src/share/vm/opto/lcm.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_lcm.cpp.incl"
    30 //------------------------------implicit_null_check----------------------------
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    33 // I can generate a memory op if there is not one nearby.
    34 // The proj is the control projection for the not-null case.
    35 // The val is the pointer being checked for nullness.
    36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    37   // Assume if null check need for 0 offset then always needed
    38   // Intel solaris doesn't support any null checks yet and no
    39   // mechanism exists (yet) to set the switches at an os_cpu level
    40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    42   // Make sure the ptr-is-null path appears to be uncommon!
    43   float f = end()->as_MachIf()->_prob;
    44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    45   if( f > PROB_UNLIKELY_MAG(4) ) return;
    47   uint bidx = 0;                // Capture index of value into memop
    48   bool was_store;               // Memory op is a store op
    50   // Get the successor block for if the test ptr is non-null
    51   Block* not_null_block;  // this one goes with the proj
    52   Block* null_block;
    53   if (_nodes[_nodes.size()-1] == proj) {
    54     null_block     = _succs[0];
    55     not_null_block = _succs[1];
    56   } else {
    57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    58     not_null_block = _succs[0];
    59     null_block     = _succs[1];
    60   }
    62   // Search the exception block for an uncommon trap.
    63   // (See Parse::do_if and Parse::do_ifnull for the reason
    64   // we need an uncommon trap.  Briefly, we need a way to
    65   // detect failure of this optimization, as in 6366351.)
    66   {
    67     bool found_trap = false;
    68     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    69       Node* nn = null_block->_nodes[i1];
    70       if (nn->is_MachCall() &&
    71           nn->as_MachCall()->entry_point() ==
    72           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
    73         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    74         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    75           jint tr_con = trtype->is_int()->get_con();
    76           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    77           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    78           assert((int)reason < (int)BitsPerInt, "recode bit map");
    79           if (is_set_nth_bit(allowed_reasons, (int) reason)
    80               && action != Deoptimization::Action_none) {
    81             // This uncommon trap is sure to recompile, eventually.
    82             // When that happens, C->too_many_traps will prevent
    83             // this transformation from happening again.
    84             found_trap = true;
    85           }
    86         }
    87         break;
    88       }
    89     }
    90     if (!found_trap) {
    91       // We did not find an uncommon trap.
    92       return;
    93     }
    94   }
    96   // Search the successor block for a load or store who's base value is also
    97   // the tested value.  There may be several.
    98   Node_List *out = new Node_List(Thread::current()->resource_area());
    99   MachNode *best = NULL;        // Best found so far
   100   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   101     Node *m = val->out(i);
   102     if( !m->is_Mach() ) continue;
   103     MachNode *mach = m->as_Mach();
   104     was_store = false;
   105     switch( mach->ideal_Opcode() ) {
   106     case Op_LoadB:
   107     case Op_LoadC:
   108     case Op_LoadD:
   109     case Op_LoadF:
   110     case Op_LoadI:
   111     case Op_LoadL:
   112     case Op_LoadP:
   113     case Op_LoadS:
   114     case Op_LoadKlass:
   115     case Op_LoadRange:
   116     case Op_LoadD_unaligned:
   117     case Op_LoadL_unaligned:
   118       break;
   119     case Op_StoreB:
   120     case Op_StoreC:
   121     case Op_StoreCM:
   122     case Op_StoreD:
   123     case Op_StoreF:
   124     case Op_StoreI:
   125     case Op_StoreL:
   126     case Op_StoreP:
   127       was_store = true;         // Memory op is a store op
   128       // Stores will have their address in slot 2 (memory in slot 1).
   129       // If the value being nul-checked is in another slot, it means we
   130       // are storing the checked value, which does NOT check the value!
   131       if( mach->in(2) != val ) continue;
   132       break;                    // Found a memory op?
