
  1576   st->print("OS:");
  1578   OSVERSIONINFOEX osvi;
  1579   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1580   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1582   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1583     st->print_cr("N/A");
  1584     return;
  1587   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1588   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1589     switch (os_vers) {
  1590     case 3051: st->print(" Windows NT 3.51"); break;
  1591     case 4000: st->print(" Windows NT 4.0"); break;
  1592     case 5000: st->print(" Windows 2000"); break;
  1593     case 5001: st->print(" Windows XP"); break;
  1594     case 5002:
  1595     case 6000:
  1596     case 6001: {
  1597       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1598       // find out whether we are running on 64 bit processor or not.
  1599       SYSTEM_INFO si;
  1600       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1601         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
  1602           GetSystemInfo(&si);
  1603       } else {
  1604         os::Kernel32Dll::GetNativeSystemInfo(&si);
  1606       if (os_vers == 5002) {
  1607         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1608             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1609           st->print(" Windows XP x64 Edition");
  1610         else
  1611             st->print(" Windows Server 2003 family");
  1612       } else if (os_vers == 6000) {
  1613         if (osvi.wProductType == VER_NT_WORKSTATION)
  1614             st->print(" Windows Vista");
  1615         else
  1616             st->print(" Windows Server 2008");
  1617         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1618             st->print(" , 64 bit");
  1619       } else if (os_vers == 6001) {
  1620         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1621             st->print(" Windows 7");
  1622         } else {
  1623             // Unrecognized windows, print out its major and minor versions
  1624             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1626         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1627             st->print(" , 64 bit");
  1628       } else { // future os
  1629         // Unrecognized windows, print out its major and minor versions
  1630         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1631         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1632             st->print(" , 64 bit");
  1634       break;
  1636     default: // future windows, print out its major and minor versions
  1637       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1639   } else {
  1640     switch (os_vers) {
  1641     case 4000: st->print(" Windows 95"); break;
  1642     case 4010: st->print(" Windows 98"); break;
  1643     case 4090: st->print(" Windows Me"); break;
  1644     default: // future windows, print out its major and minor versions
  1645       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1648   st->print(" Build %d", osvi.dwBuildNumber);
  1649   st->print(" %s", osvi.szCSDVersion);           // service pack
  1650   st->cr();
  1653 void os::pd_print_cpu_info(outputStream* st) {
  1654   // Nothing to do for now.
  1657 void os::print_memory_info(outputStream* st) {
  1658   st->print("Memory:");
  1659   st->print(" %dk page", os::vm_page_size()>>10);
  1661   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1662   // value if total memory is larger than 4GB
  1663   MEMORYSTATUSEX ms;
  1664   ms.dwLength = sizeof(ms);
  1665   GlobalMemoryStatusEx(&ms);
  1667   st->print(", physical %uk", os::physical_memory() >> 10);
  1668   st->print("(%uk free)", os::available_memory() >> 10);
  1670   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1671   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1672   st->cr();
  1675 void os::print_siginfo(outputStream *st, void *siginfo) {
  1676   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1677   st->print("siginfo:");
  1678   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1680   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1681       er->NumberParameters >= 2) {
  1682       switch (er->ExceptionInformation[0]) {
  1683       case 0: st->print(", reading address"); break;
  1684       case 1: st->print(", writing address"); break;
  1685       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1686                             er->ExceptionInformation[0]);
  1688       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1689   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1690              er->NumberParameters >= 2 && UseSharedSpaces) {
  1691     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1692     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1693       st->print("\n\nError accessing class data sharing archive."       \
  1694                 " Mapped file inaccessible during execution, "          \
  1695                 " possible disk/network problem.");
  1697   } else {
  1698     int num = er->NumberParameters;
  1699     if (num > 0) {
  1700       st->print(", ExceptionInformation=");
  1701       for (int i = 0; i < num; i++) {
  1702         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1706   st->cr();
  1709 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1710   // do nothing
  1713 static char saved_jvm_path[MAX_PATH] = {0};
  1715 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1716 void os::jvm_path(char *buf, jint buflen) {
  1717   // Error checking.
  1718   if (buflen < MAX_PATH) {
  1719     assert(false, "must use a large-enough buffer");
  1720     buf[0] = '\0';
  1721     return;
  1723   // Lazy resolve the path to current module.
  1724   if (saved_jvm_path[0] != 0) {
  1725     strcpy(buf, saved_jvm_path);
  1726     return;
  1729   buf[0] = '\0';
  1730   if (Arguments::created_by_gamma_launcher()) {
  1731      // Support for the gamma launcher. Check for an
  1732      // JAVA_HOME environment variable
  1733      // and fix up the path so it looks like
  1734      // libjvm.so is installed there (append a fake suffix
  1735      // hotspot/libjvm.so).
  1736      char* java_home_var = ::getenv("JAVA_HOME");
  1737      if (java_home_var != NULL && java_home_var[0] != 0) {
  1739         strncpy(buf, java_home_var, buflen);
  1741         // determine if this is a legacy image or modules image
  1742         // modules image doesn't have "jre" subdirectory
  1743         size_t len = strlen(buf);
  1744         char* jrebin_p = buf + len;
  1745         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1746         if (0 != _access(buf, 0)) {
  1747           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1749         len = strlen(buf);
  1750         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1754   if(buf[0] == '\0') {
  1755   GetModuleFileName(vm_lib_handle, buf, buflen);
  1757   strcpy(saved_jvm_path, buf);
  1761 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1762 #ifndef _WIN64
  1763   st->print("_");
  1764 #endif
  1768 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1769 #ifndef _WIN64
  1770   st->print("@%d", args_size  * sizeof(int));
  1771 #endif
  1774 // This method is a copy of JDK's sysGetLastErrorString
  1775 // from src/windows/hpi/src/system_md.c
  1777 size_t os::lasterror(char* buf, size_t len) {
  1778   DWORD errval;
  1780   if ((errval = GetLastError()) != 0) {
  1781     // DOS error
  1782     size_t n = (size_t)FormatMessage(
  1783           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1784           NULL,
  1785           errval,
  1786           0,
  1787           buf,
  1788           (DWORD)len,
  1789           NULL);
  1790     if (n > 3) {
  1791       // Drop final '.', CR, LF
  1792       if (buf[n - 1] == '\n') n--;
  1793       if (buf[n - 1] == '\r') n--;
  1794       if (buf[n - 1] == '.') n--;
  1795       buf[n] = '\0';
  1797     return n;
  1800   if (errno != 0) {
  1801     // C runtime error that has no corresponding DOS error code
  1802     const char* s = strerror(errno);
  1803     size_t n = strlen(s);
  1804     if (n >= len) n = len - 1;
  1805     strncpy(buf, s, n);
  1806     buf[n] = '\0';
  1807     return n;
  1810   return 0;
  1813 int os::get_last_error() {
  1814   DWORD error = GetLastError();
  1815   if (error == 0)
  1816     error = errno;
  1817   return (int)error;
  1820 // sun.misc.Signal
  1821 // NOTE that this is a workaround for an apparent kernel bug where if
  1822 // a signal handler for SIGBREAK is installed then that signal handler
  1823 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1824 // See bug 4416763.
  1825 static void (*sigbreakHandler)(int) = NULL;
  1827 static void UserHandler(int sig, void *siginfo, void *context) {
  1828   os::signal_notify(sig);
  1829   // We need to reinstate the signal handler each time...
  1830   os::signal(sig, (void*)UserHandler);
  1833 void* os::user_handler() {
  1834   return (void*) UserHandler;
  1837 void* os::signal(int signal_number, void* handler) {
  1838   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1839     void (*oldHandler)(int) = sigbreakHandler;
  1840     sigbreakHandler = (void (*)(int)) handler;
  1841     return (void*) oldHandler;
  1842   } else {
  1843     return (void*)::signal(signal_number, (void (*)(int))handler);
  1847 void os::signal_raise(int signal_number) {
  1848   raise(signal_number);
  1851 // The Win32 C runtime library maps all console control events other than ^C
  1852 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1853 // logoff, and shutdown events.  We therefore install our own console handler
  1854 // that raises SIGTERM for the latter cases.
  1855 //
  1856 static BOOL WINAPI consoleHandler(DWORD event) {
  1857   switch(event) {
  1858     case CTRL_C_EVENT:
  1859       if (is_error_reported()) {
  1860         // Ctrl-C is pressed during error reporting, likely because the error
  1861         // handler fails to abort. Let VM die immediately.
  1862         os::die();
  1865       os::signal_raise(SIGINT);
  1866       return TRUE;
  1867       break;
  1868     case CTRL_BREAK_EVENT:
  1869       if (sigbreakHandler != NULL) {
  1870         (*sigbreakHandler)(SIGBREAK);
  1872       return TRUE;
  1873       break;
  1874     case CTRL_CLOSE_EVENT:
  1875     case CTRL_LOGOFF_EVENT:
  1876     case CTRL_SHUTDOWN_EVENT:
  1877       os::signal_raise(SIGTERM);
  1878       return TRUE;
  1879       break;
  1880     default:
  1881       break;
  1883   return FALSE;
  1886 /*
  1887  * The following code is moved from os.cpp for making this
  1888  * code platform specific, which it is by its very nature.
  1889  */
  1891 // Return maximum OS signal used + 1 for internal use only
  1892 // Used as exit signal for signal_thread
  1893 int os::sigexitnum_pd(){
  1894   return NSIG;
  1897 // a counter for each possible signal value, including signal_thread exit signal
  1898 static volatile jint pending_signals[NSIG+1] = { 0 };
  1899 static HANDLE sig_sem;
  1901 void os::signal_init_pd() {
  1902   // Initialize signal structures
  1903   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1905   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1907   // Programs embedding the VM do not want it to attempt to receive
  1908   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1909   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1910   // the VM is run as part of a Windows NT service (i.e., a servlet
  1911   // engine in a web server), the correct behavior is for any console
  1912   // control handler to return FALSE, not TRUE, because the OS's
  1913   // "final" handler for such events allows the process to continue if
  1914   // it is a service (while terminating it if it is not a service).
  1915   // To make this behavior uniform and the mechanism simpler, we
  1916   // completely disable the VM's usage of these console events if -Xrs
  1917   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1918   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1919   // case.  See bugs 4323062, 4345157, and related bugs.
  1921   if (!ReduceSignalUsage) {
  1922     // Add a CTRL-C handler
  1923     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1927 void os::signal_notify(int signal_number) {
  1928   BOOL ret;
  1930   Atomic::inc(&pending_signals[signal_number]);
  1931   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1932   assert(ret != 0, "ReleaseSemaphore() failed");
  1935 static int check_pending_signals(bool wait_for_signal) {
  1936   DWORD ret;
  1937   while (true) {
  1938     for (int i = 0; i < NSIG + 1; i++) {
  1939       jint n = pending_signals[i];
  1940       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1941         return i;
  1944     if (!wait_for_signal) {
  1945       return -1;
  1948     JavaThread *thread = JavaThread::current();
  1950     ThreadBlockInVM tbivm(thread);
  1952     bool threadIsSuspended;
  1953     do {
  1954       thread->set_suspend_equivalent();
  1955       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1956       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1957       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1959       // were we externally suspended while we were waiting?
  1960       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1961       if (threadIsSuspended) {
  1962         //
  1963         // The semaphore has been incremented, but while we were waiting
  1964         // another thread suspended us. We don't want to continue running
  1965         // while suspended because that would surprise the thread that
  1966         // suspended us.
  1967         //
  1968         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1969         assert(ret != 0, "ReleaseSemaphore() failed");
  1971         thread->java_suspend_self();
  1973     } while (threadIsSuspended);
  1977 int os::signal_lookup() {
  1978   return check_pending_signals(false);
  1981 int os::signal_wait() {
  1982   return check_pending_signals(true);
  1985 // Implicit OS exception handling
  1987 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1988   JavaThread* thread = JavaThread::current();
  1989   // Save pc in thread
  1990 #ifdef _M_IA64
  1991   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1992   // Set pc to handler
  1993   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1994 #elif _M_AMD64
  1995   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1996   // Set pc to handler
  1997   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1998 #else
  1999   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  2000   // Set pc to handler
  2001   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  2002 #endif
  2004   // Continue the execution
  2005   return EXCEPTION_CONTINUE_EXECUTION;
  2009 // Used for PostMortemDump
  2010 extern "C" void safepoints();
  2011 extern "C" void find(int x);
  2012 extern "C" void events();
  2014 // According to Windows API documentation, an illegal instruction sequence should generate
  2015 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2016 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2017 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2019 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2021 // From "Execution Protection in the Windows Operating System" draft 0.35
  2022 // Once a system header becomes available, the "real" define should be
  2023 // included or copied here.
  2024 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2026 #define def_excpt(val) #val, val
  2028 struct siglabel {
  2029   char *name;
  2030   int   number;
  2031 };
  2033 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2034 // C++ compiler contain this error code. Because this is a compiler-generated
  2035 // error, the code is not listed in the Win32 API header files.
