src/share/vm/opto/addnode.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 452
ff5961f4c095
child 467
4d428c5b4cb3
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_addnode.cpp.incl"
    30 #define MAXFLOAT        ((float)3.40282346638528860e+38)
    32 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    33 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    34 // all inherited from this class.  The various identity values are supplied
    35 // by virtual functions.
    38 //=============================================================================
    39 //------------------------------hash-------------------------------------------
    40 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    42 // the same value in the presence of edge swapping.
    43 uint AddNode::hash() const {
    44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    45 }
    47 //------------------------------Identity---------------------------------------
    48 // If either input is a constant 0, return the other input.
    49 Node *AddNode::Identity( PhaseTransform *phase ) {
    50   const Type *zero = add_id();  // The additive identity
    51   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    52   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    53   return this;
    54 }
    56 //------------------------------commute----------------------------------------
    57 // Commute operands to move loads and constants to the right.
    58 static bool commute( Node *add, int con_left, int con_right ) {
    59   Node *in1 = add->in(1);
    60   Node *in2 = add->in(2);
    62   // Convert "1+x" into "x+1".
    63   // Right is a constant; leave it
    64   if( con_right ) return false;
    65   // Left is a constant; move it right.
    66   if( con_left ) {
    67     add->swap_edges(1, 2);
    68     return true;
    69   }
    71   // Convert "Load+x" into "x+Load".
    72   // Now check for loads
    73   if( in2->is_Load() ) return false;
    74   // Left is a Load and Right is not; move it right.
    75   if( in1->is_Load() ) {
    76     add->swap_edges(1, 2);
    77     return true;
    78   }
    80   PhiNode *phi;
    81   // Check for tight loop increments: Loop-phi of Add of loop-phi
    82   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    83     return false;
    84   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    85     add->swap_edges(1, 2);
    86     return true;
    87   }
    89   // Otherwise, sort inputs (commutativity) to help value numbering.
    90   if( in1->_idx > in2->_idx ) {
    91     add->swap_edges(1, 2);
    92     return true;
    93   }
    94   return false;
    95 }
    97 //------------------------------Idealize---------------------------------------
    98 // If we get here, we assume we are associative!
    99 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   100   const Type *t1 = phase->type( in(1) );
   101   const Type *t2 = phase->type( in(2) );
   102   int con_left  = t1->singleton();
   103   int con_right = t2->singleton();
   105   // Check for commutative operation desired
   106   if( commute(this,con_left,con_right) ) return this;
   108   AddNode *progress = NULL;             // Progress flag
   110   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   111   // constant, and the left input is an add of a constant, flatten the
   112   // expression tree.
   113   Node *add1 = in(1);
   114   Node *add2 = in(2);
   115   int add1_op = add1->Opcode();
   116   int this_op = Opcode();
   117   if( con_right && t2 != Type::TOP && // Right input is a constant?
   118       add1_op == this_op ) { // Left input is an Add?
   120     // Type of left _in right input
   121     const Type *t12 = phase->type( add1->in(2) );
   122     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   123       // Check for rare case of closed data cycle which can happen inside
   124       // unreachable loops. In these cases the computation is undefined.
   125 #ifdef ASSERT
   126       Node *add11    = add1->in(1);
   127       int   add11_op = add11->Opcode();
   128       if( (add1 == add1->in(1))
   129          || (add11_op == this_op && add11->in(1) == add1) ) {
   130         assert(false, "dead loop in AddNode::Ideal");
   131       }
   132 #endif
   133       // The Add of the flattened expression
   134       Node *x1 = add1->in(1);
   135       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   136       PhaseIterGVN *igvn = phase->is_IterGVN();
   137       if( igvn ) {
   138         set_req_X(2,x2,igvn);
   139         set_req_X(1,x1,igvn);
   140       } else {
   141         set_req(2,x2);
   142         set_req(1,x1);
   143       }
   144       progress = this;            // Made progress
   145       add1 = in(1);
   146       add1_op = add1->Opcode();
   147     }
   148   }
   150   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   151   if( add1_op == this_op && !con_right ) {
   152     Node *a12 = add1->in(2);
   153     const Type *t12 = phase->type( a12 );
   154     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
   155       add2 = add1->clone();
   156       add2->set_req(2, in(2));
   157       add2 = phase->transform(add2);
   158       set_req(1, add2);
   159       set_req(2, a12);
   160       progress = this;
   161       add2 = a12;
   162     }
   163   }
   165   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   166   int add2_op = add2->Opcode();
   167   if( add2_op == this_op && !con_left ) {
   168     Node *a22 = add2->in(2);
   169     const Type *t22 = phase->type( a22 );
   170     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
   171       Node *addx = add2->clone();
   172       addx->set_req(1, in(1));
   173       addx->set_req(2, add2->in(1));
   174       addx = phase->transform(addx);
   175       set_req(1, addx);
   176       set_req(2, a22);
   177       progress = this;
   178     }
   179   }
   181   return progress;
   182 }
   184 //------------------------------Value-----------------------------------------
   185 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   186 // the other input's symbols.