   133     case Op_StrComp:
   134       // Not a legit memory op for implicit null check regardless of
   135       // embedded loads
   136       continue;
   137     default:                    // Also check for embedded loads
   138       if( !mach->needs_anti_dependence_check() )
   139         continue;               // Not an memory op; skip it
   140       break;
   141     }
   142     // check if the offset is not too high for implicit exception
   143     {
   144       intptr_t offset = 0;
   145       const TypePtr *adr_type = NULL;  // Do not need this return value here
   146       const Node* base = mach->get_base_and_disp(offset, adr_type);
   147       if (base == NULL || base == NodeSentinel) {
   148         // cannot reason about it; is probably not implicit null exception
   149       } else {
   150         const TypePtr* tptr = base->bottom_type()->is_ptr();
   151         // Give up if offset is not a compile-time constant
   152         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   153           continue;
   154         offset += tptr->_offset; // correct if base is offseted
   155         if( MacroAssembler::needs_explicit_null_check(offset) )
   156           continue;             // Give up is reference is beyond 4K page size
   157       }
   158     }
   160     // Check ctrl input to see if the null-check dominates the memory op
   161     Block *cb = cfg->_bbs[mach->_idx];
   162     cb = cb->_idom;             // Always hoist at least 1 block
   163     if( !was_store ) {          // Stores can be hoisted only one block
   164       while( cb->_dom_depth > (_dom_depth + 1))
   165         cb = cb->_idom;         // Hoist loads as far as we want
   166       // The non-null-block should dominate the memory op, too. Live
   167       // range spilling will insert a spill in the non-null-block if it is
   168       // needs to spill the memory op for an implicit null check.
   169       if (cb->_dom_depth == (_dom_depth + 1)) {
   170         if (cb != not_null_block) continue;
   171         cb = cb->_idom;
   172       }
   173     }
   174     if( cb != this ) continue;
   176     // Found a memory user; see if it can be hoisted to check-block
   177     uint vidx = 0;              // Capture index of value into memop
   178     uint j;
   179     for( j = mach->req()-1; j > 0; j-- ) {
   180       if( mach->in(j) == val ) vidx = j;
   181       // Block of memory-op input
   182       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   183       Block *b = this;          // Start from nul check
   184       while( b != inb && b->_dom_depth > inb->_dom_depth )
   185         b = b->_idom;           // search upwards for input
   186       // See if input dominates null check
   187       if( b != inb )
   188         break;
   189     }
   190     if( j > 0 )
   191       continue;
   192     Block *mb = cfg->_bbs[mach->_idx];
   193     // Hoisting stores requires more checks for the anti-dependence case.
   194     // Give up hoisting if we have to move the store past any load.
   195     if( was_store ) {
   196       Block *b = mb;            // Start searching here for a local load
   197       // mach use (faulting) trying to hoist
   198       // n might be blocker to hoisting
   199       while( b != this ) {
   200         uint k;
   201         for( k = 1; k < b->_nodes.size(); k++ ) {
   202           Node *n = b->_nodes[k];
   203           if( n->needs_anti_dependence_check() &&
   204               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   205             break;              // Found anti-dependent load
   206         }
   207         if( k < b->_nodes.size() )
   208           break;                // Found anti-dependent load
   209         // Make sure control does not do a merge (would have to check allpaths)
   210         if( b->num_preds() != 2 ) break;
   211         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   212       }
   213       if( b != this ) continue;
   214     }
   216     // Make sure this memory op is not already being used for a NullCheck
   217     Node *e = mb->end();
   218     if( e->is_MachNullCheck() && e->in(1) == mach )
   219       continue;                 // Already being used as a NULL check
   221     // Found a candidate!  Pick one with least dom depth - the highest
   222     // in the dom tree should be closest to the null check.
   223     if( !best ||
   224         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   225       best = mach;
   226       bidx = vidx;
   228     }
   229   }
   230   // No candidate!
   231   if( !best ) return;
   233   // ---- Found an implicit null check
   234   extern int implicit_null_checks;
   235   implicit_null_checks++;
   237   // Hoist the memory candidate up to the end of the test block.
