src/share/vm/c1/c1_Runtime1.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1.cpp.incl"
    29 // Implementation of StubAssembler
    31 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    32   _name = name;
    33   _must_gc_arguments = false;
    34   _frame_size = no_frame_size;
    35   _num_rt_args = 0;
    36   _stub_id = stub_id;
    37 }
    40 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    41   _name = name;
    42   _must_gc_arguments = must_gc_arguments;
    43 }
    46 void StubAssembler::set_frame_size(int size) {
    47   if (_frame_size == no_frame_size) {
    48     _frame_size = size;
    49   }
    50   assert(_frame_size == size, "can't change the frame size");
    51 }
    54 void StubAssembler::set_num_rt_args(int args) {
    55   if (_num_rt_args == 0) {
    56     _num_rt_args = args;
    57   }
    58   assert(_num_rt_args == args, "can't change the number of args");
    59 }
    61 // Implementation of Runtime1
    63 bool      Runtime1::_is_initialized = false;
    64 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    65 const char *Runtime1::_blob_names[] = {
    66   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    67 };
    69 #ifndef PRODUCT
    70 // statistics
    71 int Runtime1::_generic_arraycopy_cnt = 0;
    72 int Runtime1::_primitive_arraycopy_cnt = 0;
    73 int Runtime1::_oop_arraycopy_cnt = 0;
    74 int Runtime1::_arraycopy_slowcase_cnt = 0;
    75 int Runtime1::_new_type_array_slowcase_cnt = 0;
    76 int Runtime1::_new_object_array_slowcase_cnt = 0;
    77 int Runtime1::_new_instance_slowcase_cnt = 0;
    78 int Runtime1::_new_multi_array_slowcase_cnt = 0;
    79 int Runtime1::_monitorenter_slowcase_cnt = 0;
    80 int Runtime1::_monitorexit_slowcase_cnt = 0;
    81 int Runtime1::_patch_code_slowcase_cnt = 0;
    82 int Runtime1::_throw_range_check_exception_count = 0;
    83 int Runtime1::_throw_index_exception_count = 0;
    84 int Runtime1::_throw_div0_exception_count = 0;
    85 int Runtime1::_throw_null_pointer_exception_count = 0;
    86 int Runtime1::_throw_class_cast_exception_count = 0;
    87 int Runtime1::_throw_incompatible_class_change_error_count = 0;
    88 int Runtime1::_throw_array_store_exception_count = 0;
    89 int Runtime1::_throw_count = 0;
    90 #endif
    92 BufferBlob* Runtime1::_buffer_blob  = NULL;
    94 // Simple helper to see if the caller of a runtime stub which
    95 // entered the VM has been deoptimized
    97 static bool caller_is_deopted() {
    98   JavaThread* thread = JavaThread::current();
    99   RegisterMap reg_map(thread, false);
   100   frame runtime_frame = thread->last_frame();
   101   frame caller_frame = runtime_frame.sender(&reg_map);
   102   assert(caller_frame.is_compiled_frame(), "must be compiled");
   103   return caller_frame.is_deoptimized_frame();
   104 }
   106 // Stress deoptimization
   107 static void deopt_caller() {
   108   if ( !caller_is_deopted()) {
   109     JavaThread* thread = JavaThread::current();
   110     RegisterMap reg_map(thread, false);
   111     frame runtime_frame = thread->last_frame();
   112     frame caller_frame = runtime_frame.sender(&reg_map);
   113     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   114     VMThread::execute(&deopt);
   115     assert(caller_is_deopted(), "Must be deoptimized");
   116   }
   117 }
   120 BufferBlob* Runtime1::get_buffer_blob() {
   121   // Allocate code buffer space only once
   122   BufferBlob* blob = _buffer_blob;
   123   if (blob == NULL) {
   124     // setup CodeBuffer.  Preallocate a BufferBlob of size
   125     // NMethodSizeLimit plus some extra space for constants.
