src/cpu/x86/vm/templateTable_x86_32.cpp

Fri, 27 Aug 2010 17:33:49 -0700

author
never
date
Fri, 27 Aug 2010 17:33:49 -0700
changeset 2118
d6f45b55c972
parent 2036
126ea7725993
child 2138
d5d065957597
permissions
-rw-r--r--

4809552: Optimize Arrays.fill(...)
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_32.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 //----------------------------------------------------------------------------------------------------
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No i486 specific initialization
    36 }
    38 //----------------------------------------------------------------------------------------------------
    39 // Address computation
    41 // local variables
    42 static inline Address iaddress(int n)            {
    43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    44 }
    46 static inline Address laddress(int n)            { return iaddress(n + 1); }
    47 static inline Address haddress(int n)            { return iaddress(n + 0); }
    48 static inline Address faddress(int n)            { return iaddress(n); }
    49 static inline Address daddress(int n)            { return laddress(n); }
    50 static inline Address aaddress(int n)            { return iaddress(n); }
    52 static inline Address iaddress(Register r)       {
    53   return Address(rdi, r, Interpreter::stackElementScale());
    54 }
    55 static inline Address laddress(Register r)       {
    56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    57 }
    58 static inline Address haddress(Register r)       {
    59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    60 }
    62 static inline Address faddress(Register r)       { return iaddress(r); }
    63 static inline Address daddress(Register r)       { return laddress(r); }
    64 static inline Address aaddress(Register r)       { return iaddress(r); }
    66 // expression stack
    67 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    68 // data beyond the rsp which is potentially unsafe in an MT environment;
    69 // an interrupt may overwrite that data.)
    70 static inline Address at_rsp   () {
    71   return Address(rsp, 0);
    72 }
    74 // At top of Java expression stack which may be different than rsp().  It
    75 // isn't for category 1 objects.
    76 static inline Address at_tos   () {
    77   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    78   return tos;
    79 }
    81 static inline Address at_tos_p1() {
    82   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    83 }
    85 static inline Address at_tos_p2() {
    86   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    87 }
    89 // Condition conversion
    90 static Assembler::Condition j_not(TemplateTable::Condition cc) {
    91   switch (cc) {
    92     case TemplateTable::equal        : return Assembler::notEqual;
    93     case TemplateTable::not_equal    : return Assembler::equal;
    94     case TemplateTable::less         : return Assembler::greaterEqual;
    95     case TemplateTable::less_equal   : return Assembler::greater;
    96     case TemplateTable::greater      : return Assembler::lessEqual;
    97     case TemplateTable::greater_equal: return Assembler::less;
    98   }
    99   ShouldNotReachHere();
   100   return Assembler::zero;
   101 }
   104 //----------------------------------------------------------------------------------------------------
   105 // Miscelaneous helper routines
   107 // Store an oop (or NULL) at the address described by obj.
   108 // If val == noreg this means store a NULL
   110 static void do_oop_store(InterpreterMacroAssembler* _masm,
   111                          Address obj,
   112                          Register val,
   113                          BarrierSet::Name barrier,
   114                          bool precise) {
   115   assert(val == noreg || val == rax, "parameter is just for looks");
   116   switch (barrier) {
   117 #ifndef SERIALGC
   118     case BarrierSet::G1SATBCT:
   119     case BarrierSet::G1SATBCTLogging:
   120       {
   121         // flatten object address if needed
   122         // We do it regardless of precise because we need the registers
   123         if (obj.index() == noreg && obj.disp() == 0) {
   124           if (obj.base() != rdx) {
   125             __ movl(rdx, obj.base());
   126           }
   127         } else {
   128           __ leal(rdx, obj);
   129         }
   130         __ get_thread(rcx);
   131         __ save_bcp();
   132         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   134         // Do the actual store
   135         // noreg means NULL
   136         if (val == noreg) {
   137           __ movptr(Address(rdx, 0), NULL_WORD);
   138           // No post barrier for NULL
   139         } else {
   140           __ movl(Address(rdx, 0), val);
   141           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   142         }
   143         __ restore_bcp();
   145       }
   146       break;
   147 #endif // SERIALGC
   148     case BarrierSet::CardTableModRef:
   149     case BarrierSet::CardTableExtension:
   150       {
   151         if (val == noreg) {
   152           __ movptr(obj, NULL_WORD);
   153         } else {
   154           __ movl(obj, val);
   155           // flatten object address if needed
   156           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   157             __ store_check(obj.base());
   158           } else {
   159             __ leal(rdx, obj);
   160             __ store_check(rdx);
   161           }
   162         }
   163       }
   164       break;
   165     case BarrierSet::ModRef:
   166     case BarrierSet::Other:
   167       if (val == noreg) {
   168         __ movptr(obj, NULL_WORD);
   169       } else {
   170         __ movl(obj, val);
   171       }
   172       break;
   173     default      :
   174       ShouldNotReachHere();
   176   }
   177 }
   179 Address TemplateTable::at_bcp(int offset) {
   180   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   181   return Address(rsi, offset);
   182 }
   185 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   186                                    Register scratch,
   187                                    bool load_bc_into_scratch/*=true*/) {
   189   if (!RewriteBytecodes) return;
   190   // the pair bytecodes have already done the load.
   191   if (load_bc_into_scratch) {
   192     __ movl(bc, bytecode);
   193   }
   194   Label patch_done;
   195   if (JvmtiExport::can_post_breakpoint()) {
   196     Label fast_patch;
   197     // if a breakpoint is present we can't rewrite the stream directly
   198     __ movzbl(scratch, at_bcp(0));
   199     __ cmpl(scratch, Bytecodes::_breakpoint);
   200     __ jcc(Assembler::notEqual, fast_patch);
   201     __ get_method(scratch);
   202     // Let breakpoint table handling rewrite to quicker bytecode
   203     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   204 #ifndef ASSERT
   205     __ jmpb(patch_done);
   206 #else
   207     __ jmp(patch_done);
   208 #endif
   209     __ bind(fast_patch);
   210   }
   211 #ifdef ASSERT
   212   Label okay;
   213   __ load_unsigned_byte(scratch, at_bcp(0));
   214   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   215   __ jccb(Assembler::equal, okay);
   216   __ cmpl(scratch, bc);
   217   __ jcc(Assembler::equal, okay);
   218   __ stop("patching the wrong bytecode");
   219   __ bind(okay);
   220 #endif
   221   // patch bytecode
   222   __ movb(at_bcp(0), bc);
   223   __ bind(patch_done);
   224 }
   226 //----------------------------------------------------------------------------------------------------
   227 // Individual instructions
   229 void TemplateTable::nop() {
   230   transition(vtos, vtos);
   231   // nothing to do
   232 }
   234 void TemplateTable::shouldnotreachhere() {
   235   transition(vtos, vtos);
   236   __ stop("shouldnotreachhere bytecode");
   237 }
   241 void TemplateTable::aconst_null() {
   242   transition(vtos, atos);
   243   __ xorptr(rax, rax);
   244 }
   247 void TemplateTable::iconst(int value) {
   248   transition(vtos, itos);
   249   if (value == 0) {
   250     __ xorptr(rax, rax);
   251   } else {
   252     __ movptr(rax, value);
   253   }
   254 }
   257 void TemplateTable::lconst(int value) {
   258   transition(vtos, ltos);
   259   if (value == 0) {
   260     __ xorptr(rax, rax);
   261   } else {
   262     __ movptr(rax, value);
   263   }
   264   assert(value >= 0, "check this code");
   265   __ xorptr(rdx, rdx);
   266 }
   269 void TemplateTable::fconst(int value) {
   270   transition(vtos, ftos);
   271          if (value == 0) { __ fldz();
   272   } else if (value == 1) { __ fld1();
   273   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   274   } else                 { ShouldNotReachHere();
   275   }
   276 }
   279 void TemplateTable::dconst(int value) {
   280   transition(vtos, dtos);
   281          if (value == 0) { __ fldz();
   282   } else if (value == 1) { __ fld1();
   283   } else                 { ShouldNotReachHere();
   284   }
   285 }
   288 void TemplateTable::bipush() {
   289   transition(vtos, itos);
   290   __ load_signed_byte(rax, at_bcp(1));
   291 }
   294 void TemplateTable::sipush() {
   295   transition(vtos, itos);
   296   __ load_unsigned_short(rax, at_bcp(1));
   297   __ bswapl(rax);
   298   __ sarl(rax, 16);
   299 }
   301 void TemplateTable::ldc(bool wide) {
   302   transition(vtos, vtos);
   303   Label call_ldc, notFloat, notClass, Done;
   305   if (wide) {
   306     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   307   } else {
   308     __ load_unsigned_byte(rbx, at_bcp(1));
   309   }
   310   __ get_cpool_and_tags(rcx, rax);
   311   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   312   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   314   // get type
   315   __ xorptr(rdx, rdx);
   316   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   318   // unresolved string - get the resolved string
   319   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   320   __ jccb(Assembler::equal, call_ldc);
   322   // unresolved class - get the resolved class
   323   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   324   __ jccb(Assembler::equal, call_ldc);
   326   // unresolved class in error (resolution failed) - call into runtime
   327   // so that the same error from first resolution attempt is thrown.
   328   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   329   __ jccb(Assembler::equal, call_ldc);
   331   // resolved class - need to call vm to get java mirror of the class
   332   __ cmpl(rdx, JVM_CONSTANT_Class);
   333   __ jcc(Assembler::notEqual, notClass);
   335   __ bind(call_ldc);
   336   __ movl(rcx, wide);
   337   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   338   __ push(atos);
   339   __ jmp(Done);
   341   __ bind(notClass);
   342   __ cmpl(rdx, JVM_CONSTANT_Float);
   343   __ jccb(Assembler::notEqual, notFloat);
   344   // ftos
   345   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   346   __ push(ftos);
   347   __ jmp(Done);
   349   __ bind(notFloat);
   350 #ifdef ASSERT
   351   { Label L;
   352     __ cmpl(rdx, JVM_CONSTANT_Integer);
   353     __ jcc(Assembler::equal, L);
   354     __ cmpl(rdx, JVM_CONSTANT_String);
   355     __ jcc(Assembler::equal, L);
   356     __ stop("unexpected tag type in ldc");
   357     __ bind(L);
   358   }
   359 #endif
   360   Label isOop;
   361   // atos and itos
   362   // String is only oop type we will see here
   363   __ cmpl(rdx, JVM_CONSTANT_String);
   364   __ jccb(Assembler::equal, isOop);
   365   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   366   __ push(itos);
   367   __ jmp(Done);
   368   __ bind(isOop);
   369   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   370   __ push(atos);
   372   if (VerifyOops) {
   373     __ verify_oop(rax);
   374   }
   375   __ bind(Done);
   376 }
   378 // Fast path for caching oop constants.
   379 // %%% We should use this to handle Class and String constants also.
   380 // %%% It will simplify the ldc/primitive path considerably.
   381 void TemplateTable::fast_aldc(bool wide) {
   382   transition(vtos, atos);
   384   if (!EnableMethodHandles) {
   385     // We should not encounter this bytecode if !EnableMethodHandles.
   386     // The verifier will stop it.  However, if we get past the verifier,
   387     // this will stop the thread in a reasonable way, without crashing the JVM.
   388     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   389                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   390     // the call_VM checks for exception, so we should never return here.
   391     __ should_not_reach_here();
   392     return;
   393   }
   395   const Register cache = rcx;
   396   const Register index = rdx;
   398   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   399   if (VerifyOops) {
   400     __ verify_oop(rax);
   401   }
   402 }
   404 void TemplateTable::ldc2_w() {
   405   transition(vtos, vtos);
   406   Label Long, Done;
   407   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   409   __ get_cpool_and_tags(rcx, rax);
   410   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   411   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   413   // get type
   414   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   415   __ jccb(Assembler::notEqual, Long);
   416   // dtos
   417   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   418   __ push(dtos);
   419   __ jmpb(Done);
   421   __ bind(Long);
   422   // ltos
   423   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   424   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   426   __ push(ltos);
   428   __ bind(Done);
   429 }
   432 void TemplateTable::locals_index(Register reg, int offset) {
   433   __ load_unsigned_byte(reg, at_bcp(offset));
   434   __ negptr(reg);
   435 }
   438 void TemplateTable::iload() {
   439   transition(vtos, itos);
   440   if (RewriteFrequentPairs) {
   441     Label rewrite, done;
   443     // get next byte
   444     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   445     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   446     // last two iloads in a pair.  Comparing against fast_iload means that
   447     // the next bytecode is neither an iload or a caload, and therefore
   448     // an iload pair.
   449     __ cmpl(rbx, Bytecodes::_iload);
   450     __ jcc(Assembler::equal, done);
   452     __ cmpl(rbx, Bytecodes::_fast_iload);
   453     __ movl(rcx, Bytecodes::_fast_iload2);
   454     __ jccb(Assembler::equal, rewrite);
   456     // if _caload, rewrite to fast_icaload
   457     __ cmpl(rbx, Bytecodes::_caload);
   458     __ movl(rcx, Bytecodes::_fast_icaload);
   459     __ jccb(Assembler::equal, rewrite);
   461     // rewrite so iload doesn't check again.