   238   Block *old_block = cfg->_bbs[best->_idx];
   239   old_block->find_remove(best);
   240   add_inst(best);
   241   cfg->_bbs.map(best->_idx,this);
   243   // Move the control dependence
   244   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   245     best->set_req(0, _nodes[0]);
   247   // Check for flag-killing projections that also need to be hoisted
   248   // Should be DU safe because no edge updates.
   249   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   250     Node* n = best->fast_out(j);
   251     if( n->Opcode() == Op_MachProj ) {
   252       cfg->_bbs[n->_idx]->find_remove(n);
   253       add_inst(n);
   254       cfg->_bbs.map(n->_idx,this);
   255     }
   256   }
   258   Compile *C = cfg->C;
   259   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   260   // One of two graph shapes got matched:
   261   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   262   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   263   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   264   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   265   // We need to flip the projections to keep the same semantics.
   266   if( proj->Opcode() == Op_IfTrue ) {
   267     // Swap order of projections in basic block to swap branch targets
   268     Node *tmp1 = _nodes[end_idx()+1];
   269     Node *tmp2 = _nodes[end_idx()+2];
   270     _nodes.map(end_idx()+1, tmp2);
   271     _nodes.map(end_idx()+2, tmp1);
   272     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   273     tmp1->replace_by(tmp);
   274     tmp2->replace_by(tmp1);
   275     tmp->replace_by(tmp2);
   276     tmp->destruct();
   277   }
   279   // Remove the existing null check; use a new implicit null check instead.
   280   // Since schedule-local needs precise def-use info, we need to correct
   281   // it as well.
   282   Node *old_tst = proj->in(0);
   283   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   284   _nodes.map(end_idx(),nul_chk);
   285   cfg->_bbs.map(nul_chk->_idx,this);
   286   // Redirect users of old_test to nul_chk
   287   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   288     old_tst->last_out(i2)->set_req(0, nul_chk);
   289   // Clean-up any dead code
   290   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   291     old_tst->set_req(i3, NULL);
   293   cfg->latency_from_uses(nul_chk);
   294   cfg->latency_from_uses(best);
   295 }
   298 //------------------------------select-----------------------------------------
   299 // Select a nice fellow from the worklist to schedule next. If there is only
   300 // one choice, then use it. Projections take top priority for correctness
   301 // reasons - if I see a projection, then it is next.  There are a number of
   302 // other special cases, for instructions that consume condition codes, et al.
   303 // These are chosen immediately. Some instructions are required to immediately
   304 // precede the last instruction in the block, and these are taken last. Of the
   305 // remaining cases (most), choose the instruction with the greatest latency
   306 // (that is, the most number of pseudo-cycles required to the end of the
   307 // routine). If there is a tie, choose the instruction with the most inputs.
   308 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   310   // If only a single entry on the stack, use it
   311   uint cnt = worklist.size();
   312   if (cnt == 1) {
   313     Node *n = worklist[0];
   314     worklist.map(0,worklist.pop());
   315     return n;
   316   }
   318   uint choice  = 0; // Bigger is most important
   319   uint latency = 0; // Bigger is scheduled first
   320   uint score   = 0; // Bigger is better
   321   uint idx;         // Index in worklist
   323   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   324     // Order in worklist is used to break ties.
   325     // See caller for how this is used to delay scheduling
   326     // of induction variable increments to after the other
   327     // uses of the phi are scheduled.