   126     int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
   127     blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
   128                               code_buffer_size);
   129     guarantee(blob != NULL, "must create initial code buffer");
   130     _buffer_blob = blob;
   131   }
   132   return _buffer_blob;
   133 }
   135 void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
   136   // Preinitialize the consts section to some large size:
   137   int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
   138   char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
   139   code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
   140                                         locs_buffer_size / sizeof(relocInfo));
   141   code->initialize_consts_size(desired_max_constant_size());
   142   // Call stubs + deopt/exception handler
   143   code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
   144                               LIR_Assembler::exception_handler_size +
   145                               LIR_Assembler::deopt_handler_size);
   146 }
   149 void Runtime1::generate_blob_for(StubID id) {
   150   assert(0 <= id && id < number_of_ids, "illegal stub id");
   151   ResourceMark rm;
   152   // create code buffer for code storage
   153   CodeBuffer code(get_buffer_blob()->instructions_begin(),
   154                   get_buffer_blob()->instructions_size());
   156   setup_code_buffer(&code, 0);
   158   // create assembler for code generation
   159   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   160   // generate code for runtime stub
   161   OopMapSet* oop_maps;
   162   oop_maps = generate_code_for(id, sasm);
   163   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   164          "if stub has an oop map it must have a valid frame size");
   166 #ifdef ASSERT
   167   // Make sure that stubs that need oopmaps have them
   168   switch (id) {
   169     // These stubs don't need to have an oopmap
   170     case dtrace_object_alloc_id:
   171     case slow_subtype_check_id:
   172     case fpu2long_stub_id:
   173     case unwind_exception_id:
   174 #ifndef TIERED
   175     case counter_overflow_id: // Not generated outside the tiered world
   176 #endif
   177 #ifdef SPARC
   178     case handle_exception_nofpu_id:  // Unused on sparc
   179 #endif
   180       break;
   182     // All other stubs should have oopmaps
   183     default:
   184       assert(oop_maps != NULL, "must have an oopmap");
   185   }
   186 #endif
   188   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   189   sasm->align(BytesPerWord);
   190   // make sure all code is in code buffer
   191   sasm->flush();
   192   // create blob - distinguish a few special cases
   193   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   194                                                  &code,
   195                                                  CodeOffsets::frame_never_safe,
   196                                                  sasm->frame_size(),
   197                                                  oop_maps,
   198                                                  sasm->must_gc_arguments());
   199   // install blob
   200   assert(blob != NULL, "blob must exist");
   201   _blobs[id] = blob;
   202 }
   205 void Runtime1::initialize() {
   206   // Warning: If we have more than one compilation running in parallel, we
   207   //          need a lock here with the current setup (lazy initialization).
   208   if (!is_initialized()) {
   209     _is_initialized = true;
   211     // platform-dependent initialization
   212     initialize_pd();
   213     // generate stubs
   214     for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
   215     // printing
   216 #ifndef PRODUCT
   217     if (PrintSimpleStubs) {
   218       ResourceMark rm;
   219       for (int id = 0; id < number_of_ids; id++) {
   220         _blobs[id]->print();
   221         if (_blobs[id]->oop_maps() != NULL) {
   222           _blobs[id]->oop_maps()->print();
   223         }
   224       }
   225     }
   226 #endif
   227   }
   228 }
   231 CodeBlob* Runtime1::blob_for(StubID id) {
   232   assert(0 <= id && id < number_of_ids, "illegal stub id");
   233   if (!is_initialized()) initialize();
   234   return _blobs[id];
   235 }
   238 const char* Runtime1::name_for(StubID id) {
   239   assert(0 <= id && id < number_of_ids, "illegal stub id");
   240   return _blob_names[id];
   241 }
   243 const char* Runtime1::name_for_address(address entry) {
   244   for (int id = 0; id < number_of_ids; id++) {
   245     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   246   }
   248 #define FUNCTION_CASE(a, f) \
   249   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   251   FUNCTION_CASE(entry, os::javaTimeMillis);
   252   FUNCTION_CASE(entry, os::javaTimeNanos);
   253   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   254   FUNCTION_CASE(entry, SharedRuntime::d2f);
   255   FUNCTION_CASE(entry, SharedRuntime::d2i);
   256   FUNCTION_CASE(entry, SharedRuntime::d2l);
   257   FUNCTION_CASE(entry, SharedRuntime::dcos);
   258   FUNCTION_CASE(entry, SharedRuntime::dexp);
   259   FUNCTION_CASE(entry, SharedRuntime::dlog);
   260   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   261   FUNCTION_CASE(entry, SharedRuntime::dpow);
