src/share/vm/opto/gcm.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 466
6152cbb08ce9
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_gcm.cpp.incl"
    32 //----------------------------schedule_node_into_block-------------------------
    33 // Insert node n into block b. Look for projections of n and make sure they
    34 // are in b also.
    35 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
    36   // Set basic block of n, Add n to b,
    37   _bbs.map(n->_idx, b);
    38   b->add_inst(n);
    40   // After Matching, nearly any old Node may have projections trailing it.
    41   // These are usually machine-dependent flags.  In any case, they might
    42   // float to another block below this one.  Move them up.
    43   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    44     Node*  use  = n->fast_out(i);
    45     if (use->is_Proj()) {
    46       Block* buse = _bbs[use->_idx];
    47       if (buse != b) {              // In wrong block?
    48         if (buse != NULL)
    49           buse->find_remove(use);   // Remove from wrong block
    50         _bbs.map(use->_idx, b);     // Re-insert in this block
    51         b->add_inst(use);
    52       }
    53     }
    54   }
    55 }
    58 //------------------------------schedule_pinned_nodes--------------------------
    59 // Set the basic block for Nodes pinned into blocks
    60 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
    61   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
    62   GrowableArray <Node *> spstack(C->unique()+8);
    63   spstack.push(_root);
    64   while ( spstack.is_nonempty() ) {
    65     Node *n = spstack.pop();
    66     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
    67       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
    68         Node *input = n->in(0);
    69         assert( input, "pinned Node must have Control" );
    70         while( !input->is_block_start() )
    71           input = input->in(0);
    72         Block *b = _bbs[input->_idx];  // Basic block of controlling input
    73         schedule_node_into_block(n, b);
    74       }
    75       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
    76         if( n->in(i) != NULL )
    77           spstack.push(n->in(i));
    78       }
    79     }
    80   }
    81 }
    83 #ifdef ASSERT
    84 // Assert that new input b2 is dominated by all previous inputs.
    85 // Check this by by seeing that it is dominated by b1, the deepest
    86 // input observed until b2.
    87 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
    88   if (b1 == NULL)  return;
    89   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
    90   Block* tmp = b2;
    91   while (tmp != b1 && tmp != NULL) {
    92     tmp = tmp->_idom;
    93   }
    94   if (tmp != b1) {
    95     // Detected an unschedulable graph.  Print some nice stuff and die.
    96     tty->print_cr("!!! Unschedulable graph !!!");
    97     for (uint j=0; j<n->len(); j++) { // For all inputs
    98       Node* inn = n->in(j); // Get input
    99       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
   100       Block* inb = bbs[inn->_idx];
   101       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
   102                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
   103       inn->dump();
   104     }
   105     tty->print("Failing node: ");
   106     n->dump();
   107     assert(false, "unscheduable graph");
   108   }
   109 }
   110 #endif
   112 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
   113   // Find the last input dominated by all other inputs.
   114   Block* deepb           = NULL;        // Deepest block so far
   115   int    deepb_dom_depth = 0;
   116   for (uint k = 0; k < n->len(); k++) { // For all inputs
   117     Node* inn = n->in(k);               // Get input
   118     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
   119     Block* inb = bbs[inn->_idx];
   120     assert(inb != NULL, "must already have scheduled this input");
   121     if (deepb_dom_depth < (int) inb->_dom_depth) {
   122       // The new inb must be dominated by the previous deepb.
   123       // The various inputs must be linearly ordered in the dom
   124       // tree, or else there will not be a unique deepest block.
   125       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
   126       deepb = inb;                      // Save deepest block
   127       deepb_dom_depth = deepb->_dom_depth;
   128     }
   129   }
   130   assert(deepb != NULL, "must be at least one input to n");
   131   return deepb;
   132 }
   135 //------------------------------schedule_early---------------------------------
   136 // Find the earliest Block any instruction can be placed in.  Some instructions
   137 // are pinned into Blocks.  Unpinned instructions can appear in last block in
   138 // which all their inputs occur.
   139 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
   140   // Allocate stack with enough space to avoid frequent realloc
   141   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
   142   // roots.push(_root); _root will be processed among C->top() inputs
   143   roots.push(C->top());
   144   visited.set(C->top()->_idx);
   146   while (roots.size() != 0) {
   147     // Use local variables nstack_top_n & nstack_top_i to cache values
   148     // on stack's top.
   149     Node *nstack_top_n = roots.pop();
   150     uint  nstack_top_i = 0;
   151 //while_nstack_nonempty:
   152     while (true) {
   153       // Get parent node and next input's index from stack's top.
   154       Node *n = nstack_top_n;
   155       uint  i = nstack_top_i;
   157       if (i == 0) {
   158         // Special control input processing.
   159         // While I am here, go ahead and look for Nodes which are taking control
   160         // from a is_block_proj Node.  After I inserted RegionNodes to make proper
   161         // blocks, the control at a is_block_proj more properly comes from the
   162         // Region being controlled by the block_proj Node.
   163         const Node *in0 = n->in(0);
   164         if (in0 != NULL) {              // Control-dependent?
   165           const Node *p = in0->is_block_proj();
   166           if (p != NULL && p != n) {    // Control from a block projection?
   167             // Find trailing Region
   168             Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
   169             uint j = 0;
   170             if (pb->_num_succs != 1) {  // More then 1 successor?
   171               // Search for successor
   172               uint max = pb->_nodes.size();
   173               assert( max > 1, "" );
   174               uint start = max - pb->_num_succs;
   175               // Find which output path belongs to projection
   176               for (j = start; j < max; j++) {
   177                 if( pb->_nodes[j] == in0 )
   178                   break;
   179               }
   180               assert( j < max, "must find" );
   181               // Change control to match head of successor basic block
   182               j -= start;
   183             }
   184             n->set_req(0, pb->_succs[j]->head());
   185           }
   186         } else {               // n->in(0) == NULL
   187           if (n->req() == 1) { // This guy is a constant with NO inputs?
   188             n->set_req(0, _root);
   189           }
   190         }
   191       }
   193       // First, visit all inputs and force them to get a block.  If an
   194       // input is already in a block we quit following inputs (to avoid
   195       // cycles). Instead we put that Node on a worklist to be handled
   196       // later (since IT'S inputs may not have a block yet).
   197       bool done = true;              // Assume all n's inputs will be processed
   198       while (i < n->len()) {         // For all inputs
   199         Node *in = n->in(i);         // Get input
   200         ++i;
   201         if (in == NULL) continue;    // Ignore NULL, missing inputs
   202         int is_visited = visited.test_set(in->_idx);
   203         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
   204           if (is_visited) {
   205             // assert( !visited.test(in->_idx), "did not schedule early" );
   206             return false;
   207           }
   208           nstack.push(n, i);         // Save parent node and next input's index.
   209           nstack_top_n = in;         // Process current input now.
   210           nstack_top_i = 0;
   211           done = false;              // Not all n's inputs processed.
   212           break; // continue while_nstack_nonempty;
   213         } else if (!is_visited) {    // Input not yet visited?
   214           roots.push(in);            // Visit this guy later, using worklist
   215         }
   216       }
   217       if (done) {
   218         // All of n's inputs have been processed, complete post-processing.
   220         // Some instructions are pinned into a block.  These include Region,
   221         // Phi, Start, Return, and other control-dependent instructions and
   222         // any projections which depend on them.
   223         if (!n->pinned()) {
   224           // Set earliest legal block.
   225           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
   226         }
   228         if (nstack.is_empty()) {
   229           // Finished all nodes on stack.
   230           // Process next node on the worklist 'roots'.
   231           break;
   232         }
   233         // Get saved parent node and next input's index.
   234         nstack_top_n = nstack.node();
   235         nstack_top_i = nstack.index();
   236         nstack.pop();
   237       } //    if (done)
   238     }   // while (true)
   239   }     // while (roots.size() != 0)
   240   return true;
   241 }
   243 //------------------------------dom_lca----------------------------------------
   244 // Find least common ancestor in dominator tree
   245 // LCA is a current notion of LCA, to be raised above 'this'.