   187 const Type *AddNode::Value( PhaseTransform *phase ) const {
   188   // Either input is TOP ==> the result is TOP
   189   const Type *t1 = phase->type( in(1) );
   190   const Type *t2 = phase->type( in(2) );
   191   if( t1 == Type::TOP ) return Type::TOP;
   192   if( t2 == Type::TOP ) return Type::TOP;
   194   // Either input is BOTTOM ==> the result is the local BOTTOM
   195   const Type *bot = bottom_type();
   196   if( (t1 == bot) || (t2 == bot) ||
   197       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   198     return bot;
   200   // Check for an addition involving the additive identity
   201   const Type *tadd = add_of_identity( t1, t2 );
   202   if( tadd ) return tadd;
   204   return add_ring(t1,t2);               // Local flavor of type addition
   205 }
   207 //------------------------------add_identity-----------------------------------
   208 // Check for addition of the identity
   209 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   210   const Type *zero = add_id();  // The additive identity
   211   if( t1->higher_equal( zero ) ) return t2;
   212   if( t2->higher_equal( zero ) ) return t1;
   214   return NULL;
   215 }
   218 //=============================================================================
   219 //------------------------------Idealize---------------------------------------
   220 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   221   int op1 = in(1)->Opcode();
   222   int op2 = in(2)->Opcode();
   223   // Fold (con1-x)+con2 into (con1+con2)-x
   224   if( op1 == Op_SubI ) {
   225     const Type *t_sub1 = phase->type( in(1)->in(1) );
   226     const Type *t_2    = phase->type( in(2)        );
   227     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   228       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   229                               in(1)->in(2) );
   230     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   231     if( op2 == Op_SubI ) {
   232       // Check for dead cycle: d = (a-b)+(c-d)
   233       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   234               "dead loop in AddINode::Ideal" );
   235       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
   236       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
   237       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
   238       return sub;
   239     }
   240   }
   242   // Convert "x+(0-y)" into "(x-y)"
   243   if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
   244     return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
   246   // Convert "(0-y)+x" into "(x-y)"
   247   if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
   248     return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
   250   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   251   // Helps with array allocation math constant folding
   252   // See 4790063:
   253   // Unrestricted transformation is unsafe for some runtime values of 'x'
   254   // ( x ==  0, z == 1, y == -1 ) fails
   255   // ( x == -5, z == 1, y ==  1 ) fails
   256   // Transform works for small z and small negative y when the addition
   257   // (x + (y << z)) does not cross zero.
   258   // Implement support for negative y and (x >= -(y << z))
   259   // Have not observed cases where type information exists to support
   260   // positive y and (x <= -(y << z))
   261   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   262       in(1)->in(2)->Opcode() == Op_ConI ) {
   263     jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   264     jint y = phase->type( in(2) )->is_int()->get_con();
   266     if( z < 5 && -5 < y && y < 0 ) {
   267       const Type *t_in11 = phase->type(in(1)->in(1));
   268       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   269         Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
   270         return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
   271       }
   272     }
   273   }
   275   return AddNode::Ideal(phase, can_reshape);
   276 }
   279 //------------------------------Identity---------------------------------------
   280 // Fold (x-y)+y  OR  y+(x-y)  into  x
   281 Node *AddINode::Identity( PhaseTransform *phase ) {
   282   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   283     return in(1)->in(1);
   284   }
   285   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   286     return in(2)->in(1);
   287   }
   288   return AddNode::Identity(phase);
   289 }
   292 //------------------------------add_ring---------------------------------------
   293 // Supplied function returns the sum of the inputs.  Guaranteed never
   294 // to be passed a TOP or BOTTOM type, these are filtered out by
   295 // pre-check.