   462     __ movl(rcx, Bytecodes::_fast_iload);
   464     // rewrite
   465     // rcx: fast bytecode
   466     __ bind(rewrite);
   467     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   468     __ bind(done);
   469   }
   471   // Get the local value into tos
   472   locals_index(rbx);
   473   __ movl(rax, iaddress(rbx));
   474 }
   477 void TemplateTable::fast_iload2() {
   478   transition(vtos, itos);
   479   locals_index(rbx);
   480   __ movl(rax, iaddress(rbx));
   481   __ push(itos);
   482   locals_index(rbx, 3);
   483   __ movl(rax, iaddress(rbx));
   484 }
   486 void TemplateTable::fast_iload() {
   487   transition(vtos, itos);
   488   locals_index(rbx);
   489   __ movl(rax, iaddress(rbx));
   490 }
   493 void TemplateTable::lload() {
   494   transition(vtos, ltos);
   495   locals_index(rbx);
   496   __ movptr(rax, laddress(rbx));
   497   NOT_LP64(__ movl(rdx, haddress(rbx)));
   498 }
   501 void TemplateTable::fload() {
   502   transition(vtos, ftos);
   503   locals_index(rbx);
   504   __ fld_s(faddress(rbx));
   505 }
   508 void TemplateTable::dload() {
   509   transition(vtos, dtos);
   510   locals_index(rbx);
   511   __ fld_d(daddress(rbx));
   512 }
   515 void TemplateTable::aload() {
   516   transition(vtos, atos);
   517   locals_index(rbx);
   518   __ movptr(rax, aaddress(rbx));
   519 }
   522 void TemplateTable::locals_index_wide(Register reg) {
   523   __ movl(reg, at_bcp(2));
   524   __ bswapl(reg);
   525   __ shrl(reg, 16);
   526   __ negptr(reg);
   527 }
   530 void TemplateTable::wide_iload() {
   531   transition(vtos, itos);
   532   locals_index_wide(rbx);
   533   __ movl(rax, iaddress(rbx));
   534 }
   537 void TemplateTable::wide_lload() {
   538   transition(vtos, ltos);
   539   locals_index_wide(rbx);
   540   __ movptr(rax, laddress(rbx));
   541   NOT_LP64(__ movl(rdx, haddress(rbx)));
   542 }
   545 void TemplateTable::wide_fload() {
   546   transition(vtos, ftos);
   547   locals_index_wide(rbx);
   548   __ fld_s(faddress(rbx));
   549 }
   552 void TemplateTable::wide_dload() {
   553   transition(vtos, dtos);
   554   locals_index_wide(rbx);
   555   __ fld_d(daddress(rbx));
   556 }
   559 void TemplateTable::wide_aload() {
   560   transition(vtos, atos);
   561   locals_index_wide(rbx);
   562   __ movptr(rax, aaddress(rbx));
   563 }
   565 void TemplateTable::index_check(Register array, Register index) {
   566   // Pop ptr into array
   567   __ pop_ptr(array);
   568   index_check_without_pop(array, index);
   569 }
   571 void TemplateTable::index_check_without_pop(Register array, Register index) {
   572   // destroys rbx,
   573   // check array
   574   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   575   LP64_ONLY(__ movslq(index, index));
   576   // check index
   577   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   578   if (index != rbx) {
   579     // ??? convention: move aberrant index into rbx, for exception message
   580     assert(rbx != array, "different registers");
   581     __ mov(rbx, index);
   582   }
   583   __ jump_cc(Assembler::aboveEqual,
   584              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   585 }
   588 void TemplateTable::iaload() {
   589   transition(itos, itos);
   590   // rdx: array
   591   index_check(rdx, rax);  // kills rbx,
   592   // rax,: index
   593   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   594 }
   597 void TemplateTable::laload() {
   598   transition(itos, ltos);
   599   // rax,: index
   600   // rdx: array
   601   index_check(rdx, rax);
   602   __ mov(rbx, rax);
   603   // rbx,: index
   604   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   605   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   606 }
   609 void TemplateTable::faload() {
   610   transition(itos, ftos);
   611   // rdx: array
   612   index_check(rdx, rax);  // kills rbx,
   613   // rax,: index
   614   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   615 }
   618 void TemplateTable::daload() {
   619   transition(itos, dtos);
   620   // rdx: array
   621   index_check(rdx, rax);  // kills rbx,
   622   // rax,: index
   623   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   624 }
   627 void TemplateTable::aaload() {
   628   transition(itos, atos);
   629   // rdx: array
   630   index_check(rdx, rax);  // kills rbx,
   631   // rax,: index
   632   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   633 }
   636 void TemplateTable::baload() {
   637   transition(itos, itos);
   638   // rdx: array
   639   index_check(rdx, rax);  // kills rbx,
   640   // rax,: index
   641   // can do better code for P5 - fix this at some point
   642   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   643   __ mov(rax, rbx);
   644 }
   647 void TemplateTable::caload() {
   648   transition(itos, itos);
   649   // rdx: array
   650   index_check(rdx, rax);  // kills rbx,
   651   // rax,: index
   652   // can do better code for P5 - may want to improve this at some point
   653   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   654   __ mov(rax, rbx);
   655 }
   657 // iload followed by caload frequent pair
   658 void TemplateTable::fast_icaload() {
   659   transition(vtos, itos);
   660   // load index out of locals
   661   locals_index(rbx);
   662   __ movl(rax, iaddress(rbx));
   664   // rdx: array
   665   index_check(rdx, rax);
   666   // rax,: index
   667   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   668   __ mov(rax, rbx);
   669 }
   671 void TemplateTable::saload() {
   672   transition(itos, itos);
   673   // rdx: array
   674   index_check(rdx, rax);  // kills rbx,
   675   // rax,: index
   676   // can do better code for P5 - may want to improve this at some point
   677   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   678   __ mov(rax, rbx);
   679 }
   682 void TemplateTable::iload(int n) {
   683   transition(vtos, itos);
   684   __ movl(rax, iaddress(n));
   685 }
   688 void TemplateTable::lload(int n) {
   689   transition(vtos, ltos);
   690   __ movptr(rax, laddress(n));
   691   NOT_LP64(__ movptr(rdx, haddress(n)));
   692 }
   695 void TemplateTable::fload(int n) {
   696   transition(vtos, ftos);
   697   __ fld_s(faddress(n));
   698 }
   701 void TemplateTable::dload(int n) {
   702   transition(vtos, dtos);
   703   __ fld_d(daddress(n));
   704 }
   707 void TemplateTable::aload(int n) {
   708   transition(vtos, atos);
   709   __ movptr(rax, aaddress(n));
   710 }
   713 void TemplateTable::aload_0() {
   714   transition(vtos, atos);
   715   // According to bytecode histograms, the pairs:
   716   //
   717   // _aload_0, _fast_igetfield
   718   // _aload_0, _fast_agetfield
   719   // _aload_0, _fast_fgetfield
   720   //
   721   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   722   // bytecode checks if the next bytecode is either _fast_igetfield,
   723   // _fast_agetfield or _fast_fgetfield and then rewrites the
   724   // current bytecode into a pair bytecode; otherwise it rewrites the current
   725   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   726   //
   727   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   728   //       otherwise we may miss an opportunity for a pair.
   729   //
   730   // Also rewrite frequent pairs
   731   //   aload_0, aload_1
   732   //   aload_0, iload_1
   733   // These bytecodes with a small amount of code are most profitable to rewrite
   734   if (RewriteFrequentPairs) {
   735     Label rewrite, done;
   736     // get next byte
   737     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   739     // do actual aload_0
   740     aload(0);
   742     // if _getfield then wait with rewrite
   743     __ cmpl(rbx, Bytecodes::_getfield);
   744     __ jcc(Assembler::equal, done);
   746     // if _igetfield then reqrite to _fast_iaccess_0
   747     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   748     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   749     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   750     __ jccb(Assembler::equal, rewrite);
   752     // if _agetfield then reqrite to _fast_aaccess_0
   753     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   754     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   755     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   756     __ jccb(Assembler::equal, rewrite);
   758     // if _fgetfield then reqrite to _fast_faccess_0
   759     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   760     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   761     __ movl(rcx, Bytecodes::_fast_faccess_0);
   762     __ jccb(Assembler::equal, rewrite);
   764     // else rewrite to _fast_aload0
   765     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   766     __ movl(rcx, Bytecodes::_fast_aload_0);
   768     // rewrite
   769     // rcx: fast bytecode
   770     __ bind(rewrite);
   771     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   773     __ bind(done);
   774   } else {
   775     aload(0);
   776   }
   777 }
   779 void TemplateTable::istore() {
   780   transition(itos, vtos);
   781   locals_index(rbx);
   782   __ movl(iaddress(rbx), rax);
   783 }
   786 void TemplateTable::lstore() {
   787   transition(ltos, vtos);
   788   locals_index(rbx);
   789   __ movptr(laddress(rbx), rax);
   790   NOT_LP64(__ movptr(haddress(rbx), rdx));
   791 }
   794 void TemplateTable::fstore() {
   795   transition(ftos, vtos);
   796   locals_index(rbx);
   797   __ fstp_s(faddress(rbx));
   798 }
   801 void TemplateTable::dstore() {
   802   transition(dtos, vtos);
   803   locals_index(rbx);
   804   __ fstp_d(daddress(rbx));
   805 }
   808 void TemplateTable::astore() {
   809   transition(vtos, vtos);
   810   __ pop_ptr(rax);
   811   locals_index(rbx);
   812   __ movptr(aaddress(rbx), rax);
   813 }
   816 void TemplateTable::wide_istore() {
   817   transition(vtos, vtos);
   818   __ pop_i(rax);
   819   locals_index_wide(rbx);
   820   __ movl(iaddress(rbx), rax);
   821 }
   824 void TemplateTable::wide_lstore() {
   825   transition(vtos, vtos);
   826   __ pop_l(rax, rdx);
   827   locals_index_wide(rbx);
   828   __ movptr(laddress(rbx), rax);
   829   NOT_LP64(__ movl(haddress(rbx), rdx));
   830 }
   833 void TemplateTable::wide_fstore() {
   834   wide_istore();
   835 }
   838 void TemplateTable::wide_dstore() {
   839   wide_lstore();
   840 }
   843 void TemplateTable::wide_astore() {
   844   transition(vtos, vtos);
   845   __ pop_ptr(rax);
   846   locals_index_wide(rbx);
   847   __ movptr(aaddress(rbx), rax);
   848 }
   851 void TemplateTable::iastore() {
   852   transition(itos, vtos);
   853   __ pop_i(rbx);
   854   // rax,: value
   855   // rdx: array
   856   index_check(rdx, rbx);  // prefer index in rbx,
   857   // rbx,: index
   858   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   859 }
   862 void TemplateTable::lastore() {
   863   transition(ltos, vtos);
   864   __ pop_i(rbx);
   865   // rax,: low(value)
   866   // rcx: array
   867   // rdx: high(value)
   868   index_check(rcx, rbx);  // prefer index in rbx,
   869   // rbx,: index
   870   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   871   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   872 }
   875 void TemplateTable::fastore() {
   876   transition(ftos, vtos);
   877   __ pop_i(rbx);
   878   // rdx: array
   879   // st0: value
   880   index_check(rdx, rbx);  // prefer index in rbx,
   881   // rbx,: index
   882   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   883 }
   886 void TemplateTable::dastore() {
   887   transition(dtos, vtos);
   888   __ pop_i(rbx);
   889   // rdx: array
   890   // st0: value
   891   index_check(rdx, rbx);  // prefer index in rbx,
   892   // rbx,: index
   893   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   894 }
   897 void TemplateTable::aastore() {
   898   Label is_null, ok_is_subtype, done;
   899   transition(vtos, vtos);
   900   // stack: ..., array, index, value
   901   __ movptr(rax, at_tos());     // Value
   902   __ movl(rcx, at_tos_p1());  // Index
   903   __ movptr(rdx, at_tos_p2());  // Array
   905   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   906   index_check_without_pop(rdx, rcx);      // kills rbx,
   907   // do array store check - check for NULL value first
   908   __ testptr(rax, rax);
   909   __ jcc(Assembler::zero, is_null);
   911   // Move subklass into EBX
   912   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   913   // Move superklass into EAX
   914   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   915   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   916   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   917   __ lea(rdx, element_address);
   919   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   920   // Superklass in EAX.  Subklass in EBX.