   246 // As a convenient boundary condition, return 'this' if LCA is NULL.
   247 // Find the LCA of those two nodes.
   248 Block* Block::dom_lca(Block* LCA) {
   249   if (LCA == NULL || LCA == this)  return this;
   251   Block* anc = this;
   252   while (anc->_dom_depth > LCA->_dom_depth)
   253     anc = anc->_idom;           // Walk up till anc is as high as LCA
   255   while (LCA->_dom_depth > anc->_dom_depth)
   256     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
   258   while (LCA != anc) {          // Walk both up till they are the same
   259     LCA = LCA->_idom;
   260     anc = anc->_idom;
   261   }
   263   return LCA;
   264 }
   266 //--------------------------raise_LCA_above_use--------------------------------
   267 // We are placing a definition, and have been given a def->use edge.
   268 // The definition must dominate the use, so move the LCA upward in the
   269 // dominator tree to dominate the use.  If the use is a phi, adjust
   270 // the LCA only with the phi input paths which actually use this def.
   271 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
   272   Block* buse = bbs[use->_idx];
   273   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
   274   if (!use->is_Phi())  return buse->dom_lca(LCA);
   275   uint pmax = use->req();       // Number of Phi inputs
   276   // Why does not this loop just break after finding the matching input to
   277   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
   278   // chains.  Means I cannot distinguish, from the def-use direction, which
   279   // of many use-defs lead from the same use to the same def.  That is, this
   280   // Phi might have several uses of the same def.  Each use appears in a
   281   // different predecessor block.  But when I enter here, I cannot distinguish
   282   // which use-def edge I should find the predecessor block for.  So I find
   283   // them all.  Means I do a little extra work if a Phi uses the same value
   284   // more than once.
   285   for (uint j=1; j<pmax; j++) { // For all inputs
   286     if (use->in(j) == def) {    // Found matching input?
   287       Block* pred = bbs[buse->pred(j)->_idx];
   288       LCA = pred->dom_lca(LCA);
   289     }
   290   }
   291   return LCA;
   292 }
   294 //----------------------------raise_LCA_above_marks----------------------------
   295 // Return a new LCA that dominates LCA and any of its marked predecessors.
   296 // Search all my parents up to 'early' (exclusive), looking for predecessors
   297 // which are marked with the given index.  Return the LCA (in the dom tree)
   298 // of all marked blocks.  If there are none marked, return the original
   299 // LCA.
   300 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
   301                                     Block* early, Block_Array &bbs) {
   302   Block_List worklist;
   303   worklist.push(LCA);
   304   while (worklist.size() > 0) {
   305     Block* mid = worklist.pop();
   306     if (mid == early)  continue;  // stop searching here
   308     // Test and set the visited bit.
   309     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
   310     mid->set_raise_LCA_visited(mark);
   312     // Don't process the current LCA, otherwise the search may terminate early
   313     if (mid != LCA && mid->raise_LCA_mark() == mark) {
   314       // Raise the LCA.
   315       LCA = mid->dom_lca(LCA);
   316       if (LCA == early)  break;   // stop searching everywhere
   317       assert(early->dominates(LCA), "early is high enough");
   318       // Resume searching at that point, skipping intermediate levels.
   319       worklist.push(LCA);
   320     } else {
   321       // Keep searching through this block's predecessors.
   322       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
   323         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
   324         worklist.push(mid_parent);
   325       }
   326     }
   327   }
   328   return LCA;
   329 }
   331 //--------------------------memory_early_block--------------------------------
   332 // This is a variation of find_deepest_input, the heart of schedule_early.
   333 // Find the "early" block for a load, if we considered only memory and
   334 // address inputs, that is, if other data inputs were ignored.
   335 //
   336 // Because a subset of edges are considered, the resulting block will
   337 // be earlier (at a shallower dom_depth) than the true schedule_early
   338 // point of the node. We compute this earlier block as a more permissive
   339 // site for anti-dependency insertion, but only if subsume_loads is enabled.
   340 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
   341   Node* base;
   342   Node* index;
   343   Node* store = load->in(MemNode::Memory);
   344   load->as_Mach()->memory_inputs(base, index);
   346   assert(base != NodeSentinel && index != NodeSentinel,
   347          "unexpected base/index inputs");
   349   Node* mem_inputs[4];
   350   int mem_inputs_length = 0;
   351   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
   352   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
   353   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
   355   // In the comparision below, add one to account for the control input,
   356   // which may be null, but always takes up a spot in the in array.
   357   if (mem_inputs_length + 1 < (int) load->req()) {
   358     // This "load" has more inputs than just the memory, base and index inputs.
   359     // For purposes of checking anti-dependences, we need to start
   360     // from the early block of only the address portion of the instruction,
   361     // and ignore other blocks that may have factored into the wider
   362     // schedule_early calculation.
   363     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
   365     Block* deepb           = NULL;        // Deepest block so far
   366     int    deepb_dom_depth = 0;
   367     for (int i = 0; i < mem_inputs_length; i++) {
   368       Block* inb = bbs[mem_inputs[i]->_idx];
   369       if (deepb_dom_depth < (int) inb->_dom_depth) {
   370         // The new inb must be dominated by the previous deepb.
   371         // The various inputs must be linearly ordered in the dom
   372         // tree, or else there will not be a unique deepest block.
   373         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
   374         deepb = inb;                      // Save deepest block
   375         deepb_dom_depth = deepb->_dom_depth;
   376       }
   377     }
   378     early = deepb;
   379   }
   381   return early;
   382 }
   384 //--------------------------insert_anti_dependences---------------------------
   385 // A load may need to witness memory that nearby stores can overwrite.
   386 // For each nearby store, either insert an "anti-dependence" edge
   387 // from the load to the store, or else move LCA upward to force the
   388 // load to (eventually) be scheduled in a block above the store.
   389 //
   390 // Do not add edges to stores on distinct control-flow paths;
   391 // only add edges to stores which might interfere.
   392 //
   393 // Return the (updated) LCA.  There will not be any possibly interfering
   394 // store between the load's "early block" and the updated LCA.
   395 // Any stores in the updated LCA will have new precedence edges
   396 // back to the load.  The caller is expected to schedule the load
   397 // in the LCA, in which case the precedence edges will make LCM
   398 // preserve anti-dependences.  The caller may also hoist the load
   399 // above the LCA, if it is not the early block.
   400 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
   401   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
   402   assert(LCA != NULL, "");
   403   DEBUG_ONLY(Block* LCA_orig = LCA);
   405   // Compute the alias index.  Loads and stores with different alias indices
   406   // do not need anti-dependence edges.
   407   uint load_alias_idx = C->get_alias_index(load->adr_type());
   408 #ifdef ASSERT
   409   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
   410       (PrintOpto || VerifyAliases ||
   411        PrintMiscellaneous && (WizardMode || Verbose))) {
   412     // Load nodes should not consume all of memory.
   413     // Reporting a bottom type indicates a bug in adlc.
   414     // If some particular type of node validly consumes all of memory,
   415     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
   416     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
   417     load->dump(2);
   418     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
   419   }
   420 #endif
   421   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
   422          "String compare is only known 'load' that does not conflict with any stores");
   424   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
   425     // It is impossible to spoil this load by putting stores before it,
   426     // because we know that the stores will never update the value
   427     // which 'load' must witness.
   428     return LCA;
   429   }
   431   node_idx_t load_index = load->_idx;
   433   // Note the earliest legal placement of 'load', as determined by
   434   // by the unique point in the dom tree where all memory effects
   435   // and other inputs are first available.  (Computed by schedule_early.)
   436   // For normal loads, 'early' is the shallowest place (dom graph wise)
   437   // to look for anti-deps between this load and any store.