  2036 // The code is actually a cryptic mnemonic device, with the initial "E"
  2037 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2038 // ASCII values of "msc".
  2040 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2043 struct siglabel exceptlabels[] = {
  2044     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2045     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2046     def_excpt(EXCEPTION_BREAKPOINT),
  2047     def_excpt(EXCEPTION_SINGLE_STEP),
  2048     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2049     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2050     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2051     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2052     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2053     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2054     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2055     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2056     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2057     def_excpt(EXCEPTION_INT_OVERFLOW),
  2058     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2059     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2060     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2061     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2062     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2063     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2064     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2065     def_excpt(EXCEPTION_GUARD_PAGE),
  2066     def_excpt(EXCEPTION_INVALID_HANDLE),
  2067     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2068     NULL, 0
  2069 };
  2071 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2072   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2073     if (exceptlabels[i].number == exception_code) {
  2074        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2075        return buf;
  2079   return NULL;
  2082 //-----------------------------------------------------------------------------
  2083 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2084   // handle exception caused by idiv; should only happen for -MinInt/-1
  2085   // (division by zero is handled explicitly)
  2086 #ifdef _M_IA64
  2087   assert(0, "Fix Handle_IDiv_Exception");
  2088 #elif _M_AMD64
  2089   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2090   address pc = (address)ctx->Rip;
  2091   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  2092   assert(pc[0] == 0xF7, "not an idiv opcode");
  2093   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2094   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2095   // set correct result values and continue after idiv instruction
  2096   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2097   ctx->Rax = (DWORD)min_jint;      // result
  2098   ctx->Rdx = (DWORD)0;             // remainder
  2099   // Continue the execution
  2100 #else
  2101   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2102   address pc = (address)ctx->Eip;
  2103   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  2104   assert(pc[0] == 0xF7, "not an idiv opcode");
  2105   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2106   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2107   // set correct result values and continue after idiv instruction
  2108   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2109   ctx->Eax = (DWORD)min_jint;      // result
  2110   ctx->Edx = (DWORD)0;             // remainder
  2111   // Continue the execution
  2112 #endif
  2113   return EXCEPTION_CONTINUE_EXECUTION;
  2116 #ifndef  _WIN64
  2117 //-----------------------------------------------------------------------------
  2118 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2119   // handle exception caused by native method modifying control word
  2120   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2121   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2123   switch (exception_code) {
  2124     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2125     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2126     case EXCEPTION_FLT_INEXACT_RESULT:
  2127     case EXCEPTION_FLT_INVALID_OPERATION:
  2128     case EXCEPTION_FLT_OVERFLOW:
  2129     case EXCEPTION_FLT_STACK_CHECK:
  2130     case EXCEPTION_FLT_UNDERFLOW:
  2131       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2132       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2133         // Restore FPCW and mask out FLT exceptions
  2134         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2135         // Mask out pending FLT exceptions
  2136         ctx->FloatSave.StatusWord &=  0xffffff00;
  2137         return EXCEPTION_CONTINUE_EXECUTION;
  2141   if (prev_uef_handler != NULL) {
  2142     // We didn't handle this exception so pass it to the previous
  2143     // UnhandledExceptionFilter.
  2144     return (prev_uef_handler)(exceptionInfo);
  2147   return EXCEPTION_CONTINUE_SEARCH;
  2149 #else //_WIN64
  2150 /*
  2151   On Windows, the mxcsr control bits are non-volatile across calls
  2152   See also CR 6192333
  2153   If EXCEPTION_FLT_* happened after some native method modified
  2154   mxcsr - it is not a jvm fault.
  2155   However should we decide to restore of mxcsr after a faulty
  2156   native method we can uncomment following code
  2157       jint MxCsr = INITIAL_MXCSR;
  2158         // we can't use StubRoutines::addr_mxcsr_std()
  2159         // because in Win64 mxcsr is not saved there
  2160       if (MxCsr != ctx->MxCsr) {
  2161         ctx->MxCsr = MxCsr;
  2162         return EXCEPTION_CONTINUE_EXECUTION;
  2165 */
  2166 #endif //_WIN64
  2169 // Fatal error reporting is single threaded so we can make this a
  2170 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2171 // it.
  2172 static char saved_error_file[MAX_PATH] = {0};
  2174 void os::set_error_file(const char *logfile) {
  2175   if (strlen(logfile) <= MAX_PATH) {
  2176     strncpy(saved_error_file, logfile, MAX_PATH);
  2180 static inline void report_error(Thread* t, DWORD exception_code,
  2181                                 address addr, void* siginfo, void* context) {
  2182   VMError err(t, exception_code, addr, siginfo, context);
  2183   err.report_and_die();
  2185   // If UseOsErrorReporting, this will return here and save the error file
  2186   // somewhere where we can find it in the minidump.
  2189 //-----------------------------------------------------------------------------
  2190 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2191   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2192   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2193 #ifdef _M_IA64
  2194   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2195 #elif _M_AMD64
  2196   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2197 #else
  2198   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2199 #endif
  2200   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2202 #ifndef _WIN64
  2203   // Execution protection violation - win32 running on AMD64 only
  2204   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2205   // This is safe to do because we have a new/unique ExceptionInformation
  2206   // code for this condition.
  2207   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2208     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2209     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2210     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2212     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2213       int page_size = os::vm_page_size();
  2215       // Make sure the pc and the faulting address are sane.
  2216       //
  2217       // If an instruction spans a page boundary, and the page containing
  2218       // the beginning of the instruction is executable but the following
  2219       // page is not, the pc and the faulting address might be slightly
  2220       // different - we still want to unguard the 2nd page in this case.
  2221       //
  2222       // 15 bytes seems to be a (very) safe value for max instruction size.
  2223       bool pc_is_near_addr =
  2224         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2225       bool instr_spans_page_boundary =
  2226         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2227                          (intptr_t) page_size) > 0);
  2229       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2230         static volatile address last_addr =
  2231           (address) os::non_memory_address_word();
  2233         // In conservative mode, don't unguard unless the address is in the VM
  2234         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2235             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2237           // Set memory to RWX and retry
  2238           address page_start =
  2239             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2240           bool res = os::protect_memory((char*) page_start, page_size,
  2241                                         os::MEM_PROT_RWX);
  2243           if (PrintMiscellaneous && Verbose) {
  2244             char buf[256];
  2245             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2246                          "at " INTPTR_FORMAT
  2247                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2248                          page_start, (res ? "success" : strerror(errno)));
  2249             tty->print_raw_cr(buf);
  2252           // Set last_addr so if we fault again at the same address, we don't
  2253           // end up in an endless loop.
  2254           //
  2255           // There are two potential complications here.  Two threads trapping
  2256           // at the same address at the same time could cause one of the
  2257           // threads to think it already unguarded, and abort the VM.  Likely
  2258           // very rare.
  2259           //
  2260           // The other race involves two threads alternately trapping at
  2261           // different addresses and failing to unguard the page, resulting in
  2262           // an endless loop.  This condition is probably even more unlikely
  2263           // than the first.
  2264           //
  2265           // Although both cases could be avoided by using locks or thread
  2266           // local last_addr, these solutions are unnecessary complication:
  2267           // this handler is a best-effort safety net, not a complete solution.
  2268           // It is disabled by default and should only be used as a workaround
  2269           // in case we missed any no-execute-unsafe VM code.
  2271           last_addr = addr;
  2273           return EXCEPTION_CONTINUE_EXECUTION;
  2277       // Last unguard failed or not unguarding
  2278       tty->print_raw_cr("Execution protection violation");
  2279       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2280                    exceptionInfo->ContextRecord);
  2281       return EXCEPTION_CONTINUE_SEARCH;
  2284 #endif // _WIN64
  2286   // Check to see if we caught the safepoint code in the
  2287   // process of write protecting the memory serialization page.
  2288   // It write enables the page immediately after protecting it
  2289   // so just return.
  2290   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2291     JavaThread* thread = (JavaThread*) t;
  2292     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2293     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2294     if ( os::is_memory_serialize_page(thread, addr) ) {
  2295       // Block current thread until the memory serialize page permission restored.
  2296       os::block_on_serialize_page_trap();
  2297       return EXCEPTION_CONTINUE_EXECUTION;
  2301   if (t != NULL && t->is_Java_thread()) {
  2302     JavaThread* thread = (JavaThread*) t;
  2303     bool in_java = thread->thread_state() == _thread_in_Java;
  2305     // Handle potential stack overflows up front.
  2306     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2307       if (os::uses_stack_guard_pages()) {
  2308 #ifdef _M_IA64
  2309         //
  2310         // If it's a legal stack address continue, Windows will map it in.
  2311         //
  2312         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2313         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2314         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2315           return EXCEPTION_CONTINUE_EXECUTION;
  2317         // The register save area is the same size as the memory stack
  2318         // and starts at the page just above the start of the memory stack.
  2319         // If we get a fault in this area, we've run out of register
  2320         // stack.  If we are in java, try throwing a stack overflow exception.
  2321         if (addr > thread->stack_base() &&
  2322                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2323           char buf[256];
  2324           jio_snprintf(buf, sizeof(buf),
  2325                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2326                        addr, thread->stack_base() );
  2327           tty->print_raw_cr(buf);
  2328           // If not in java code, return and hope for the best.
  2329           return in_java ? Handle_Exception(exceptionInfo,
  2330             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2331             :  EXCEPTION_CONTINUE_EXECUTION;
  2333 #endif
  2334         if (thread->stack_yellow_zone_enabled()) {
  2335           // Yellow zone violation.  The o/s has unprotected the first yellow
  2336           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2337           // update the enabled status, even if the zone contains only one page.
  2338           thread->disable_stack_yellow_zone();
  2339           // If not in java code, return and hope for the best.
  2340           return in_java ? Handle_Exception(exceptionInfo,
  2341             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2342             :  EXCEPTION_CONTINUE_EXECUTION;
  2343         } else {
  2344           // Fatal red zone violation.
  2345           thread->disable_stack_red_zone();
  2346           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2347           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2348                        exceptionInfo->ContextRecord);
  2349           return EXCEPTION_CONTINUE_SEARCH;
  2351       } else if (in_java) {
  2352         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2353         // a one-time-only guard page, which it has released to us.  The next
  2354         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2355         return Handle_Exception(exceptionInfo,
  2356           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2357       } else {
  2358         // Can only return and hope for the best.  Further stack growth will
  2359         // result in an ACCESS_VIOLATION.
  2360         return EXCEPTION_CONTINUE_EXECUTION;
  2362     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2363       // Either stack overflow or null pointer exception.
  2364       if (in_java) {
  2365         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2366         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2367         address stack_end = thread->stack_base() - thread->stack_size();
  2368         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2369           // Stack overflow.
  2370           assert(!os::uses_stack_guard_pages(),
  2371             "should be caught by red zone code above.");
  2372           return Handle_Exception(exceptionInfo,
  2373             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2375         //
  2376         // Check for safepoint polling and implicit null
  2377         // We only expect null pointers in the stubs (vtable)
  2378         // the rest are checked explicitly now.
  2379         //
  2380         CodeBlob* cb = CodeCache::find_blob(pc);
  2381         if (cb != NULL) {
  2382           if (os::is_poll_address(addr)) {
  2383             address stub = SharedRuntime::get_poll_stub(pc);
  2384             return Handle_Exception(exceptionInfo, stub);
  2388 #ifdef _WIN64
  2389           //
  2390           // If it's a legal stack address map the entire region in
  2391           //
  2392           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2393           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2394           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2395                   addr = (address)((uintptr_t)addr &
  2396                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2397                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2398                                     false );
  2399                   return EXCEPTION_CONTINUE_EXECUTION;
  2401           else
  2402 #endif
  2404             // Null pointer exception.
  2405 #ifdef _M_IA64
  2406             // We catch register stack overflows in compiled code by doing
  2407             // an explicit compare and executing a st8(G0, G0) if the
  2408             // BSP enters into our guard area.  We test for the overflow
  2409             // condition and fall into the normal null pointer exception
  2410             // code if BSP hasn't overflowed.
  2411             if ( in_java ) {
  2412               if(thread->register_stack_overflow()) {
  2413                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2414                                 thread->register_stack_limit(),
  2415                                "GR7 doesn't contain register_stack_limit");
  2416                 // Disable the yellow zone which sets the state that
  2417                 // we've got a stack overflow problem.
  2418                 if (thread->stack_yellow_zone_enabled()) {
  2419                   thread->disable_stack_yellow_zone();
  2421                 // Give us some room to process the exception
  2422                 thread->disable_register_stack_guard();
  2423                 // Update GR7 with the new limit so we can continue running
  2424                 // compiled code.
  2425                 exceptionInfo->ContextRecord->IntS3 =
  2426                                (ULONGLONG)thread->register_stack_limit();
  2427                 return Handle_Exception(exceptionInfo,
  2428                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2429               } else {
  2430                 //
  2431                 // Check for implicit null
  2432                 // We only expect null pointers in the stubs (vtable)
  2433                 // the rest are checked explicitly now.