   262   FUNCTION_CASE(entry, SharedRuntime::drem);
   263   FUNCTION_CASE(entry, SharedRuntime::dsin);
   264   FUNCTION_CASE(entry, SharedRuntime::dtan);
   265   FUNCTION_CASE(entry, SharedRuntime::f2i);
   266   FUNCTION_CASE(entry, SharedRuntime::f2l);
   267   FUNCTION_CASE(entry, SharedRuntime::frem);
   268   FUNCTION_CASE(entry, SharedRuntime::l2d);
   269   FUNCTION_CASE(entry, SharedRuntime::l2f);
   270   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   271   FUNCTION_CASE(entry, SharedRuntime::lmul);
   272   FUNCTION_CASE(entry, SharedRuntime::lrem);
   273   FUNCTION_CASE(entry, SharedRuntime::lrem);
   274   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   275   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   276   FUNCTION_CASE(entry, trace_block_entry);
   278 #undef FUNCTION_CASE
   280   return "<unknown function>";
   281 }
   284 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   285   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   287   assert(oop(klass)->is_klass(), "not a class");
   288   instanceKlassHandle h(thread, klass);
   289   h->check_valid_for_instantiation(true, CHECK);
   290   // make sure klass is initialized
   291   h->initialize(CHECK);
   292   // allocate instance and return via TLS
   293   oop obj = h->allocate_instance(CHECK);
   294   thread->set_vm_result(obj);
   295 JRT_END
   298 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   299   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   300   // Note: no handle for klass needed since they are not used
   301   //       anymore after new_typeArray() and no GC can happen before.
   302   //       (This may have to change if this code changes!)
   303   assert(oop(klass)->is_klass(), "not a class");
   304   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   305   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   306   thread->set_vm_result(obj);
   307   // This is pretty rare but this runtime patch is stressful to deoptimization
   308   // if we deoptimize here so force a deopt to stress the path.
   309   if (DeoptimizeALot) {
   310     deopt_caller();
   311   }
   313 JRT_END
   316 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   317   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   319   // Note: no handle for klass needed since they are not used
   320   //       anymore after new_objArray() and no GC can happen before.
   321   //       (This may have to change if this code changes!)
   322   assert(oop(array_klass)->is_klass(), "not a class");
   323   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   324   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   325   thread->set_vm_result(obj);
   326   // This is pretty rare but this runtime patch is stressful to deoptimization
   327   // if we deoptimize here so force a deopt to stress the path.
   328   if (DeoptimizeALot) {
   329     deopt_caller();
   330   }
   331 JRT_END
   334 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   335   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   337   assert(oop(klass)->is_klass(), "not a class");
   338   assert(rank >= 1, "rank must be nonzero");
   339 #ifdef _LP64
   340 // In 64 bit mode, the sizes are stored in the top 32 bits
   341 // of each 64 bit stack entry.
   342 // dims is actually an intptr_t * because the arguments
   343 // are pushed onto a 64 bit stack.
   344 // We must create an array of jints to pass to multi_allocate.
   345 // We reuse the current stack because it will be popped
   346 // after this bytecode is completed.
   347   if ( rank > 1 ) {
   348     int index;
   349     for ( index = 1; index < rank; index++ ) {  // First size is ok
   350         dims[index] = dims[index*2];
   351     }
   352   }
   353 #endif
   354   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   355   thread->set_vm_result(obj);
   356 JRT_END
   359 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   360   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   361 JRT_END
   364 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   365   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   366 JRT_END
   369 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   370   if (JvmtiExport::can_post_exceptions()) {
   371     vframeStream vfst(thread, true);
   372     address bcp = vfst.method()->bcp_from(vfst.bci());
   373     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   374   }
   375 JRT_END
   377 #ifdef TIERED
   378 JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
   379   RegisterMap map(thread, false);
   380   frame fr =  thread->last_frame().sender(&map);
   381   nmethod* nm = (nmethod*) fr.cb();
   382   assert(nm!= NULL && nm->is_nmethod(), "what?");
   383   methodHandle method(thread, nm->method());
   384   if (bci == 0) {
   385     // invocation counter overflow
   386     if (!Tier1CountOnly) {
   387       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   388     } else {
   389       method()->invocation_counter()->reset();
   390     }
   391   } else {
   392     if (!Tier1CountOnly) {
   393       // Twe have a bci but not the destination bci and besides a backedge
   394       // event is more for OSR which we don't want here.