   296 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   297   const TypeInt *r0 = t0->is_int(); // Handy access
   298   const TypeInt *r1 = t1->is_int();
   299   int lo = r0->_lo + r1->_lo;
   300   int hi = r0->_hi + r1->_hi;
   301   if( !(r0->is_con() && r1->is_con()) ) {
   302     // Not both constants, compute approximate result
   303     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   304       lo = min_jint; hi = max_jint; // Underflow on the low side
   305     }
   306     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   307       lo = min_jint; hi = max_jint; // Overflow on the high side
   308     }
   309     if( lo > hi ) {               // Handle overflow
   310       lo = min_jint; hi = max_jint;
   311     }
   312   } else {
   313     // both constants, compute precise result using 'lo' and 'hi'
   314     // Semantics define overflow and underflow for integer addition
   315     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   316   }
   317   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   318 }
   321 //=============================================================================
   322 //------------------------------Idealize---------------------------------------
   323 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   324   int op1 = in(1)->Opcode();
   325   int op2 = in(2)->Opcode();
   326   // Fold (con1-x)+con2 into (con1+con2)-x
   327   if( op1 == Op_SubL ) {
   328     const Type *t_sub1 = phase->type( in(1)->in(1) );
   329     const Type *t_2    = phase->type( in(2)        );
   330     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   331       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   332                               in(1)->in(2) );
   333     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   334     if( op2 == Op_SubL ) {
   335       // Check for dead cycle: d = (a-b)+(c-d)
   336       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   337               "dead loop in AddLNode::Ideal" );
   338       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
   339       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
   340       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
   341       return sub;
   342     }
   343   }
   345   // Convert "x+(0-y)" into "(x-y)"
   346   if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
   347     return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
   349   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   350   // into "(X<<1)+Y" and let shift-folding happen.
   351   if( op2 == Op_AddL &&
   352       in(2)->in(1) == in(1) &&
   353       op1 != Op_ConL &&
   354       0 ) {
   355     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
   356     return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
   357   }
   359   return AddNode::Ideal(phase, can_reshape);
   360 }
   363 //------------------------------Identity---------------------------------------
   364 // Fold (x-y)+y  OR  y+(x-y)  into  x
   365 Node *AddLNode::Identity( PhaseTransform *phase ) {
   366   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   367     return in(1)->in(1);
   368   }
   369   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   370     return in(2)->in(1);
   371   }
   372   return AddNode::Identity(phase);
   373 }
   376 //------------------------------add_ring---------------------------------------
   377 // Supplied function returns the sum of the inputs.  Guaranteed never
   378 // to be passed a TOP or BOTTOM type, these are filtered out by
   379 // pre-check.
   380 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   381   const TypeLong *r0 = t0->is_long(); // Handy access
   382   const TypeLong *r1 = t1->is_long();
   383   jlong lo = r0->_lo + r1->_lo;
   384   jlong hi = r0->_hi + r1->_hi;
   385   if( !(r0->is_con() && r1->is_con()) ) {
   386     // Not both constants, compute approximate result
   387     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   388       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   389     }
   390     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   391       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   392     }
   393     if( lo > hi ) {               // Handle overflow
   394       lo = min_jlong; hi = max_jlong;
   395     }
   396   } else {
   397     // both constants, compute precise result using 'lo' and 'hi'
   398     // Semantics define overflow and underflow for integer addition
   399     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   400   }
   401   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   402 }
   405 //=============================================================================
   406 //------------------------------add_of_identity--------------------------------
   407 // Check for addition of the identity
   408 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   409   // x ADD 0  should return x unless 'x' is a -zero
   410   //
   411   // const Type *zero = add_id();     // The additive identity
   412   // jfloat f1 = t1->getf();
   413   // jfloat f2 = t2->getf();
   414   //
   415   // if( t1->higher_equal( zero ) ) return t2;
   416   // if( t2->higher_equal( zero ) ) return t1;
   418   return NULL;
   419 }
   421 //------------------------------add_ring---------------------------------------
   422 // Supplied function returns the sum of the inputs.