   921   __ gen_subtype_check( rbx, ok_is_subtype );
   923   // Come here on failure
   924   // object is at TOS
   925   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   927   // Come here on success
   928   __ bind(ok_is_subtype);
   930   // Get the value to store
   931   __ movptr(rax, at_rsp());
   932   // and store it with appropriate barrier
   933   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   935   __ jmp(done);
   937   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   938   __ bind(is_null);
   939   __ profile_null_seen(rbx);
   941   // Store NULL, (noreg means NULL to do_oop_store)
   942   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   944   // Pop stack arguments
   945   __ bind(done);
   946   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   947 }
   950 void TemplateTable::bastore() {
   951   transition(itos, vtos);
   952   __ pop_i(rbx);
   953   // rax,: value
   954   // rdx: array
   955   index_check(rdx, rbx);  // prefer index in rbx,
   956   // rbx,: index
   957   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   958 }
   961 void TemplateTable::castore() {
   962   transition(itos, vtos);
   963   __ pop_i(rbx);
   964   // rax,: value
   965   // rdx: array
   966   index_check(rdx, rbx);  // prefer index in rbx,
   967   // rbx,: index
   968   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   969 }
   972 void TemplateTable::sastore() {
   973   castore();
   974 }
   977 void TemplateTable::istore(int n) {
   978   transition(itos, vtos);
   979   __ movl(iaddress(n), rax);
   980 }
   983 void TemplateTable::lstore(int n) {
   984   transition(ltos, vtos);
   985   __ movptr(laddress(n), rax);
   986   NOT_LP64(__ movptr(haddress(n), rdx));
   987 }
   990 void TemplateTable::fstore(int n) {
   991   transition(ftos, vtos);
   992   __ fstp_s(faddress(n));
   993 }
   996 void TemplateTable::dstore(int n) {
   997   transition(dtos, vtos);
   998   __ fstp_d(daddress(n));
   999 }
  1002 void TemplateTable::astore(int n) {
  1003   transition(vtos, vtos);
  1004   __ pop_ptr(rax);
  1005   __ movptr(aaddress(n), rax);
  1009 void TemplateTable::pop() {
  1010   transition(vtos, vtos);
  1011   __ addptr(rsp, Interpreter::stackElementSize);
  1015 void TemplateTable::pop2() {
  1016   transition(vtos, vtos);
  1017   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1021 void TemplateTable::dup() {
  1022   transition(vtos, vtos);
  1023   // stack: ..., a
  1024   __ load_ptr(0, rax);
  1025   __ push_ptr(rax);
  1026   // stack: ..., a, a
  1030 void TemplateTable::dup_x1() {
  1031   transition(vtos, vtos);
  1032   // stack: ..., a, b
  1033   __ load_ptr( 0, rax);  // load b
  1034   __ load_ptr( 1, rcx);  // load a
  1035   __ store_ptr(1, rax);  // store b
  1036   __ store_ptr(0, rcx);  // store a
  1037   __ push_ptr(rax);      // push b
  1038   // stack: ..., b, a, b
  1042 void TemplateTable::dup_x2() {
  1043   transition(vtos, vtos);
  1044   // stack: ..., a, b, c
  1045   __ load_ptr( 0, rax);  // load c
  1046   __ load_ptr( 2, rcx);  // load a
  1047   __ store_ptr(2, rax);  // store c in a
  1048   __ push_ptr(rax);      // push c
  1049   // stack: ..., c, b, c, c
  1050   __ load_ptr( 2, rax);  // load b
  1051   __ store_ptr(2, rcx);  // store a in b
  1052   // stack: ..., c, a, c, c
  1053   __ store_ptr(1, rax);  // store b in c
  1054   // stack: ..., c, a, b, c
  1058 void TemplateTable::dup2() {
  1059   transition(vtos, vtos);
  1060   // stack: ..., a, b
  1061   __ load_ptr(1, rax);  // load a
  1062   __ push_ptr(rax);     // push a
  1063   __ load_ptr(1, rax);  // load b
  1064   __ push_ptr(rax);     // push b
  1065   // stack: ..., a, b, a, b
  1069 void TemplateTable::dup2_x1() {
  1070   transition(vtos, vtos);
  1071   // stack: ..., a, b, c
  1072   __ load_ptr( 0, rcx);  // load c
  1073   __ load_ptr( 1, rax);  // load b
  1074   __ push_ptr(rax);      // push b
  1075   __ push_ptr(rcx);      // push c
  1076   // stack: ..., a, b, c, b, c
  1077   __ store_ptr(3, rcx);  // store c in b
  1078   // stack: ..., a, c, c, b, c
  1079   __ load_ptr( 4, rcx);  // load a
  1080   __ store_ptr(2, rcx);  // store a in 2nd c
  1081   // stack: ..., a, c, a, b, c
  1082   __ store_ptr(4, rax);  // store b in a
  1083   // stack: ..., b, c, a, b, c
  1084   // stack: ..., b, c, a, b, c
  1088 void TemplateTable::dup2_x2() {
  1089   transition(vtos, vtos);
  1090   // stack: ..., a, b, c, d
  1091   __ load_ptr( 0, rcx);  // load d
  1092   __ load_ptr( 1, rax);  // load c
  1093   __ push_ptr(rax);      // push c
  1094   __ push_ptr(rcx);      // push d
  1095   // stack: ..., a, b, c, d, c, d
  1096   __ load_ptr( 4, rax);  // load b
  1097   __ store_ptr(2, rax);  // store b in d
  1098   __ store_ptr(4, rcx);  // store d in b
  1099   // stack: ..., a, d, c, b, c, d
  1100   __ load_ptr( 5, rcx);  // load a
  1101   __ load_ptr( 3, rax);  // load c
  1102   __ store_ptr(3, rcx);  // store a in c
  1103   __ store_ptr(5, rax);  // store c in a
  1104   // stack: ..., c, d, a, b, c, d
  1105   // stack: ..., c, d, a, b, c, d
  1109 void TemplateTable::swap() {
  1110   transition(vtos, vtos);
  1111   // stack: ..., a, b
  1112   __ load_ptr( 1, rcx);  // load a
  1113   __ load_ptr( 0, rax);  // load b
  1114   __ store_ptr(0, rcx);  // store a in b
  1115   __ store_ptr(1, rax);  // store b in a
  1116   // stack: ..., b, a
  1120 void TemplateTable::iop2(Operation op) {
  1121   transition(itos, itos);
  1122   switch (op) {
  1123     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1124     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1125     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1126     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1127     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1128     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1129     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1130     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1131     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1132     default   : ShouldNotReachHere();
  1137 void TemplateTable::lop2(Operation op) {
  1138   transition(ltos, ltos);
  1139   __ pop_l(rbx, rcx);
  1140   switch (op) {
  1141     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1142     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1143                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1144     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1145     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1146     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1147     default   : ShouldNotReachHere();
  1152 void TemplateTable::idiv() {
  1153   transition(itos, itos);
  1154   __ mov(rcx, rax);
  1155   __ pop_i(rax);
  1156   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1157   //       they are not equal, one could do a normal division (no correction
  1158   //       needed), which may speed up this implementation for the common case.
  1159   //       (see also JVM spec., p.243 & p.271)
  1160   __ corrected_idivl(rcx);
  1164 void TemplateTable::irem() {
  1165   transition(itos, itos);
  1166   __ mov(rcx, rax);
  1167   __ pop_i(rax);
  1168   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1169   //       they are not equal, one could do a normal division (no correction
  1170   //       needed), which may speed up this implementation for the common case.
  1171   //       (see also JVM spec., p.243 & p.271)
  1172   __ corrected_idivl(rcx);
  1173   __ mov(rax, rdx);
  1177 void TemplateTable::lmul() {
  1178   transition(ltos, ltos);
  1179   __ pop_l(rbx, rcx);
  1180   __ push(rcx); __ push(rbx);
  1181   __ push(rdx); __ push(rax);
  1182   __ lmul(2 * wordSize, 0);
  1183   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1187 void TemplateTable::ldiv() {
  1188   transition(ltos, ltos);
  1189   __ pop_l(rbx, rcx);
  1190   __ push(rcx); __ push(rbx);
  1191   __ push(rdx); __ push(rax);
  1192   // check if y = 0
  1193   __ orl(rax, rdx);
  1194   __ jump_cc(Assembler::zero,
  1195              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1196   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1197   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1201 void TemplateTable::lrem() {
  1202   transition(ltos, ltos);
  1203   __ pop_l(rbx, rcx);
  1204   __ push(rcx); __ push(rbx);
  1205   __ push(rdx); __ push(rax);
  1206   // check if y = 0
  1207   __ orl(rax, rdx);
  1208   __ jump_cc(Assembler::zero,
  1209              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1210   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1211   __ addptr(rsp, 4 * wordSize);
  1215 void TemplateTable::lshl() {
  1216   transition(itos, ltos);
  1217   __ movl(rcx, rax);                             // get shift count
  1218   __ pop_l(rax, rdx);                            // get shift value
  1219   __ lshl(rdx, rax);
  1223 void TemplateTable::lshr() {
  1224   transition(itos, ltos);
  1225   __ mov(rcx, rax);                              // get shift count
  1226   __ pop_l(rax, rdx);                            // get shift value
  1227   __ lshr(rdx, rax, true);
  1231 void TemplateTable::lushr() {
  1232   transition(itos, ltos);
  1233   __ mov(rcx, rax);                              // get shift count
  1234   __ pop_l(rax, rdx);                            // get shift value
  1235   __ lshr(rdx, rax);
  1239 void TemplateTable::fop2(Operation op) {
  1240   transition(ftos, ftos);
  1241   switch (op) {
  1242     case add: __ fadd_s (at_rsp());                break;
  1243     case sub: __ fsubr_s(at_rsp());                break;
  1244     case mul: __ fmul_s (at_rsp());                break;
  1245     case div: __ fdivr_s(at_rsp());                break;
  1246     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1247     default : ShouldNotReachHere();
  1249   __ f2ieee();
  1250   __ pop(rax);  // pop float thing off
  1254 void TemplateTable::dop2(Operation op) {
  1255   transition(dtos, dtos);
  1257   switch (op) {
  1258     case add: __ fadd_d (at_rsp());                break;
  1259     case sub: __ fsubr_d(at_rsp());                break;
  1260     case mul: {
  1261       Label L_strict;
  1262       Label L_join;
  1263       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1264       __ get_method(rcx);
  1265       __ movl(rcx, access_flags);
  1266       __ testl(rcx, JVM_ACC_STRICT);
  1267       __ jccb(Assembler::notZero, L_strict);
  1268       __ fmul_d (at_rsp());
  1269       __ jmpb(L_join);
  1270       __ bind(L_strict);
  1271       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1272       __ fmulp();
  1273       __ fmul_d (at_rsp());
  1274       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1275       __ fmulp();
  1276       __ bind(L_join);
  1277       break;
  1279     case div: {
  1280       Label L_strict;
  1281       Label L_join;
  1282       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1283       __ get_method(rcx);
  1284       __ movl(rcx, access_flags);
  1285       __ testl(rcx, JVM_ACC_STRICT);
  1286       __ jccb(Assembler::notZero, L_strict);
  1287       __ fdivr_d(at_rsp());
  1288       __ jmp(L_join);
  1289       __ bind(L_strict);
  1290       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1291       __ fmul_d (at_rsp());
  1292       __ fdivrp();
  1293       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1294       __ fmulp();
  1295       __ bind(L_join);
  1296       break;
  1298     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1299     default : ShouldNotReachHere();
  1301   __ d2ieee();
  1302   // Pop double precision number from rsp.