   328     Node *n = worklist[i];      // Get Node on worklist
   330     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   331     if( n->is_Proj() ||         // Projections always win
   332         n->Opcode()== Op_Con || // So does constant 'Top'
   333         iop == Op_CreateEx ||   // Create-exception must start block
   334         iop == Op_CheckCastPP
   335         ) {
   336       worklist.map(i,worklist.pop());
   337       return n;
   338     }
   340     // Final call in a block must be adjacent to 'catch'
   341     Node *e = end();
   342     if( e->is_Catch() && e->in(0)->in(0) == n )
   343       continue;
   345     // Memory op for an implicit null check has to be at the end of the block
   346     if( e->is_MachNullCheck() && e->in(1) == n )
   347       continue;
   349     uint n_choice  = 2;
   351     // See if this instruction is consumed by a branch. If so, then (as the
   352     // branch is the last instruction in the basic block) force it to the
   353     // end of the basic block
   354     if ( must_clone[iop] ) {
   355       // See if any use is a branch
   356       bool found_machif = false;
   358       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   359         Node* use = n->fast_out(j);
   361         // The use is a conditional branch, make them adjacent
   362         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   363           found_machif = true;
   364           break;
   365         }
   367         // More than this instruction pending for successor to be ready,
   368         // don't choose this if other opportunities are ready
   369         if (ready_cnt[use->_idx] > 1)
   370           n_choice = 1;
   371       }
   373       // loop terminated, prefer not to use this instruction
   374       if (found_machif)
   375         continue;
   376     }
   378     // See if this has a predecessor that is "must_clone", i.e. sets the
   379     // condition code. If so, choose this first
   380     for (uint j = 0; j < n->req() ; j++) {
   381       Node *inn = n->in(j);
   382       if (inn) {
   383         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   384           n_choice = 3;
   385           break;
   386         }
   387       }
   388     }
   390     // MachTemps should be scheduled last so they are near their uses
   391     if (n->is_MachTemp()) {
   392       n_choice = 1;
   393     }
   395     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
   396     uint n_score   = n->req();   // Many inputs get high score to break ties
   398     // Keep best latency found
   399     if( choice < n_choice ||
   400         ( choice == n_choice &&
   401           ( latency < n_latency ||
   402             ( latency == n_latency &&
   403               ( score < n_score ))))) {
   404       choice  = n_choice;
   405       latency = n_latency;
   406       score   = n_score;
   407       idx     = i;               // Also keep index in worklist
   408     }
   409   } // End of for all ready nodes in worklist
   411   Node *n = worklist[idx];      // Get the winner
   413   worklist.map(idx,worklist.pop());     // Compress worklist
   414   return n;
   415 }
   418 //------------------------------set_next_call----------------------------------
   419 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   420   if( next_call.test_set(n->_idx) ) return;
   421   for( uint i=0; i<n->len(); i++ ) {
   422     Node *m = n->in(i);
   423     if( !m ) continue;  // must see all nodes in block that precede call
   424     if( bbs[m->_idx] == this )
   425       set_next_call( m, next_call, bbs );
   426   }
   427 }
   429 //------------------------------needed_for_next_call---------------------------
   430 // Set the flag 'next_call' for each Node that is needed for the next call to
   431 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   432 // next subroutine call get priority - basically it moves things NOT needed
   433 // for the next call till after the call.  This prevents me from trying to
   434 // carry lots of stuff live across a call.
   435 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   436   // Find the next control-defining Node in this block
   437   Node* call = NULL;
   438   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   439     Node* m = this_call->fast_out(i);
   440     if( bbs[m->_idx] == this && // Local-block user
   441         m != this_call &&       // Not self-start node
   442         m->is_Call() )
   443       call = m;
   444       break;
   445   }
   446   if (call == NULL)  return;    // No next call (e.g., block end is near)
   447   // Set next-call for all inputs to this call
   448   set_next_call(call, next_call, bbs);
   449 }
   451 //------------------------------sched_call-------------------------------------
   452 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   453   RegMask regs;
   455   // Schedule all the users of the call right now.  All the users are
   456   // projection Nodes, so they must be scheduled next to the call.
   457   // Collect all the defined registers.