   438   Block* early = _bbs[load_index];
   440   // If we are subsuming loads, compute an "early" block that only considers
   441   // memory or address inputs. This block may be different than the
   442   // schedule_early block in that it could be at an even shallower depth in the
   443   // dominator tree, and allow for a broader discovery of anti-dependences.
   444   if (C->subsume_loads()) {
   445     early = memory_early_block(load, early, _bbs);
   446   }
   448   ResourceArea *area = Thread::current()->resource_area();
   449   Node_List worklist_mem(area);     // prior memory state to store
   450   Node_List worklist_store(area);   // possible-def to explore
   451   Node_List non_early_stores(area); // all relevant stores outside of early
   452   bool must_raise_LCA = false;
   453   DEBUG_ONLY(VectorSet should_not_repeat(area));
   455 #ifdef TRACK_PHI_INPUTS
   456   // %%% This extra checking fails because MergeMem nodes are not GVNed.
   457   // Provide "phi_inputs" to check if every input to a PhiNode is from the
   458   // original memory state.  This indicates a PhiNode for which should not
   459   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
   460   // may be overly conservative.
   461   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
   462   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
   463 #endif
   465   // 'load' uses some memory state; look for users of the same state.
   466   // Recurse through MergeMem nodes to the stores that use them.
   468   // Each of these stores is a possible definition of memory
   469   // that 'load' needs to use.  We need to force 'load'
   470   // to occur before each such store.  When the store is in
   471   // the same block as 'load', we insert an anti-dependence
   472   // edge load->store.
   474   // The relevant stores "nearby" the load consist of a tree rooted
   475   // at initial_mem, with internal nodes of type MergeMem.
   476   // Therefore, the branches visited by the worklist are of this form:
   477   //    initial_mem -> (MergeMem ->)* store
   478   // The anti-dependence constraints apply only to the fringe of this tree.
   480   Node* initial_mem = load->in(MemNode::Memory);
   481   worklist_store.push(initial_mem);
   482   worklist_mem.push(NULL);
   483   DEBUG_ONLY(should_not_repeat.test_set(initial_mem->_idx));
   484   while (worklist_store.size() > 0) {
   485     // Examine a nearby store to see if it might interfere with our load.
   486     Node* mem   = worklist_mem.pop();
   487     Node* store = worklist_store.pop();
   488     uint op = store->Opcode();
   490     // MergeMems do not directly have anti-deps.
   491     // Treat them as internal nodes in a forward tree of memory states,
   492     // the leaves of which are each a 'possible-def'.
   493     if (store == initial_mem    // root (exclusive) of tree we are searching
   494         || op == Op_MergeMem    // internal node of tree we are searching
   495         ) {
   496       mem = store;   // It's not a possibly interfering store.
   497       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
   498         store = mem->fast_out(i);
   499         if (store->is_MergeMem()) {
   500           // Be sure we don't get into combinatorial problems.
   501           // (Allow phis to be repeated; they can merge two relevant states.)
   502           uint i = worklist_store.size();
   503           for (; i > 0; i--) {
   504             if (worklist_store.at(i-1) == store)  break;
   505           }
   506           if (i > 0)  continue; // already on work list; do not repeat
   507           DEBUG_ONLY(int repeated = should_not_repeat.test_set(store->_idx));
   508           assert(!repeated, "do not walk merges twice");
   509         }
   510         worklist_mem.push(mem);
   511         worklist_store.push(store);
   512       }
   513       continue;
   514     }
   516     if (op == Op_MachProj || op == Op_Catch)   continue;
   517     if (store->needs_anti_dependence_check())  continue;  // not really a store
   519     // Compute the alias index.  Loads and stores with different alias
   520     // indices do not need anti-dependence edges.  Wide MemBar's are
   521     // anti-dependent on everything (except immutable memories).
   522     const TypePtr* adr_type = store->adr_type();
   523     if (!C->can_alias(adr_type, load_alias_idx))  continue;
   525     // Most slow-path runtime calls do NOT modify Java memory, but
   526     // they can block and so write Raw memory.
   527     if (store->is_Mach()) {
   528       MachNode* mstore = store->as_Mach();
   529       if (load_alias_idx != Compile::AliasIdxRaw) {
   530         // Check for call into the runtime using the Java calling
   531         // convention (and from there into a wrapper); it has no
   532         // _method.  Can't do this optimization for Native calls because
   533         // they CAN write to Java memory.
   534         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
   535           assert(mstore->is_MachSafePoint(), "");
   536           MachSafePointNode* ms = (MachSafePointNode*) mstore;
   537           assert(ms->is_MachCallJava(), "");
   538           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
   539           if (mcj->_method == NULL) {
   540             // These runtime calls do not write to Java visible memory
   541             // (other than Raw) and so do not require anti-dependence edges.
   542             continue;
   543           }
   544         }
   545         // Same for SafePoints: they read/write Raw but only read otherwise.
   546         // This is basically a workaround for SafePoints only defining control
   547         // instead of control + memory.
   548         if (mstore->ideal_Opcode() == Op_SafePoint)
   549           continue;
   550       } else {
   551         // Some raw memory, such as the load of "top" at an allocation,
   552         // can be control dependent on the previous safepoint. See
   553         // comments in GraphKit::allocate_heap() about control input.
   554         // Inserting an anti-dep between such a safepoint and a use
   555         // creates a cycle, and will cause a subsequent failure in
   556         // local scheduling.  (BugId 4919904)
   557         // (%%% How can a control input be a safepoint and not a projection??)
   558         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
   559           continue;
   560       }
   561     }
   563     // Identify a block that the current load must be above,
   564     // or else observe that 'store' is all the way up in the
   565     // earliest legal block for 'load'.  In the latter case,
   566     // immediately insert an anti-dependence edge.
   567     Block* store_block = _bbs[store->_idx];
   568     assert(store_block != NULL, "unused killing projections skipped above");
   570     if (store->is_Phi()) {
   571       // 'load' uses memory which is one (or more) of the Phi's inputs.
   572       // It must be scheduled not before the Phi, but rather before
   573       // each of the relevant Phi inputs.
   574       //
   575       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
   576       // we mark each corresponding predecessor block and do a combined
   577       // hoisting operation later (raise_LCA_above_marks).
   578       //
   579       // Do not assert(store_block != early, "Phi merging memory after access")
   580       // PhiNode may be at start of block 'early' with backedge to 'early'
   581       DEBUG_ONLY(bool found_match = false);
   582       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
   583         if (store->in(j) == mem) {   // Found matching input?
   584           DEBUG_ONLY(found_match = true);
   585           Block* pred_block = _bbs[store_block->pred(j)->_idx];
   586           if (pred_block != early) {
   587             // If any predecessor of the Phi matches the load's "early block",
   588             // we do not need a precedence edge between the Phi and 'load'
   589             // since the load will be forced into a block preceeding the Phi.
   590             pred_block->set_raise_LCA_mark(load_index);
   591             assert(!LCA_orig->dominates(pred_block) ||
   592                    early->dominates(pred_block), "early is high enough");
   593             must_raise_LCA = true;
   594           }
   595         }
   596       }
   597       assert(found_match, "no worklist bug");
   598 #ifdef TRACK_PHI_INPUTS
   599 #ifdef ASSERT
   600       // This assert asks about correct handling of PhiNodes, which may not
   601       // have all input edges directly from 'mem'. See BugId 4621264
   602       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
   603       // Increment by exactly one even if there are multiple copies of 'mem'
   604       // coming into the phi, because we will run this block several times
   605       // if there are several copies of 'mem'.  (That's how DU iterators work.)
   606       phi_inputs.at_put(store->_idx, num_mem_inputs);
   607       assert(PhiNode::Input + num_mem_inputs < store->req(),
   608              "Expect at least one phi input will not be from original memory state");
   609 #endif //ASSERT
   610 #endif //TRACK_PHI_INPUTS
   611     } else if (store_block != early) {
   612       // 'store' is between the current LCA and earliest possible block.
   613       // Label its block, and decide later on how to raise the LCA
   614       // to include the effect on LCA of this store.