  2434                 //
  2435                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2436                   // an access to the first page of VM--assume it is a null pointer
  2437                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2438                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2441             } // in_java
  2443             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2444             // get here.
  2445             tty->print_raw_cr("Access violation, possible null pointer exception");
  2446             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2447                          exceptionInfo->ContextRecord);
  2448             return EXCEPTION_CONTINUE_SEARCH;
  2449 #else /* !IA64 */
  2451             // Windows 98 reports faulting addresses incorrectly
  2452             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2453                 !os::win32::is_nt()) {
  2454               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2455               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2457             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2458                          exceptionInfo->ContextRecord);
  2459             return EXCEPTION_CONTINUE_SEARCH;
  2460 #endif
  2465 #ifdef _WIN64
  2466       // Special care for fast JNI field accessors.
  2467       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2468       // in and the heap gets shrunk before the field access.
  2469       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2470         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2471         if (addr != (address)-1) {
  2472           return Handle_Exception(exceptionInfo, addr);
  2475 #endif
  2477 #ifdef _WIN64
  2478       // Windows will sometimes generate an access violation
  2479       // when we call malloc.  Since we use VectoredExceptions
  2480       // on 64 bit platforms, we see this exception.  We must
  2481       // pass this exception on so Windows can recover.
  2482       // We check to see if the pc of the fault is in NTDLL.DLL
  2483       // if so, we pass control on to Windows for handling.
  2484       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2485 #endif
  2487       // Stack overflow or null pointer exception in native code.
  2488       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2489                    exceptionInfo->ContextRecord);
  2490       return EXCEPTION_CONTINUE_SEARCH;
  2493     if (in_java) {
  2494       switch (exception_code) {
  2495       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2496         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2498       case EXCEPTION_INT_OVERFLOW:
  2499         return Handle_IDiv_Exception(exceptionInfo);
  2501       } // switch
  2503 #ifndef _WIN64
  2504     if (((thread->thread_state() == _thread_in_Java) ||
  2505         (thread->thread_state() == _thread_in_native)) &&
  2506         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2508       LONG result=Handle_FLT_Exception(exceptionInfo);
  2509       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2511 #endif //_WIN64
  2514   if (exception_code != EXCEPTION_BREAKPOINT) {
  2515 #ifndef _WIN64
  2516     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2517                  exceptionInfo->ContextRecord);
  2518 #else
  2519     // Itanium Windows uses a VectoredExceptionHandler
  2520     // Which means that C++ programatic exception handlers (try/except)
  2521     // will get here.  Continue the search for the right except block if
  2522     // the exception code is not a fatal code.
  2523     switch ( exception_code ) {
  2524       case EXCEPTION_ACCESS_VIOLATION:
  2525       case EXCEPTION_STACK_OVERFLOW:
  2526       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2527       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2528       case EXCEPTION_INT_OVERFLOW:
  2529       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2530       case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
  2531       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2532                        exceptionInfo->ContextRecord);
  2534         break;
  2535       default:
  2536         break;
  2538 #endif
  2540   return EXCEPTION_CONTINUE_SEARCH;
  2543 #ifndef _WIN64
  2544 // Special care for fast JNI accessors.
  2545 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2546 // the heap gets shrunk before the field access.
  2547 // Need to install our own structured exception handler since native code may
  2548 // install its own.
  2549 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2550   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2551   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2552     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2553     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2554     if (addr != (address)-1) {
  2555       return Handle_Exception(exceptionInfo, addr);
  2558   return EXCEPTION_CONTINUE_SEARCH;
  2561 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2562 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2563   __try { \
  2564     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2565   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2566   } \
  2567   return 0; \
  2570 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2571 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2572 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2573 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2574 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2575 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2576 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2577 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2579 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2580   switch (type) {
  2581     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2582     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2583     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2584     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2585     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2586     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2587     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2588     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2589     default:        ShouldNotReachHere();
  2591   return (address)-1;
  2593 #endif
  2595 // Virtual Memory
  2597 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2598 int os::vm_allocation_granularity() {
  2599   return os::win32::vm_allocation_granularity();
  2602 // Windows large page support is available on Windows 2003. In order to use
  2603 // large page memory, the administrator must first assign additional privilege
  2604 // to the user:
  2605 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2606 //   + select Local Policies -> User Rights Assignment
  2607 //   + double click "Lock pages in memory", add users and/or groups
  2608 //   + reboot
  2609 // Note the above steps are needed for administrator as well, as administrators
  2610 // by default do not have the privilege to lock pages in memory.
  2611 //
  2612 // Note about Windows 2003: although the API supports committing large page
  2613 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2614 // scenario, I found through experiment it only uses large page if the entire
  2615 // memory region is reserved and committed in a single VirtualAlloc() call.
  2616 // This makes Windows large page support more or less like Solaris ISM, in
  2617 // that the entire heap must be committed upfront. This probably will change
  2618 // in the future, if so the code below needs to be revisited.
  2620 #ifndef MEM_LARGE_PAGES
  2621 #define MEM_LARGE_PAGES 0x20000000
  2622 #endif
  2624 static HANDLE    _hProcess;
  2625 static HANDLE    _hToken;
  2627 // Container for NUMA node list info
  2628 class NUMANodeListHolder {
  2629 private:
  2630   int *_numa_used_node_list;  // allocated below
  2631   int _numa_used_node_count;
  2633   void free_node_list() {
  2634     if (_numa_used_node_list != NULL) {
  2635       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
  2639 public:
  2640   NUMANodeListHolder() {
  2641     _numa_used_node_count = 0;
  2642     _numa_used_node_list = NULL;
  2643     // do rest of initialization in build routine (after function pointers are set up)
  2646   ~NUMANodeListHolder() {
  2647     free_node_list();
  2650   bool build() {
  2651     DWORD_PTR proc_aff_mask;
  2652     DWORD_PTR sys_aff_mask;
  2653     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2654     ULONG highest_node_number;
  2655     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2656     free_node_list();
  2657     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1);
  2658     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2659       ULONGLONG proc_mask_numa_node;
  2660       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2661       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2662         _numa_used_node_list[_numa_used_node_count++] = i;
  2665     return (_numa_used_node_count > 1);
  2668   int get_count() {return _numa_used_node_count;}
  2669   int get_node_list_entry(int n) {
  2670     // for indexes out of range, returns -1
  2671     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2674 } numa_node_list_holder;
  2678 static size_t _large_page_size = 0;
  2680 static bool resolve_functions_for_large_page_init() {
  2681   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2682     os::Advapi32Dll::AdvapiAvailable();
  2685 static bool request_lock_memory_privilege() {
  2686   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2687                                 os::current_process_id());
  2689   LUID luid;
  2690   if (_hProcess != NULL &&
  2691       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2692       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2694     TOKEN_PRIVILEGES tp;
  2695     tp.PrivilegeCount = 1;
  2696     tp.Privileges[0].Luid = luid;
  2697     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2699     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2700     // privilege. Check GetLastError() too. See MSDN document.
  2701     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2702         (GetLastError() == ERROR_SUCCESS)) {
  2703       return true;
  2707   return false;
  2710 static void cleanup_after_large_page_init() {
  2711   if (_hProcess) CloseHandle(_hProcess);
  2712   _hProcess = NULL;
  2713   if (_hToken) CloseHandle(_hToken);
  2714   _hToken = NULL;
  2717 static bool numa_interleaving_init() {
  2718   bool success = false;
  2719   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2721   // print a warning if UseNUMAInterleaving flag is specified on command line
  2722   bool warn_on_failure = use_numa_interleaving_specified;
  2723 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2725   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2726   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2727   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2729   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2730     if (numa_node_list_holder.build()) {
  2731       if (PrintMiscellaneous && Verbose) {
  2732         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2733         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2734           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2736         tty->print("\n");
  2738       success = true;
  2739     } else {
  2740       WARN("Process does not cover multiple NUMA nodes.");
  2742   } else {
  2743     WARN("NUMA Interleaving is not supported by the operating system.");
  2745   if (!success) {
  2746     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2748   return success;
  2749 #undef WARN
  2752 // this routine is used whenever we need to reserve a contiguous VA range
  2753 // but we need to make separate VirtualAlloc calls for each piece of the range
  2754 // Reasons for doing this:
  2755 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2756 //  * UseNUMAInterleaving requires a separate node for each piece
  2757 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2758                                          bool should_inject_error=false) {
  2759   char * p_buf;
  2760   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2761   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2762   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2764   // first reserve enough address space in advance since we want to be
  2765   // able to break a single contiguous virtual address range into multiple
  2766   // large page commits but WS2003 does not allow reserving large page space
  2767   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2768   // address space. then we will deallocate that reservation, and re alloc
  2769   // using large pages
  2770   const size_t size_of_reserve = bytes + chunk_size;
  2771   if (bytes > size_of_reserve) {
  2772     // Overflowed.
  2773     return NULL;
  2775   p_buf = (char *) VirtualAlloc(addr,
  2776                                 size_of_reserve,  // size of Reserve
  2777                                 MEM_RESERVE,
  2778                                 PAGE_READWRITE);
  2779   // If reservation failed, return NULL
  2780   if (p_buf == NULL) return NULL;
  2782   os::release_memory(p_buf, bytes + chunk_size);
  2784   // we still need to round up to a page boundary (in case we are using large pages)
  2785   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2786   // instead we handle this in the bytes_to_rq computation below
  2787   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2789   // now go through and allocate one chunk at a time until all bytes are
  2790   // allocated
  2791   size_t  bytes_remaining = bytes;
  2792   // An overflow of align_size_up() would have been caught above
  2793   // in the calculation of size_of_reserve.
  2794   char * next_alloc_addr = p_buf;
  2795   HANDLE hProc = GetCurrentProcess();
  2797 #ifdef ASSERT
  2798   // Variable for the failure injection
  2799   long ran_num = os::random();
  2800   size_t fail_after = ran_num % bytes;
  2801 #endif
  2803   int count=0;
  2804   while (bytes_remaining) {
  2805     // select bytes_to_rq to get to the next chunk_size boundary
  2807     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2808     // Note allocate and commit
  2809     char * p_new;
  2811 #ifdef ASSERT
  2812     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2813 #else
  2814     const bool inject_error_now = false;
  2815 #endif
  2817     if (inject_error_now) {
  2818       p_new = NULL;
  2819     } else {
  2820       if (!UseNUMAInterleaving) {
  2821         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2822                                       bytes_to_rq,
  2823                                       flags,
  2824                                       prot);
  2825       } else {
  2826         // get the next node to use from the used_node_list
  2827         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2828         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2829         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2830                                                             next_alloc_addr,
  2831                                                             bytes_to_rq,
  2832                                                             flags,
  2833                                                             prot,
  2834                                                             node);
  2838     if (p_new == NULL) {
  2839       // Free any allocated pages
  2840       if (next_alloc_addr > p_buf) {
  2841         // Some memory was committed so release it.
  2842         size_t bytes_to_release = bytes - bytes_remaining;
  2843         os::release_memory(p_buf, bytes_to_release);
  2845 #ifdef ASSERT
  2846       if (should_inject_error) {
  2847         if (TracePageSizes && Verbose) {
  2848           tty->print_cr("Reserving pages individually failed.");
  2851 #endif
  2852       return NULL;
  2854     bytes_remaining -= bytes_to_rq;
  2855     next_alloc_addr += bytes_to_rq;
  2856     count++;
  2858   // made it this far, success
  2859   return p_buf;
  2864 void os::large_page_init() {
  2865   if (!UseLargePages) return;
  2867   // print a warning if any large page related flag is specified on command line
  2868   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2869                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2870   bool success = false;
  2872 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2873   if (resolve_functions_for_large_page_init()) {
  2874     if (request_lock_memory_privilege()) {
  2875       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  2876       if (s) {
  2877 #if defined(IA32) || defined(AMD64)
  2878         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2879           WARN("JVM cannot use large pages bigger than 4mb.");
  2880         } else {
  2881 #endif
  2882           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2883             _large_page_size = LargePageSizeInBytes;
  2884           } else {
  2885             _large_page_size = s;
  2887           success = true;
  2888 #if defined(IA32) || defined(AMD64)
  2890 #endif
  2891       } else {
  2892         WARN("Large page is not supported by the processor.");
  2894     } else {
  2895       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2897   } else {
  2898     WARN("Large page is not supported by the operating system.");
  2900 #undef WARN
  2902   const size_t default_page_size = (size_t) vm_page_size();
  2903   if (success && _large_page_size > default_page_size) {
  2904     _page_sizes[0] = _large_page_size;
  2905     _page_sizes[1] = default_page_size;
  2906     _page_sizes[2] = 0;
  2909   cleanup_after_large_page_init();
  2910   UseLargePages = success;
  2913 // On win32, one cannot release just a part of reserved memory, it's an
  2914 // all or nothing deal.  When we split a reservation, we must break the
  2915 // reservation into two reservations.