  1303   __ pop(rax);
  1304   __ pop(rdx);
  1308 void TemplateTable::ineg() {
  1309   transition(itos, itos);
  1310   __ negl(rax);
  1314 void TemplateTable::lneg() {
  1315   transition(ltos, ltos);
  1316   __ lneg(rdx, rax);
  1320 void TemplateTable::fneg() {
  1321   transition(ftos, ftos);
  1322   __ fchs();
  1326 void TemplateTable::dneg() {
  1327   transition(dtos, dtos);
  1328   __ fchs();
  1332 void TemplateTable::iinc() {
  1333   transition(vtos, vtos);
  1334   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1335   locals_index(rbx);
  1336   __ addl(iaddress(rbx), rdx);
  1340 void TemplateTable::wide_iinc() {
  1341   transition(vtos, vtos);
  1342   __ movl(rdx, at_bcp(4));                       // get constant
  1343   locals_index_wide(rbx);
  1344   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1345   __ sarl(rdx, 16);
  1346   __ addl(iaddress(rbx), rdx);
  1347   // Note: should probably use only one movl to get both
  1348   //       the index and the constant -> fix this
  1352 void TemplateTable::convert() {
  1353   // Checking
  1354 #ifdef ASSERT
  1355   { TosState tos_in  = ilgl;
  1356     TosState tos_out = ilgl;
  1357     switch (bytecode()) {
  1358       case Bytecodes::_i2l: // fall through
  1359       case Bytecodes::_i2f: // fall through
  1360       case Bytecodes::_i2d: // fall through
  1361       case Bytecodes::_i2b: // fall through
  1362       case Bytecodes::_i2c: // fall through
  1363       case Bytecodes::_i2s: tos_in = itos; break;
  1364       case Bytecodes::_l2i: // fall through
  1365       case Bytecodes::_l2f: // fall through
  1366       case Bytecodes::_l2d: tos_in = ltos; break;
  1367       case Bytecodes::_f2i: // fall through
  1368       case Bytecodes::_f2l: // fall through
  1369       case Bytecodes::_f2d: tos_in = ftos; break;
  1370       case Bytecodes::_d2i: // fall through
  1371       case Bytecodes::_d2l: // fall through
  1372       case Bytecodes::_d2f: tos_in = dtos; break;
  1373       default             : ShouldNotReachHere();
  1375     switch (bytecode()) {
  1376       case Bytecodes::_l2i: // fall through
  1377       case Bytecodes::_f2i: // fall through
  1378       case Bytecodes::_d2i: // fall through
  1379       case Bytecodes::_i2b: // fall through
  1380       case Bytecodes::_i2c: // fall through
  1381       case Bytecodes::_i2s: tos_out = itos; break;
  1382       case Bytecodes::_i2l: // fall through
  1383       case Bytecodes::_f2l: // fall through
  1384       case Bytecodes::_d2l: tos_out = ltos; break;
  1385       case Bytecodes::_i2f: // fall through
  1386       case Bytecodes::_l2f: // fall through
  1387       case Bytecodes::_d2f: tos_out = ftos; break;
  1388       case Bytecodes::_i2d: // fall through
  1389       case Bytecodes::_l2d: // fall through
  1390       case Bytecodes::_f2d: tos_out = dtos; break;
  1391       default             : ShouldNotReachHere();
  1393     transition(tos_in, tos_out);
  1395 #endif // ASSERT
  1397   // Conversion
  1398   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1399   switch (bytecode()) {
  1400     case Bytecodes::_i2l:
  1401       __ extend_sign(rdx, rax);
  1402       break;
  1403     case Bytecodes::_i2f:
  1404       __ push(rax);          // store int on tos
  1405       __ fild_s(at_rsp());   // load int to ST0
  1406       __ f2ieee();           // truncate to float size
  1407       __ pop(rcx);           // adjust rsp
  1408       break;
  1409     case Bytecodes::_i2d:
  1410       __ push(rax);          // add one slot for d2ieee()
  1411       __ push(rax);          // store int on tos
  1412       __ fild_s(at_rsp());   // load int to ST0
  1413       __ d2ieee();           // truncate to double size
  1414       __ pop(rcx);           // adjust rsp
  1415       __ pop(rcx);
  1416       break;
  1417     case Bytecodes::_i2b:
  1418       __ shll(rax, 24);      // truncate upper 24 bits
  1419       __ sarl(rax, 24);      // and sign-extend byte
  1420       LP64_ONLY(__ movsbl(rax, rax));
  1421       break;
  1422     case Bytecodes::_i2c:
  1423       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1424       LP64_ONLY(__ movzwl(rax, rax));
  1425       break;
  1426     case Bytecodes::_i2s:
  1427       __ shll(rax, 16);      // truncate upper 16 bits
  1428       __ sarl(rax, 16);      // and sign-extend short
  1429       LP64_ONLY(__ movswl(rax, rax));
  1430       break;
  1431     case Bytecodes::_l2i:
  1432       /* nothing to do */
  1433       break;
  1434     case Bytecodes::_l2f:
  1435       __ push(rdx);          // store long on tos
  1436       __ push(rax);
  1437       __ fild_d(at_rsp());   // load long to ST0
  1438       __ f2ieee();           // truncate to float size
  1439       __ pop(rcx);           // adjust rsp
  1440       __ pop(rcx);
  1441       break;
  1442     case Bytecodes::_l2d:
  1443       __ push(rdx);          // store long on tos
  1444       __ push(rax);
  1445       __ fild_d(at_rsp());   // load long to ST0
  1446       __ d2ieee();           // truncate to double size
  1447       __ pop(rcx);           // adjust rsp
  1448       __ pop(rcx);
  1449       break;
  1450     case Bytecodes::_f2i:
  1451       __ push(rcx);          // reserve space for argument
  1452       __ fstp_s(at_rsp());   // pass float argument on stack
  1453       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1454       break;
  1455     case Bytecodes::_f2l:
  1456       __ push(rcx);          // reserve space for argument
  1457       __ fstp_s(at_rsp());   // pass float argument on stack
  1458       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1459       break;
  1460     case Bytecodes::_f2d:
  1461       /* nothing to do */
  1462       break;
  1463     case Bytecodes::_d2i:
  1464       __ push(rcx);          // reserve space for argument
  1465       __ push(rcx);
  1466       __ fstp_d(at_rsp());   // pass double argument on stack
  1467       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1468       break;
  1469     case Bytecodes::_d2l:
  1470       __ push(rcx);          // reserve space for argument
  1471       __ push(rcx);
  1472       __ fstp_d(at_rsp());   // pass double argument on stack
  1473       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1474       break;
  1475     case Bytecodes::_d2f:
  1476       __ push(rcx);          // reserve space for f2ieee()
  1477       __ f2ieee();           // truncate to float size
  1478       __ pop(rcx);           // adjust rsp
  1479       break;
  1480     default             :
  1481       ShouldNotReachHere();
  1486 void TemplateTable::lcmp() {
  1487   transition(ltos, itos);
  1488   // y = rdx:rax
  1489   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1490   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1491   __ mov(rax, rcx);
  1495 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1496   if (is_float) {
  1497     __ fld_s(at_rsp());
  1498   } else {
  1499     __ fld_d(at_rsp());
  1500     __ pop(rdx);
  1502   __ pop(rcx);
  1503   __ fcmp2int(rax, unordered_result < 0);
  1507 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1508   __ get_method(rcx);           // ECX holds method
  1509   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1511   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1512   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1513   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1515   // Load up EDX with the branch displacement
  1516   __ movl(rdx, at_bcp(1));
  1517   __ bswapl(rdx);
  1518   if (!is_wide) __ sarl(rdx, 16);
  1519   LP64_ONLY(__ movslq(rdx, rdx));
  1522   // Handle all the JSR stuff here, then exit.
  1523   // It's much shorter and cleaner than intermingling with the
  1524   // non-JSR normal-branch stuff occurring below.
  1525   if (is_jsr) {
  1526     // Pre-load the next target bytecode into EBX
  1527     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1529     // compute return address as bci in rax,
  1530     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1531     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1532     // Adjust the bcp in RSI by the displacement in EDX
  1533     __ addptr(rsi, rdx);
  1534     // Push return address
  1535     __ push_i(rax);
  1536     // jsr returns vtos
  1537     __ dispatch_only_noverify(vtos);
  1538     return;
  1541   // Normal (non-jsr) branch handling
  1543   // Adjust the bcp in RSI by the displacement in EDX
  1544   __ addptr(rsi, rdx);
  1546   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1547   Label backedge_counter_overflow;
  1548   Label profile_method;
  1549   Label dispatch;
  1550   if (UseLoopCounter) {
  1551     // increment backedge counter for backward branches
  1552     // rax,: MDO
  1553     // rbx,: MDO bumped taken-count
  1554     // rcx: method
  1555     // rdx: target offset
  1556     // rsi: target bcp
  1557     // rdi: locals pointer
  1558     __ testl(rdx, rdx);             // check if forward or backward branch
  1559     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1561     // increment counter
  1562     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1563     __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1564     __ movl(Address(rcx, be_offset), rax);        // store counter
  1566     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1567     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1568     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1570     if (ProfileInterpreter) {
  1571       // Test to see if we should create a method data oop
  1572       __ cmp32(rax,
  1573                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1574       __ jcc(Assembler::less, dispatch);
  1576       // if no method data exists, go to profile method
  1577       __ test_method_data_pointer(rax, profile_method);
  1579       if (UseOnStackReplacement) {
  1580         // check for overflow against rbx, which is the MDO taken count
  1581         __ cmp32(rbx,
  1582                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1583         __ jcc(Assembler::below, dispatch);
  1585         // When ProfileInterpreter is on, the backedge_count comes from the
  1586         // methodDataOop, which value does not get reset on the call to
  1587         // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1588         // routine while the method is being compiled, add a second test to make
  1589         // sure the overflow function is called only once every overflow_frequency.
  1590         const int overflow_frequency = 1024;
  1591         __ andptr(rbx, overflow_frequency-1);
  1592         __ jcc(Assembler::zero, backedge_counter_overflow);
  1595     } else {
  1596       if (UseOnStackReplacement) {
  1597         // check for overflow against rax, which is the sum of the counters
  1598         __ cmp32(rax,
  1599                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1600         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1604     __ bind(dispatch);
  1607   // Pre-load the next target bytecode into EBX
  1608   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1610   // continue with the bytecode @ target
  1611   // rax,: return bci for jsr's, unused otherwise
  1612   // rbx,: target bytecode
  1613   // rsi: target bcp
  1614   __ dispatch_only(vtos);
  1616   if (UseLoopCounter) {
  1617     if (ProfileInterpreter) {
  1618       // Out-of-line code to allocate method data oop.
  1619       __ bind(profile_method);
  1620       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1621       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1622       __ movptr(rcx, Address(rbp, method_offset));
  1623       __ movptr(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1624       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1625       __ test_method_data_pointer(rcx, dispatch);
  1626       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1627       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1628       __ addptr(rcx, rax);
  1629       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1630       __ jmp(dispatch);
  1633     if (UseOnStackReplacement) {
  1635       // invocation counter overflow
  1636       __ bind(backedge_counter_overflow);
  1637       __ negptr(rdx);
  1638       __ addptr(rdx, rsi);        // branch bcp
  1639       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1640       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1642       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1643       // rbx,: target bytecode
  1644       // rdx: scratch
  1645       // rdi: locals pointer
  1646       // rsi: bcp
  1647       __ testptr(rax, rax);                      // test result
  1648       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1649       // nmethod may have been invalidated (VM may block upon call_VM return)
  1650       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1651       __ cmpl(rcx, InvalidOSREntryBci);
  1652       __ jcc(Assembler::equal, dispatch);
  1654       // We have the address of an on stack replacement routine in rax,
  1655       // We need to prepare to execute the OSR method. First we must
  1656       // migrate the locals and monitors off of the stack.
  1658       __ mov(rbx, rax);                             // save the nmethod
  1660       const Register thread = rcx;
  1661       __ get_thread(thread);
  1662       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1663       // rax, is OSR buffer, move it to expected parameter location
  1664       __ mov(rcx, rax);
  1666       // pop the interpreter frame
  1667       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1668       __ leave();                                // remove frame anchor
  1669       __ pop(rdi);                               // get return address
  1670       __ mov(rsp, rdx);                          // set sp to sender sp
  1673       Label skip;
  1674       Label chkint;
  1676       // The interpreter frame we have removed may be returning to
  1677       // either the callstub or the interpreter. Since we will
  1678       // now be returning from a compiled (OSR) nmethod we must
  1679       // adjust the return to the return were it can handler compiled
  1680       // results and clean the fpu stack. This is very similar to
  1681       // what a i2c adapter must do.
  1683       // Are we returning to the call stub?
  1685       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1686       __ jcc(Assembler::notEqual, chkint);
  1688       // yes adjust to the specialized call stub  return.