   615       // If this store's block gets chosen as the raised LCA, we
   616       // will find him on the non_early_stores list and stick him
   617       // with a precedence edge.
   618       // (But, don't bother if LCA is already raised all the way.)
   619       if (LCA != early) {
   620         store_block->set_raise_LCA_mark(load_index);
   621         must_raise_LCA = true;
   622         non_early_stores.push(store);
   623       }
   624     } else {
   625       // Found a possibly-interfering store in the load's 'early' block.
   626       // This means 'load' cannot sink at all in the dominator tree.
   627       // Add an anti-dep edge, and squeeze 'load' into the highest block.
   628       assert(store != load->in(0), "dependence cycle found");
   629       if (verify) {
   630         assert(store->find_edge(load) != -1, "missing precedence edge");
   631       } else {
   632         store->add_prec(load);
   633       }
   634       LCA = early;
   635       // This turns off the process of gathering non_early_stores.
   636     }
   637   }
   638   // (Worklist is now empty; all nearby stores have been visited.)
   640   // Finished if 'load' must be scheduled in its 'early' block.
   641   // If we found any stores there, they have already been given
   642   // precedence edges.
   643   if (LCA == early)  return LCA;
   645   // We get here only if there are no possibly-interfering stores
   646   // in the load's 'early' block.  Move LCA up above all predecessors
   647   // which contain stores we have noted.
   648   //
   649   // The raised LCA block can be a home to such interfering stores,
   650   // but its predecessors must not contain any such stores.
   651   //
   652   // The raised LCA will be a lower bound for placing the load,
   653   // preventing the load from sinking past any block containing
   654   // a store that may invalidate the memory state required by 'load'.
   655   if (must_raise_LCA)
   656     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
   657   if (LCA == early)  return LCA;
   659   // Insert anti-dependence edges from 'load' to each store
   660   // in the non-early LCA block.
   661   // Mine the non_early_stores list for such stores.
   662   if (LCA->raise_LCA_mark() == load_index) {
   663     while (non_early_stores.size() > 0) {
   664       Node* store = non_early_stores.pop();
   665       Block* store_block = _bbs[store->_idx];
   666       if (store_block == LCA) {
   667         // add anti_dependence from store to load in its own block
   668         assert(store != load->in(0), "dependence cycle found");
   669         if (verify) {
   670           assert(store->find_edge(load) != -1, "missing precedence edge");
   671         } else {
   672           store->add_prec(load);
   673         }
   674       } else {
   675         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
   676         // Any other stores we found must be either inside the new LCA
   677         // or else outside the original LCA.  In the latter case, they
   678         // did not interfere with any use of 'load'.
   679         assert(LCA->dominates(store_block)
   680                || !LCA_orig->dominates(store_block), "no stray stores");
   681       }
   682     }
   683   }
   685   // Return the highest block containing stores; any stores
   686   // within that block have been given anti-dependence edges.
   687   return LCA;
   688 }
   690 // This class is used to iterate backwards over the nodes in the graph.
   692 class Node_Backward_Iterator {
   694 private:
   695   Node_Backward_Iterator();
   697 public:
   698   // Constructor for the iterator
   699   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
   701   // Postincrement operator to iterate over the nodes
   702   Node *next();
   704 private:
   705   VectorSet   &_visited;
   706   Node_List   &_stack;
   707   Block_Array &_bbs;
   708 };
   710 // Constructor for the Node_Backward_Iterator
   711 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
   712   : _visited(visited), _stack(stack), _bbs(bbs) {
   713   // The stack should contain exactly the root
   714   stack.clear();
   715   stack.push(root);
   717   // Clear the visited bits
   718   visited.Clear();
   719 }
   721 // Iterator for the Node_Backward_Iterator
   722 Node *Node_Backward_Iterator::next() {
   724   // If the _stack is empty, then just return NULL: finished.
   725   if ( !_stack.size() )
   726     return NULL;
   728   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
   729   // made stateless, so I do not need to record the index 'i' on my _stack.
   730   // Instead I visit all users each time, scanning for unvisited users.
   731   // I visit unvisited not-anti-dependence users first, then anti-dependent
   732   // children next.
   733   Node *self = _stack.pop();
   735   // I cycle here when I am entering a deeper level of recursion.
   736   // The key variable 'self' was set prior to jumping here.
   737   while( 1 ) {
   739     _visited.set(self->_idx);
   741     // Now schedule all uses as late as possible.
   742     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
   743     uint src_rpo = _bbs[src]->_rpo;
   745     // Schedule all nodes in a post-order visit
   746     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
   748     // Scan for unvisited nodes
   749     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
   750       // For all uses, schedule late
   751       Node* n = self->fast_out(i); // Use
   753       // Skip already visited children
   754       if ( _visited.test(n->_idx) )
   755         continue;
   757       // do not traverse backward control edges
   758       Node *use = n->is_Proj() ? n->in(0) : n;
   759       uint use_rpo = _bbs[use->_idx]->_rpo;
   761       if ( use_rpo < src_rpo )
   762         continue;
   764       // Phi nodes always precede uses in a basic block
   765       if ( use_rpo == src_rpo && use->is_Phi() )
   766         continue;
   768       unvisited = n;      // Found unvisited
   770       // Check for possible-anti-dependent
   771       if( !n->needs_anti_dependence_check() )
   772         break;            // Not visited, not anti-dep; schedule it NOW
   773     }
   775     // Did I find an unvisited not-anti-dependent Node?
   776     if ( !unvisited )
   777       break;                  // All done with children; post-visit 'self'
   779     // Visit the unvisited Node.  Contains the obvious push to
   780     // indicate I'm entering a deeper level of recursion.  I push the
   781     // old state onto the _stack and set a new state and loop (recurse).
   782     _stack.push(self);
   783     self = unvisited;
   784   } // End recursion loop
   786   return self;
   787 }
   789 //------------------------------ComputeLatenciesBackwards----------------------
   790 // Compute the latency of all the instructions.
   791 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
   792 #ifndef PRODUCT
   793   if (trace_opto_pipelining())
   794     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
   795 #endif
   797   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
   798   Node *n;
   800   // Walk over all the nodes from last to first
   801   while (n = iter.next()) {
   802     // Set the latency for the definitions of this instruction
   803     partial_latency_of_defs(n);
   804   }
   805 } // end ComputeLatenciesBackwards
   807 //------------------------------partial_latency_of_defs------------------------
   808 // Compute the latency impact of this node on all defs.  This computes
   809 // a number that increases as we approach the beginning of the routine.
   810 void PhaseCFG::partial_latency_of_defs(Node *n) {
   811   // Set the latency for this instruction
   812 #ifndef PRODUCT
   813   if (trace_opto_pipelining()) {
   814     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
   815                n->_idx, _node_latency.at_grow(n->_idx));
   816     dump();
   817   }
   818 #endif
   820   if (n->is_Proj())
   821     n = n->in(0);
   823   if (n->is_Root())
   824     return;
   826   uint nlen = n->len();
   827   uint use_latency = _node_latency.at_grow(n->_idx);
   828   uint use_pre_order = _bbs[n->_idx]->_pre_order;
   830   for ( uint j=0; j<nlen; j++ ) {
   831     Node *def = n->in(j);
   833     if (!def || def == n)
   834       continue;
   836     // Walk backwards thru projections
   837     if (def->is_Proj())
   838       def = def->in(0);
   840 #ifndef PRODUCT
   841     if (trace_opto_pipelining()) {
   842       tty->print("#    in(%2d): ", j);
   843       def->dump();
   844     }
   845 #endif
   847     // If the defining block is not known, assume it is ok
   848     Block *def_block = _bbs[def->_idx];
   849     uint def_pre_order = def_block ? def_block->_pre_order : 0;
   851     if ( (use_pre_order <  def_pre_order) ||
   852          (use_pre_order == def_pre_order && n->is_Phi()) )
   853       continue;
   855     uint delta_latency = n->latency(j);
   856     uint current_latency = delta_latency + use_latency;
   858     if (_node_latency.at_grow(def->_idx) < current_latency) {
   859       _node_latency.at_put_grow(def->_idx, current_latency);
   860     }
   862 #ifndef PRODUCT
   863     if (trace_opto_pipelining()) {
   864       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
   865                     use_latency, j, delta_latency, current_latency, def->_idx,
   866                     _node_latency.at_grow(def->_idx));
   867     }
   868 #endif
   869   }
   870 }
   872 //------------------------------latency_from_use-------------------------------
   873 // Compute the latency of a specific use
   874 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
   875   // If self-reference, return no latency
   876   if (use == n || use->is_Root())
   877     return 0;
   879   uint def_pre_order = _bbs[def->_idx]->_pre_order;
   880   uint latency = 0;
   882   // If the use is not a projection, then it is simple...
