src/share/vm/gc_implementation/g1/g1CollectedHeap.inline.hpp

Mon, 21 Jul 2014 09:40:19 +0200

author
tschatzl
date
Mon, 21 Jul 2014 09:40:19 +0200
changeset 6926
d7e2d5f2846b
parent 6911
ce8f6bb717c9
child 6937
b0c374311c4e
permissions
-rw-r--r--

8027553: Change the in_cset_fast_test functionality to use the G1BiasedArray abstraction
Summary: Instead of using a manually managed array for the in_cset_fast_test array, use a G1BiasedArray instance.
Reviewed-by: brutisso, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    33 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    34 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    35 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    36 #include "runtime/orderAccess.inline.hpp"
    37 #include "utilities/taskqueue.hpp"
    39 // Inline functions for G1CollectedHeap
    41 // Return the region with the given index. It assumes the index is valid.
    42 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
    44 template <class T>
    45 inline HeapRegion*
    46 G1CollectedHeap::heap_region_containing(const T addr) const {
    47   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) addr);
    48   // hr can be null if addr in perm_gen
    49   if (hr != NULL && hr->continuesHumongous()) {
    50     hr = hr->humongous_start_region();
    51   }
    52   return hr;
    53 }
    55 template <class T>
    56 inline HeapRegion*
    57 G1CollectedHeap::heap_region_containing_raw(const T addr) const {
    58   assert(_g1_reserved.contains((const void*) addr), "invariant");
    59   HeapRegion* res = _hrs.addr_to_region_unsafe((HeapWord*) addr);
    60   return res;
    61 }
    63 inline void G1CollectedHeap::reset_gc_time_stamp() {
    64   _gc_time_stamp = 0;
    65   OrderAccess::fence();
    66   // Clear the cached CSet starting regions and time stamps.
    67   // Their validity is dependent on the GC timestamp.
    68   clear_cset_start_regions();
    69 }
    71 inline void G1CollectedHeap::increment_gc_time_stamp() {
    72   ++_gc_time_stamp;
    73   OrderAccess::fence();
    74 }
    76 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
    77   _old_set.remove(hr);
    78 }
    80 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
    81   HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
    82   return r != NULL && r->in_collection_set();
    83 }
    85 inline HeapWord*
    86 G1CollectedHeap::attempt_allocation(size_t word_size,
    87                                     unsigned int* gc_count_before_ret,
    88                                     int* gclocker_retry_count_ret) {
    89   assert_heap_not_locked_and_not_at_safepoint();
    90   assert(!isHumongous(word_size), "attempt_allocation() should not "
    91          "be called for humongous allocation requests");
    93   HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
    94                                                       false /* bot_updates */);
    95   if (result == NULL) {
    96     result = attempt_allocation_slow(word_size,
    97                                      gc_count_before_ret,
    98                                      gclocker_retry_count_ret);
    99   }
   100   assert_heap_not_locked();
   101   if (result != NULL) {
   102     dirty_young_block(result, word_size);
   103   }
   104   return result;
   105 }
   107 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
   108                                                               word_size) {
   109   assert(!isHumongous(word_size),
   110          "we should not be seeing humongous-size allocations in this path");
   112   HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
   113                                                       false /* bot_updates */);
   114   if (result == NULL) {
   115     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
   116     result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
   117                                                       false /* bot_updates */);
   118   }
   119   if (result != NULL) {
   120     dirty_young_block(result, word_size);
   121   }
   122   return result;
   123 }
   125 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
   126   assert(!isHumongous(word_size),
   127          "we should not be seeing humongous-size allocations in this path");
   129   HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
   130                                                        true /* bot_updates */);
   131   if (result == NULL) {
   132     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
   133     result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
   134                                                        true /* bot_updates */);
   135   }
   136   return result;
   137 }
   139 // It dirties the cards that cover the block so that so that the post
   140 // write barrier never queues anything when updating objects on this
   141 // block. It is assumed (and in fact we assert) that the block
   142 // belongs to a young region.