  1689       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
  1690       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
  1691       __ jmp(skip);
  1693       __ bind(chkint);
  1695       // Are we returning to the interpreter? Look for sentinel
  1697       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
  1698       __ jcc(Assembler::notEqual, skip);
  1700       // Adjust to compiled return back to interpreter
  1702       __ movptr(rdi, Address(rdi, -wordSize));
  1703       __ bind(skip);
  1705       // Align stack pointer for compiled code (note that caller is
  1706       // responsible for undoing this fixup by remembering the old SP
  1707       // in an rbp,-relative location)
  1708       __ andptr(rsp, -(StackAlignmentInBytes));
  1710       // push the (possibly adjusted) return address
  1711       __ push(rdi);
  1713       // and begin the OSR nmethod
  1714       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1720 void TemplateTable::if_0cmp(Condition cc) {
  1721   transition(itos, vtos);
  1722   // assume branch is more often taken than not (loops use backward branches)
  1723   Label not_taken;
  1724   __ testl(rax, rax);
  1725   __ jcc(j_not(cc), not_taken);
  1726   branch(false, false);
  1727   __ bind(not_taken);
  1728   __ profile_not_taken_branch(rax);
  1732 void TemplateTable::if_icmp(Condition cc) {
  1733   transition(itos, vtos);
  1734   // assume branch is more often taken than not (loops use backward branches)
  1735   Label not_taken;
  1736   __ pop_i(rdx);
  1737   __ cmpl(rdx, rax);
  1738   __ jcc(j_not(cc), not_taken);
  1739   branch(false, false);
  1740   __ bind(not_taken);
  1741   __ profile_not_taken_branch(rax);
  1745 void TemplateTable::if_nullcmp(Condition cc) {
  1746   transition(atos, vtos);
  1747   // assume branch is more often taken than not (loops use backward branches)
  1748   Label not_taken;
  1749   __ testptr(rax, rax);
  1750   __ jcc(j_not(cc), not_taken);
  1751   branch(false, false);
  1752   __ bind(not_taken);
  1753   __ profile_not_taken_branch(rax);
  1757 void TemplateTable::if_acmp(Condition cc) {
  1758   transition(atos, vtos);
  1759   // assume branch is more often taken than not (loops use backward branches)
  1760   Label not_taken;
  1761   __ pop_ptr(rdx);
  1762   __ cmpptr(rdx, rax);
  1763   __ jcc(j_not(cc), not_taken);
  1764   branch(false, false);
  1765   __ bind(not_taken);
  1766   __ profile_not_taken_branch(rax);
  1770 void TemplateTable::ret() {
  1771   transition(vtos, vtos);
  1772   locals_index(rbx);
  1773   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1774   __ profile_ret(rbx, rcx);
  1775   __ get_method(rax);
  1776   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1777   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1778                       constMethodOopDesc::codes_offset()));
  1779   __ dispatch_next(vtos);
  1783 void TemplateTable::wide_ret() {
  1784   transition(vtos, vtos);
  1785   locals_index_wide(rbx);
  1786   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1787   __ profile_ret(rbx, rcx);
  1788   __ get_method(rax);
  1789   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1790   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1791   __ dispatch_next(vtos);
  1795 void TemplateTable::tableswitch() {
  1796   Label default_case, continue_execution;
  1797   transition(itos, vtos);
  1798   // align rsi
  1799   __ lea(rbx, at_bcp(wordSize));
  1800   __ andptr(rbx, -wordSize);
  1801   // load lo & hi
  1802   __ movl(rcx, Address(rbx, 1 * wordSize));
  1803   __ movl(rdx, Address(rbx, 2 * wordSize));
  1804   __ bswapl(rcx);
  1805   __ bswapl(rdx);
  1806   // check against lo & hi
  1807   __ cmpl(rax, rcx);
  1808   __ jccb(Assembler::less, default_case);
  1809   __ cmpl(rax, rdx);
  1810   __ jccb(Assembler::greater, default_case);
  1811   // lookup dispatch offset
  1812   __ subl(rax, rcx);
  1813   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1814   __ profile_switch_case(rax, rbx, rcx);
  1815   // continue execution
  1816   __ bind(continue_execution);
  1817   __ bswapl(rdx);
  1818   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1819   __ addptr(rsi, rdx);
  1820   __ dispatch_only(vtos);
  1821   // handle default
  1822   __ bind(default_case);
  1823   __ profile_switch_default(rax);
  1824   __ movl(rdx, Address(rbx, 0));
  1825   __ jmp(continue_execution);
  1829 void TemplateTable::lookupswitch() {
  1830   transition(itos, itos);
  1831   __ stop("lookupswitch bytecode should have been rewritten");
  1835 void TemplateTable::fast_linearswitch() {
  1836   transition(itos, vtos);
  1837   Label loop_entry, loop, found, continue_execution;
  1838   // bswapl rax, so we can avoid bswapping the table entries
  1839   __ bswapl(rax);
  1840   // align rsi
  1841   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1842   __ andptr(rbx, -wordSize);
  1843   // set counter
  1844   __ movl(rcx, Address(rbx, wordSize));
  1845   __ bswapl(rcx);
  1846   __ jmpb(loop_entry);
  1847   // table search
  1848   __ bind(loop);
  1849   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1850   __ jccb(Assembler::equal, found);
  1851   __ bind(loop_entry);
  1852   __ decrementl(rcx);
  1853   __ jcc(Assembler::greaterEqual, loop);
  1854   // default case
  1855   __ profile_switch_default(rax);
  1856   __ movl(rdx, Address(rbx, 0));
  1857   __ jmpb(continue_execution);
  1858   // entry found -> get offset
  1859   __ bind(found);
  1860   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1861   __ profile_switch_case(rcx, rax, rbx);
  1862   // continue execution
  1863   __ bind(continue_execution);
  1864   __ bswapl(rdx);
  1865   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1866   __ addptr(rsi, rdx);
  1867   __ dispatch_only(vtos);
  1871 void TemplateTable::fast_binaryswitch() {
  1872   transition(itos, vtos);
  1873   // Implementation using the following core algorithm:
  1874   //
  1875   // int binary_search(int key, LookupswitchPair* array, int n) {
  1876   //   // Binary search according to "Methodik des Programmierens" by
  1877   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1878   //   int i = 0;
  1879   //   int j = n;
  1880   //   while (i+1 < j) {
  1881   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1882   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1883   //     // where a stands for the array and assuming that the (inexisting)
  1884   //     // element a[n] is infinitely big.
  1885   //     int h = (i + j) >> 1;
  1886   //     // i < h < j
  1887   //     if (key < array[h].fast_match()) {
  1888   //       j = h;
  1889   //     } else {
  1890   //       i = h;
  1891   //     }
  1892   //   }
  1893   //   // R: a[i] <= key < a[i+1] or Q
  1894   //   // (i.e., if key is within array, i is the correct index)
  1895   //   return i;
  1896   // }
  1898   // register allocation
  1899   const Register key   = rax;                    // already set (tosca)
  1900   const Register array = rbx;
  1901   const Register i     = rcx;
  1902   const Register j     = rdx;
  1903   const Register h     = rdi;                    // needs to be restored
  1904   const Register temp  = rsi;
  1905   // setup array
  1906   __ save_bcp();
  1908   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1909   __ andptr(array, -wordSize);
  1910   // initialize i & j
  1911   __ xorl(i, i);                                 // i = 0;
  1912   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1913   // Convert j into native byteordering
  1914   __ bswapl(j);
  1915   // and start
  1916   Label entry;
  1917   __ jmp(entry);
  1919   // binary search loop
  1920   { Label loop;
  1921     __ bind(loop);
  1922     // int h = (i + j) >> 1;
  1923     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1924     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1925     // if (key < array[h].fast_match()) {
  1926     //   j = h;
  1927     // } else {
  1928     //   i = h;
  1929     // }
  1930     // Convert array[h].match to native byte-ordering before compare
  1931     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1932     __ bswapl(temp);
  1933     __ cmpl(key, temp);
  1934     if (VM_Version::supports_cmov()) {
  1935       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1936       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1937     } else {
  1938       Label set_i, end_of_if;
  1939       __ jccb(Assembler::greaterEqual, set_i);     // {
  1940       __ mov(j, h);                                //   j = h;
  1941       __ jmp(end_of_if);                           // }
  1942       __ bind(set_i);                              // else {
  1943       __ mov(i, h);                                //   i = h;
  1944       __ bind(end_of_if);                          // }
  1946     // while (i+1 < j)
  1947     __ bind(entry);
  1948     __ leal(h, Address(i, 1));                   // i+1
  1949     __ cmpl(h, j);                               // i+1 < j
  1950     __ jcc(Assembler::less, loop);
  1953   // end of binary search, result index is i (must check again!)
  1954   Label default_case;
  1955   // Convert array[i].match to native byte-ordering before compare
  1956   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1957   __ bswapl(temp);
  1958   __ cmpl(key, temp);
  1959   __ jcc(Assembler::notEqual, default_case);
  1961   // entry found -> j = offset
  1962   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1963   __ profile_switch_case(i, key, array);
  1964   __ bswapl(j);
  1965   LP64_ONLY(__ movslq(j, j));
  1966   __ restore_bcp();
  1967   __ restore_locals();                           // restore rdi
  1968   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1970   __ addptr(rsi, j);
  1971   __ dispatch_only(vtos);
  1973   // default case -> j = default offset
  1974   __ bind(default_case);
  1975   __ profile_switch_default(i);
  1976   __ movl(j, Address(array, -2*wordSize));
  1977   __ bswapl(j);
  1978   LP64_ONLY(__ movslq(j, j));
  1979   __ restore_bcp();
  1980   __ restore_locals();                           // restore rdi
  1981   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1982   __ addptr(rsi, j);
  1983   __ dispatch_only(vtos);
  1987 void TemplateTable::_return(TosState state) {
  1988   transition(state, state);
  1989   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  1991   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1992     assert(state == vtos, "only valid state");
  1993     __ movptr(rax, aaddress(0));
  1994     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  1995     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1996     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1997     Label skip_register_finalizer;
  1998     __ jcc(Assembler::zero, skip_register_finalizer);
  2000     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2002     __ bind(skip_register_finalizer);
  2005   __ remove_activation(state, rsi);
  2006   __ jmp(rsi);
  2010 // ----------------------------------------------------------------------------
  2011 // Volatile variables demand their effects be made known to all CPU's in
  2012 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2013 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2014 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2015 // reorder volatile references, the hardware also must not reorder them).
  2016 //
  2017 // According to the new Java Memory Model (JMM):
  2018 // (1) All volatiles are serialized wrt to each other.
  2019 // ALSO reads & writes act as aquire & release, so:
  2020 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2021 // the read float up to before the read.  It's OK for non-volatile memory refs
  2022 // that happen before the volatile read to float down below it.
  2023 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2024 // that happen BEFORE the write float down to after the write.  It's OK for
  2025 // non-volatile memory refs that happen after the volatile write to float up
  2026 // before it.
  2027 //
  2028 // We only put in barriers around volatile refs (they are expensive), not
  2029 // _between_ memory refs (that would require us to track the flavor of the
  2030 // previous memory refs).  Requirements (2) and (3) require some barriers
  2031 // before volatile stores and after volatile loads.  These nearly cover
  2032 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2033 // case is placed after volatile-stores although it could just as well go
  2034 // before volatile-loads.
  2035 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2036   // Helper function to insert a is-volatile test and memory barrier
  2037   if( !os::is_MP() ) return;    // Not needed on single CPU
  2038   __ membar(order_constraint);
  2041 void TemplateTable::resolve_cache_and_index(int byte_no,
  2042                                             Register result,
  2043                                             Register Rcache,
  2044                                             Register index,
  2045                                             size_t index_size) {
  2046   Register temp = rbx;
  2048   assert_different_registers(result, Rcache, index, temp);
  2050   Label resolved;
  2051   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2052   if (byte_no == f1_oop) {
  2053     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2054     // This kind of CP cache entry does not need to match the flags byte, because
  2055     // there is a 1-1 relation between bytecode type and CP entry type.
  2056     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2057     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2058     __ testptr(result, result);
  2059     __ jcc(Assembler::notEqual, resolved);
  2060   } else {
  2061     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2062     assert(result == noreg, "");  //else change code for setting result
  2063     const int shift_count = (1 + byte_no)*BitsPerByte;
  2064     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2065     __ shrl(temp, shift_count);
  2066     // have we resolved this bytecode?
  2067     __ andl(temp, 0xFF);
  2068     __ cmpl(temp, (int)bytecode());
  2069     __ jcc(Assembler::equal, resolved);
  2072   // resolve first time through
  2073   address entry;
  2074   switch (bytecode()) {
  2075     case Bytecodes::_getstatic      : // fall through
  2076     case Bytecodes::_putstatic      : // fall through
  2077     case Bytecodes::_getfield       : // fall through
  2078     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2079     case Bytecodes::_invokevirtual  : // fall through
  2080     case Bytecodes::_invokespecial  : // fall through
  2081     case Bytecodes::_invokestatic   : // fall through
  2082     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2083     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2084     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2085     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2086     default                         : ShouldNotReachHere();                                 break;
  2088   __ movl(temp, (int)bytecode());
  2089   __ call_VM(noreg, entry, temp);
  2090   // Update registers with resolved info
  2091   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2092   if (result != noreg)
  2093     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2094   __ bind(resolved);
  2098 // The cache and index registers must be set before call
  2099 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2100                                               Register cache,
  2101                                               Register index,
  2102                                               Register off,
  2103                                               Register flags,
  2104                                               bool is_static = false) {
  2105   assert_different_registers(cache, index, flags, off);
  2107   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2108   // Field offset
  2109   __ movptr(off, Address(cache, index, Address::times_ptr,
  2110                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2111   // Flags
  2112   __ movl(flags, Address(cache, index, Address::times_ptr,
  2113            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2115   // klass     overwrite register
  2116   if (is_static) {
  2117     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2118                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2122 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2123                                                Register method,
  2124                                                Register itable_index,
  2125                                                Register flags,
  2126                                                bool is_invokevirtual,
  2127                                                bool is_invokevfinal /*unused*/,
  2128                                                bool is_invokedynamic) {
  2129   // setup registers
  2130   const Register cache = rcx;
  2131   const Register index = rdx;
  2132   assert_different_registers(method, flags);
  2133   assert_different_registers(method, cache, index);
  2134   assert_different_registers(itable_index, flags);
  2135   assert_different_registers(itable_index, cache, index);
  2136   // determine constant pool cache field offsets
  2137   const int method_offset = in_bytes(
  2138     constantPoolCacheOopDesc::base_offset() +
  2139       (is_invokevirtual
  2140        ? ConstantPoolCacheEntry::f2_offset()
  2141        : ConstantPoolCacheEntry::f1_offset()
  2143     );
  2144   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2145                                     ConstantPoolCacheEntry::flags_offset());
  2146   // access constant pool cache fields
  2147   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2148                                     ConstantPoolCacheEntry::f2_offset());
  2150   if (byte_no == f1_oop) {
  2151     // Resolved f1_oop goes directly into 'method' register.