   883   if (!use->is_Proj()) {
   884 #ifndef PRODUCT
   885     if (trace_opto_pipelining()) {
   886       tty->print("#    out(): ");
   887       use->dump();
   888     }
   889 #endif
   891     uint use_pre_order = _bbs[use->_idx]->_pre_order;
   893     if (use_pre_order < def_pre_order)
   894       return 0;
   896     if (use_pre_order == def_pre_order && use->is_Phi())
   897       return 0;
   899     uint nlen = use->len();
   900     uint nl = _node_latency.at_grow(use->_idx);
   902     for ( uint j=0; j<nlen; j++ ) {
   903       if (use->in(j) == n) {
   904         // Change this if we want local latencies
   905         uint ul = use->latency(j);
   906         uint  l = ul + nl;
   907         if (latency < l) latency = l;
   908 #ifndef PRODUCT
   909         if (trace_opto_pipelining()) {
   910           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
   911                         nl, j, ul, l, latency);
   912         }
   913 #endif
   914       }
   915     }
   916   } else {
   917     // This is a projection, just grab the latency of the use(s)
   918     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
   919       uint l = latency_from_use(use, def, use->fast_out(j));
   920       if (latency < l) latency = l;
   921     }
   922   }
   924   return latency;
   925 }
   927 //------------------------------latency_from_uses------------------------------
   928 // Compute the latency of this instruction relative to all of it's uses.
   929 // This computes a number that increases as we approach the beginning of the
   930 // routine.
   931 void PhaseCFG::latency_from_uses(Node *n) {
   932   // Set the latency for this instruction
   933 #ifndef PRODUCT
   934   if (trace_opto_pipelining()) {
   935     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
   936                n->_idx, _node_latency.at_grow(n->_idx));
   937     dump();
   938   }
   939 #endif
   940   uint latency=0;
   941   const Node *def = n->is_Proj() ? n->in(0): n;
   943   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   944     uint l = latency_from_use(n, def, n->fast_out(i));
   946     if (latency < l) latency = l;
   947   }
   949   _node_latency.at_put_grow(n->_idx, latency);
   950 }
   952 //------------------------------hoist_to_cheaper_block-------------------------
   953 // Pick a block for node self, between early and LCA, that is a cheaper
   954 // alternative to LCA.
   955 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
   956   const double delta = 1+PROB_UNLIKELY_MAG(4);
   957   Block* least       = LCA;
   958   double least_freq  = least->_freq;
   959   uint target        = _node_latency.at_grow(self->_idx);
   960   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
   961   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
   962   bool in_latency    = (target <= start_latency);
   963   const Block* root_block = _bbs[_root->_idx];
   965   // Turn off latency scheduling if scheduling is just plain off
   966   if (!C->do_scheduling())
   967     in_latency = true;
   969   // Do not hoist (to cover latency) instructions which target a
   970   // single register.  Hoisting stretches the live range of the
   971   // single register and may force spilling.
   972   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
   973   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
   974     in_latency = true;
   976 #ifndef PRODUCT
   977   if (trace_opto_pipelining()) {
   978     tty->print("# Find cheaper block for latency %d: ",
   979       _node_latency.at_grow(self->_idx));
   980     self->dump();
   981     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
   982       LCA->_pre_order,
   983       LCA->_nodes[0]->_idx,
   984       start_latency,
   985       LCA->_nodes[LCA->end_idx()]->_idx,
   986       end_latency,
   987       least_freq);
   988   }
   989 #endif
   991   // Walk up the dominator tree from LCA (Lowest common ancestor) to
   992   // the earliest legal location.  Capture the least execution frequency.
   993   while (LCA != early) {
   994     LCA = LCA->_idom;         // Follow up the dominator tree
   996     if (LCA == NULL) {
   997       // Bailout without retry
   998       C->record_method_not_compilable("late schedule failed: LCA == NULL");
   999       return least;
  1002     // Don't hoist machine instructions to the root basic block
  1003     if (mach && LCA == root_block)
  1004       break;
  1006     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
  1007     uint end_idx   = LCA->end_idx();
  1008     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
  1009     double LCA_freq = LCA->_freq;
  1010 #ifndef PRODUCT
  1011     if (trace_opto_pipelining()) {
  1012       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1013         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
  1015 #endif
  1016     if (LCA_freq < least_freq              || // Better Frequency
  1017         ( !in_latency                   &&    // No block containing latency
  1018           LCA_freq < least_freq * delta &&    // No worse frequency
  1019           target >= end_lat             &&    // within latency range
  1020           !self->is_iteratively_computed() )  // But don't hoist IV increments
  1021              // because they may end up above other uses of their phi forcing
  1022              // their result register to be different from their input.
  1023        ) {
  1024       least = LCA;            // Found cheaper block
  1025       least_freq = LCA_freq;
  1026       start_latency = start_lat;
  1027       end_latency = end_lat;
  1028       if (target <= start_lat)
  1029         in_latency = true;
  1033 #ifndef PRODUCT
  1034   if (trace_opto_pipelining()) {
  1035     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
  1036       least->_pre_order, start_latency, least_freq);
  1038 #endif
  1040   // See if the latency needs to be updated
  1041   if (target < end_latency) {
  1042 #ifndef PRODUCT
  1043     if (trace_opto_pipelining()) {
  1044       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
  1046 #endif
  1047     _node_latency.at_put_grow(self->_idx, end_latency);
  1048     partial_latency_of_defs(self);
  1051   return least;
  1055 //------------------------------schedule_late-----------------------------------
  1056 // Now schedule all codes as LATE as possible.  This is the LCA in the
  1057 // dominator tree of all USES of a value.  Pick the block with the least
  1058 // loop nesting depth that is lowest in the dominator tree.
  1059 extern const char must_clone[];
  1060 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
  1061 #ifndef PRODUCT
  1062   if (trace_opto_pipelining())
  1063     tty->print("\n#---- schedule_late ----\n");
  1064 #endif
  1066   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
  1067   Node *self;
  1069   // Walk over all the nodes from last to first
  1070   while (self = iter.next()) {
  1071     Block* early = _bbs[self->_idx];   // Earliest legal placement
  1073     if (self->is_top()) {
  1074       // Top node goes in bb #2 with other constants.
  1075       // It must be special-cased, because it has no out edges.
  1076       early->add_inst(self);
  1077       continue;
  1080     // No uses, just terminate
  1081     if (self->outcnt() == 0) {
  1082       assert(self->Opcode() == Op_MachProj, "sanity");
  1083       continue;                   // Must be a dead machine projection
  1086     // If node is pinned in the block, then no scheduling can be done.
  1087     if( self->pinned() )          // Pinned in block?
  1088       continue;
  1090     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1091     if (mach) {
  1092       switch (mach->ideal_Opcode()) {
  1093       case Op_CreateEx:
  1094         // Don't move exception creation
  1095         early->add_inst(self);
  1096         continue;
  1097         break;
  1098       case Op_CheckCastPP:
  1099         // Don't move CheckCastPP nodes away from their input, if the input
  1100         // is a rawptr (5071820).