   395       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   396     } else {
   397       method()->backedge_counter()->reset();
   398     }
   399   }
   400 JRT_END
   401 #endif // TIERED
   403 extern void vm_exit(int code);
   405 // Enter this method from compiled code handler below. This is where we transition
   406 // to VM mode. This is done as a helper routine so that the method called directly
   407 // from compiled code does not have to transition to VM. This allows the entry
   408 // method to see if the nmethod that we have just looked up a handler for has
   409 // been deoptimized while we were in the vm. This simplifies the assembly code
   410 // cpu directories.
   411 //
   412 // We are entering here from exception stub (via the entry method below)
   413 // If there is a compiled exception handler in this method, we will continue there;
   414 // otherwise we will unwind the stack and continue at the caller of top frame method
   415 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   416 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   417 // check to see if the handler we are going to return is now in a nmethod that has
   418 // been deoptimized. If that is the case we return the deopt blob
   419 // unpack_with_exception entry instead. This makes life for the exception blob easier
   420 // because making that same check and diverting is painful from assembly language.
   421 //
   424 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   426   Handle exception(thread, ex);
   427   nm = CodeCache::find_nmethod(pc);
   428   assert(nm != NULL, "this is not an nmethod");
   429   // Adjust the pc as needed/
   430   if (nm->is_deopt_pc(pc)) {
   431     RegisterMap map(thread, false);
   432     frame exception_frame = thread->last_frame().sender(&map);
   433     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   434     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   435     pc = exception_frame.pc();
   436   }
   437 #ifdef ASSERT
   438   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   439   assert(exception->is_oop(), "just checking");
   440   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   441   if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   442     if (ExitVMOnVerifyError) vm_exit(-1);
   443     ShouldNotReachHere();
   444   }
   445 #endif
   447   // Check the stack guard pages and reenable them if necessary and there is
   448   // enough space on the stack to do so.  Use fast exceptions only if the guard
   449   // pages are enabled.
   450   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   451   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   453   if (JvmtiExport::can_post_exceptions()) {
   454     // To ensure correct notification of exception catches and throws
   455     // we have to deoptimize here.  If we attempted to notify the
   456     // catches and throws during this exception lookup it's possible
   457     // we could deoptimize on the way out of the VM and end back in
   458     // the interpreter at the throw site.  This would result in double
   459     // notifications since the interpreter would also notify about
   460     // these same catches and throws as it unwound the frame.
   462     RegisterMap reg_map(thread);
   463     frame stub_frame = thread->last_frame();
   464     frame caller_frame = stub_frame.sender(&reg_map);
   466     // We don't really want to deoptimize the nmethod itself since we
   467     // can actually continue in the exception handler ourselves but I
   468     // don't see an easy way to have the desired effect.
   469     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   470     VMThread::execute(&deopt);
   472     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   473   }
   475   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   476   if (guard_pages_enabled) {
   477     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   478     if (fast_continuation != NULL) {
   479       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   480       return fast_continuation;
   481     }
   482   }
   484   // If the stack guard pages are enabled, check whether there is a handler in
   485   // the current method.  Otherwise (guard pages disabled), force an unwind and
   486   // skip the exception cache update (i.e., just leave continuation==NULL).
   487   address continuation = NULL;
   488   if (guard_pages_enabled) {
   490     // New exception handling mechanism can support inlined methods
   491     // with exception handlers since the mappings are from PC to PC
   493     // debugging support
   494     // tracing
   495     if (TraceExceptions) {
   496       ttyLocker ttyl;
   497       ResourceMark rm;
   498       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   499                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   500     }
   501     // for AbortVMOnException flag
   502     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   504     // Clear out the exception oop and pc since looking up an
   505     // exception handler can cause class loading, which might throw an
   506     // exception and those fields are expected to be clear during
   507     // normal bytecode execution.