   143 inline void
   144 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
   145   assert_heap_not_locked();
   147   // Assign the containing region to containing_hr so that we don't
   148   // have to keep calling heap_region_containing_raw() in the
   149   // asserts below.
   150   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
   151   assert(containing_hr != NULL && start != NULL && word_size > 0,
   152          "pre-condition");
   153   assert(containing_hr->is_in(start), "it should contain start");
   154   assert(containing_hr->is_young(), "it should be young");
   155   assert(!containing_hr->isHumongous(), "it should not be humongous");
   157   HeapWord* end = start + word_size;
   158   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
   160   MemRegion mr(start, end);
   161   g1_barrier_set()->g1_mark_as_young(mr);
   162 }
   164 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
   165   return _task_queues->queue(i);
   166 }
   168 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
   169   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
   170 }
   172 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
   173   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
   174 }
   177 // This is a fast test on whether a reference points into the
   178 // collection set or not. Assume that the reference
   179 // points into the heap.
   180 inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
   181   bool ret = _in_cset_fast_test.get_by_address((HeapWord*)obj);
   182   // let's make sure the result is consistent with what the slower
   183   // test returns
   184   assert( ret || !obj_in_cs(obj), "sanity");
   185   assert(!ret ||  obj_in_cs(obj), "sanity");
   186   return ret;
   187 }
   189 #ifndef PRODUCT
   190 // Support for G1EvacuationFailureALot
   192 inline bool
   193 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   194                                                      bool during_initial_mark,
   195                                                      bool during_marking) {
   196   bool res = false;
   197   if (during_marking) {
   198     res |= G1EvacuationFailureALotDuringConcMark;
   199   }
   200   if (during_initial_mark) {
   201     res |= G1EvacuationFailureALotDuringInitialMark;
   202   }
   203   if (gcs_are_young) {
   204     res |= G1EvacuationFailureALotDuringYoungGC;
   205   } else {
   206     // GCs are mixed
   207     res |= G1EvacuationFailureALotDuringMixedGC;
   208   }
   209   return res;
   210 }
   212 inline void
   213 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
   214   if (G1EvacuationFailureALot) {
   215     // Note we can't assert that _evacuation_failure_alot_for_current_gc
   216     // is clear here. It may have been set during a previous GC but that GC
   217     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
   218     // trigger an evacuation failure and clear the flags and and counts.
   220     // Check if we have gone over the interval.
   221     const size_t gc_num = total_collections();
   222     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
   224     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
   226     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
   227     const bool gcs_are_young = g1_policy()->gcs_are_young();
   228     const bool during_im = g1_policy()->during_initial_mark_pause();
   229     const bool during_marking = mark_in_progress();
   231     _evacuation_failure_alot_for_current_gc &=
   232       evacuation_failure_alot_for_gc_type(gcs_are_young,
   233                                           during_im,
   234                                           during_marking);
   235   }
   236 }
   238 inline bool
   239 G1CollectedHeap::evacuation_should_fail() {
   240   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
   241     return false;
   242   }
   243   // G1EvacuationFailureALot is in effect for current GC
   244   // Access to _evacuation_failure_alot_count is not atomic;
   245   // the value does not have to be exact.
   246   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
   247     return false;
   248   }
   249   _evacuation_failure_alot_count = 0;
   250   return true;
   251 }
   253 inline void G1CollectedHeap::reset_evacuation_should_fail() {
   254   if (G1EvacuationFailureALot) {
   255     _evacuation_failure_alot_gc_number = total_collections();
   256     _evacuation_failure_alot_count = 0;
   257     _evacuation_failure_alot_for_current_gc = false;
   258   }
   259 }
   260 #endif  // #ifndef PRODUCT
   262 inline bool G1CollectedHeap::is_in_young(const oop obj) {
   263   HeapRegion* hr = heap_region_containing(obj);
   264   return hr != NULL && hr->is_young();
   265 }
   267 // We don't need barriers for initializing stores to objects
   268 // in the young gen: for the SATB pre-barrier, there is no
   269 // pre-value that needs to be remembered; for the remembered-set
   270 // update logging post-barrier, we don't maintain remembered set
   271 // information for young gen objects.