  2152     assert(is_invokedynamic, "");
  2153     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2154   } else {
  2155     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2156     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2158   if (itable_index != noreg) {
  2159     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2161   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2165 // The registers cache and index expected to be set before call.
  2166 // Correct values of the cache and index registers are preserved.
  2167 void TemplateTable::jvmti_post_field_access(Register cache,
  2168                                             Register index,
  2169                                             bool is_static,
  2170                                             bool has_tos) {
  2171   if (JvmtiExport::can_post_field_access()) {
  2172     // Check to see if a field access watch has been set before we take
  2173     // the time to call into the VM.
  2174     Label L1;
  2175     assert_different_registers(cache, index, rax);
  2176     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2177     __ testl(rax,rax);
  2178     __ jcc(Assembler::zero, L1);
  2180     // cache entry pointer
  2181     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2182     __ shll(index, LogBytesPerWord);
  2183     __ addptr(cache, index);
  2184     if (is_static) {
  2185       __ xorptr(rax, rax);      // NULL object reference
  2186     } else {
  2187       __ pop(atos);         // Get the object
  2188       __ verify_oop(rax);
  2189       __ push(atos);        // Restore stack state
  2191     // rax,:   object pointer or NULL
  2192     // cache: cache entry pointer
  2193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2194                rax, cache);
  2195     __ get_cache_and_index_at_bcp(cache, index, 1);
  2196     __ bind(L1);
  2200 void TemplateTable::pop_and_check_object(Register r) {
  2201   __ pop_ptr(r);
  2202   __ null_check(r);  // for field access must check obj.
  2203   __ verify_oop(r);
  2206 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2207   transition(vtos, vtos);
  2209   const Register cache = rcx;
  2210   const Register index = rdx;
  2211   const Register obj   = rcx;
  2212   const Register off   = rbx;
  2213   const Register flags = rax;
  2215   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2216   jvmti_post_field_access(cache, index, is_static, false);
  2217   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2219   if (!is_static) pop_and_check_object(obj);
  2221   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2222   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2224   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2226   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2227   assert(btos == 0, "change code, btos != 0");
  2228   // btos
  2229   __ andptr(flags, 0x0f);
  2230   __ jcc(Assembler::notZero, notByte);
  2232   __ load_signed_byte(rax, lo );
  2233   __ push(btos);
  2234   // Rewrite bytecode to be faster
  2235   if (!is_static) {
  2236     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2238   __ jmp(Done);
  2240   __ bind(notByte);
  2241   // itos
  2242   __ cmpl(flags, itos );
  2243   __ jcc(Assembler::notEqual, notInt);
  2245   __ movl(rax, lo );
  2246   __ push(itos);
  2247   // Rewrite bytecode to be faster
  2248   if (!is_static) {
  2249     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2251   __ jmp(Done);
  2253   __ bind(notInt);
  2254   // atos
  2255   __ cmpl(flags, atos );
  2256   __ jcc(Assembler::notEqual, notObj);
  2258   __ movl(rax, lo );
  2259   __ push(atos);
  2260   if (!is_static) {
  2261     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2263   __ jmp(Done);
  2265   __ bind(notObj);
  2266   // ctos
  2267   __ cmpl(flags, ctos );
  2268   __ jcc(Assembler::notEqual, notChar);
  2270   __ load_unsigned_short(rax, lo );
  2271   __ push(ctos);
  2272   if (!is_static) {
  2273     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2275   __ jmp(Done);
  2277   __ bind(notChar);
  2278   // stos
  2279   __ cmpl(flags, stos );
  2280   __ jcc(Assembler::notEqual, notShort);
  2282   __ load_signed_short(rax, lo );
  2283   __ push(stos);
  2284   if (!is_static) {
  2285     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2287   __ jmp(Done);
  2289   __ bind(notShort);
  2290   // ltos
  2291   __ cmpl(flags, ltos );
  2292   __ jcc(Assembler::notEqual, notLong);
  2294   // Generate code as if volatile.  There just aren't enough registers to
  2295   // save that information and this code is faster than the test.
  2296   __ fild_d(lo);                // Must load atomically
  2297   __ subptr(rsp,2*wordSize);    // Make space for store
  2298   __ fistp_d(Address(rsp,0));
  2299   __ pop(rax);
  2300   __ pop(rdx);
  2302   __ push(ltos);
  2303   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2304   __ jmp(Done);
  2306   __ bind(notLong);
  2307   // ftos
  2308   __ cmpl(flags, ftos );
  2309   __ jcc(Assembler::notEqual, notFloat);
  2311   __ fld_s(lo);
  2312   __ push(ftos);
  2313   if (!is_static) {
  2314     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2316   __ jmp(Done);
  2318   __ bind(notFloat);
  2319   // dtos
  2320   __ cmpl(flags, dtos );
  2321   __ jcc(Assembler::notEqual, notDouble);
  2323   __ fld_d(lo);
  2324   __ push(dtos);
  2325   if (!is_static) {
  2326     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2328   __ jmpb(Done);
  2330   __ bind(notDouble);
  2332   __ stop("Bad state");
  2334   __ bind(Done);
  2335   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2336   // volatile_barrier( );
  2340 void TemplateTable::getfield(int byte_no) {
  2341   getfield_or_static(byte_no, false);
  2345 void TemplateTable::getstatic(int byte_no) {
  2346   getfield_or_static(byte_no, true);
  2349 // The registers cache and index expected to be set before call.
  2350 // The function may destroy various registers, just not the cache and index registers.
  2351 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2353   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2355   if (JvmtiExport::can_post_field_modification()) {
  2356     // Check to see if a field modification watch has been set before we take
  2357     // the time to call into the VM.
  2358     Label L1;
  2359     assert_different_registers(cache, index, rax);
  2360     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2361     __ testl(rax, rax);
  2362     __ jcc(Assembler::zero, L1);
  2364     // The cache and index registers have been already set.
  2365     // This allows to eliminate this call but the cache and index
  2366     // registers have to be correspondingly used after this line.
  2367     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2369     if (is_static) {
  2370       // Life is simple.  Null out the object pointer.
  2371       __ xorptr(rbx, rbx);
  2372     } else {
  2373       // Life is harder. The stack holds the value on top, followed by the object.
  2374       // We don't know the size of the value, though; it could be one or two words
  2375       // depending on its type. As a result, we must find the type to determine where
  2376       // the object is.
  2377       Label two_word, valsize_known;
  2378       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2379                                    ConstantPoolCacheEntry::flags_offset())));
  2380       __ mov(rbx, rsp);
  2381       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2382       // Make sure we don't need to mask rcx for tosBits after the above shift
  2383       ConstantPoolCacheEntry::verify_tosBits();
  2384       __ cmpl(rcx, ltos);
  2385       __ jccb(Assembler::equal, two_word);
  2386       __ cmpl(rcx, dtos);
  2387       __ jccb(Assembler::equal, two_word);
  2388       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2389       __ jmpb(valsize_known);
  2391       __ bind(two_word);
  2392       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2394       __ bind(valsize_known);
  2395       // setup object pointer
  2396       __ movptr(rbx, Address(rbx, 0));
  2398     // cache entry pointer
  2399     __ addptr(rax, in_bytes(cp_base_offset));
  2400     __ shll(rdx, LogBytesPerWord);
  2401     __ addptr(rax, rdx);
  2402     // object (tos)
  2403     __ mov(rcx, rsp);
  2404     // rbx,: object pointer set up above (NULL if static)
  2405     // rax,: cache entry pointer
  2406     // rcx: jvalue object on the stack
  2407     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2408                rbx, rax, rcx);
  2409     __ get_cache_and_index_at_bcp(cache, index, 1);
  2410     __ bind(L1);
  2415 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2416   transition(vtos, vtos);
  2418   const Register cache = rcx;
  2419   const Register index = rdx;
  2420   const Register obj   = rcx;
  2421   const Register off   = rbx;
  2422   const Register flags = rax;
  2424   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2425   jvmti_post_field_mod(cache, index, is_static);
  2426   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2428   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2429   // volatile_barrier( );
  2431   Label notVolatile, Done;
  2432   __ movl(rdx, flags);
  2433   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2434   __ andl(rdx, 0x1);
  2436   // field addresses
  2437   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2438   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2440   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2442   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2443   assert(btos == 0, "change code, btos != 0");
  2444   // btos
  2445   __ andl(flags, 0x0f);
  2446   __ jcc(Assembler::notZero, notByte);
  2448   __ pop(btos);
  2449   if (!is_static) pop_and_check_object(obj);
  2450   __ movb(lo, rax );
  2451   if (!is_static) {
  2452     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2454   __ jmp(Done);
  2456   __ bind(notByte);
  2457   // itos
  2458   __ cmpl(flags, itos );
  2459   __ jcc(Assembler::notEqual, notInt);
  2461   __ pop(itos);
  2462   if (!is_static) pop_and_check_object(obj);
  2464   __ movl(lo, rax );
  2465   if (!is_static) {
  2466     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2468   __ jmp(Done);
  2470   __ bind(notInt);
  2471   // atos
  2472   __ cmpl(flags, atos );
  2473   __ jcc(Assembler::notEqual, notObj);
  2475   __ pop(atos);
  2476   if (!is_static) pop_and_check_object(obj);
  2478   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2480   if (!is_static) {
  2481     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2484   __ jmp(Done);
  2486   __ bind(notObj);
  2487   // ctos
  2488   __ cmpl(flags, ctos );
  2489   __ jcc(Assembler::notEqual, notChar);
  2491   __ pop(ctos);
  2492   if (!is_static) pop_and_check_object(obj);
  2493   __ movw(lo, rax );
  2494   if (!is_static) {
  2495     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2497   __ jmp(Done);
  2499   __ bind(notChar);
  2500   // stos
  2501   __ cmpl(flags, stos );
  2502   __ jcc(Assembler::notEqual, notShort);
  2504   __ pop(stos);
  2505   if (!is_static) pop_and_check_object(obj);
  2506   __ movw(lo, rax );
  2507   if (!is_static) {
  2508     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2510   __ jmp(Done);
  2512   __ bind(notShort);
  2513   // ltos
  2514   __ cmpl(flags, ltos );
  2515   __ jcc(Assembler::notEqual, notLong);
  2517   Label notVolatileLong;
  2518   __ testl(rdx, rdx);
  2519   __ jcc(Assembler::zero, notVolatileLong);
  2521   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2522   if (!is_static) pop_and_check_object(obj);
  2524   // Replace with real volatile test
  2525   __ push(rdx);
  2526   __ push(rax);                 // Must update atomically with FIST
  2527   __ fild_d(Address(rsp,0));    // So load into FPU register
  2528   __ fistp_d(lo);               // and put into memory atomically
  2529   __ addptr(rsp, 2*wordSize);
  2530   // volatile_barrier();
  2531   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2532                                                Assembler::StoreStore));
  2533   // Don't rewrite volatile version
  2534   __ jmp(notVolatile);
  2536   __ bind(notVolatileLong);
  2538   __ pop(ltos);  // overwrites rdx
  2539   if (!is_static) pop_and_check_object(obj);
  2540   NOT_LP64(__ movptr(hi, rdx));
  2541   __ movptr(lo, rax);
  2542   if (!is_static) {
  2543     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2545   __ jmp(notVolatile);
  2547   __ bind(notLong);
  2548   // ftos
  2549   __ cmpl(flags, ftos );
  2550   __ jcc(Assembler::notEqual, notFloat);
  2552   __ pop(ftos);
  2553   if (!is_static) pop_and_check_object(obj);
  2554   __ fstp_s(lo);
  2555   if (!is_static) {
  2556     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2558   __ jmp(Done);
  2560   __ bind(notFloat);
  2561   // dtos
  2562   __ cmpl(flags, dtos );
  2563   __ jcc(Assembler::notEqual, notDouble);
  2565   __ pop(dtos);
  2566   if (!is_static) pop_and_check_object(obj);
  2567   __ fstp_d(lo);
  2568   if (!is_static) {
  2569     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2571   __ jmp(Done);
  2573   __ bind(notDouble);
  2575   __ stop("Bad state");
  2577   __ bind(Done);
  2579   // Check for volatile store
  2580   __ testl(rdx, rdx);
  2581   __ jcc(Assembler::zero, notVolatile);
  2582   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2583                                                Assembler::StoreStore));
  2584   __ bind(notVolatile);
  2588 void TemplateTable::putfield(int byte_no) {
  2589   putfield_or_static(byte_no, false);
  2593 void TemplateTable::putstatic(int byte_no) {
  2594   putfield_or_static(byte_no, true);
  2597 void TemplateTable::jvmti_post_fast_field_mod() {
  2598   if (JvmtiExport::can_post_field_modification()) {
  2599     // Check to see if a field modification watch has been set before we take
  2600     // the time to call into the VM.