  2916 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2917                               bool realloc) {
  2918   if (size > 0) {
  2919     release_memory(base, size);
  2920     if (realloc) {
  2921       reserve_memory(split, base);
  2923     if (size != split) {
  2924       reserve_memory(size - split, base + split);
  2929 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2930   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2931          "reserve alignment");
  2932   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2933   char* res;
  2934   // note that if UseLargePages is on, all the areas that require interleaving
  2935   // will go thru reserve_memory_special rather than thru here.
  2936   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  2937   if (!use_individual) {
  2938     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2939   } else {
  2940     elapsedTimer reserveTimer;
  2941     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  2942     // in numa interleaving, we have to allocate pages individually
  2943     // (well really chunks of NUMAInterleaveGranularity size)
  2944     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  2945     if (res == NULL) {
  2946       warning("NUMA page allocation failed");
  2948     if( Verbose && PrintMiscellaneous ) {
  2949       reserveTimer.stop();
  2950       tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
  2951                     reserveTimer.milliseconds(), reserveTimer.ticks());
  2954   assert(res == NULL || addr == NULL || addr == res,
  2955          "Unexpected address from reserve.");
  2957   return res;
  2960 // Reserve memory at an arbitrary address, only if that area is
  2961 // available (and not reserved for something else).
  2962 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2963   // Windows os::reserve_memory() fails of the requested address range is
  2964   // not avilable.
  2965   return reserve_memory(bytes, requested_addr);
  2968 size_t os::large_page_size() {
  2969   return _large_page_size;
  2972 bool os::can_commit_large_page_memory() {
  2973   // Windows only uses large page memory when the entire region is reserved
  2974   // and committed in a single VirtualAlloc() call. This may change in the
  2975   // future, but with Windows 2003 it's not possible to commit on demand.
  2976   return false;
  2979 bool os::can_execute_large_page_memory() {
  2980   return true;
  2983 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2985   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2986   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2988   // with large pages, there are two cases where we need to use Individual Allocation
  2989   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  2990   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  2991   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  2992     if (TracePageSizes && Verbose) {
  2993        tty->print_cr("Reserving large pages individually.");
  2995     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  2996     if (p_buf == NULL) {
  2997       // give an appropriate warning message
  2998       if (UseNUMAInterleaving) {
  2999         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3001       if (UseLargePagesIndividualAllocation) {
  3002         warning("Individually allocated large pages failed, "
  3003                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3005       return NULL;
  3008     return p_buf;
  3010   } else {
  3011     // normal policy just allocate it all at once
  3012     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3013     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  3014     return res;
  3018 bool os::release_memory_special(char* base, size_t bytes) {
  3019   return release_memory(base, bytes);
  3022 void os::print_statistics() {
  3025 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  3026   if (bytes == 0) {
  3027     // Don't bother the OS with noops.
  3028     return true;
  3030   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3031   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3032   // Don't attempt to print anything if the OS call fails. We're
  3033   // probably low on resources, so the print itself may cause crashes.
  3035   // unless we have NUMAInterleaving enabled, the range of a commit
  3036   // is always within a reserve covered by a single VirtualAlloc
  3037   // in that case we can just do a single commit for the requested size
  3038   if (!UseNUMAInterleaving) {
  3039     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
  3040     if (exec) {
  3041       DWORD oldprot;
  3042       // Windows doc says to use VirtualProtect to get execute permissions
  3043       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
  3045     return true;
  3046   } else {
  3048     // when NUMAInterleaving is enabled, the commit might cover a range that
  3049     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3050     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3051     // returns represents the number of bytes that can be committed in one step.
  3052     size_t bytes_remaining = bytes;
  3053     char * next_alloc_addr = addr;
  3054     while (bytes_remaining > 0) {
  3055       MEMORY_BASIC_INFORMATION alloc_info;
  3056       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3057       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3058       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
  3059         return false;
  3060       if (exec) {
  3061         DWORD oldprot;
  3062         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
  3063           return false;
  3065       bytes_remaining -= bytes_to_rq;
  3066       next_alloc_addr += bytes_to_rq;
  3069   // if we made it this far, return true
  3070   return true;
  3073 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  3074                        bool exec) {
  3075   return commit_memory(addr, size, exec);
  3078 bool os::uncommit_memory(char* addr, size_t bytes) {
  3079   if (bytes == 0) {
  3080     // Don't bother the OS with noops.
  3081     return true;
  3083   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3084   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3085   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  3088 bool os::release_memory(char* addr, size_t bytes) {
  3089   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3092 bool os::create_stack_guard_pages(char* addr, size_t size) {
  3093   return os::commit_memory(addr, size);
  3096 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3097   return os::uncommit_memory(addr, size);
  3100 // Set protections specified
  3101 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3102                         bool is_committed) {
  3103   unsigned int p = 0;
  3104   switch (prot) {
  3105   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3106   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3107   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3108   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3109   default:
  3110     ShouldNotReachHere();
  3113   DWORD old_status;
  3115   // Strange enough, but on Win32 one can change protection only for committed
  3116   // memory, not a big deal anyway, as bytes less or equal than 64K
  3117   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  3118     fatal("cannot commit protection page");
  3120   // One cannot use os::guard_memory() here, as on Win32 guard page
  3121   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3122   //
  3123   // Pages in the region become guard pages. Any attempt to access a guard page
  3124   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3125   // the guard page status. Guard pages thus act as a one-time access alarm.
  3126   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3129 bool os::guard_memory(char* addr, size_t bytes) {
  3130   DWORD old_status;
  3131   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3134 bool os::unguard_memory(char* addr, size_t bytes) {
  3135   DWORD old_status;
  3136   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3139 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3140 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint)    { }
  3141 void os::numa_make_global(char *addr, size_t bytes)    { }
  3142 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3143 bool os::numa_topology_changed()                       { return false; }
  3144 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3145 int os::numa_get_group_id()                            { return 0; }
  3146 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3147   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3148     // Provide an answer for UMA systems
  3149     ids[0] = 0;
  3150     return 1;
  3151   } else {
  3152     // check for size bigger than actual groups_num
  3153     size = MIN2(size, numa_get_groups_num());
  3154     for (int i = 0; i < (int)size; i++) {
  3155       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3157     return size;
  3161 bool os::get_page_info(char *start, page_info* info) {
  3162   return false;
  3165 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3166   return end;
  3169 char* os::non_memory_address_word() {
  3170   // Must never look like an address returned by reserve_memory,
  3171   // even in its subfields (as defined by the CPU immediate fields,
  3172   // if the CPU splits constants across multiple instructions).
  3173   return (char*)-1;
  3176 #define MAX_ERROR_COUNT 100
  3177 #define SYS_THREAD_ERROR 0xffffffffUL
  3179 void os::pd_start_thread(Thread* thread) {
  3180   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3181   // Returns previous suspend state:
  3182   // 0:  Thread was not suspended
  3183   // 1:  Thread is running now
  3184   // >1: Thread is still suspended.
  3185   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3188 class HighResolutionInterval {
  3189   // The default timer resolution seems to be 10 milliseconds.
  3190   // (Where is this written down?)
  3191   // If someone wants to sleep for only a fraction of the default,
  3192   // then we set the timer resolution down to 1 millisecond for
  3193   // the duration of their interval.
  3194   // We carefully set the resolution back, since otherwise we
  3195   // seem to incur an overhead (3%?) that we don't need.
  3196   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3197   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3198   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3199   // timeBeginPeriod() if the relative error exceeded some threshold.
  3200   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3201   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3202   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3203   // resolution timers running.
  3204 private:
  3205     jlong resolution;
  3206 public:
  3207   HighResolutionInterval(jlong ms) {
  3208     resolution = ms % 10L;
  3209     if (resolution != 0) {
  3210       MMRESULT result = timeBeginPeriod(1L);
  3213   ~HighResolutionInterval() {
  3214     if (resolution != 0) {
  3215       MMRESULT result = timeEndPeriod(1L);
  3217     resolution = 0L;
  3219 };
  3221 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3222   jlong limit = (jlong) MAXDWORD;
  3224   while(ms > limit) {
  3225     int res;
  3226     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3227       return res;
  3228     ms -= limit;
  3231   assert(thread == Thread::current(),  "thread consistency check");
  3232   OSThread* osthread = thread->osthread();
  3233   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3234   int result;
  3235   if (interruptable) {
  3236     assert(thread->is_Java_thread(), "must be java thread");
  3237     JavaThread *jt = (JavaThread *) thread;
  3238     ThreadBlockInVM tbivm(jt);
  3240     jt->set_suspend_equivalent();
  3241     // cleared by handle_special_suspend_equivalent_condition() or
  3242     // java_suspend_self() via check_and_wait_while_suspended()
  3244     HANDLE events[1];
  3245     events[0] = osthread->interrupt_event();
  3246     HighResolutionInterval *phri=NULL;
  3247     if(!ForceTimeHighResolution)
  3248       phri = new HighResolutionInterval( ms );
  3249     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3250       result = OS_TIMEOUT;
  3251     } else {
  3252       ResetEvent(osthread->interrupt_event());
  3253       osthread->set_interrupted(false);
  3254       result = OS_INTRPT;
  3256     delete phri; //if it is NULL, harmless
  3258     // were we externally suspended while we were waiting?
  3259     jt->check_and_wait_while_suspended();
  3260   } else {
  3261     assert(!thread->is_Java_thread(), "must not be java thread");
  3262     Sleep((long) ms);
  3263     result = OS_TIMEOUT;
  3265   return result;
  3268 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3269 void os::infinite_sleep() {
  3270   while (true) {    // sleep forever ...
  3271     Sleep(100000);  // ... 100 seconds at a time
  3275 typedef BOOL (WINAPI * STTSignature)(void) ;
  3277 os::YieldResult os::NakedYield() {
  3278   // Use either SwitchToThread() or Sleep(0)
  3279   // Consider passing back the return value from SwitchToThread().
  3280   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3281     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3282   } else {
  3283     Sleep(0);
  3285   return os::YIELD_UNKNOWN ;
  3288 void os::yield() {  os::NakedYield(); }
  3290 void os::yield_all(int attempts) {
  3291   // Yields to all threads, including threads with lower priorities
  3292   Sleep(1);
  3295 // Win32 only gives you access to seven real priorities at a time,
  3296 // so we compress Java's ten down to seven.  It would be better
  3297 // if we dynamically adjusted relative priorities.
  3299 int os::java_to_os_priority[MaxPriority + 1] = {
  3300   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3301   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3302   THREAD_PRIORITY_LOWEST,                       // 2
  3303   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3304   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3305   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3306   THREAD_PRIORITY_NORMAL,                       // 6
  3307   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3308   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3309   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3310   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  3311 };
  3313 int prio_policy1[MaxPriority + 1] = {
  3314   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3315   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3316   THREAD_PRIORITY_LOWEST,                       // 2
  3317   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3318   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3319   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3320   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3321   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3322   THREAD_PRIORITY_HIGHEST,                      // 8
  3323   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3324   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3325 };
  3327 static int prio_init() {
  3328   // If ThreadPriorityPolicy is 1, switch tables
  3329   if (ThreadPriorityPolicy == 1) {
  3330     int i;
  3331     for (i = 0; i < MaxPriority + 1; i++) {
  3332       os::java_to_os_priority[i] = prio_policy1[i];
  3335   return 0;
  3338 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3339   if (!UseThreadPriorities) return OS_OK;
  3340   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3341   return ret ? OS_OK : OS_ERR;
  3344 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3345   if ( !UseThreadPriorities ) {
  3346     *priority_ptr = java_to_os_priority[NormPriority];
  3347     return OS_OK;
  3349   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3350   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3351     assert(false, "GetThreadPriority failed");
  3352     return OS_ERR;
  3354   *priority_ptr = os_prio;
  3355   return OS_OK;
  3359 // Hint to the underlying OS that a task switch would not be good.
  3360 // Void return because it's a hint and can fail.
  3361 void os::hint_no_preempt() {}
  3363 void os::interrupt(Thread* thread) {
  3364   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3365          "possibility of dangling Thread pointer");
  3367   OSThread* osthread = thread->osthread();
  3368   osthread->set_interrupted(true);
  3369   // More than one thread can get here with the same value of osthread,
  3370   // resulting in multiple notifications.  We do, however, want the store
  3371   // to interrupted() to be visible to other threads before we post
  3372   // the interrupt event.