   423 // This also type-checks the inputs for sanity.  Guaranteed never to
   424 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   425 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   426   // We must be adding 2 float constants.
   427   return TypeF::make( t0->getf() + t1->getf() );
   428 }
   430 //------------------------------Ideal------------------------------------------
   431 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   432   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   433     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   434   }
   436   // Floating point additions are not associative because of boundary conditions (infinity)
   437   return commute(this,
   438                  phase->type( in(1) )->singleton(),
   439                  phase->type( in(2) )->singleton() ) ? this : NULL;
   440 }
   443 //=============================================================================
   444 //------------------------------add_of_identity--------------------------------
   445 // Check for addition of the identity
   446 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   447   // x ADD 0  should return x unless 'x' is a -zero
   448   //
   449   // const Type *zero = add_id();     // The additive identity
   450   // jfloat f1 = t1->getf();
   451   // jfloat f2 = t2->getf();
   452   //
   453   // if( t1->higher_equal( zero ) ) return t2;
   454   // if( t2->higher_equal( zero ) ) return t1;
   456   return NULL;
   457 }
   458 //------------------------------add_ring---------------------------------------
   459 // Supplied function returns the sum of the inputs.
   460 // This also type-checks the inputs for sanity.  Guaranteed never to
   461 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   462 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   463   // We must be adding 2 double constants.
   464   return TypeD::make( t0->getd() + t1->getd() );
   465 }
   467 //------------------------------Ideal------------------------------------------
   468 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   469   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   470     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   471   }
   473   // Floating point additions are not associative because of boundary conditions (infinity)
   474   return commute(this,
   475                  phase->type( in(1) )->singleton(),
   476                  phase->type( in(2) )->singleton() ) ? this : NULL;
   477 }
   480 //=============================================================================
   481 //------------------------------Identity---------------------------------------
   482 // If one input is a constant 0, return the other input.
   483 Node *AddPNode::Identity( PhaseTransform *phase ) {
   484   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   485 }
   487 //------------------------------Idealize---------------------------------------
   488 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   489   // Bail out if dead inputs
   490   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   492   // If the left input is an add of a constant, flatten the expression tree.
   493   const Node *n = in(Address);
   494   if (n->is_AddP() && n->in(Base) == in(Base)) {
   495     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   496     assert( !addp->in(Address)->is_AddP() ||
   497              addp->in(Address)->as_AddP() != addp,
   498             "dead loop in AddPNode::Ideal" );
   499     // Type of left input's right input
   500     const Type *t = phase->type( addp->in(Offset) );
   501     if( t == Type::TOP ) return NULL;
   502     const TypeX *t12 = t->is_intptr_t();
   503     if( t12->is_con() ) {       // Left input is an add of a constant?
   504       // If the right input is a constant, combine constants
   505       const Type *temp_t2 = phase->type( in(Offset) );
   506       if( temp_t2 == Type::TOP ) return NULL;
   507       const TypeX *t2 = temp_t2->is_intptr_t();
   508       if( t2->is_con() ) {
   509         // The Add of the flattened expression
   510         set_req(Address, addp->in(Address));
   511         set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
   512         return this;                    // Made progress
   513       }
   514       // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   515       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
   516       set_req(Offset , addp->in(Offset));
   517       return this;
   518     }
   519   }
   521   // Raw pointers?
   522   if( in(Base)->bottom_type() == Type::TOP ) {
   523     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   524     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   525       Node* offset = in(Offset);
   526       return new (phase->C, 2) CastX2PNode(offset);
   527     }
   528   }
   530   // If the right is an add of a constant, push the offset down.
   531   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   532   // The idea is to merge array_base+scaled_index groups together,
   533   // and only have different constant offsets from the same base.