   508     thread->set_exception_oop(NULL);
   509     thread->set_exception_pc(NULL);
   511     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   512     // If an exception was thrown during exception dispatch, the exception oop may have changed
   513     thread->set_exception_oop(exception());
   514     thread->set_exception_pc(pc);
   516     // the exception cache is used only by non-implicit exceptions
   517     if (continuation == NULL) {
   518       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   519     } else {
   520       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   521     }
   522   }
   524   thread->set_vm_result(exception());
   526   if (TraceExceptions) {
   527     ttyLocker ttyl;
   528     ResourceMark rm;
   529     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   530                   thread, continuation, pc);
   531   }
   533   return continuation;
   534 JRT_END
   536 // Enter this method from compiled code only if there is a Java exception handler
   537 // in the method handling the exception
   538 // We are entering here from exception stub. We don't do a normal VM transition here.
   539 // We do it in a helper. This is so we can check to see if the nmethod we have just
   540 // searched for an exception handler has been deoptimized in the meantime.
   541 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   542   oop exception = thread->exception_oop();
   543   address pc = thread->exception_pc();
   544   // Still in Java mode
   545   debug_only(ResetNoHandleMark rnhm);
   546   nmethod* nm = NULL;
   547   address continuation = NULL;
   548   {
   549     // Enter VM mode by calling the helper
   551     ResetNoHandleMark rnhm;
   552     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   553   }
   554   // Back in JAVA, use no oops DON'T safepoint
   556   // Now check to see if the nmethod we were called from is now deoptimized.
   557   // If so we must return to the deopt blob and deoptimize the nmethod
   559   if (nm != NULL && caller_is_deopted()) {
   560     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   561   }
   563   return continuation;
   564 }
   567 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   568   NOT_PRODUCT(_throw_range_check_exception_count++;)
   569   Events::log("throw_range_check");
   570   char message[jintAsStringSize];
   571   sprintf(message, "%d", index);
   572   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   573 JRT_END
   576 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   577   NOT_PRODUCT(_throw_index_exception_count++;)
   578   Events::log("throw_index");
   579   char message[16];
   580   sprintf(message, "%d", index);
   581   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   582 JRT_END
   585 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   586   NOT_PRODUCT(_throw_div0_exception_count++;)
   587   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   588 JRT_END
   591 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   592   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   593   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   594 JRT_END
   597 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   598   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   599   ResourceMark rm(thread);
   600   char* message = SharedRuntime::generate_class_cast_message(
   601     thread, Klass::cast(object->klass())->external_name());
   602   SharedRuntime::throw_and_post_jvmti_exception(
   603     thread, vmSymbols::java_lang_ClassCastException(), message);
   604 JRT_END
   607 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   608   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   609   ResourceMark rm(thread);
   610   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   611 JRT_END
   614 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   615   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   616   if (PrintBiasedLockingStatistics) {
   617     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   618   }
   619   Handle h_obj(thread, obj);
   620   assert(h_obj()->is_oop(), "must be NULL or an object");
   621   if (UseBiasedLocking) {
   622     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   623     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   624   } else {
   625     if (UseFastLocking) {
   626       // When using fast locking, the compiled code has already tried the fast case
   627       assert(obj == lock->obj(), "must match");
   628       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   629     } else {
   630       lock->set_obj(obj);
   631       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   632     }
   633   }
   634 JRT_END
   637 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   638   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   639   assert(thread == JavaThread::current(), "threads must correspond");
   640   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   641   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   642   EXCEPTION_MARK;
   644   oop obj = lock->obj();
   645   assert(obj->is_oop(), "must be NULL or an object");
   646   if (UseFastLocking) {
   647     // When using fast locking, the compiled code has already tried the fast case
   648     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   649   } else {
   650     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   651   }
   652 JRT_END
   655 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   656   Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
   657   // This can be static or non-static field access
   658   Bytecodes::Code code       = field_access->code();
   660   // We must load class, initialize class and resolvethe field
   661   FieldAccessInfo result; // initialize class if needed
   662   constantPoolHandle constants(THREAD, caller->constants());
   663   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
   664   return result.klass()();
   665 }
   668 //
   669 // This routine patches sites where a class wasn't loaded or
   670 // initialized at the time the code was generated.  It handles
   671 // references to classes, fields and forcing of initialization.  Most
   672 // of the cases are straightforward and involving simply forcing
   673 // resolution of a class, rewriting the instruction stream with the
   674 // needed constant and replacing the call in this function with the
   675 // patched code.  The case for static field is more complicated since
   676 // the thread which is in the process of initializing a class can
   677 // access it's static fields but other threads can't so the code
   678 // either has to deoptimize when this case is detected or execute a
   679 // check that the current thread is the initializing thread.  The
   680 // current
   681 //
   682 // Patches basically look like this:
   683 //
   684 //
   685 // patch_site: jmp patch stub     ;; will be patched
   686 // continue:   ...