   458   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   459     Node* n = mcall->fast_out(i);
   460     assert( n->Opcode()==Op_MachProj, "" );
   461     --ready_cnt[n->_idx];
   462     assert( !ready_cnt[n->_idx], "" );
   463     // Schedule next to call
   464     _nodes.map(node_cnt++, n);
   465     // Collect defined registers
   466     regs.OR(n->out_RegMask());
   467     // Check for scheduling the next control-definer
   468     if( n->bottom_type() == Type::CONTROL )
   469       // Warm up next pile of heuristic bits
   470       needed_for_next_call(n, next_call, bbs);
   472     // Children of projections are now all ready
   473     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   474       Node* m = n->fast_out(j); // Get user
   475       if( bbs[m->_idx] != this ) continue;
   476       if( m->is_Phi() ) continue;
   477       if( !--ready_cnt[m->_idx] )
   478         worklist.push(m);
   479     }
   481   }
   483   // Act as if the call defines the Frame Pointer.
   484   // Certainly the FP is alive and well after the call.
   485   regs.Insert(matcher.c_frame_pointer());
   487   // Set all registers killed and not already defined by the call.
   488   uint r_cnt = mcall->tf()->range()->cnt();
   489   int op = mcall->ideal_Opcode();
   490   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   491   bbs.map(proj->_idx,this);
   492   _nodes.insert(node_cnt++, proj);
   494   // Select the right register save policy.
   495   const char * save_policy;
   496   switch (op) {
   497     case Op_CallRuntime:
   498     case Op_CallLeaf:
   499     case Op_CallLeafNoFP:
   500       // Calling C code so use C calling convention
   501       save_policy = matcher._c_reg_save_policy;
   502       break;
   504     case Op_CallStaticJava:
   505     case Op_CallDynamicJava:
   506       // Calling Java code so use Java calling convention
   507       save_policy = matcher._register_save_policy;
   508       break;
   510     default:
   511       ShouldNotReachHere();
   512   }
   514   // When using CallRuntime mark SOE registers as killed by the call
   515   // so values that could show up in the RegisterMap aren't live in a
   516   // callee saved register since the register wouldn't know where to
   517   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   518   // have debug info on them.  Strictly speaking this only needs to be
   519   // done for oops since idealreg2debugmask takes care of debug info
   520   // references but there no way to handle oops differently than other
   521   // pointers as far as the kill mask goes.
   522   bool exclude_soe = op == Op_CallRuntime;
   524   // Fill in the kill mask for the call
   525   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   526     if( !regs.Member(r) ) {     // Not already defined by the call
   527       // Save-on-call register?
   528       if ((save_policy[r] == 'C') ||
   529           (save_policy[r] == 'A') ||
   530           ((save_policy[r] == 'E') && exclude_soe)) {
   531         proj->_rout.Insert(r);
   532       }
   533     }
   534   }
   536   return node_cnt;
   537 }
   540 //------------------------------schedule_local---------------------------------
   541 // Topological sort within a block.  Someday become a real scheduler.
   542 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   543   // Already "sorted" are the block start Node (as the first entry), and
   544   // the block-ending Node and any trailing control projections.  We leave
   545   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   546   // Node.  Everything else gets topo-sorted.
   548 #ifndef PRODUCT
   549     if (cfg->trace_opto_pipelining()) {
   550       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   551       for (uint i = 0;i < _nodes.size();i++) {
   552         tty->print("# ");
   553         _nodes[i]->fast_dump();
   554       }
   555       tty->print_cr("#");
   556     }
   557 #endif
   559   // RootNode is already sorted
   560   if( _nodes.size() == 1 ) return true;
   562   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   563   uint node_cnt = end_idx();
   564   uint phi_cnt = 1;
   565   uint i;
   566   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   567     Node *n = _nodes[i];
   568     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   569         (n->is_Proj()  && n->in(0) == head()) ) {
   570       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   571       _nodes.map(i,_nodes[phi_cnt]);
   572       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   573     } else {                    // All others
   574       // Count block-local inputs to 'n'
   575       uint cnt = n->len();      // Input count
   576       uint local = 0;
   577       for( uint j=0; j<cnt; j++ ) {
   578         Node *m = n->in(j);
   579         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   580           local++;              // One more block-local input
   581       }
   582       ready_cnt[n->_idx] = local; // Count em up
   584       // A few node types require changing a required edge to a precedence edge
   585       // before allocation.