  2601     Label L2;
  2602     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2603     __ testl(rcx,rcx);
  2604     __ jcc(Assembler::zero, L2);
  2605     __ pop_ptr(rbx);               // copy the object pointer from tos
  2606     __ verify_oop(rbx);
  2607     __ push_ptr(rbx);              // put the object pointer back on tos
  2608     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2609     __ mov(rcx, rsp);
  2610     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2611     __ xorptr(rbx, rbx);
  2612     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2613     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2614     switch (bytecode()) {          // load values into the jvalue object
  2615     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2616     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2617     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2618     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2619     case Bytecodes::_fast_lputfield:
  2620       NOT_LP64(__ movptr(hi_value, rdx));
  2621       __ movptr(lo_value, rax);
  2622       break;
  2624     // need to call fld_s() after fstp_s() to restore the value for below
  2625     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2627     // need to call fld_d() after fstp_d() to restore the value for below
  2628     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2630     // since rcx is not an object we don't call store_check() here
  2631     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2633     default:  ShouldNotReachHere();
  2635     __ pop_ptr(rbx);  // restore copy of object pointer
  2637     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2638     // then use them for JVM/DI purposes
  2639     __ push(rax);
  2640     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2641     // access constant pool cache entry
  2642     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2643     __ verify_oop(rbx);
  2644     // rbx,: object pointer copied above
  2645     // rax,: cache entry pointer
  2646     // rcx: jvalue object on the stack
  2647     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2648     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2649     __ pop(rax);     // restore lower value
  2650     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2651     __ bind(L2);
  2655 void TemplateTable::fast_storefield(TosState state) {
  2656   transition(state, vtos);
  2658   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2660   jvmti_post_fast_field_mod();
  2662   // access constant pool cache
  2663   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2665   // test for volatile with rdx but rdx is tos register for lputfield.
  2666   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2667   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2668                        ConstantPoolCacheEntry::flags_offset())));
  2670   // replace index with field offset from cache entry
  2671   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2673   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2674   // volatile_barrier( );
  2676   Label notVolatile, Done;
  2677   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2678   __ andl(rdx, 0x1);
  2679   // Check for volatile store
  2680   __ testl(rdx, rdx);
  2681   __ jcc(Assembler::zero, notVolatile);
  2683   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2685   // Get object from stack
  2686   pop_and_check_object(rcx);
  2688   // field addresses
  2689   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2690   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2692   // access field
  2693   switch (bytecode()) {
  2694     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2695     case Bytecodes::_fast_sputfield: // fall through
  2696     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2697     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2698     case Bytecodes::_fast_lputfield:
  2699       NOT_LP64(__ movptr(hi, rdx));
  2700       __ movptr(lo, rax);
  2701       break;
  2702     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2703     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2704     case Bytecodes::_fast_aputfield: {
  2705       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2706       break;
  2708     default:
  2709       ShouldNotReachHere();
  2712   Label done;
  2713   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2714                                                Assembler::StoreStore));
  2715   // Barriers are so large that short branch doesn't reach!
  2716   __ jmp(done);
  2718   // Same code as above, but don't need rdx to test for volatile.
  2719   __ bind(notVolatile);
  2721   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2723   // Get object from stack
  2724   pop_and_check_object(rcx);
  2726   // access field
  2727   switch (bytecode()) {
  2728     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2729     case Bytecodes::_fast_sputfield: // fall through
  2730     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2731     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2732     case Bytecodes::_fast_lputfield:
  2733       NOT_LP64(__ movptr(hi, rdx));
  2734       __ movptr(lo, rax);
  2735       break;
  2736     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2737     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2738     case Bytecodes::_fast_aputfield: {
  2739       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2740       break;
  2742     default:
  2743       ShouldNotReachHere();
  2745   __ bind(done);
  2749 void TemplateTable::fast_accessfield(TosState state) {
  2750   transition(atos, state);
  2752   // do the JVMTI work here to avoid disturbing the register state below
  2753   if (JvmtiExport::can_post_field_access()) {
  2754     // Check to see if a field access watch has been set before we take
  2755     // the time to call into the VM.
  2756     Label L1;
  2757     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2758     __ testl(rcx,rcx);
  2759     __ jcc(Assembler::zero, L1);
  2760     // access constant pool cache entry
  2761     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2762     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2763     __ verify_oop(rax);
  2764     // rax,: object pointer copied above
  2765     // rcx: cache entry pointer
  2766     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2767     __ pop_ptr(rax);   // restore object pointer
  2768     __ bind(L1);
  2771   // access constant pool cache
  2772   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2773   // replace index with field offset from cache entry
  2774   __ movptr(rbx, Address(rcx,
  2775                          rbx,
  2776                          Address::times_ptr,
  2777                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2780   // rax,: object
  2781   __ verify_oop(rax);
  2782   __ null_check(rax);
  2783   // field addresses
  2784   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2785   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2787   // access field
  2788   switch (bytecode()) {
  2789     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2790     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2791     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2792     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2793     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2794     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2795     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2796     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2797     default:
  2798       ShouldNotReachHere();
  2801   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2802   // volatile_barrier( );
  2805 void TemplateTable::fast_xaccess(TosState state) {
  2806   transition(vtos, state);
  2807   // get receiver
  2808   __ movptr(rax, aaddress(0));
  2809   // access constant pool cache
  2810   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2811   __ movptr(rbx, Address(rcx,
  2812                          rdx,
  2813                          Address::times_ptr,
  2814                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2815   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2816   __ increment(rsi);
  2817   __ null_check(rax);
  2818   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2819   if (state == itos) {
  2820     __ movl(rax, lo);
  2821   } else if (state == atos) {
  2822     __ movptr(rax, lo);
  2823     __ verify_oop(rax);
  2824   } else if (state == ftos) {
  2825     __ fld_s(lo);
  2826   } else {
  2827     ShouldNotReachHere();
  2829   __ decrement(rsi);
  2834 //----------------------------------------------------------------------------------------------------
  2835 // Calls
  2837 void TemplateTable::count_calls(Register method, Register temp) {
  2838   // implemented elsewhere
  2839   ShouldNotReachHere();
  2843 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2844   // determine flags
  2845   Bytecodes::Code code = bytecode();
  2846   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2847   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2848   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2849   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2850   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2851   const bool receiver_null_check = is_invokespecial;
  2852   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2853   // setup registers & access constant pool cache
  2854   const Register recv   = rcx;
  2855   const Register flags  = rdx;
  2856   assert_different_registers(method, index, recv, flags);
  2858   // save 'interpreter return address'
  2859   __ save_bcp();
  2861   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2863   // load receiver if needed (note: no return address pushed yet)
  2864   if (load_receiver) {
  2865     assert(!is_invokedynamic, "");
  2866     __ movl(recv, flags);
  2867     __ andl(recv, 0xFF);
  2868     // recv count is 0 based?
  2869     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2870     __ movptr(recv, recv_addr);
  2871     __ verify_oop(recv);
  2874   // do null check if needed
  2875   if (receiver_null_check) {
  2876     __ null_check(recv);
  2879   if (save_flags) {
  2880     __ mov(rsi, flags);
  2883   // compute return type
  2884   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2885   // Make sure we don't need to mask flags for tosBits after the above shift
  2886   ConstantPoolCacheEntry::verify_tosBits();
  2887   // load return address
  2889     address table_addr;
  2890     if (is_invokeinterface || is_invokedynamic)
  2891       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2892     else
  2893       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2894     ExternalAddress table(table_addr);
  2895     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2898   // push return address
  2899   __ push(flags);
  2901   // Restore flag value from the constant pool cache, and restore rsi
  2902   // for later null checks.  rsi is the bytecode pointer
  2903   if (save_flags) {
  2904     __ mov(flags, rsi);
  2905     __ restore_bcp();
  2910 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2911                         Register flags) {
  2913   // Uses temporary registers rax, rdx
  2914   assert_different_registers(index, recv, rax, rdx);
  2916   // Test for an invoke of a final method
  2917   Label notFinal;
  2918   __ movl(rax, flags);
  2919   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2920   __ jcc(Assembler::zero, notFinal);
  2922   Register method = index;  // method must be rbx,
  2923   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2925   // do the call - the index is actually the method to call
  2926   __ verify_oop(method);
  2928   // It's final, need a null check here!
  2929   __ null_check(recv);
  2931   // profile this call
  2932   __ profile_final_call(rax);
  2934   __ jump_from_interpreted(method, rax);
  2936   __ bind(notFinal);
  2938   // get receiver klass
  2939   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2940   // Keep recv in rcx for callee expects it there
  2941   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2942   __ verify_oop(rax);
  2944   // profile this call
  2945   __ profile_virtual_call(rax, rdi, rdx);
  2947   // get target methodOop & entry point
  2948   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2949   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2950   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2951   __ jump_from_interpreted(method, rdx);
  2955 void TemplateTable::invokevirtual(int byte_no) {
  2956   transition(vtos, vtos);
  2957   assert(byte_no == f2_byte, "use this argument");
  2958   prepare_invoke(rbx, noreg, byte_no);
  2960   // rbx,: index
  2961   // rcx: receiver
  2962   // rdx: flags
  2964   invokevirtual_helper(rbx, rcx, rdx);
  2968 void TemplateTable::invokespecial(int byte_no) {
  2969   transition(vtos, vtos);
  2970   assert(byte_no == f1_byte, "use this argument");
  2971   prepare_invoke(rbx, noreg, byte_no);
  2972   // do the call
  2973   __ verify_oop(rbx);
  2974   __ profile_call(rax);
  2975   __ jump_from_interpreted(rbx, rax);
  2979 void TemplateTable::invokestatic(int byte_no) {
  2980   transition(vtos, vtos);
  2981   assert(byte_no == f1_byte, "use this argument");
  2982   prepare_invoke(rbx, noreg, byte_no);
  2983   // do the call
  2984   __ verify_oop(rbx);
  2985   __ profile_call(rax);
  2986   __ jump_from_interpreted(rbx, rax);
  2990 void TemplateTable::fast_invokevfinal(int byte_no) {
  2991   transition(vtos, vtos);
  2992   assert(byte_no == f2_byte, "use this argument");
  2993   __ stop("fast_invokevfinal not used on x86");
  2997 void TemplateTable::invokeinterface(int byte_no) {
  2998   transition(vtos, vtos);
  2999   assert(byte_no == f1_byte, "use this argument");
  3000   prepare_invoke(rax, rbx, byte_no);
  3002   // rax,: Interface
  3003   // rbx,: index
  3004   // rcx: receiver
  3005   // rdx: flags
  3007   // Special case of invokeinterface called for virtual method of
  3008   // java.lang.Object.  See cpCacheOop.cpp for details.
  3009   // This code isn't produced by javac, but could be produced by
  3010   // another compliant java compiler.
  3011   Label notMethod;
  3012   __ movl(rdi, rdx);
  3013   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3014   __ jcc(Assembler::zero, notMethod);
  3016   invokevirtual_helper(rbx, rcx, rdx);
  3017   __ bind(notMethod);
  3019   // Get receiver klass into rdx - also a null check
  3020   __ restore_locals();  // restore rdi
  3021   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3022   __ verify_oop(rdx);
  3024   // profile this call
  3025   __ profile_virtual_call(rdx, rsi, rdi);
  3027   Label no_such_interface, no_such_method;
  3029   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3030                              rdx, rax, rbx,
  3031                              // outputs: method, scan temp. reg
  3032                              rbx, rsi,
  3033                              no_such_interface);
  3035   // rbx,: methodOop to call
  3036   // rcx: receiver
  3037   // Check for abstract method error
  3038   // Note: This should be done more efficiently via a throw_abstract_method_error
  3039   //       interpreter entry point and a conditional jump to it in case of a null
  3040   //       method.
  3041   __ testptr(rbx, rbx);
  3042   __ jcc(Assembler::zero, no_such_method);
  3044   // do the call
  3045   // rcx: receiver
  3046   // rbx,: methodOop
  3047   __ jump_from_interpreted(rbx, rdx);
  3048   __ should_not_reach_here();
  3050   // exception handling code follows...
  3051   // note: must restore interpreter registers to canonical
  3052   //       state for exception handling to work correctly!
  3054   __ bind(no_such_method);
  3055   // throw exception
  3056   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3057   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3058   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3059   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3060   // the call_VM checks for exception, so we should never return here.
  3061   __ should_not_reach_here();
  3063   __ bind(no_such_interface);
  3064   // throw exception
  3065   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3066   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3067   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3068   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3069                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3070   // the call_VM checks for exception, so we should never return here.
  3071   __ should_not_reach_here();
  3074 void TemplateTable::invokedynamic(int byte_no) {
  3075   transition(vtos, vtos);
  3077   if (!EnableInvokeDynamic) {
  3078     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3079     // The verifier will stop it.  However, if we get past the verifier,
  3080     // this will stop the thread in a reasonable way, without crashing the JVM.
  3081     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3082                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3083     // the call_VM checks for exception, so we should never return here.