   687 //             ...
   688 //             ...
   689 //             ...
   690 //
   691 // They have a stub which looks like this:
   692 //
   693 //             ;; patch body
   694 //             movl <const>, reg           (for class constants)
   695 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   696 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   697 //             <being_init offset> <bytes to copy> <bytes to skip>
   698 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   699 //             jmp patch_site
   700 //
   701 //
   702 // A normal patch is done by rewriting the patch body, usually a move,
   703 // and then copying it into place over top of the jmp instruction
   704 // being careful to flush caches and doing it in an MP-safe way.  The
   705 // constants following the patch body are used to find various pieces
   706 // of the patch relative to the call site for Runtime1::patch_code.
   707 // The case for getstatic and putstatic is more complicated because
   708 // getstatic and putstatic have special semantics when executing while
   709 // the class is being initialized.  getstatic/putstatic on a class
   710 // which is being_initialized may be executed by the initializing
   711 // thread but other threads have to block when they execute it.  This
   712 // is accomplished in compiled code by executing a test of the current
   713 // thread against the initializing thread of the class.  It's emitted
   714 // as boilerplate in their stub which allows the patched code to be
   715 // executed before it's copied back into the main body of the nmethod.
   716 //
   717 // being_init: get_thread(<tmp reg>
   718 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   719 //             jne patch_stub
   720 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   721 //             movl reg, [reg1 + <const>]  (for field offsets)
   722 //             jmp continue
   723 //             <being_init offset> <bytes to copy> <bytes to skip>
   724 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   725 //             jmp patch_site
   726 //
   727 // If the class is being initialized the patch body is rewritten and
   728 // the patch site is rewritten to jump to being_init, instead of
   729 // patch_stub.  Whenever this code is executed it checks the current
   730 // thread against the intializing thread so other threads will enter
   731 // the runtime and end up blocked waiting the class to finish
   732 // initializing inside the calls to resolve_field below.  The
   733 // initializing class will continue on it's way.  Once the class is
   734 // fully_initialized, the intializing_thread of the class becomes
   735 // NULL, so the next thread to execute this code will fail the test,
   736 // call into patch_code and complete the patching process by copying
   737 // the patch body back into the main part of the nmethod and resume
   738 // executing.
   739 //
   740 //
   742 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   743   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   745   ResourceMark rm(thread);
   746   RegisterMap reg_map(thread, false);
   747   frame runtime_frame = thread->last_frame();
   748   frame caller_frame = runtime_frame.sender(&reg_map);
   750   // last java frame on stack
   751   vframeStream vfst(thread, true);
   752   assert(!vfst.at_end(), "Java frame must exist");
   754   methodHandle caller_method(THREAD, vfst.method());
   755   // Note that caller_method->code() may not be same as caller_code because of OSR's
   756   // Note also that in the presence of inlining it is not guaranteed
   757   // that caller_method() == caller_code->method()
   760   int bci = vfst.bci();
   762   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   764   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
   766 #ifndef PRODUCT
   767   // this is used by assertions in the access_field_patching_id
   768   BasicType patch_field_type = T_ILLEGAL;
   769 #endif // PRODUCT
   770   bool deoptimize_for_volatile = false;
   771   int patch_field_offset = -1;
   772   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   773   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   774   if (stub_id == Runtime1::access_field_patching_id) {
   776     Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
   777     FieldAccessInfo result; // initialize class if needed
   778     Bytecodes::Code code = field_access->code();
   779     constantPoolHandle constants(THREAD, caller_method->constants());
   780     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
   781     patch_field_offset = result.field_offset();
   783     // If we're patching a field which is volatile then at compile it
   784     // must not have been know to be volatile, so the generated code
   785     // isn't correct for a volatile reference.  The nmethod has to be
   786     // deoptimized so that the code can be regenerated correctly.