   586       if( UseConcMarkSweepGC ) {
   587         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   588           // Note: Required edges with an index greater than oper_input_base
   589           // are not supported by the allocator.
   590           // Note2: Can only depend on unmatched edge being last,
   591           // can not depend on its absolute position.
   592           Node *oop_store = n->in(n->req() - 1);
   593           n->del_req(n->req() - 1);
   594           n->add_prec(oop_store);
   595           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   596         }
   597       }
   598       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ) {
   599         Node *x = n->in(TypeFunc::Parms);
   600         n->del_req(TypeFunc::Parms);
   601         n->add_prec(x);
   602       }
   603     }
   604   }
   605   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   606     ready_cnt[_nodes[i2]->_idx] = 0;
   608   // All the prescheduled guys do not hold back internal nodes
   609   uint i3;
   610   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   611     Node *n = _nodes[i3];       // Get pre-scheduled
   612     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   613       Node* m = n->fast_out(j);
   614       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   615         ready_cnt[m->_idx]--;   // Fix ready count
   616     }
   617   }
   619   Node_List delay;
   620   // Make a worklist
   621   Node_List worklist;
   622   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   623     Node *m = _nodes[i4];
   624     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   625       if (m->is_iteratively_computed()) {
   626         // Push induction variable increments last to allow other uses
   627         // of the phi to be scheduled first. The select() method breaks
   628         // ties in scheduling by worklist order.
   629         delay.push(m);
   630       } else {
   631         worklist.push(m);         // Then on to worklist!
   632       }
   633     }
   634   }
   635   while (delay.size()) {
   636     Node* d = delay.pop();
   637     worklist.push(d);
   638   }
   640   // Warm up the 'next_call' heuristic bits
   641   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   643 #ifndef PRODUCT
   644     if (cfg->trace_opto_pipelining()) {
   645       for (uint j=0; j<_nodes.size(); j++) {
   646         Node     *n = _nodes[j];
   647         int     idx = n->_idx;
   648         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   649         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
   650         tty->print("%4d: %s\n", idx, n->Name());
   651       }
   652     }
   653 #endif
   655   // Pull from worklist and schedule
   656   while( worklist.size() ) {    // Worklist is not ready
   658 #ifndef PRODUCT
   659     if (cfg->trace_opto_pipelining()) {
   660       tty->print("#   ready list:");
   661       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   662         Node *n = worklist[i];      // Get Node on worklist
   663         tty->print(" %d", n->_idx);
   664       }
   665       tty->cr();
   666     }
   667 #endif
   669     // Select and pop a ready guy from worklist
   670     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   671     _nodes.map(phi_cnt++,n);    // Schedule him next
   673 #ifndef PRODUCT
   674     if (cfg->trace_opto_pipelining()) {
   675       tty->print("#    select %d: %s", n->_idx, n->Name());
   676       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
   677       n->dump();
   678       if (Verbose) {
   679         tty->print("#   ready list:");
   680         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   681           Node *n = worklist[i];      // Get Node on worklist
   682           tty->print(" %d", n->_idx);
   683         }
   684         tty->cr();
   685       }
   686     }
   688 #endif
   689     if( n->is_MachCall() ) {
   690       MachCallNode *mcall = n->as_MachCall();
   691       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   692       continue;
   693     }
   694     // Children are now all ready
   695     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   696       Node* m = n->fast_out(i5); // Get user
   697       if( cfg->_bbs[m->_idx] != this ) continue;
   698       if( m->is_Phi() ) continue;
   699       if( !--ready_cnt[m->_idx] )
   700         worklist.push(m);
   701     }
   702   }
   704   if( phi_cnt != end_idx() ) {
   705     // did not schedule all.  Retry, Bailout, or Die
   706     Compile* C = matcher.C;
   707     if (C->subsume_loads() == true && !C->failing()) {
   708       // Retry with subsume_loads == false
   709       // If this is the first failure, the sentinel string will "stick"
   710       // to the Compile object, and the C2Compiler will see it and retry.