  3373   OrderAccess::release();
  3374   SetEvent(osthread->interrupt_event());
  3375   // For JSR166:  unpark after setting status
  3376   if (thread->is_Java_thread())
  3377     ((JavaThread*)thread)->parker()->unpark();
  3379   ParkEvent * ev = thread->_ParkEvent ;
  3380   if (ev != NULL) ev->unpark() ;
  3385 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3386   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3387          "possibility of dangling Thread pointer");
  3389   OSThread* osthread = thread->osthread();
  3390   bool interrupted = osthread->interrupted();
  3391   // There is no synchronization between the setting of the interrupt
  3392   // and it being cleared here. It is critical - see 6535709 - that
  3393   // we only clear the interrupt state, and reset the interrupt event,
  3394   // if we are going to report that we were indeed interrupted - else
  3395   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3396   // depending on the timing
  3397   if (interrupted && clear_interrupted) {
  3398     osthread->set_interrupted(false);
  3399     ResetEvent(osthread->interrupt_event());
  3400   } // Otherwise leave the interrupted state alone
  3402   return interrupted;
  3405 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3406 ExtendedPC os::get_thread_pc(Thread* thread) {
  3407   CONTEXT context;
  3408   context.ContextFlags = CONTEXT_CONTROL;
  3409   HANDLE handle = thread->osthread()->thread_handle();
  3410 #ifdef _M_IA64
  3411   assert(0, "Fix get_thread_pc");
  3412   return ExtendedPC(NULL);
  3413 #else
  3414   if (GetThreadContext(handle, &context)) {
  3415 #ifdef _M_AMD64
  3416     return ExtendedPC((address) context.Rip);
  3417 #else
  3418     return ExtendedPC((address) context.Eip);
  3419 #endif
  3420   } else {
  3421     return ExtendedPC(NULL);
  3423 #endif
  3426 // GetCurrentThreadId() returns DWORD
  3427 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3429 static int _initial_pid = 0;
  3431 int os::current_process_id()
  3433   return (_initial_pid ? _initial_pid : _getpid());
  3436 int    os::win32::_vm_page_size       = 0;
  3437 int    os::win32::_vm_allocation_granularity = 0;
  3438 int    os::win32::_processor_type     = 0;
  3439 // Processor level is not available on non-NT systems, use vm_version instead
  3440 int    os::win32::_processor_level    = 0;
  3441 julong os::win32::_physical_memory    = 0;
  3442 size_t os::win32::_default_stack_size = 0;
  3444          intx os::win32::_os_thread_limit    = 0;
  3445 volatile intx os::win32::_os_thread_count    = 0;
  3447 bool   os::win32::_is_nt              = false;
  3448 bool   os::win32::_is_windows_2003    = false;
  3449 bool   os::win32::_is_windows_server  = false;
  3451 void os::win32::initialize_system_info() {
  3452   SYSTEM_INFO si;
  3453   GetSystemInfo(&si);
  3454   _vm_page_size    = si.dwPageSize;
  3455   _vm_allocation_granularity = si.dwAllocationGranularity;
  3456   _processor_type  = si.dwProcessorType;
  3457   _processor_level = si.wProcessorLevel;
  3458   set_processor_count(si.dwNumberOfProcessors);
  3460   MEMORYSTATUSEX ms;
  3461   ms.dwLength = sizeof(ms);
  3463   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3464   // dwMemoryLoad (% of memory in use)
  3465   GlobalMemoryStatusEx(&ms);
  3466   _physical_memory = ms.ullTotalPhys;
  3468   OSVERSIONINFOEX oi;
  3469   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3470   GetVersionEx((OSVERSIONINFO*)&oi);
  3471   switch(oi.dwPlatformId) {
  3472     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3473     case VER_PLATFORM_WIN32_NT:
  3474       _is_nt = true;
  3476         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3477         if (os_vers == 5002) {
  3478           _is_windows_2003 = true;
  3480         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3481           oi.wProductType == VER_NT_SERVER) {
  3482             _is_windows_server = true;
  3485       break;
  3486     default: fatal("Unknown platform");
  3489   _default_stack_size = os::current_stack_size();
  3490   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3491   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3492     "stack size not a multiple of page size");
  3494   initialize_performance_counter();
  3496   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3497   // known to deadlock the system, if the VM issues to thread operations with
  3498   // a too high frequency, e.g., such as changing the priorities.
  3499   // The 6000 seems to work well - no deadlocks has been notices on the test
  3500   // programs that we have seen experience this problem.
  3501   if (!os::win32::is_nt()) {
  3502     StarvationMonitorInterval = 6000;
  3507 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3508   char path[MAX_PATH];
  3509   DWORD size;
  3510   DWORD pathLen = (DWORD)sizeof(path);
  3511   HINSTANCE result = NULL;
  3513   // only allow library name without path component
  3514   assert(strchr(name, '\\') == NULL, "path not allowed");
  3515   assert(strchr(name, ':') == NULL, "path not allowed");
  3516   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3517     jio_snprintf(ebuf, ebuflen,
  3518       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3519     return NULL;
  3522   // search system directory
  3523   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3524     strcat(path, "\\");
  3525     strcat(path, name);
  3526     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3527       return result;
  3531   // try Windows directory
  3532   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3533     strcat(path, "\\");
  3534     strcat(path, name);
  3535     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3536       return result;
  3540   jio_snprintf(ebuf, ebuflen,
  3541     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3542   return NULL;
  3545 void os::win32::setmode_streams() {
  3546   _setmode(_fileno(stdin), _O_BINARY);
  3547   _setmode(_fileno(stdout), _O_BINARY);
  3548   _setmode(_fileno(stderr), _O_BINARY);
  3552 bool os::is_debugger_attached() {
  3553   return IsDebuggerPresent() ? true : false;
  3557 void os::wait_for_keypress_at_exit(void) {
  3558   if (PauseAtExit) {
  3559     fprintf(stderr, "Press any key to continue...\n");
  3560     fgetc(stdin);
  3565 int os::message_box(const char* title, const char* message) {
  3566   int result = MessageBox(NULL, message, title,
  3567                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3568   return result == IDYES;
  3571 int os::allocate_thread_local_storage() {
  3572   return TlsAlloc();
  3576 void os::free_thread_local_storage(int index) {
  3577   TlsFree(index);
  3581 void os::thread_local_storage_at_put(int index, void* value) {
  3582   TlsSetValue(index, value);
  3583   assert(thread_local_storage_at(index) == value, "Just checking");
  3587 void* os::thread_local_storage_at(int index) {
  3588   return TlsGetValue(index);
  3592 #ifndef PRODUCT
  3593 #ifndef _WIN64
  3594 // Helpers to check whether NX protection is enabled
  3595 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3596   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3597       pex->ExceptionRecord->NumberParameters > 0 &&
  3598       pex->ExceptionRecord->ExceptionInformation[0] ==
  3599       EXCEPTION_INFO_EXEC_VIOLATION) {
  3600     return EXCEPTION_EXECUTE_HANDLER;
  3602   return EXCEPTION_CONTINUE_SEARCH;
  3605 void nx_check_protection() {
  3606   // If NX is enabled we'll get an exception calling into code on the stack
  3607   char code[] = { (char)0xC3 }; // ret
  3608   void *code_ptr = (void *)code;
  3609   __try {
  3610     __asm call code_ptr
  3611   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3612     tty->print_raw_cr("NX protection detected.");
  3615 #endif // _WIN64
  3616 #endif // PRODUCT
  3618 // this is called _before_ the global arguments have been parsed
  3619 void os::init(void) {
  3620   _initial_pid = _getpid();
  3622   init_random(1234567);
  3624   win32::initialize_system_info();
  3625   win32::setmode_streams();
  3626   init_page_sizes((size_t) win32::vm_page_size());
  3628   // For better scalability on MP systems (must be called after initialize_system_info)
  3629 #ifndef PRODUCT
  3630   if (is_MP()) {
  3631     NoYieldsInMicrolock = true;
  3633 #endif
  3634   // This may be overridden later when argument processing is done.
  3635   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3636     os::win32::is_windows_2003());
  3638   // Initialize main_process and main_thread
  3639   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3640  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3641                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3642     fatal("DuplicateHandle failed\n");
  3644   main_thread_id = (int) GetCurrentThreadId();
  3647 // To install functions for atexit processing
  3648 extern "C" {
  3649   static void perfMemory_exit_helper() {
  3650     perfMemory_exit();
  3654 // this is called _after_ the global arguments have been parsed
  3655 jint os::init_2(void) {
  3656   // Allocate a single page and mark it as readable for safepoint polling
  3657   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3658   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3660   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3661   guarantee( return_page != NULL, "Commit Failed for polling page");
  3663   os::set_polling_page( polling_page );
  3665 #ifndef PRODUCT
  3666   if( Verbose && PrintMiscellaneous )
  3667     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3668 #endif
  3670   if (!UseMembar) {
  3671     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3672     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3674     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3675     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3677     os::set_memory_serialize_page( mem_serialize_page );
  3679 #ifndef PRODUCT
  3680     if(Verbose && PrintMiscellaneous)
  3681       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3682 #endif
  3685   os::large_page_init();
  3687   // Setup Windows Exceptions
  3689   // On Itanium systems, Structured Exception Handling does not
  3690   // work since stack frames must be walkable by the OS.  Since
  3691   // much of our code is dynamically generated, and we do not have
  3692   // proper unwind .xdata sections, the system simply exits
  3693   // rather than delivering the exception.  To work around
  3694   // this we use VectorExceptions instead.
  3695 #ifdef _WIN64
  3696   if (UseVectoredExceptions) {
  3697     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3699 #endif
  3701   // for debugging float code generation bugs
  3702   if (ForceFloatExceptions) {
  3703 #ifndef  _WIN64
  3704     static long fp_control_word = 0;
  3705     __asm { fstcw fp_control_word }
  3706     // see Intel PPro Manual, Vol. 2, p 7-16
  3707     const long precision = 0x20;
  3708     const long underflow = 0x10;
  3709     const long overflow  = 0x08;
  3710     const long zero_div  = 0x04;
  3711     const long denorm    = 0x02;
  3712     const long invalid   = 0x01;
  3713     fp_control_word |= invalid;
  3714     __asm { fldcw fp_control_word }
  3715 #endif
  3718   // If stack_commit_size is 0, windows will reserve the default size,
  3719   // but only commit a small portion of it.
  3720   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3721   size_t default_reserve_size = os::win32::default_stack_size();
  3722   size_t actual_reserve_size = stack_commit_size;
  3723   if (stack_commit_size < default_reserve_size) {
  3724     // If stack_commit_size == 0, we want this too
  3725     actual_reserve_size = default_reserve_size;
  3728   // Check minimum allowable stack size for thread creation and to initialize
  3729   // the java system classes, including StackOverflowError - depends on page
  3730   // size.  Add a page for compiler2 recursion in main thread.
  3731   // Add in 2*BytesPerWord times page size to account for VM stack during
  3732   // class initialization depending on 32 or 64 bit VM.
  3733   size_t min_stack_allowed =
  3734             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3735             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3736   if (actual_reserve_size < min_stack_allowed) {
  3737     tty->print_cr("\nThe stack size specified is too small, "
  3738                   "Specify at least %dk",
  3739                   min_stack_allowed / K);
  3740     return JNI_ERR;
  3743   JavaThread::set_stack_size_at_create(stack_commit_size);
  3745   // Calculate theoretical max. size of Threads to guard gainst artifical
  3746   // out-of-memory situations, where all available address-space has been
  3747   // reserved by thread stacks.
  3748   assert(actual_reserve_size != 0, "Must have a stack");
  3750   // Calculate the thread limit when we should start doing Virtual Memory
  3751   // banging. Currently when the threads will have used all but 200Mb of space.
  3752   //
  3753   // TODO: consider performing a similar calculation for commit size instead
  3754   // as reserve size, since on a 64-bit platform we'll run into that more
  3755   // often than running out of virtual memory space.  We can use the
  3756   // lower value of the two calculations as the os_thread_limit.
  3757   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3758   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3760   // at exit methods are called in the reverse order of their registration.
  3761   // there is no limit to the number of functions registered. atexit does
  3762   // not set errno.
  3764   if (PerfAllowAtExitRegistration) {
  3765     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3766     // atexit functions can be delayed until process exit time, which
  3767     // can be problematic for embedded VM situations. Embedded VMs should
  3768     // call DestroyJavaVM() to assure that VM resources are released.
  3770     // note: perfMemory_exit_helper atexit function may be removed in
  3771     // the future if the appropriate cleanup code can be added to the
  3772     // VM_Exit VMOperation's doit method.
  3773     if (atexit(perfMemory_exit_helper) != 0) {
  3774       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3778 #ifndef _WIN64
  3779   // Print something if NX is enabled (win32 on AMD64)
  3780   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3781 #endif
  3783   // initialize thread priority policy
  3784   prio_init();
  3786   if (UseNUMA && !ForceNUMA) {
  3787     UseNUMA = false; // We don't fully support this yet
  3790   if (UseNUMAInterleaving) {
  3791     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  3792     bool success = numa_interleaving_init();
  3793     if (!success) UseNUMAInterleaving = false;
  3796   return JNI_OK;
  3799 void os::init_3(void) {
  3800   return;
  3803 // Mark the polling page as unreadable
  3804 void os::make_polling_page_unreadable(void) {
  3805   DWORD old_status;
  3806   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3807     fatal("Could not disable polling page");
  3808 };
  3810 // Mark the polling page as readable
  3811 void os::make_polling_page_readable(void) {
  3812   DWORD old_status;
  3813   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3814     fatal("Could not enable polling page");
  3815 };
  3818 int os::stat(const char *path, struct stat *sbuf) {
  3819   char pathbuf[MAX_PATH];
  3820   if (strlen(path) > MAX_PATH - 1) {
  3821     errno = ENAMETOOLONG;
  3822     return -1;
  3824   os::native_path(strcpy(pathbuf, path));
  3825   int ret = ::stat(pathbuf, sbuf);
  3826   if (sbuf != NULL && UseUTCFileTimestamp) {
  3827     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3828     // the system timezone and so can return different values for the
  3829     // same file if/when daylight savings time changes.  This adjustment
  3830     // makes sure the same timestamp is returned regardless of the TZ.