  1101         Node *def = self->in(1);
  1102         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
  1103           early->add_inst(self);
  1104           continue;
  1106         break;
  1110     // Gather LCA of all uses
  1111     Block *LCA = NULL;
  1113       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
  1114         // For all uses, find LCA
  1115         Node* use = self->fast_out(i);
  1116         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
  1118     }  // (Hide defs of imax, i from rest of block.)
  1120     // Place temps in the block of their use.  This isn't a
  1121     // requirement for correctness but it reduces useless
  1122     // interference between temps and other nodes.
  1123     if (mach != NULL && mach->is_MachTemp()) {
  1124       _bbs.map(self->_idx, LCA);
  1125       LCA->add_inst(self);
  1126       continue;
  1129     // Check if 'self' could be anti-dependent on memory
  1130     if (self->needs_anti_dependence_check()) {
  1131       // Hoist LCA above possible-defs and insert anti-dependences to
  1132       // defs in new LCA block.
  1133       LCA = insert_anti_dependences(LCA, self);
  1136     if (early->_dom_depth > LCA->_dom_depth) {
  1137       // Somehow the LCA has moved above the earliest legal point.
  1138       // (One way this can happen is via memory_early_block.)
  1139       if (C->subsume_loads() == true && !C->failing()) {
  1140         // Retry with subsume_loads == false
  1141         // If this is the first failure, the sentinel string will "stick"
  1142         // to the Compile object, and the C2Compiler will see it and retry.
  1143         C->record_failure(C2Compiler::retry_no_subsuming_loads());
  1144       } else {
  1145         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
  1146         C->record_method_not_compilable("late schedule failed: incorrect graph");
  1148       return;
  1151     // If there is no opportunity to hoist, then we're done.
  1152     bool try_to_hoist = (LCA != early);
  1154     // Must clone guys stay next to use; no hoisting allowed.
  1155     // Also cannot hoist guys that alter memory or are otherwise not
  1156     // allocatable (hoisting can make a value live longer, leading to
  1157     // anti and output dependency problems which are normally resolved
  1158     // by the register allocator giving everyone a different register).
  1159     if (mach != NULL && must_clone[mach->ideal_Opcode()])
  1160       try_to_hoist = false;
  1162     Block* late = NULL;
  1163     if (try_to_hoist) {
  1164       // Now find the block with the least execution frequency.
  1165       // Start at the latest schedule and work up to the earliest schedule
  1166       // in the dominator tree.  Thus the Node will dominate all its uses.
  1167       late = hoist_to_cheaper_block(LCA, early, self);
  1168     } else {
  1169       // Just use the LCA of the uses.
  1170       late = LCA;
  1173     // Put the node into target block
  1174     schedule_node_into_block(self, late);
  1176 #ifdef ASSERT
  1177     if (self->needs_anti_dependence_check()) {
  1178       // since precedence edges are only inserted when we're sure they
  1179       // are needed make sure that after placement in a block we don't
  1180       // need any new precedence edges.
  1181       verify_anti_dependences(late, self);
  1183 #endif
  1184   } // Loop until all nodes have been visited
  1186 } // end ScheduleLate
  1188 //------------------------------GlobalCodeMotion-------------------------------
  1189 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
  1190   ResourceMark rm;
  1192 #ifndef PRODUCT
  1193   if (trace_opto_pipelining()) {
  1194     tty->print("\n---- Start GlobalCodeMotion ----\n");
  1196 #endif
  1198   // Initialize the bbs.map for things on the proj_list
  1199   uint i;
  1200   for( i=0; i < proj_list.size(); i++ )
  1201     _bbs.map(proj_list[i]->_idx, NULL);
  1203   // Set the basic block for Nodes pinned into blocks
  1204   Arena *a = Thread::current()->resource_area();
  1205   VectorSet visited(a);
  1206   schedule_pinned_nodes( visited );
  1208   // Find the earliest Block any instruction can be placed in.  Some
  1209   // instructions are pinned into Blocks.  Unpinned instructions can
  1210   // appear in last block in which all their inputs occur.
  1211   visited.Clear();
  1212   Node_List stack(a);
  1213   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
  1214   if (!schedule_early(visited, stack)) {
  1215     // Bailout without retry
  1216     C->record_method_not_compilable("early schedule failed");
  1217     return;
  1220   // Build Def-Use edges.
  1221   proj_list.push(_root);        // Add real root as another root
  1222   proj_list.pop();
  1224   // Compute the latency information (via backwards walk) for all the
  1225   // instructions in the graph
  1226   GrowableArray<uint> node_latency;
  1227   _node_latency = node_latency;
  1229   if( C->do_scheduling() )
  1230     ComputeLatenciesBackwards(visited, stack);
  1232   // Now schedule all codes as LATE as possible.  This is the LCA in the
  1233   // dominator tree of all USES of a value.  Pick the block with the least
  1234   // loop nesting depth that is lowest in the dominator tree.
  1235   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  1236   schedule_late(visited, stack);
  1237   if( C->failing() ) {
  1238     // schedule_late fails only when graph is incorrect.
  1239     assert(!VerifyGraphEdges, "verification should have failed");
  1240     return;
  1243   unique = C->unique();
  1245 #ifndef PRODUCT
  1246   if (trace_opto_pipelining()) {
  1247     tty->print("\n---- Detect implicit null checks ----\n");
  1249 #endif
  1251   // Detect implicit-null-check opportunities.  Basically, find NULL checks
  1252   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  1253   // I can generate a memory op if there is not one nearby.
  1254   if (C->is_method_compilation()) {
  1255     // Don't do it for natives, adapters, or runtime stubs
  1256     int allowed_reasons = 0;
  1257     // ...and don't do it when there have been too many traps, globally.
  1258     for (int reason = (int)Deoptimization::Reason_none+1;
  1259          reason < Compile::trapHistLength; reason++) {
  1260       assert(reason < BitsPerInt, "recode bit map");
  1261       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
  1262         allowed_reasons |= nth_bit(reason);
  1264     // By reversing the loop direction we get a very minor gain on mpegaudio.
  1265     // Feel free to revert to a forward loop for clarity.
  1266     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
  1267     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
  1268       Node *proj = matcher._null_check_tests[i  ];
  1269       Node *val  = matcher._null_check_tests[i+1];
  1270       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
  1271       // The implicit_null_check will only perform the transformation
  1272       // if the null branch is truly uncommon, *and* it leads to an
  1273       // uncommon trap.  Combined with the too_many_traps guards
  1274       // above, this prevents SEGV storms reported in 6366351,
  1275       // by recompiling offending methods without this optimization.
  1279 #ifndef PRODUCT
  1280   if (trace_opto_pipelining()) {
  1281     tty->print("\n---- Start Local Scheduling ----\n");
  1283 #endif
  1285   // Schedule locally.  Right now a simple topological sort.
  1286   // Later, do a real latency aware scheduler.
  1287   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
  1288   memset( ready_cnt, -1, C->unique() * sizeof(int) );
  1289   visited.Clear();
  1290   for (i = 0; i < _num_blocks; i++) {
  1291     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
  1292       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  1293         C->record_method_not_compilable("local schedule failed");
  1295       return;
  1299   // If we inserted any instructions between a Call and his CatchNode,
  1300   // clone the instructions on all paths below the Catch.
  1301   for( i=0; i < _num_blocks; i++ )
  1302     _blocks[i]->call_catch_cleanup(_bbs);
  1304 #ifndef PRODUCT
  1305   if (trace_opto_pipelining()) {
  1306     tty->print("\n---- After GlobalCodeMotion ----\n");
  1307     for (uint i = 0; i < _num_blocks; i++) {
  1308       _blocks[i]->dump();
  1311 #endif
  1315 //------------------------------Estimate_Block_Frequency-----------------------
  1316 // Estimate block frequencies based on IfNode probabilities.