   711       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   712     }
   713     // assert( phi_cnt == end_idx(), "did not schedule all" );
   714     return false;
   715   }
   717 #ifndef PRODUCT
   718   if (cfg->trace_opto_pipelining()) {
   719     tty->print_cr("#");
   720     tty->print_cr("# after schedule_local");
   721     for (uint i = 0;i < _nodes.size();i++) {
   722       tty->print("# ");
   723       _nodes[i]->fast_dump();
   724     }
   725     tty->cr();
   726   }
   727 #endif
   730   return true;
   731 }
   733 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   734 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   735   for (uint l = 0; l < use->len(); l++) {
   736     if (use->in(l) == old_def) {
   737       if (l < use->req()) {
   738         use->set_req(l, new_def);
   739       } else {
   740         use->rm_prec(l);
   741         use->add_prec(new_def);
   742         l--;
   743       }
   744     }
   745   }
   746 }
   748 //------------------------------catch_cleanup_find_cloned_def------------------
   749 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   750   assert( use_blk != def_blk, "Inter-block cleanup only");
   752   // The use is some block below the Catch.  Find and return the clone of the def
   753   // that dominates the use. If there is no clone in a dominating block, then
   754   // create a phi for the def in a dominating block.
   756   // Find which successor block dominates this use.  The successor
   757   // blocks must all be single-entry (from the Catch only; I will have
   758   // split blocks to make this so), hence they all dominate.
   759   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   760     use_blk = use_blk->_idom;
   762   // Find the successor
   763   Node *fixup = NULL;
   765   uint j;
   766   for( j = 0; j < def_blk->_num_succs; j++ )
   767     if( use_blk == def_blk->_succs[j] )
   768       break;
   770   if( j == def_blk->_num_succs ) {
   771     // Block at same level in dom-tree is not a successor.  It needs a
   772     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   773     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   774     for(uint k = 1; k < use_blk->num_preds(); k++) {
   775       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   776     }
   778     // Check to see if the use_blk already has an identical phi inserted.
   779     // If it exists, it will be at the first position since all uses of a
   780     // def are processed together.
   781     Node *phi = use_blk->_nodes[1];
   782     if( phi->is_Phi() ) {
   783       fixup = phi;
   784       for (uint k = 1; k < use_blk->num_preds(); k++) {
   785         if (phi->in(k) != inputs[k]) {
   786           // Not a match
   787           fixup = NULL;
   788           break;
   789         }
   790       }
   791     }
   793     // If an existing PhiNode was not found, make a new one.
   794     if (fixup == NULL) {
   795       Node *new_phi = PhiNode::make(use_blk->head(), def);
   796       use_blk->_nodes.insert(1, new_phi);
   797       bbs.map(new_phi->_idx, use_blk);
   798       for (uint k = 1; k < use_blk->num_preds(); k++) {
   799         new_phi->set_req(k, inputs[k]);
   800       }
   801       fixup = new_phi;
   802     }
   804   } else {
   805     // Found the use just below the Catch.  Make it use the clone.
   806     fixup = use_blk->_nodes[n_clone_idx];
   807   }
   809   return fixup;
   810 }
   812 //--------------------------catch_cleanup_intra_block--------------------------
   813 // Fix all input edges in use that reference "def".  The use is in the same
   814 // block as the def and both have been cloned in each successor block.
   815 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   817   // Both the use and def have been cloned. For each successor block,
   818   // get the clone of the use, and make its input the clone of the def
   819   // found in that block.