   272 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
   273   return is_in_young(new_obj);
   274 }
   276 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
   277   const HeapRegion* hr = heap_region_containing(obj);
   278   if (hr == NULL) {
   279     if (obj == NULL) return false;
   280     else return true;
   281   }
   282   else return is_obj_dead(obj, hr);
   283 }
   285 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
   286   const HeapRegion* hr = heap_region_containing(obj);
   287   if (hr == NULL) {
   288     if (obj == NULL) return false;
   289     else return true;
   290   }
   291   else return is_obj_ill(obj, hr);
   292 }
   294 template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
   295   if (!from->is_survivor()) {
   296     _g1_rem->par_write_ref(from, p, tid);
   297   }
   298 }
   300 template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
   301   if (G1DeferredRSUpdate) {
   302     deferred_rs_update(from, p, tid);
   303   } else {
   304     immediate_rs_update(from, p, tid);
   305   }
   306 }
   309 inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
   310   assert(has_partial_array_mask(p), "invariant");
   311   oop from_obj = clear_partial_array_mask(p);
   313   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
   314   assert(from_obj->is_objArray(), "must be obj array");
   315   objArrayOop from_obj_array = objArrayOop(from_obj);
   316   // The from-space object contains the real length.
   317   int length                 = from_obj_array->length();
   319   assert(from_obj->is_forwarded(), "must be forwarded");
   320   oop to_obj                 = from_obj->forwardee();
   321   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
   322   objArrayOop to_obj_array   = objArrayOop(to_obj);
   323   // We keep track of the next start index in the length field of the
   324   // to-space object.
   325   int next_index             = to_obj_array->length();
   326   assert(0 <= next_index && next_index < length,
   327          err_msg("invariant, next index: %d, length: %d", next_index, length));
   329   int start                  = next_index;
   330   int end                    = length;
   331   int remainder              = end - start;
   332   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
   333   if (remainder > 2 * ParGCArrayScanChunk) {
   334     end = start + ParGCArrayScanChunk;
   335     to_obj_array->set_length(end);
   336     // Push the remainder before we process the range in case another
   337     // worker has run out of things to do and can steal it.
   338     oop* from_obj_p = set_partial_array_mask(from_obj);
   339     push_on_queue(from_obj_p);
   340   } else {
   341     assert(length == end, "sanity");
   342     // We'll process the final range for this object. Restore the length
   343     // so that the heap remains parsable in case of evacuation failure.
   344     to_obj_array->set_length(end);
   345   }
   346   _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
   347   // Process indexes [start,end). It will also process the header
   348   // along with the first chunk (i.e., the chunk with start == 0).
   349   // Note that at this point the length field of to_obj_array is not
   350   // correct given that we are using it to keep track of the next
   351   // start index. oop_iterate_range() (thankfully!) ignores the length
   352   // field and only relies on the start / end parameters.  It does
   353   // however return the size of the object which will be incorrect. So
   354   // we have to ignore it even if we wanted to use it.
   355   to_obj_array->oop_iterate_range(&_scanner, start, end);
   356 }
   358 template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
   359   if (!has_partial_array_mask(ref_to_scan)) {
   360     // Note: we can use "raw" versions of "region_containing" because
   361     // "obj_to_scan" is definitely in the heap, and is not in a
   362     // humongous region.
   363     HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
   364     do_oop_evac(ref_to_scan, r);
   365   } else {
   366     do_oop_partial_array((oop*)ref_to_scan);
   367   }
   368 }
   370 inline void G1ParScanThreadState::deal_with_reference(StarTask ref) {
   371   assert(verify_task(ref), "sanity");
   372   if (ref.is_narrow()) {
   373     deal_with_reference((narrowOop*)ref);
   374   } else {
   375     deal_with_reference((oop*)ref);
   376   }
   377 }
   379 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

mercurial