  3831     //
  3832     // See:
  3833     // http://msdn.microsoft.com/library/
  3834     //   default.asp?url=/library/en-us/sysinfo/base/
  3835     //   time_zone_information_str.asp
  3836     // and
  3837     // http://msdn.microsoft.com/library/default.asp?url=
  3838     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3839     //
  3840     // NOTE: there is a insidious bug here:  If the timezone is changed
  3841     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3842     // the adjustment we do here will be wrong and we'll return the wrong
  3843     // value (which will likely end up creating an invalid class data
  3844     // archive).  Absent a better API for this, or some time zone locking
  3845     // mechanism, we'll have to live with this risk.
  3846     TIME_ZONE_INFORMATION tz;
  3847     DWORD tzid = GetTimeZoneInformation(&tz);
  3848     int daylightBias =
  3849       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3850     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3852   return ret;
  3856 #define FT2INT64(ft) \
  3857   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3860 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3861 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3862 // of a thread.
  3863 //
  3864 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3865 // the fast estimate available on the platform.
  3867 // current_thread_cpu_time() is not optimized for Windows yet
  3868 jlong os::current_thread_cpu_time() {
  3869   // return user + sys since the cost is the same
  3870   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3873 jlong os::thread_cpu_time(Thread* thread) {
  3874   // consistent with what current_thread_cpu_time() returns.
  3875   return os::thread_cpu_time(thread, true /* user+sys */);
  3878 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3879   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3882 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3883   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3884   // If this function changes, os::is_thread_cpu_time_supported() should too
  3885   if (os::win32::is_nt()) {
  3886     FILETIME CreationTime;
  3887     FILETIME ExitTime;
  3888     FILETIME KernelTime;
  3889     FILETIME UserTime;
  3891     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3892                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3893       return -1;
  3894     else
  3895       if (user_sys_cpu_time) {
  3896         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3897       } else {
  3898         return FT2INT64(UserTime) * 100;
  3900   } else {
  3901     return (jlong) timeGetTime() * 1000000;
  3905 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3906   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3907   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3908   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3909   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3912 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3913   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3914   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3915   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3916   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3919 bool os::is_thread_cpu_time_supported() {
  3920   // see os::thread_cpu_time
  3921   if (os::win32::is_nt()) {
  3922     FILETIME CreationTime;
  3923     FILETIME ExitTime;
  3924     FILETIME KernelTime;
  3925     FILETIME UserTime;
  3927     if ( GetThreadTimes(GetCurrentThread(),
  3928                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3929       return false;
  3930     else
  3931       return true;
  3932   } else {
  3933     return false;
  3937 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3938 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3939 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3940 // If we wanted to implement loadavg on Windows, we have a few options:
  3941 //
  3942 // a) Query CPU usage and run queue length and "fake" an answer by
  3943 //    returning the CPU usage if it's under 100%, and the run queue
  3944 //    length otherwise.  It turns out that querying is pretty slow
  3945 //    on Windows, on the order of 200 microseconds on a fast machine.
  3946 //    Note that on the Windows the CPU usage value is the % usage
  3947 //    since the last time the API was called (and the first call
  3948 //    returns 100%), so we'd have to deal with that as well.
  3949 //
  3950 // b) Sample the "fake" answer using a sampling thread and store
  3951 //    the answer in a global variable.  The call to loadavg would
  3952 //    just return the value of the global, avoiding the slow query.
  3953 //
  3954 // c) Sample a better answer using exponential decay to smooth the
  3955 //    value.  This is basically the algorithm used by UNIX kernels.
  3956 //
  3957 // Note that sampling thread starvation could affect both (b) and (c).
  3958 int os::loadavg(double loadavg[], int nelem) {
  3959   return -1;
  3963 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3964 bool os::dont_yield() {
  3965   return DontYieldALot;
  3968 // This method is a slightly reworked copy of JDK's sysOpen
  3969 // from src/windows/hpi/src/sys_api_md.c
  3971 int os::open(const char *path, int oflag, int mode) {
  3972   char pathbuf[MAX_PATH];
  3974   if (strlen(path) > MAX_PATH - 1) {
  3975     errno = ENAMETOOLONG;
  3976           return -1;
  3978   os::native_path(strcpy(pathbuf, path));
  3979   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  3982 // Is a (classpath) directory empty?
  3983 bool os::dir_is_empty(const char* path) {
  3984   WIN32_FIND_DATA fd;
  3985   HANDLE f = FindFirstFile(path, &fd);
  3986   if (f == INVALID_HANDLE_VALUE) {
  3987     return true;
  3989   FindClose(f);
  3990   return false;
  3993 // create binary file, rewriting existing file if required
  3994 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3995   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3996   if (!rewrite_existing) {
  3997     oflags |= _O_EXCL;
  3999   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4002 // return current position of file pointer
  4003 jlong os::current_file_offset(int fd) {
  4004   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4007 // move file pointer to the specified offset
  4008 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4009   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4013 jlong os::lseek(int fd, jlong offset, int whence) {
  4014   return (jlong) ::_lseeki64(fd, offset, whence);
  4017 // This method is a slightly reworked copy of JDK's sysNativePath
  4018 // from src/windows/hpi/src/path_md.c
  4020 /* Convert a pathname to native format.  On win32, this involves forcing all
  4021    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4022    sometimes rejects '/') and removing redundant separators.  The input path is
  4023    assumed to have been converted into the character encoding used by the local
  4024    system.  Because this might be a double-byte encoding, care is taken to
  4025    treat double-byte lead characters correctly.
  4027    This procedure modifies the given path in place, as the result is never
  4028    longer than the original.  There is no error return; this operation always
  4029    succeeds. */
  4030 char * os::native_path(char *path) {
  4031   char *src = path, *dst = path, *end = path;
  4032   char *colon = NULL;           /* If a drive specifier is found, this will
  4033                                         point to the colon following the drive
  4034                                         letter */
  4036   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4037   assert(((!::IsDBCSLeadByte('/'))
  4038     && (!::IsDBCSLeadByte('\\'))
  4039     && (!::IsDBCSLeadByte(':'))),
  4040     "Illegal lead byte");
  4042   /* Check for leading separators */
  4043 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4044   while (isfilesep(*src)) {
  4045     src++;
  4048   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4049     /* Remove leading separators if followed by drive specifier.  This
  4050       hack is necessary to support file URLs containing drive
  4051       specifiers (e.g., "file://c:/path").  As a side effect,
  4052       "/c:/path" can be used as an alternative to "c:/path". */
  4053     *dst++ = *src++;
  4054     colon = dst;
  4055     *dst++ = ':';
  4056     src++;
  4057   } else {
  4058     src = path;
  4059     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4060       /* UNC pathname: Retain first separator; leave src pointed at
  4061          second separator so that further separators will be collapsed
  4062          into the second separator.  The result will be a pathname
  4063          beginning with "\\\\" followed (most likely) by a host name. */
  4064       src = dst = path + 1;
  4065       path[0] = '\\';     /* Force first separator to '\\' */
  4069   end = dst;
  4071   /* Remove redundant separators from remainder of path, forcing all
  4072       separators to be '\\' rather than '/'. Also, single byte space
  4073       characters are removed from the end of the path because those
  4074       are not legal ending characters on this operating system.
  4075   */
  4076   while (*src != '\0') {
  4077     if (isfilesep(*src)) {
  4078       *dst++ = '\\'; src++;
  4079       while (isfilesep(*src)) src++;
  4080       if (*src == '\0') {
  4081         /* Check for trailing separator */
  4082         end = dst;
  4083         if (colon == dst - 2) break;                      /* "z:\\" */
  4084         if (dst == path + 1) break;                       /* "\\" */
  4085         if (dst == path + 2 && isfilesep(path[0])) {
  4086           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4087             beginning of a UNC pathname.  Even though it is not, by
  4088             itself, a valid UNC pathname, we leave it as is in order
  4089             to be consistent with the path canonicalizer as well
  4090             as the win32 APIs, which treat this case as an invalid
  4091             UNC pathname rather than as an alias for the root
  4092             directory of the current drive. */
  4093           break;
  4095         end = --dst;  /* Path does not denote a root directory, so
  4096                                     remove trailing separator */
  4097         break;
  4099       end = dst;
  4100     } else {
  4101       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4102         *dst++ = *src++;
  4103         if (*src) *dst++ = *src++;
  4104         end = dst;
  4105       } else {         /* Copy a single-byte character */
  4106         char c = *src++;
  4107         *dst++ = c;
  4108         /* Space is not a legal ending character */
  4109         if (c != ' ') end = dst;
  4114   *end = '\0';
  4116   /* For "z:", add "." to work around a bug in the C runtime library */
  4117   if (colon == dst - 1) {
  4118           path[2] = '.';
  4119           path[3] = '\0';
  4122   #ifdef DEBUG
  4123     jio_fprintf(stderr, "sysNativePath: %s\n", path);
  4124   #endif DEBUG
  4125   return path;
  4128 // This code is a copy of JDK's sysSetLength
  4129 // from src/windows/hpi/src/sys_api_md.c
  4131 int os::ftruncate(int fd, jlong length) {
  4132   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4133   long high = (long)(length >> 32);
  4134   DWORD ret;
  4136   if (h == (HANDLE)(-1)) {
  4137     return -1;
  4140   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4141   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4142       return -1;
  4145   if (::SetEndOfFile(h) == FALSE) {
  4146     return -1;
  4149   return 0;
  4153 // This code is a copy of JDK's sysSync
  4154 // from src/windows/hpi/src/sys_api_md.c
  4155 // except for the legacy workaround for a bug in Win 98
  4157 int os::fsync(int fd) {
  4158   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4160   if ( (!::FlushFileBuffers(handle)) &&
  4161          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4162     /* from winerror.h */
  4163     return -1;
  4165   return 0;
  4168 static int nonSeekAvailable(int, long *);
  4169 static int stdinAvailable(int, long *);
  4171 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4172 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4174 // This code is a copy of JDK's sysAvailable
  4175 // from src/windows/hpi/src/sys_api_md.c
  4177 int os::available(int fd, jlong *bytes) {
  4178   jlong cur, end;
  4179   struct _stati64 stbuf64;
  4181   if (::_fstati64(fd, &stbuf64) >= 0) {
  4182     int mode = stbuf64.st_mode;
  4183     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4184       int ret;
  4185       long lpbytes;
  4186       if (fd == 0) {
  4187         ret = stdinAvailable(fd, &lpbytes);
  4188       } else {
  4189         ret = nonSeekAvailable(fd, &lpbytes);
  4191       (*bytes) = (jlong)(lpbytes);
  4192       return ret;
  4194     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4195       return FALSE;
  4196     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4197       return FALSE;
  4198     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4199       return FALSE;
  4201     *bytes = end - cur;
  4202     return TRUE;
  4203   } else {
  4204     return FALSE;
  4208 // This code is a copy of JDK's nonSeekAvailable
  4209 // from src/windows/hpi/src/sys_api_md.c
  4211 static int nonSeekAvailable(int fd, long *pbytes) {
  4212   /* This is used for available on non-seekable devices
  4213     * (like both named and anonymous pipes, such as pipes
  4214     *  connected to an exec'd process).
  4215     * Standard Input is a special case.
  4217     */
  4218   HANDLE han;
  4220   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4221     return FALSE;
  4224   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4225         /* PeekNamedPipe fails when at EOF.  In that case we
  4226          * simply make *pbytes = 0 which is consistent with the
  4227          * behavior we get on Solaris when an fd is at EOF.
  4228          * The only alternative is to raise an Exception,
  4229          * which isn't really warranted.