  1317 void PhaseCFG::Estimate_Block_Frequency() {
  1318   int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
  1319   // Most of our algorithms will die horribly if frequency can become
  1320   // negative so make sure cnts is a sane value.
  1321   if( cnts <= 0 ) cnts = 1;
  1322   float f = (float)cnts/(float)FreqCountInvocations;
  1324   // Create the loop tree and calculate loop depth.
  1325   _root_loop = create_loop_tree();
  1326   _root_loop->compute_loop_depth(0);
  1328   // Compute block frequency of each block, relative to a single loop entry.
  1329   _root_loop->compute_freq();
  1331   // Adjust all frequencies to be relative to a single method entry
  1332   _root_loop->_freq = f * 1.0;
  1333   _root_loop->scale_freq();
  1335   // force paths ending at uncommon traps to be infrequent
  1336   Block_List worklist;
  1337   Block* root_blk = _blocks[0];
  1338   for (uint i = 0; i < root_blk->num_preds(); i++) {
  1339     Block *pb = _bbs[root_blk->pred(i)->_idx];
  1340     if (pb->has_uncommon_code()) {
  1341       worklist.push(pb);
  1344   while (worklist.size() > 0) {
  1345     Block* uct = worklist.pop();
  1346     uct->_freq = PROB_MIN;
  1347     for (uint i = 0; i < uct->num_preds(); i++) {
  1348       Block *pb = _bbs[uct->pred(i)->_idx];
  1349       if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
  1350         worklist.push(pb);
  1355 #ifndef PRODUCT
  1356   if (PrintCFGBlockFreq) {
  1357     tty->print_cr("CFG Block Frequencies");
  1358     _root_loop->dump_tree();
  1359     if (Verbose) {
  1360       tty->print_cr("PhaseCFG dump");
  1361       dump();
  1362       tty->print_cr("Node dump");
  1363       _root->dump(99999);
  1366 #endif
  1369 //----------------------------create_loop_tree--------------------------------
  1370 // Create a loop tree from the CFG
  1371 CFGLoop* PhaseCFG::create_loop_tree() {
  1373 #ifdef ASSERT
  1374   assert( _blocks[0] == _broot, "" );
  1375   for (uint i = 0; i < _num_blocks; i++ ) {
  1376     Block *b = _blocks[i];
  1377     // Check that _loop field are clear...we could clear them if not.
  1378     assert(b->_loop == NULL, "clear _loop expected");
  1379     // Sanity check that the RPO numbering is reflected in the _blocks array.
  1380     // It doesn't have to be for the loop tree to be built, but if it is not,
  1381     // then the blocks have been reordered since dom graph building...which
  1382     // may question the RPO numbering
  1383     assert(b->_rpo == i, "unexpected reverse post order number");
  1385 #endif
  1387   int idct = 0;
  1388   CFGLoop* root_loop = new CFGLoop(idct++);
  1390   Block_List worklist;
  1392   // Assign blocks to loops
  1393   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
  1394     Block *b = _blocks[i];
  1396     if (b->head()->is_Loop()) {
  1397       Block* loop_head = b;
  1398       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1399       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
  1400       Block* tail = _bbs[tail_n->_idx];
  1402       // Defensively filter out Loop nodes for non-single-entry loops.
  1403       // For all reasonable loops, the head occurs before the tail in RPO.
  1404       if (i <= tail->_rpo) {
  1406         // The tail and (recursive) predecessors of the tail
  1407         // are made members of a new loop.
  1409         assert(worklist.size() == 0, "nonempty worklist");
  1410         CFGLoop* nloop = new CFGLoop(idct++);
  1411         assert(loop_head->_loop == NULL, "just checking");
  1412         loop_head->_loop = nloop;
  1413         // Add to nloop so push_pred() will skip over inner loops
  1414         nloop->add_member(loop_head);
  1415         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
  1417         while (worklist.size() > 0) {
  1418           Block* member = worklist.pop();
  1419           if (member != loop_head) {
  1420             for (uint j = 1; j < member->num_preds(); j++) {
  1421               nloop->push_pred(member, j, worklist, _bbs);
  1429   // Create a member list for each loop consisting
  1430   // of both blocks and (immediate child) loops.
  1431   for (uint i = 0; i < _num_blocks; i++) {
  1432     Block *b = _blocks[i];
  1433     CFGLoop* lp = b->_loop;
  1434     if (lp == NULL) {
  1435       // Not assigned to a loop. Add it to the method's pseudo loop.
  1436       b->_loop = root_loop;
  1437       lp = root_loop;
  1439     if (lp == root_loop || b != lp->head()) { // loop heads are already members
  1440       lp->add_member(b);
  1442     if (lp != root_loop) {
  1443       if (lp->parent() == NULL) {
  1444         // Not a nested loop. Make it a child of the method's pseudo loop.
  1445         root_loop->add_nested_loop(lp);
  1447       if (b == lp->head()) {
  1448         // Add nested loop to member list of parent loop.
  1449         lp->parent()->add_member(lp);
  1454   return root_loop;
  1457 //------------------------------push_pred--------------------------------------
  1458 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
  1459   Node* pred_n = blk->pred(i);
  1460   Block* pred = node_to_blk[pred_n->_idx];
  1461   CFGLoop *pred_loop = pred->_loop;
  1462   if (pred_loop == NULL) {
  1463     // Filter out blocks for non-single-entry loops.
  1464     // For all reasonable loops, the head occurs before the tail in RPO.
  1465     if (pred->_rpo > head()->_rpo) {
  1466       pred->_loop = this;
  1467       worklist.push(pred);
  1469   } else if (pred_loop != this) {
  1470     // Nested loop.
  1471     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
  1472       pred_loop = pred_loop->_parent;
  1474     // Make pred's loop be a child
  1475     if (pred_loop->_parent == NULL) {
  1476       add_nested_loop(pred_loop);
  1477       // Continue with loop entry predecessor.
  1478       Block* pred_head = pred_loop->head();
  1479       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1480       assert(pred_head != head(), "loop head in only one loop");
  1481       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
  1482     } else {
  1483       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
  1488 //------------------------------add_nested_loop--------------------------------
  1489 // Make cl a child of the current loop in the loop tree.
  1490 void CFGLoop::add_nested_loop(CFGLoop* cl) {
  1491   assert(_parent == NULL, "no parent yet");
  1492   assert(cl != this, "not my own parent");
  1493   cl->_parent = this;
  1494   CFGLoop* ch = _child;
  1495   if (ch == NULL) {
  1496     _child = cl;
  1497   } else {
  1498     while (ch->_sibling != NULL) { ch = ch->_sibling; }
  1499     ch->_sibling = cl;
  1503 //------------------------------compute_loop_depth-----------------------------
  1504 // Store the loop depth in each CFGLoop object.
  1505 // Recursively walk the children to do the same for them.
  1506 void CFGLoop::compute_loop_depth(int depth) {
  1507   _depth = depth;
  1508   CFGLoop* ch = _child;
  1509   while (ch != NULL) {
  1510     ch->compute_loop_depth(depth + 1);
  1511     ch = ch->_sibling;
  1515 //------------------------------compute_freq-----------------------------------
  1516 // Compute the frequency of each block and loop, relative to a single entry
  1517 // into the dominating loop head.
  1518 void CFGLoop::compute_freq() {
  1519   // Bottom up traversal of loop tree (visit inner loops first.)
  1520   // Set loop head frequency to 1.0, then transitively
  1521   // compute frequency for all successors in the loop,
  1522   // as well as for each exit edge.  Inner loops are
  1523   // treated as single blocks with loop exit targets
  1524   // as the successor blocks.