  3084     __ should_not_reach_here();
  3085     return;
  3088   assert(byte_no == f1_oop, "use this argument");
  3089   prepare_invoke(rax, rbx, byte_no);
  3091   // rax: CallSite object (f1)
  3092   // rbx: unused (f2)
  3093   // rdx: flags (unused)
  3095   if (ProfileInterpreter) {
  3096     Label L;
  3097     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3098     // profile this call
  3099     __ profile_call(rsi);
  3102   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3103   __ null_check(rcx);
  3104   __ prepare_to_jump_from_interpreted();
  3105   __ jump_to_method_handle_entry(rcx, rdx);
  3108 //----------------------------------------------------------------------------------------------------
  3109 // Allocation
  3111 void TemplateTable::_new() {
  3112   transition(vtos, atos);
  3113   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3114   Label slow_case;
  3115   Label slow_case_no_pop;
  3116   Label done;
  3117   Label initialize_header;
  3118   Label initialize_object;  // including clearing the fields
  3119   Label allocate_shared;
  3121   __ get_cpool_and_tags(rcx, rax);
  3123   // Make sure the class we're about to instantiate has been resolved.
  3124   // This is done before loading instanceKlass to be consistent with the order
  3125   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3126   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3127   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3128   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3130   // get instanceKlass
  3131   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3132   __ push(rcx);  // save the contexts of klass for initializing the header
  3134   // make sure klass is initialized & doesn't have finalizer
  3135   // make sure klass is fully initialized
  3136   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3137   __ jcc(Assembler::notEqual, slow_case);
  3139   // get instance_size in instanceKlass (scaled to a count of bytes)
  3140   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3141   // test to see if it has a finalizer or is malformed in some way
  3142   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3143   __ jcc(Assembler::notZero, slow_case);
  3145   //
  3146   // Allocate the instance
  3147   // 1) Try to allocate in the TLAB
  3148   // 2) if fail and the object is large allocate in the shared Eden
  3149   // 3) if the above fails (or is not applicable), go to a slow case
  3150   // (creates a new TLAB, etc.)
  3152   const bool allow_shared_alloc =
  3153     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3155   if (UseTLAB) {
  3156     const Register thread = rcx;
  3158     __ get_thread(thread);
  3159     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3160     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3161     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3162     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3163     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3164     if (ZeroTLAB) {
  3165       // the fields have been already cleared
  3166       __ jmp(initialize_header);
  3167     } else {
  3168       // initialize both the header and fields
  3169       __ jmp(initialize_object);
  3173   // Allocation in the shared Eden, if allowed.
  3174   //
  3175   // rdx: instance size in bytes
  3176   if (allow_shared_alloc) {
  3177     __ bind(allocate_shared);
  3179     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3181     Label retry;
  3182     __ bind(retry);
  3183     __ movptr(rax, heap_top);
  3184     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3185     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3186     __ jcc(Assembler::above, slow_case);
  3188     // Compare rax, with the top addr, and if still equal, store the new
  3189     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3190     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3191     //
  3192     // rax,: object begin
  3193     // rbx,: object end
  3194     // rdx: instance size in bytes
  3195     __ locked_cmpxchgptr(rbx, heap_top);
  3197     // if someone beat us on the allocation, try again, otherwise continue
  3198     __ jcc(Assembler::notEqual, retry);
  3201   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3202     // The object is initialized before the header.  If the object size is
  3203     // zero, go directly to the header initialization.
  3204     __ bind(initialize_object);
  3205     __ decrement(rdx, sizeof(oopDesc));
  3206     __ jcc(Assembler::zero, initialize_header);
  3208   // Initialize topmost object field, divide rdx by 8, check if odd and
  3209   // test if zero.
  3210     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3211     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3213   // rdx must have been multiple of 8
  3214 #ifdef ASSERT
  3215     // make sure rdx was multiple of 8
  3216     Label L;
  3217     // Ignore partial flag stall after shrl() since it is debug VM
  3218     __ jccb(Assembler::carryClear, L);
  3219     __ stop("object size is not multiple of 2 - adjust this code");
  3220     __ bind(L);
  3221     // rdx must be > 0, no extra check needed here
  3222 #endif
  3224     // initialize remaining object fields: rdx was a multiple of 8
  3225     { Label loop;
  3226     __ bind(loop);
  3227     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3228     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3229     __ decrement(rdx);
  3230     __ jcc(Assembler::notZero, loop);
  3233     // initialize object header only.
  3234     __ bind(initialize_header);
  3235     if (UseBiasedLocking) {
  3236       __ pop(rcx);   // get saved klass back in the register.
  3237       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3238       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3239     } else {
  3240       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3241                 (int32_t)markOopDesc::prototype()); // header
  3242       __ pop(rcx);   // get saved klass back in the register.
  3244     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3247       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3248       // Trigger dtrace event for fastpath
  3249       __ push(atos);
  3250       __ call_VM_leaf(
  3251            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3252       __ pop(atos);
  3255     __ jmp(done);
  3258   // slow case
  3259   __ bind(slow_case);
  3260   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3261   __ bind(slow_case_no_pop);
  3262   __ get_constant_pool(rax);
  3263   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3264   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3266   // continue
  3267   __ bind(done);
  3271 void TemplateTable::newarray() {
  3272   transition(itos, atos);
  3273   __ push_i(rax);                                 // make sure everything is on the stack
  3274   __ load_unsigned_byte(rdx, at_bcp(1));
  3275   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3276   __ pop_i(rdx);                                  // discard size
  3280 void TemplateTable::anewarray() {
  3281   transition(itos, atos);
  3282   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3283   __ get_constant_pool(rcx);
  3284   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3288 void TemplateTable::arraylength() {
  3289   transition(atos, itos);
  3290   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3291   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3295 void TemplateTable::checkcast() {
  3296   transition(atos, atos);
  3297   Label done, is_null, ok_is_subtype, quicked, resolved;
  3298   __ testptr(rax, rax);   // Object is in EAX
  3299   __ jcc(Assembler::zero, is_null);
  3301   // Get cpool & tags index
  3302   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3303   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3304   // See if bytecode has already been quicked
  3305   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3306   __ jcc(Assembler::equal, quicked);
  3308   __ push(atos);
  3309   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3310   __ pop_ptr(rdx);
  3311   __ jmpb(resolved);
  3313   // Get superklass in EAX and subklass in EBX
  3314   __ bind(quicked);
  3315   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3316   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3318   __ bind(resolved);
  3319   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3321   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3322   // Superklass in EAX.  Subklass in EBX.
  3323   __ gen_subtype_check( rbx, ok_is_subtype );
  3325   // Come here on failure
  3326   __ push(rdx);
  3327   // object is at TOS
  3328   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3330   // Come here on success
  3331   __ bind(ok_is_subtype);
  3332   __ mov(rax,rdx);           // Restore object in EDX
  3334   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3335   if (ProfileInterpreter) {
  3336     __ jmp(done);
  3337     __ bind(is_null);
  3338     __ profile_null_seen(rcx);
  3339   } else {
  3340     __ bind(is_null);   // same as 'done'
  3342   __ bind(done);
  3346 void TemplateTable::instanceof() {
  3347   transition(atos, itos);
  3348   Label done, is_null, ok_is_subtype, quicked, resolved;
  3349   __ testptr(rax, rax);
  3350   __ jcc(Assembler::zero, is_null);
  3352   // Get cpool & tags index
  3353   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3354   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3355   // See if bytecode has already been quicked
  3356   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3357   __ jcc(Assembler::equal, quicked);
  3359   __ push(atos);
  3360   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3361   __ pop_ptr(rdx);
  3362   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3363   __ jmp(resolved);
  3365   // Get superklass in EAX and subklass in EDX
  3366   __ bind(quicked);
  3367   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3368   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3370   __ bind(resolved);
  3372   // Generate subtype check.  Blows ECX.  Resets EDI.
  3373   // Superklass in EAX.  Subklass in EDX.
  3374   __ gen_subtype_check( rdx, ok_is_subtype );
  3376   // Come here on failure
  3377   __ xorl(rax,rax);
  3378   __ jmpb(done);
  3379   // Come here on success
  3380   __ bind(ok_is_subtype);
  3381   __ movl(rax, 1);
  3383   // Collect counts on whether this test sees NULLs a lot or not.
  3384   if (ProfileInterpreter) {
  3385     __ jmp(done);
  3386     __ bind(is_null);
  3387     __ profile_null_seen(rcx);
  3388   } else {
  3389     __ bind(is_null);   // same as 'done'
  3391   __ bind(done);
  3392   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3393   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3397 //----------------------------------------------------------------------------------------------------
  3398 // Breakpoints
  3399 void TemplateTable::_breakpoint() {
  3401   // Note: We get here even if we are single stepping..
  3402   // jbug inists on setting breakpoints at every bytecode
  3403   // even if we are in single step mode.
  3405   transition(vtos, vtos);
  3407   // get the unpatched byte code
  3408   __ get_method(rcx);
  3409   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3410   __ mov(rbx, rax);
  3412   // post the breakpoint event
  3413   __ get_method(rcx);
  3414   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3416   // complete the execution of original bytecode
  3417   __ dispatch_only_normal(vtos);
  3421 //----------------------------------------------------------------------------------------------------
  3422 // Exceptions
  3424 void TemplateTable::athrow() {
  3425   transition(atos, vtos);
  3426   __ null_check(rax);
  3427   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3431 //----------------------------------------------------------------------------------------------------
  3432 // Synchronization
  3433 //
  3434 // Note: monitorenter & exit are symmetric routines; which is reflected
  3435 //       in the assembly code structure as well
  3436 //
  3437 // Stack layout:
  3438 //
  3439 // [expressions  ] <--- rsp               = expression stack top
  3440 // ..
  3441 // [expressions  ]
  3442 // [monitor entry] <--- monitor block top = expression stack bot
  3443 // ..
  3444 // [monitor entry]
  3445 // [frame data   ] <--- monitor block bot
  3446 // ...
  3447 // [saved rbp,    ] <--- rbp,
  3450 void TemplateTable::monitorenter() {
  3451   transition(atos, vtos);
  3453   // check for NULL object
  3454   __ null_check(rax);
  3456   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3457   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3458   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3459   Label allocated;
  3461   // initialize entry pointer
  3462   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3464   // find a free slot in the monitor block (result in rdx)
  3465   { Label entry, loop, exit;
  3466     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
  3467     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
  3468     __ jmpb(entry);
  3470     __ bind(loop);
  3471     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3473 // TODO - need new func here - kbt
  3474     if (VM_Version::supports_cmov()) {
  3475       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
  3476     } else {
  3477       Label L;
  3478       __ jccb(Assembler::notEqual, L);
  3479       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
  3480       __ bind(L);
  3482     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3483     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3484     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3485     __ bind(entry);
  3486     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3487     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3488     __ bind(exit);
  3491   __ testptr(rdx, rdx);                          // check if a slot has been found
  3492   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3494   // allocate one if there's no free slot
  3495   { Label entry, loop;
  3496     // 1. compute new pointers                   // rsp: old expression stack top
  3497     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3498     __ subptr(rsp, entry_size);                  // move expression stack top
  3499     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3500     __ mov(rcx, rsp);                            // set start value for copy loop
  3501     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3502     __ jmp(entry);
  3503     // 2. move expression stack contents
  3504     __ bind(loop);
  3505     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3506     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3507     __ addptr(rcx, wordSize);                    // advance to next word
  3508     __ bind(entry);
  3509     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3510     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3513   // call run-time routine
  3514   // rdx: points to monitor entry
  3515   __ bind(allocated);
  3517   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3518   // The object has already been poped from the stack, so the expression stack looks correct.
  3519   __ increment(rsi);
  3521   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3522   __ lock_object(rdx);
  3524   // check to make sure this monitor doesn't cause stack overflow after locking
  3525   __ save_bcp();  // in case of exception
  3526   __ generate_stack_overflow_check(0);
  3528   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3529   __ dispatch_next(vtos);
  3533 void TemplateTable::monitorexit() {
  3534   transition(atos, vtos);
  3536   // check for NULL object
  3537   __ null_check(rax);
  3539   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3540   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3541   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3542   Label found;
  3544   // find matching slot
  3545   { Label entry, loop;
  3546     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3547     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3548     __ jmpb(entry);
  3550     __ bind(loop);
  3551     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3552     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3553     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3554     __ bind(entry);
  3555     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3556     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3559   // error handling. Unlocking was not block-structured
  3560   Label end;
  3561   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3562   __ should_not_reach_here();
  3564   // call run-time routine
  3565   // rcx: points to monitor entry
  3566   __ bind(found);
  3567   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3568   __ unlock_object(rdx);
  3569   __ pop_ptr(rax);                                  // discard object
  3570   __ bind(end);
  3574 //----------------------------------------------------------------------------------------------------
  3575 // Wide instructions
  3577 void TemplateTable::wide() {
  3578   transition(vtos, vtos);
  3579   __ load_unsigned_byte(rbx, at_bcp(1));
  3580   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3581   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3582   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3586 //----------------------------------------------------------------------------------------------------
  3587 // Multi arrays
  3589 void TemplateTable::multianewarray() {
  3590   transition(vtos, atos);
  3591   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3592   // last dim is on top of stack; we want address of first one:
  3593   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3594   // the latter wordSize to point to the beginning of the array.
  3595   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3596   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3597   __ load_unsigned_byte(rbx, at_bcp(3));
  3598   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3601 #endif /* !CC_INTERP */

mercurial