  4230          */
  4231     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4232       return FALSE;
  4234     *pbytes = 0;
  4236   return TRUE;
  4239 #define MAX_INPUT_EVENTS 2000
  4241 // This code is a copy of JDK's stdinAvailable
  4242 // from src/windows/hpi/src/sys_api_md.c
  4244 static int stdinAvailable(int fd, long *pbytes) {
  4245   HANDLE han;
  4246   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4247   DWORD numEvents = 0;  /* Number of events in buffer */
  4248   DWORD i = 0;          /* Loop index */
  4249   DWORD curLength = 0;  /* Position marker */
  4250   DWORD actualLength = 0;       /* Number of bytes readable */
  4251   BOOL error = FALSE;         /* Error holder */
  4252   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4254   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4255         return FALSE;
  4258   /* Construct an array of input records in the console buffer */
  4259   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4260   if (error == 0) {
  4261     return nonSeekAvailable(fd, pbytes);
  4264   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4265   if (numEvents > MAX_INPUT_EVENTS) {
  4266     numEvents = MAX_INPUT_EVENTS;
  4269   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
  4270   if (lpBuffer == NULL) {
  4271     return FALSE;
  4274   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4275   if (error == 0) {
  4276     os::free(lpBuffer);
  4277     return FALSE;
  4280   /* Examine input records for the number of bytes available */
  4281   for(i=0; i<numEvents; i++) {
  4282     if (lpBuffer[i].EventType == KEY_EVENT) {
  4284       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4285                                       &(lpBuffer[i].Event);
  4286       if (keyRecord->bKeyDown == TRUE) {
  4287         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4288         curLength++;
  4289         if (*keyPressed == '\r') {
  4290           actualLength = curLength;
  4296   if(lpBuffer != NULL) {
  4297     os::free(lpBuffer);
  4300   *pbytes = (long) actualLength;
  4301   return TRUE;
  4304 // Map a block of memory.
  4305 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4306                      char *addr, size_t bytes, bool read_only,
  4307                      bool allow_exec) {
  4308   HANDLE hFile;
  4309   char* base;
  4311   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4312                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4313   if (hFile == NULL) {
  4314     if (PrintMiscellaneous && Verbose) {
  4315       DWORD err = GetLastError();
  4316       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  4318     return NULL;
  4321   if (allow_exec) {
  4322     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4323     // unless it comes from a PE image (which the shared archive is not.)
  4324     // Even VirtualProtect refuses to give execute access to mapped memory
  4325     // that was not previously executable.
  4326     //
  4327     // Instead, stick the executable region in anonymous memory.  Yuck.
  4328     // Penalty is that ~4 pages will not be shareable - in the future
  4329     // we might consider DLLizing the shared archive with a proper PE
  4330     // header so that mapping executable + sharing is possible.
  4332     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4333                                 PAGE_READWRITE);
  4334     if (base == NULL) {
  4335       if (PrintMiscellaneous && Verbose) {
  4336         DWORD err = GetLastError();
  4337         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4339       CloseHandle(hFile);
  4340       return NULL;
  4343     DWORD bytes_read;
  4344     OVERLAPPED overlapped;
  4345     overlapped.Offset = (DWORD)file_offset;
  4346     overlapped.OffsetHigh = 0;
  4347     overlapped.hEvent = NULL;
  4348     // ReadFile guarantees that if the return value is true, the requested
  4349     // number of bytes were read before returning.
  4350     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4351     if (!res) {
  4352       if (PrintMiscellaneous && Verbose) {
  4353         DWORD err = GetLastError();
  4354         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4356       release_memory(base, bytes);
  4357       CloseHandle(hFile);
  4358       return NULL;
  4360   } else {
  4361     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4362                                     NULL /*file_name*/);
  4363     if (hMap == NULL) {
  4364       if (PrintMiscellaneous && Verbose) {
  4365         DWORD err = GetLastError();
  4366         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  4368       CloseHandle(hFile);
  4369       return NULL;
  4372     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4373     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4374                                   (DWORD)bytes, addr);
  4375     if (base == NULL) {
  4376       if (PrintMiscellaneous && Verbose) {
  4377         DWORD err = GetLastError();
  4378         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4380       CloseHandle(hMap);
  4381       CloseHandle(hFile);
  4382       return NULL;
  4385     if (CloseHandle(hMap) == 0) {
  4386       if (PrintMiscellaneous && Verbose) {
  4387         DWORD err = GetLastError();
  4388         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4390       CloseHandle(hFile);
  4391       return base;
  4395   if (allow_exec) {
  4396     DWORD old_protect;
  4397     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4398     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4400     if (!res) {
  4401       if (PrintMiscellaneous && Verbose) {
  4402         DWORD err = GetLastError();
  4403         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4405       // Don't consider this a hard error, on IA32 even if the
  4406       // VirtualProtect fails, we should still be able to execute
  4407       CloseHandle(hFile);
  4408       return base;
  4412   if (CloseHandle(hFile) == 0) {
  4413     if (PrintMiscellaneous && Verbose) {
  4414       DWORD err = GetLastError();
  4415       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4417     return base;
  4420   return base;
  4424 // Remap a block of memory.
  4425 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4426                        char *addr, size_t bytes, bool read_only,
  4427                        bool allow_exec) {
  4428   // This OS does not allow existing memory maps to be remapped so we
  4429   // have to unmap the memory before we remap it.
  4430   if (!os::unmap_memory(addr, bytes)) {
  4431     return NULL;
  4434   // There is a very small theoretical window between the unmap_memory()
  4435   // call above and the map_memory() call below where a thread in native
  4436   // code may be able to access an address that is no longer mapped.
  4438   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4439                         allow_exec);
  4443 // Unmap a block of memory.
  4444 // Returns true=success, otherwise false.
  4446 bool os::unmap_memory(char* addr, size_t bytes) {
  4447   BOOL result = UnmapViewOfFile(addr);
  4448   if (result == 0) {
  4449     if (PrintMiscellaneous && Verbose) {
  4450       DWORD err = GetLastError();
  4451       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4453     return false;
  4455   return true;
  4458 void os::pause() {
  4459   char filename[MAX_PATH];
  4460   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4461     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4462   } else {
  4463     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4466   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4467   if (fd != -1) {
  4468     struct stat buf;
  4469     ::close(fd);
  4470     while (::stat(filename, &buf) == 0) {
  4471       Sleep(100);
  4473   } else {
  4474     jio_fprintf(stderr,
  4475       "Could not open pause file '%s', continuing immediately.\n", filename);
  4479 // An Event wraps a win32 "CreateEvent" kernel handle.
  4480 //
  4481 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4482 //
  4483 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4484 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4485 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4486 //     In addition, an unpark() operation might fetch the handle field, but the
  4487 //     event could recycle between the fetch and the SetEvent() operation.
  4488 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4489 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4490 //     on an stale but recycled handle would be harmless, but in practice this might
  4491 //     confuse other non-Sun code, so it's not a viable approach.
  4492 //
  4493 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4494 //     with the Event.  The event handle is never closed.  This could be construed
  4495 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4496 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4497 //     permit a process to have hundreds of thousands of open handles.
  4498 //
  4499 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4500 //     and release unused handles.
  4501 //
  4502 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4503 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4504 //
  4505 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4506 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4507 //
  4508 // We use (2).
  4509 //
  4510 // TODO-FIXME:
  4511 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4512 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4513 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4514 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4515 //     into a single win32 CreateEvent() handle.
  4516 //
  4517 // _Event transitions in park()
  4518 //   -1 => -1 : illegal
  4519 //    1 =>  0 : pass - return immediately
  4520 //    0 => -1 : block
  4521 //
  4522 // _Event serves as a restricted-range semaphore :
  4523 //    -1 : thread is blocked
  4524 //     0 : neutral  - thread is running or ready
  4525 //     1 : signaled - thread is running or ready
  4526 //
  4527 // Another possible encoding of _Event would be
  4528 // with explicit "PARKED" and "SIGNALED" bits.
  4530 int os::PlatformEvent::park (jlong Millis) {
  4531     guarantee (_ParkHandle != NULL , "Invariant") ;
  4532     guarantee (Millis > 0          , "Invariant") ;
  4533     int v ;
  4535     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4536     // the initial park() operation.
  4538     for (;;) {
  4539         v = _Event ;
  4540         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4542     guarantee ((v == 0) || (v == 1), "invariant") ;
  4543     if (v != 0) return OS_OK ;
  4545     // Do this the hard way by blocking ...
  4546     // TODO: consider a brief spin here, gated on the success of recent
  4547     // spin attempts by this thread.
  4548     //
  4549     // We decompose long timeouts into series of shorter timed waits.
  4550     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4551     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4552     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4553     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4554     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4555     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4556     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4557     // for the already waited time.  This policy does not admit any new outcomes.
  4558     // In the future, however, we might want to track the accumulated wait time and
  4559     // adjust Millis accordingly if we encounter a spurious wakeup.
  4561     const int MAXTIMEOUT = 0x10000000 ;
  4562     DWORD rv = WAIT_TIMEOUT ;
  4563     while (_Event < 0 && Millis > 0) {
  4564        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4565        if (Millis > MAXTIMEOUT) {
  4566           prd = MAXTIMEOUT ;
  4568        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4569        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4570        if (rv == WAIT_TIMEOUT) {
  4571            Millis -= prd ;
  4574     v = _Event ;
  4575     _Event = 0 ;
  4576     OrderAccess::fence() ;
  4577     // If we encounter a nearly simultanous timeout expiry and unpark()
  4578     // we return OS_OK indicating we awoke via unpark().
  4579     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4580     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4583 void os::PlatformEvent::park () {
  4584     guarantee (_ParkHandle != NULL, "Invariant") ;
  4585     // Invariant: Only the thread associated with the Event/PlatformEvent
  4586     // may call park().
  4587     int v ;
  4588     for (;;) {
  4589         v = _Event ;
  4590         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4592     guarantee ((v == 0) || (v == 1), "invariant") ;
  4593     if (v != 0) return ;
  4595     // Do this the hard way by blocking ...
  4596     // TODO: consider a brief spin here, gated on the success of recent
  4597     // spin attempts by this thread.
  4598     while (_Event < 0) {
  4599        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4600        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4603     // Usually we'll find _Event == 0 at this point, but as
  4604     // an optional optimization we clear it, just in case can
  4605     // multiple unpark() operations drove _Event up to 1.
  4606     _Event = 0 ;
  4607     OrderAccess::fence() ;
  4608     guarantee (_Event >= 0, "invariant") ;
  4611 void os::PlatformEvent::unpark() {
  4612   guarantee (_ParkHandle != NULL, "Invariant") ;
  4613   int v ;
  4614   for (;;) {
  4615       v = _Event ;      // Increment _Event if it's < 1.
  4616       if (v > 0) {
  4617          // If it's already signaled just return.
  4618          // The LD of _Event could have reordered or be satisfied
  4619          // by a read-aside from this processor's write buffer.
  4620          // To avoid problems execute a barrier and then
  4621          // ratify the value.  A degenerate CAS() would also work.
  4622          // Viz., CAS (v+0, &_Event, v) == v).
  4623          OrderAccess::fence() ;
  4624          if (_Event == v) return ;
  4625          continue ;
  4627       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4629   if (v < 0) {
  4630      ::SetEvent (_ParkHandle) ;
  4635 // JSR166
  4636 // -------------------------------------------------------
  4638 /*
  4639  * The Windows implementation of Park is very straightforward: Basic
  4640  * operations on Win32 Events turn out to have the right semantics to
  4641  * use them directly. We opportunistically resuse the event inherited
  4642  * from Monitor.
  4643  */
  4646 void Parker::park(bool isAbsolute, jlong time) {
  4647   guarantee (_ParkEvent != NULL, "invariant") ;
  4648   // First, demultiplex/decode time arguments
  4649   if (time < 0) { // don't wait
  4650     return;
  4652   else if (time == 0 && !isAbsolute) {
  4653     time = INFINITE;
  4655   else if  (isAbsolute) {
  4656     time -= os::javaTimeMillis(); // convert to relative time
  4657     if (time <= 0) // already elapsed
  4658       return;
  4660   else { // relative
  4661     time /= 1000000; // Must coarsen from nanos to millis
  4662     if (time == 0)   // Wait for the minimal time unit if zero
  4663       time = 1;
  4666   JavaThread* thread = (JavaThread*)(Thread::current());
  4667   assert(thread->is_Java_thread(), "Must be JavaThread");
  4668   JavaThread *jt = (JavaThread *)thread;
  4670   // Don't wait if interrupted or already triggered
  4671   if (Thread::is_interrupted(thread, false) ||
  4672     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4673     ResetEvent(_ParkEvent);
  4674     return;
  4676   else {
  4677     ThreadBlockInVM tbivm(jt);
  4678     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4679     jt->set_suspend_equivalent();
  4681     WaitForSingleObject(_ParkEvent,  time);
  4682     ResetEvent(_ParkEvent);
  4684     // If externally suspended while waiting, re-suspend
  4685     if (jt->handle_special_suspend_equivalent_condition()) {
  4686       jt->java_suspend_self();
  4691 void Parker::unpark() {
  4692   guarantee (_ParkEvent != NULL, "invariant") ;
  4693   SetEvent(_ParkEvent);
  4696 // Run the specified command in a separate process. Return its exit value,
  4697 // or -1 on failure (e.g. can't create a new process).
  4698 int os::fork_and_exec(char* cmd) {
  4699   STARTUPINFO si;
  4700   PROCESS_INFORMATION pi;
  4702   memset(&si, 0, sizeof(si));
  4703   si.cb = sizeof(si);
  4704   memset(&pi, 0, sizeof(pi));
  4705   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4706                             cmd,    // command line
  4707                             NULL,   // process security attribute
  4708                             NULL,   // thread security attribute
  4709                             TRUE,   // inherits system handles
  4710                             0,      // no creation flags
  4711                             NULL,   // use parent's environment block
  4712                             NULL,   // use parent's starting directory
  4713                             &si,    // (in) startup information
  4714                             &pi);   // (out) process information
  4716   if (rslt) {
  4717     // Wait until child process exits.