   787     // This check is only needed for access_field_patching since this
   788     // is the path for patching field offsets.  load_klass is only
   789     // used for patching references to oops which don't need special
   790     // handling in the volatile case.
   791     deoptimize_for_volatile = result.access_flags().is_volatile();
   793 #ifndef PRODUCT
   794     patch_field_type = result.field_type();
   795 #endif
   796   } else if (stub_id == Runtime1::load_klass_patching_id) {
   797     oop k;
   798     switch (code) {
   799       case Bytecodes::_putstatic:
   800       case Bytecodes::_getstatic:
   801         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   802           // Save a reference to the class that has to be checked for initialization
   803           init_klass = KlassHandle(THREAD, klass);
   804           k = klass;
   805         }
   806         break;
   807       case Bytecodes::_new:
   808         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
   809           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
   810         }
   811         break;
   812       case Bytecodes::_multianewarray:
   813         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
   814           k = caller_method->constants()->klass_at(mna->index(), CHECK);
   815         }
   816         break;
   817       case Bytecodes::_instanceof:
   818         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
   819           k = caller_method->constants()->klass_at(io->index(), CHECK);
   820         }
   821         break;
   822       case Bytecodes::_checkcast:
   823         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
   824           k = caller_method->constants()->klass_at(cc->index(), CHECK);
   825         }
   826         break;
   827       case Bytecodes::_anewarray:
   828         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
   829           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
   830           k = Klass::cast(ek)->array_klass(CHECK);
   831         }
   832         break;
   833       case Bytecodes::_ldc:
   834       case Bytecodes::_ldc_w:
   835         {
   836           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
   837                                                                caller_method->bcp_from(bci));
   838           klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
   839           // ldc wants the java mirror.
   840           k = resolved->klass_part()->java_mirror();
   841         }
   842         break;
   843       default: Unimplemented();
   844     }
   845     // convert to handle
   846     load_klass = Handle(THREAD, k);
   847   } else {
   848     ShouldNotReachHere();
   849   }
   851   if (deoptimize_for_volatile) {
   852     // At compile time we assumed the field wasn't volatile but after
   853     // loading it turns out it was volatile so we have to throw the
   854     // compiled code out and let it be regenerated.
   855     if (TracePatching) {
   856       tty->print_cr("Deoptimizing for patching volatile field reference");
   857     }
   858     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   859     VMThread::execute(&deopt);
   861     // Return to the now deoptimized frame.
   862   }
   865   // Now copy code back
   867   {
   868     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   869     //
   870     // Deoptimization may have happened while we waited for the lock.
   871     // In that case we don't bother to do any patching we just return
   872     // and let the deopt happen
   873     if (!caller_is_deopted()) {
   874       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   875       address instr_pc = jump->jump_destination();
   876       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   877       if (ni->is_jump() ) {
   878         // the jump has not been patched yet
   879         // The jump destination is slow case and therefore not part of the stubs
   880         // (stubs are only for StaticCalls)
   882         // format of buffer
   883         //    ....
   884         //    instr byte 0     <-- copy_buff
   885         //    instr byte 1
   886         //    ..
   887         //    instr byte n-1
   888         //      n
   889         //    ....             <-- call destination
   891         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   892         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   893         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   894         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   895         address copy_buff = stub_location - *byte_skip - *byte_count;
   896         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   897         if (TracePatching) {
   898           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   899                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   900           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   901           assert(caller_code != NULL, "nmethod not found");
   903           // NOTE we use pc() not original_pc() because we already know they are
   904           // identical otherwise we'd have never entered this block of code
   906           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   907           assert(map != NULL, "null check");
   908           map->print();
   909           tty->cr();
   911           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   912         }
   913         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   914         bool do_patch = true;
   915         if (stub_id == Runtime1::access_field_patching_id) {
   916           // The offset may not be correct if the class was not loaded at code generation time.
   917           // Set it now.
   918           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   919           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   920           assert(patch_field_offset >= 0, "illegal offset");
   921           n_move->add_offset_in_bytes(patch_field_offset);
   922         } else if (stub_id == Runtime1::load_klass_patching_id) {
   923           // If a getstatic or putstatic is referencing a klass which
   924           // isn't fully initialized, the patch body isn't copied into
   925           // place until initialization is complete.  In this case the
   926           // patch site is setup so that any threads besides the
   927           // initializing thread are forced to come into the VM and
   928           // block.