   534   const Node *add = in(Offset);
   535   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   536     const Type *t22 = phase->type( add->in(2) );
   537     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   538       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
   539       set_req(Offset, add->in(2));
   540       return this;              // Made progress
   541     }
   542   }
   544   return NULL;                  // No progress
   545 }
   547 //------------------------------bottom_type------------------------------------
   548 // Bottom-type is the pointer-type with unknown offset.
   549 const Type *AddPNode::bottom_type() const {
   550   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   551   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   552   if( !tp ) return Type::TOP;   // TOP input means TOP output
   553   assert( in(Offset)->Opcode() != Op_ConP, "" );
   554   const Type *t = in(Offset)->bottom_type();
   555   if( t == Type::TOP )
   556     return tp->add_offset(Type::OffsetTop);
   557   const TypeX *tx = t->is_intptr_t();
   558   intptr_t txoffset = Type::OffsetBot;
   559   if (tx->is_con()) {   // Left input is an add of a constant?
   560     txoffset = tx->get_con();
   561     if (txoffset != (int)txoffset)
   562       txoffset = Type::OffsetBot;   // oops:  add_offset will choke on it
   563   }
   564   return tp->add_offset(txoffset);
   565 }
   567 //------------------------------Value------------------------------------------
   568 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   569   // Either input is TOP ==> the result is TOP
   570   const Type *t1 = phase->type( in(Address) );
   571   const Type *t2 = phase->type( in(Offset) );
   572   if( t1 == Type::TOP ) return Type::TOP;
   573   if( t2 == Type::TOP ) return Type::TOP;
   575   // Left input is a pointer
   576   const TypePtr *p1 = t1->isa_ptr();
   577   // Right input is an int
   578   const TypeX *p2 = t2->is_intptr_t();
   579   // Add 'em
   580   intptr_t p2offset = Type::OffsetBot;
   581   if (p2->is_con()) {   // Left input is an add of a constant?
   582     p2offset = p2->get_con();
   583     if (p2offset != (int)p2offset)
   584       p2offset = Type::OffsetBot;   // oops:  add_offset will choke on it
   585   }
   586   return p1->add_offset(p2offset);
   587 }
   589 //------------------------Ideal_base_and_offset--------------------------------
   590 // Split an oop pointer into a base and offset.
   591 // (The offset might be Type::OffsetBot in the case of an array.)
   592 // Return the base, or NULL if failure.
   593 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   594                                       // second return value:
   595                                       intptr_t& offset) {
   596   if (ptr->is_AddP()) {
   597     Node* base = ptr->in(AddPNode::Base);
   598     Node* addr = ptr->in(AddPNode::Address);
   599     Node* offs = ptr->in(AddPNode::Offset);
   600     if (base == addr || base->is_top()) {
   601       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   602       if (offset != Type::OffsetBot) {
   603         return addr;
   604       }
   605     }
   606   }
   607   offset = Type::OffsetBot;
   608   return NULL;
   609 }
   611 //------------------------------unpack_offsets----------------------------------
   612 // Collect the AddP offset values into the elements array, giving up
   613 // if there are more than length.
   614 int AddPNode::unpack_offsets(Node* elements[], int length) {
   615   int count = 0;
   616   Node* addr = this;
   617   Node* base = addr->in(AddPNode::Base);
   618   while (addr->is_AddP()) {
   619     if (addr->in(AddPNode::Base) != base) {
   620       // give up
   621       return -1;
   622     }
   623     elements[count++] = addr->in(AddPNode::Offset);
   624     if (count == length) {
   625       // give up
   626       return -1;
   627     }
   628     addr = addr->in(AddPNode::Address);
   629   }
   630   return count;
   631 }
   633 //------------------------------match_edge-------------------------------------
   634 // Do we Match on this edge index or not?  Do not match base pointer edge
   635 uint AddPNode::match_edge(uint idx) const {
   636   return idx > Base;
   637 }
   639 //---------------------------mach_bottom_type----------------------------------
   640 // Utility function for use by ADLC.  Implements bottom_type for matched AddP.
   641 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
   642   Node* base = n->in(Base);
   643   const Type *t = base->bottom_type();
   644   if ( t == Type::TOP ) {
   645     // an untyped pointer
   646     return TypeRawPtr::BOTTOM;
   647   }
   648   const TypePtr* tp = t->isa_oopptr();
   649   if ( tp == NULL )  return t;
   650   if ( tp->_offset == TypePtr::OffsetBot )  return tp;
   652   // We must carefully add up the various offsets...