  1526   // Nested loops first
  1527   CFGLoop* ch = _child;
  1528   while (ch != NULL) {
  1529     ch->compute_freq();
  1530     ch = ch->_sibling;
  1532   assert (_members.length() > 0, "no empty loops");
  1533   Block* hd = head();
  1534   hd->_freq = 1.0f;
  1535   for (int i = 0; i < _members.length(); i++) {
  1536     CFGElement* s = _members.at(i);
  1537     float freq = s->_freq;
  1538     if (s->is_block()) {
  1539       Block* b = s->as_Block();
  1540       for (uint j = 0; j < b->_num_succs; j++) {
  1541         Block* sb = b->_succs[j];
  1542         update_succ_freq(sb, freq * b->succ_prob(j));
  1544     } else {
  1545       CFGLoop* lp = s->as_CFGLoop();
  1546       assert(lp->_parent == this, "immediate child");
  1547       for (int k = 0; k < lp->_exits.length(); k++) {
  1548         Block* eb = lp->_exits.at(k).get_target();
  1549         float prob = lp->_exits.at(k).get_prob();
  1550         update_succ_freq(eb, freq * prob);
  1555 #if 0
  1556   // Raise frequency of the loop backedge block, in an effort
  1557   // to keep it empty.  Skip the method level "loop".
  1558   if (_parent != NULL) {
  1559     CFGElement* s = _members.at(_members.length() - 1);
  1560     if (s->is_block()) {
  1561       Block* bk = s->as_Block();
  1562       if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
  1563         // almost any value >= 1.0f works
  1564         // FIXME: raw constant
  1565         bk->_freq = 1.05f;
  1569 #endif
  1571   // For all loops other than the outer, "method" loop,
  1572   // sum and normalize the exit probability. The "method" loop
  1573   // should keep the initial exit probability of 1, so that
  1574   // inner blocks do not get erroneously scaled.
  1575   if (_depth != 0) {
  1576     // Total the exit probabilities for this loop.
  1577     float exits_sum = 0.0f;
  1578     for (int i = 0; i < _exits.length(); i++) {
  1579       exits_sum += _exits.at(i).get_prob();
  1582     // Normalize the exit probabilities. Until now, the
  1583     // probabilities estimate the possibility of exit per
  1584     // a single loop iteration; afterward, they estimate
  1585     // the probability of exit per loop entry.
  1586     for (int i = 0; i < _exits.length(); i++) {
  1587       Block* et = _exits.at(i).get_target();
  1588       float new_prob = _exits.at(i).get_prob() / exits_sum;
  1589       BlockProbPair bpp(et, new_prob);
  1590       _exits.at_put(i, bpp);
  1593     // Save the total, but guard against unreasoable probability,
  1594     // as the value is used to estimate the loop trip count.
  1595     // An infinite trip count would blur relative block
  1596     // frequencies.
  1597     if (exits_sum > 1.0f) exits_sum = 1.0;
  1598     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
  1599     _exit_prob = exits_sum;
  1603 //------------------------------succ_prob-------------------------------------
  1604 // Determine the probability of reaching successor 'i' from the receiver block.
  1605 float Block::succ_prob(uint i) {
  1606   int eidx = end_idx();
  1607   Node *n = _nodes[eidx];  // Get ending Node
  1608   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
  1610   // Switch on branch type
  1611   switch( op ) {
  1612   case Op_CountedLoopEnd:
  1613   case Op_If: {
  1614     assert (i < 2, "just checking");
  1615     // Conditionals pass on only part of their frequency
  1616     float prob  = n->as_MachIf()->_prob;
  1617     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
  1618     // If succ[i] is the FALSE branch, invert path info
  1619     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
  1620       return 1.0f - prob; // not taken
  1621     } else {
  1622       return prob; // taken
  1626   case Op_Jump:
  1627     // Divide the frequency between all successors evenly
  1628     return 1.0f/_num_succs;
  1630   case Op_Catch: {
  1631     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
  1632     if (ci->_con == CatchProjNode::fall_through_index) {
  1633       // Fall-thru path gets the lion's share.
  1634       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
  1635     } else {
  1636       // Presume exceptional paths are equally unlikely
  1637       return PROB_UNLIKELY_MAG(5);
  1641   case Op_Root:
  1642   case Op_Goto:
  1643     // Pass frequency straight thru to target
  1644     return 1.0f;
  1646   case Op_NeverBranch:
  1647     return 0.0f;
  1649   case Op_TailCall:
  1650   case Op_TailJump:
  1651   case Op_Return:
  1652   case Op_Halt:
  1653   case Op_Rethrow:
  1654     // Do not push out freq to root block
  1655     return 0.0f;
  1657   default:
  1658     ShouldNotReachHere();
  1661   return 0.0f;
  1664 //------------------------------update_succ_freq-------------------------------
  1665 // Update the appropriate frequency associated with block 'b', a succesor of
  1666 // a block in this loop.
  1667 void CFGLoop::update_succ_freq(Block* b, float freq) {
  1668   if (b->_loop == this) {
  1669     if (b == head()) {
  1670       // back branch within the loop
  1671       // Do nothing now, the loop carried frequency will be
  1672       // adjust later in scale_freq().
  1673     } else {
  1674       // simple branch within the loop
  1675       b->_freq += freq;
  1677   } else if (!in_loop_nest(b)) {
  1678     // branch is exit from this loop
  1679     BlockProbPair bpp(b, freq);
  1680     _exits.append(bpp);
  1681   } else {
  1682     // branch into nested loop
  1683     CFGLoop* ch = b->_loop;
  1684     ch->_freq += freq;
  1688 //------------------------------in_loop_nest-----------------------------------
  1689 // Determine if block b is in the receiver's loop nest.
  1690 bool CFGLoop::in_loop_nest(Block* b) {
  1691   int depth = _depth;
  1692   CFGLoop* b_loop = b->_loop;
  1693   int b_depth = b_loop->_depth;
  1694   if (depth == b_depth) {
  1695     return true;
  1697   while (b_depth > depth) {
  1698     b_loop = b_loop->_parent;
  1699     b_depth = b_loop->_depth;
  1701   return b_loop == this;
  1704 //------------------------------scale_freq-------------------------------------
  1705 // Scale frequency of loops and blocks by trip counts from outer loops
  1706 // Do a top down traversal of loop tree (visit outer loops first.)
  1707 void CFGLoop::scale_freq() {
  1708   float loop_freq = _freq * trip_count();
  1709   for (int i = 0; i < _members.length(); i++) {
  1710     CFGElement* s = _members.at(i);
  1711     s->_freq *= loop_freq;
  1713   CFGLoop* ch = _child;
  1714   while (ch != NULL) {
  1715     ch->scale_freq();
  1716     ch = ch->_sibling;
  1720 #ifndef PRODUCT
  1721 //------------------------------dump_tree--------------------------------------
  1722 void CFGLoop::dump_tree() const {
  1723   dump();
  1724   if (_child != NULL)   _child->dump_tree();
  1725   if (_sibling != NULL) _sibling->dump_tree();
  1728 //------------------------------dump-------------------------------------------
  1729 void CFGLoop::dump() const {
  1730   for (int i = 0; i < _depth; i++) tty->print("   ");
  1731   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
  1732              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  1733   for (int i = 0; i < _depth; i++) tty->print("   ");
  1734   tty->print("         members:", _id);
  1735   int k = 0;
  1736   for (int i = 0; i < _members.length(); i++) {
  1737     if (k++ >= 6) {
  1738       tty->print("\n              ");
  1739       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1740       k = 0;
  1742     CFGElement *s = _members.at(i);
  1743     if (s->is_block()) {
  1744       Block *b = s->as_Block();
  1745       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
  1746     } else {
  1747       CFGLoop* lp = s->as_CFGLoop();
  1748       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
  1751   tty->print("\n");
  1752   for (int i = 0; i < _depth; i++) tty->print("   ");
  1753   tty->print("         exits:  ");
  1754   k = 0;
  1755   for (int i = 0; i < _exits.length(); i++) {
  1756     if (k++ >= 7) {
  1757       tty->print("\n              ");
  1758       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1759       k = 0;
  1761     Block *blk = _exits.at(i).get_target();
  1762     float prob = _exits.at(i).get_prob();
  1763     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  1765   tty->print("\n");
  1767 #endif

mercurial