   821   uint use_idx = blk->find_node(use);
   822   uint offset_idx = use_idx - beg;
   823   for( uint k = 0; k < blk->_num_succs; k++ ) {
   824     // Get clone in each successor block
   825     Block *sb = blk->_succs[k];
   826     Node *clone = sb->_nodes[offset_idx+1];
   827     assert( clone->Opcode() == use->Opcode(), "" );
   829     // Make use-clone reference the def-clone
   830     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   831   }
   832 }
   834 //------------------------------catch_cleanup_inter_block---------------------
   835 // Fix all input edges in use that reference "def".  The use is in a different
   836 // block than the def.
   837 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   838   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   840   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   841   catch_cleanup_fix_all_inputs(use, def, new_def);
   842 }
   844 //------------------------------call_catch_cleanup-----------------------------
   845 // If we inserted any instructions between a Call and his CatchNode,
   846 // clone the instructions on all paths below the Catch.
   847 void Block::call_catch_cleanup(Block_Array &bbs) {
   849   // End of region to clone
   850   uint end = end_idx();
   851   if( !_nodes[end]->is_Catch() ) return;
   852   // Start of region to clone
   853   uint beg = end;
   854   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   855         !_nodes[beg-1]->in(0)->is_Call() ) {
   856     beg--;
   857     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   858   }
   859   // Range of inserted instructions is [beg, end)
   860   if( beg == end ) return;
   862   // Clone along all Catch output paths.  Clone area between the 'beg' and
   863   // 'end' indices.
   864   for( uint i = 0; i < _num_succs; i++ ) {
   865     Block *sb = _succs[i];
   866     // Clone the entire area; ignoring the edge fixup for now.
   867     for( uint j = end; j > beg; j-- ) {
   868       Node *clone = _nodes[j-1]->clone();
   869       sb->_nodes.insert( 1, clone );
   870       bbs.map(clone->_idx,sb);
   871     }
   872   }
   875   // Fixup edges.  Check the def-use info per cloned Node
   876   for(uint i2 = beg; i2 < end; i2++ ) {
   877     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   878     Node *n = _nodes[i2];        // Node that got cloned
   879     // Need DU safe iterator because of edge manipulation in calls.
   880     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   881     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
   882       out->push(n->fast_out(j1));
   883     }
   884     uint max = out->size();
   885     for (uint j = 0; j < max; j++) {// For all users
   886       Node *use = out->pop();
   887       Block *buse = bbs[use->_idx];
   888       if( use->is_Phi() ) {
   889         for( uint k = 1; k < use->req(); k++ )
   890           if( use->in(k) == n ) {
   891             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
   892             use->set_req(k, fixup);
   893           }
   894       } else {
   895         if (this == buse) {
   896           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
   897         } else {
   898           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
   899         }
   900       }
   901     } // End for all users
   903   } // End of for all Nodes in cloned area
   905   // Remove the now-dead cloned ops
   906   for(uint i3 = beg; i3 < end; i3++ ) {
   907     _nodes[beg]->disconnect_inputs(NULL);
   908     _nodes.remove(beg);
   909   }
   911   // If the successor blocks have a CreateEx node, move it back to the top
   912   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
   913     Block *sb = _succs[i4];
   914     uint new_cnt = end - beg;
   915     // Remove any newly created, but dead, nodes.
   916     for( uint j = new_cnt; j > 0; j-- ) {
   917       Node *n = sb->_nodes[j];
   918       if (n->outcnt() == 0 &&
   919           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
   920         n->disconnect_inputs(NULL);
   921         sb->_nodes.remove(j);
   922         new_cnt--;
   923       }
   924     }
   925     // If any newly created nodes remain, move the CreateEx node to the top
   926     if (new_cnt > 0) {
   927       Node *cex = sb->_nodes[1+new_cnt];
   928       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   929         sb->_nodes.remove(1+new_cnt);
   930         sb->_nodes.insert(1,cex);
   931       }
   932     }
   933   }
   934 }

mercurial