   653   intptr_t offset = 0;
   654   const TypePtr* tptr = NULL;
   656   uint numopnds = n->num_opnds();
   657   uint index = n->oper_input_base();
   658   for ( uint i = 1; i < numopnds; i++ ) {
   659     MachOper *opnd = n->_opnds[i];
   660     // Check for any interesting operand info.
   661     // In particular, check for both memory and non-memory operands.
   662     // %%%%% Clean this up: use xadd_offset
   663     int con = opnd->constant();
   664     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   665     offset += con;
   666     con = opnd->constant_disp();
   667     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   668     offset += con;
   669     if( opnd->scale() != 0 ) goto bottom_out;
   671     // Check each operand input edge.  Find the 1 allowed pointer
   672     // edge.  Other edges must be index edges; track exact constant
   673     // inputs and otherwise assume the worst.
   674     for ( uint j = opnd->num_edges(); j > 0; j-- ) {
   675       Node* edge = n->in(index++);
   676       const Type*    et  = edge->bottom_type();
   677       const TypeX*   eti = et->isa_intptr_t();
   678       if ( eti == NULL ) {
   679         // there must be one pointer among the operands
   680         guarantee(tptr == NULL, "must be only one pointer operand");
   681         tptr = et->isa_oopptr();
   682         guarantee(tptr != NULL, "non-int operand must be pointer");
   683         continue;
   684       }
   685       if ( eti->_hi != eti->_lo )  goto bottom_out;
   686       offset += eti->_lo;
   687     }
   688   }
   689   guarantee(tptr != NULL, "must be exactly one pointer operand");
   690   return tptr->add_offset(offset);
   692  bottom_out:
   693   return tp->add_offset(TypePtr::OffsetBot);
   694 }
   696 //=============================================================================
   697 //------------------------------Identity---------------------------------------
   698 Node *OrINode::Identity( PhaseTransform *phase ) {
   699   // x | x => x
   700   if (phase->eqv(in(1), in(2))) {
   701     return in(1);
   702   }
   704   return AddNode::Identity(phase);
   705 }
   707 //------------------------------add_ring---------------------------------------
   708 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   709 // the logical operations the ring's ADD is really a logical OR function.
   710 // This also type-checks the inputs for sanity.  Guaranteed never to
   711 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   712 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   713   const TypeInt *r0 = t0->is_int(); // Handy access
   714   const TypeInt *r1 = t1->is_int();
   716   // If both args are bool, can figure out better types
   717   if ( r0 == TypeInt::BOOL ) {
   718     if ( r1 == TypeInt::ONE) {
   719       return TypeInt::ONE;
   720     } else if ( r1 == TypeInt::BOOL ) {
   721       return TypeInt::BOOL;
   722     }
   723   } else if ( r0 == TypeInt::ONE ) {
   724     if ( r1 == TypeInt::BOOL ) {
   725       return TypeInt::ONE;
   726     }
   727   }
   729   // If either input is not a constant, just return all integers.
   730   if( !r0->is_con() || !r1->is_con() )
   731     return TypeInt::INT;        // Any integer, but still no symbols.
   733   // Otherwise just OR them bits.
   734   return TypeInt::make( r0->get_con() | r1->get_con() );
   735 }
   737 //=============================================================================
   738 //------------------------------Identity---------------------------------------
   739 Node *OrLNode::Identity( PhaseTransform *phase ) {
   740   // x | x => x
   741   if (phase->eqv(in(1), in(2))) {
   742     return in(1);
   743   }
   745   return AddNode::Identity(phase);
   746 }
   748 //------------------------------add_ring---------------------------------------
   749 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   750   const TypeLong *r0 = t0->is_long(); // Handy access
   751   const TypeLong *r1 = t1->is_long();
   753   // If either input is not a constant, just return all integers.
   754   if( !r0->is_con() || !r1->is_con() )
   755     return TypeLong::LONG;      // Any integer, but still no symbols.
   757   // Otherwise just OR them bits.