  4718     WaitForSingleObject(pi.hProcess, INFINITE);
  4720     DWORD exit_code;
  4721     GetExitCodeProcess(pi.hProcess, &exit_code);
  4723     // Close process and thread handles.
  4724     CloseHandle(pi.hProcess);
  4725     CloseHandle(pi.hThread);
  4727     return (int)exit_code;
  4728   } else {
  4729     return -1;
  4733 //--------------------------------------------------------------------------------------------------
  4734 // Non-product code
  4736 static int mallocDebugIntervalCounter = 0;
  4737 static int mallocDebugCounter = 0;
  4738 bool os::check_heap(bool force) {
  4739   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4740   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4741     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4742     // wrong; at these points, eax contains the address of the offending block (I think).
  4743     // To get to the exlicit error message(s) below, just continue twice.
  4744     HANDLE heap = GetProcessHeap();
  4745     { HeapLock(heap);
  4746       PROCESS_HEAP_ENTRY phe;
  4747       phe.lpData = NULL;
  4748       while (HeapWalk(heap, &phe) != 0) {
  4749         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4750             !HeapValidate(heap, 0, phe.lpData)) {
  4751           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4752           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4753           fatal("corrupted C heap");
  4756       DWORD err = GetLastError();
  4757       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4758         fatal(err_msg("heap walk aborted with error %d", err));
  4760       HeapUnlock(heap);
  4762     mallocDebugIntervalCounter = 0;
  4764   return true;
  4768 bool os::find(address addr, outputStream* st) {
  4769   // Nothing yet
  4770   return false;
  4773 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4774   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4776   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4777     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4778     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4779     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4781     if (os::is_memory_serialize_page(thread, addr))
  4782       return EXCEPTION_CONTINUE_EXECUTION;
  4785   return EXCEPTION_CONTINUE_SEARCH;
  4788 // We don't build a headless jre for Windows
  4789 bool os::is_headless_jre() { return false; }
  4792 typedef CRITICAL_SECTION mutex_t;
  4793 #define mutexInit(m)    InitializeCriticalSection(m)
  4794 #define mutexDestroy(m) DeleteCriticalSection(m)
  4795 #define mutexLock(m)    EnterCriticalSection(m)
  4796 #define mutexUnlock(m)  LeaveCriticalSection(m)
  4798 static bool sock_initialized = FALSE;
  4799 static mutex_t sockFnTableMutex;
  4801 static void initSock() {
  4802   WSADATA wsadata;
  4804   if (!os::WinSock2Dll::WinSock2Available()) {
  4805     jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
  4806       ::GetLastError());
  4807     return;
  4809   if (sock_initialized == TRUE) return;
  4811   ::mutexInit(&sockFnTableMutex);
  4812   ::mutexLock(&sockFnTableMutex);
  4813   if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
  4814       jio_fprintf(stderr, "Could not initialize Winsock\n");
  4816   sock_initialized = TRUE;
  4817   ::mutexUnlock(&sockFnTableMutex);
  4820 struct hostent* os::get_host_by_name(char* name) {
  4821   if (!sock_initialized) {
  4822     initSock();
  4824   if (!os::WinSock2Dll::WinSock2Available()) {
  4825     return NULL;
  4827   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  4831 int os::socket_close(int fd) {
  4832   ShouldNotReachHere();
  4833   return 0;
  4836 int os::socket_available(int fd, jint *pbytes) {
  4837   ShouldNotReachHere();
  4838   return 0;
  4841 int os::socket(int domain, int type, int protocol) {
  4842   ShouldNotReachHere();
  4843   return 0;
  4846 int os::listen(int fd, int count) {
  4847   ShouldNotReachHere();
  4848   return 0;
  4851 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  4852   ShouldNotReachHere();
  4853   return 0;
  4856 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  4857   ShouldNotReachHere();
  4858   return 0;
  4861 int os::sendto(int fd, char* buf, size_t len, uint flags,
  4862                struct sockaddr* to, socklen_t tolen) {
  4863   ShouldNotReachHere();
  4864   return 0;
  4867 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  4868                  sockaddr* from, socklen_t* fromlen) {
  4869   ShouldNotReachHere();
  4870   return 0;
  4873 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  4874   ShouldNotReachHere();
  4875   return 0;
  4878 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  4879   ShouldNotReachHere();
  4880   return 0;
  4883 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  4884   ShouldNotReachHere();
  4885   return 0;
  4888 int os::timeout(int fd, long timeout) {
  4889   ShouldNotReachHere();
  4890   return 0;
  4893 int os::get_host_name(char* name, int namelen) {
  4894   ShouldNotReachHere();
  4895   return 0;
  4898 int os::socket_shutdown(int fd, int howto) {
  4899   ShouldNotReachHere();
  4900   return 0;
  4903 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  4904   ShouldNotReachHere();
  4905   return 0;
  4908 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  4909   ShouldNotReachHere();
  4910   return 0;
  4913 int os::get_sock_opt(int fd, int level, int optname,
  4914                      char* optval, socklen_t* optlen) {
  4915   ShouldNotReachHere();
  4916   return 0;
  4919 int os::set_sock_opt(int fd, int level, int optname,
  4920                      const char* optval, socklen_t optlen) {
  4921   ShouldNotReachHere();
  4922   return 0;
  4926 // Kernel32 API
  4927 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  4928 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  4929 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  4930 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  4932 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  4933 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  4934 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  4935 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  4936 BOOL                        os::Kernel32Dll::initialized = FALSE;
  4937 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  4938   assert(initialized && _GetLargePageMinimum != NULL,
  4939     "GetLargePageMinimumAvailable() not yet called");
  4940   return _GetLargePageMinimum();
  4943 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  4944   if (!initialized) {
  4945     initialize();
  4947   return _GetLargePageMinimum != NULL;
  4950 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  4951   if (!initialized) {
  4952     initialize();
  4954   return _VirtualAllocExNuma != NULL;
  4957 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  4958   assert(initialized && _VirtualAllocExNuma != NULL,
  4959     "NUMACallsAvailable() not yet called");
  4961   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  4964 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  4965   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  4966     "NUMACallsAvailable() not yet called");
  4968   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  4971 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  4972   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  4973     "NUMACallsAvailable() not yet called");
  4975   return _GetNumaNodeProcessorMask(node, proc_mask);
  4979 void os::Kernel32Dll::initializeCommon() {
  4980   if (!initialized) {
  4981     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  4982     assert(handle != NULL, "Just check");
  4983     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  4984     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  4985     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  4986     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  4987     initialized = TRUE;
  4993 #ifndef JDK6_OR_EARLIER
  4995 void os::Kernel32Dll::initialize() {
  4996   initializeCommon();
  5000 // Kernel32 API
  5001 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5002   return ::SwitchToThread();
  5005 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5006   return true;
  5009   // Help tools
  5010 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5011   return true;
  5014 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5015   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5018 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5019   return ::Module32First(hSnapshot, lpme);
  5022 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5023   return ::Module32Next(hSnapshot, lpme);
  5027 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5028   return true;
  5031 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5032   ::GetNativeSystemInfo(lpSystemInfo);
  5035 // PSAPI API
  5036 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5037   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5040 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5041   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5044 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5045   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5048 inline BOOL os::PSApiDll::PSApiAvailable() {
  5049   return true;
  5053 // WinSock2 API
  5054 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5055   return ::WSAStartup(wVersionRequested, lpWSAData);
  5058 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5059   return ::gethostbyname(name);
  5062 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5063   return true;
  5066 // Advapi API
  5067 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5068    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5069    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5070      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5071        BufferLength, PreviousState, ReturnLength);
  5074 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5075   PHANDLE TokenHandle) {
  5076     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5079 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5080   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5083 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5084   return true;
  5087 #else
  5088 // Kernel32 API
  5089 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5090 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5091 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5092 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5093 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5095 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5096 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5097 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5098 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5099 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5102 void os::Kernel32Dll::initialize() {
  5103   if (!initialized) {
  5104     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5105     assert(handle != NULL, "Just check");
  5107     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5108     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5109       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5110     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5111     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5112     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5113     initializeCommon();  // resolve the functions that always need resolving
  5115     initialized = TRUE;
  5119 BOOL os::Kernel32Dll::SwitchToThread() {
  5120   assert(initialized && _SwitchToThread != NULL,
  5121     "SwitchToThreadAvailable() not yet called");
  5122   return _SwitchToThread();
  5126 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5127   if (!initialized) {
  5128     initialize();
  5130   return _SwitchToThread != NULL;
  5133 // Help tools
  5134 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5135   if (!initialized) {
  5136     initialize();
  5138   return _CreateToolhelp32Snapshot != NULL &&
  5139          _Module32First != NULL &&
  5140          _Module32Next != NULL;
  5143 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5144   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5145     "HelpToolsAvailable() not yet called");
  5147   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5150 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5151   assert(initialized && _Module32First != NULL,
  5152     "HelpToolsAvailable() not yet called");
  5154   return _Module32First(hSnapshot, lpme);
  5157 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5158   assert(initialized && _Module32Next != NULL,
  5159     "HelpToolsAvailable() not yet called");
  5161   return _Module32Next(hSnapshot, lpme);
  5165 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5166   if (!initialized) {
  5167     initialize();
  5169   return _GetNativeSystemInfo != NULL;
  5172 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5173   assert(initialized && _GetNativeSystemInfo != NULL,
  5174     "GetNativeSystemInfoAvailable() not yet called");
  5176   _GetNativeSystemInfo(lpSystemInfo);
  5181 // PSAPI API
  5184 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5185 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5186 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5188 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5189 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5190 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5191 BOOL                    os::PSApiDll::initialized = FALSE;
  5193 void os::PSApiDll::initialize() {
  5194   if (!initialized) {
  5195     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5196     if (handle != NULL) {
  5197       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5198         "EnumProcessModules");
  5199       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5200         "GetModuleFileNameExA");
  5201       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5202         "GetModuleInformation");
  5204     initialized = TRUE;
  5210 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5211   assert(initialized && _EnumProcessModules != NULL,
  5212     "PSApiAvailable() not yet called");
  5213   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5216 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5217   assert(initialized && _GetModuleFileNameEx != NULL,
  5218     "PSApiAvailable() not yet called");
  5219   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5222 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5223   assert(initialized && _GetModuleInformation != NULL,
  5224     "PSApiAvailable() not yet called");
  5225   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5228 BOOL os::PSApiDll::PSApiAvailable() {
  5229   if (!initialized) {
  5230     initialize();
  5232   return _EnumProcessModules != NULL &&
  5233     _GetModuleFileNameEx != NULL &&
  5234     _GetModuleInformation != NULL;
  5238 // WinSock2 API
  5239 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5240 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5242 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5243 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5244 BOOL             os::WinSock2Dll::initialized = FALSE;
  5246 void os::WinSock2Dll::initialize() {
  5247   if (!initialized) {
  5248     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5249     if (handle != NULL) {
  5250       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5251       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5253     initialized = TRUE;
  5258 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5259   assert(initialized && _WSAStartup != NULL,
  5260     "WinSock2Available() not yet called");
  5261   return _WSAStartup(wVersionRequested, lpWSAData);
  5264 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5265   assert(initialized && _gethostbyname != NULL,
  5266     "WinSock2Available() not yet called");
  5267   return _gethostbyname(name);
  5270 BOOL os::WinSock2Dll::WinSock2Available() {
  5271   if (!initialized) {
  5272     initialize();
  5274   return _WSAStartup != NULL &&
  5275     _gethostbyname != NULL;
  5278 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5279 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5280 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5282 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5283 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5284 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5285 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5287 void os::Advapi32Dll::initialize() {
  5288   if (!initialized) {
  5289     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5290     if (handle != NULL) {
  5291       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5292         "AdjustTokenPrivileges");
  5293       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5294         "OpenProcessToken");
  5295       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5296         "LookupPrivilegeValueA");
  5298     initialized = TRUE;
  5302 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5303    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5304    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5305    assert(initialized && _AdjustTokenPrivileges != NULL,
  5306      "AdvapiAvailable() not yet called");
  5307    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5308        BufferLength, PreviousState, ReturnLength);
  5311 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5312   PHANDLE TokenHandle) {
  5313    assert(initialized && _OpenProcessToken != NULL,
  5314      "AdvapiAvailable() not yet called");
  5315     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5318 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5319    assert(initialized && _LookupPrivilegeValue != NULL,
  5320      "AdvapiAvailable() not yet called");
  5321   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5324 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5325   if (!initialized) {
  5326     initialize();
  5328   return _AdjustTokenPrivileges != NULL &&
  5329     _OpenProcessToken != NULL &&
  5330     _LookupPrivilegeValue != NULL;
  5333 #endif

mercurial