   758   return TypeLong::make( r0->get_con() | r1->get_con() );
   759 }
   761 //=============================================================================
   762 //------------------------------add_ring---------------------------------------
   763 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   764 // the logical operations the ring's ADD is really a logical OR function.
   765 // This also type-checks the inputs for sanity.  Guaranteed never to
   766 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   767 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   768   const TypeInt *r0 = t0->is_int(); // Handy access
   769   const TypeInt *r1 = t1->is_int();
   771   // Complementing a boolean?
   772   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   773                                || r1 == TypeInt::BOOL))
   774     return TypeInt::BOOL;
   776   if( !r0->is_con() || !r1->is_con() ) // Not constants
   777     return TypeInt::INT;        // Any integer, but still no symbols.
   779   // Otherwise just XOR them bits.
   780   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   781 }
   783 //=============================================================================
   784 //------------------------------add_ring---------------------------------------
   785 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   786   const TypeLong *r0 = t0->is_long(); // Handy access
   787   const TypeLong *r1 = t1->is_long();
   789   // If either input is not a constant, just return all integers.
   790   if( !r0->is_con() || !r1->is_con() )
   791     return TypeLong::LONG;      // Any integer, but still no symbols.
   793   // Otherwise just OR them bits.
   794   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   795 }
   797 //=============================================================================
   798 //------------------------------add_ring---------------------------------------
   799 // Supplied function returns the sum of the inputs.
   800 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   801   const TypeInt *r0 = t0->is_int(); // Handy access
   802   const TypeInt *r1 = t1->is_int();
   804   // Otherwise just MAX them bits.
   805   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   806 }
   808 //=============================================================================
   809 //------------------------------Idealize---------------------------------------
   810 // MINs show up in range-check loop limit calculations.  Look for
   811 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   812 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   813   Node *progress = NULL;
   814   // Force a right-spline graph
   815   Node *l = in(1);
   816   Node *r = in(2);
   817   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   818   // to force a right-spline graph for the rest of MinINode::Ideal().
   819   if( l->Opcode() == Op_MinI ) {
   820     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   821     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
   822     l = l->in(1);
   823     set_req(1, l);
   824     set_req(2, r);
   825     return this;
   826   }
   828   // Get left input & constant
   829   Node *x = l;
   830   int x_off = 0;
   831   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   832       x->in(2)->is_Con() ) {
   833     const Type *t = x->in(2)->bottom_type();
   834     if( t == Type::TOP ) return NULL;  // No progress
   835     x_off = t->is_int()->get_con();
   836     x = x->in(1);
   837   }
   839   // Scan a right-spline-tree for MINs
   840   Node *y = r;
   841   int y_off = 0;
   842   // Check final part of MIN tree
   843   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   844       y->in(2)->is_Con() ) {
   845     const Type *t = y->in(2)->bottom_type();
   846     if( t == Type::TOP ) return NULL;  // No progress
   847     y_off = t->is_int()->get_con();
   848     y = y->in(1);
   849   }
   850   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   851     swap_edges(1, 2);
   852     return this;
   853   }
   856   if( r->Opcode() == Op_MinI ) {
   857     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   858     y = r->in(1);
   859     // Check final part of MIN tree
   860     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   861         y->in(2)->is_Con() ) {
   862       const Type *t = y->in(2)->bottom_type();
   863       if( t == Type::TOP ) return NULL;  // No progress
   864       y_off = t->is_int()->get_con();
   865       y = y->in(1);
   866     }
   868     if( x->_idx > y->_idx )
   869       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
   871     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   872     if( !phase->eqv(x,y) ) return NULL;
   873     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   874     // MIN2(x+c0 or x+c1 which less, z).
   875     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   876   } else {
   877     // See if covers: MIN2(x+c0,y+c1)
   878     if( !phase->eqv(x,y) ) return NULL;
   879     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   880     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   881   }
   883 }
   885 //------------------------------add_ring---------------------------------------
   886 // Supplied function returns the sum of the inputs.
   887 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   888   const TypeInt *r0 = t0->is_int(); // Handy access
   889   const TypeInt *r1 = t1->is_int();
   891   // Otherwise just MIN them bits.
   892   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   893 }

mercurial