   929           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   930                      instanceKlass::cast(init_klass())->is_initialized();
   931           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   932           if (jump->jump_destination() == being_initialized_entry) {
   933             assert(do_patch == true, "initialization must be complete at this point");
   934           } else {
   935             // patch the instruction <move reg, klass>
   936             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   937             assert(n_copy->data() == 0, "illegal init value");
   938             assert(load_klass() != NULL, "klass not set");
   939             n_copy->set_data((intx) (load_klass()));
   941             if (TracePatching) {
   942               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   943             }
   945 #ifdef SPARC
   946             // Update the oop location in the nmethod with the proper
   947             // oop.  When the code was generated, a NULL was stuffed
   948             // in the oop table and that table needs to be update to
   949             // have the right value.  On intel the value is kept
   950             // directly in the instruction instead of in the oop
   951             // table, so set_data above effectively updated the value.
   952             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   953             assert(nm != NULL, "invalid nmethod_pc");
   954             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   955             bool found = false;
   956             while (oops.next() && !found) {
   957               if (oops.type() == relocInfo::oop_type) {
   958                 oop_Relocation* r = oops.oop_reloc();
   959                 oop* oop_adr = r->oop_addr();
   960                 *oop_adr = load_klass();
   961                 r->fix_oop_relocation();
   962                 found = true;
   963               }
   964             }
   965             assert(found, "the oop must exist!");
   966 #endif
   968           }
   969         } else {
   970           ShouldNotReachHere();
   971         }
   972         if (do_patch) {
   973           // replace instructions
   974           // first replace the tail, then the call
   975           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
   976             address ptr = copy_buff + i;
   977             int a_byte = (*ptr) & 0xFF;
   978             address dst = instr_pc + i;
   979             *(unsigned char*)dst = (unsigned char) a_byte;
   980           }
   981           ICache::invalidate_range(instr_pc, *byte_count);
   982           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
   984           if (stub_id == Runtime1::load_klass_patching_id) {
   985             // update relocInfo to oop
   986             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   987             assert(nm != NULL, "invalid nmethod_pc");
   989             // The old patch site is now a move instruction so update
   990             // the reloc info so that it will get updated during
   991             // future GCs.
   992             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
   993             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
   994                                                      relocInfo::none, relocInfo::oop_type);
   995 #ifdef SPARC
   996             // Sparc takes two relocations for an oop so update the second one.
   997             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
   998             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   999             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1000                                                      relocInfo::none, relocInfo::oop_type);
  1001 #endif
  1004         } else {
  1005           ICache::invalidate_range(copy_buff, *byte_count);
  1006           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1011 JRT_END
  1013 //
  1014 // Entry point for compiled code. We want to patch a nmethod.
  1015 // We don't do a normal VM transition here because we want to
  1016 // know after the patching is complete and any safepoint(s) are taken
  1017 // if the calling nmethod was deoptimized. We do this by calling a
  1018 // helper method which does the normal VM transition and when it
  1019 // completes we can check for deoptimization. This simplifies the
  1020 // assembly code in the cpu directories.
  1021 //
  1022 int Runtime1::move_klass_patching(JavaThread* thread) {
  1023 //
  1024 // NOTE: we are still in Java
  1025 //
  1026   Thread* THREAD = thread;
  1027   debug_only(NoHandleMark nhm;)
  1029     // Enter VM mode
  1031     ResetNoHandleMark rnhm;
  1032     patch_code(thread, load_klass_patching_id);
  1034   // Back in JAVA, use no oops DON'T safepoint
  1036   // Return true if calling code is deoptimized
  1038   return caller_is_deopted();
  1041 //
  1042 // Entry point for compiled code. We want to patch a nmethod.
  1043 // We don't do a normal VM transition here because we want to
  1044 // know after the patching is complete and any safepoint(s) are taken
  1045 // if the calling nmethod was deoptimized. We do this by calling a
  1046 // helper method which does the normal VM transition and when it
  1047 // completes we can check for deoptimization. This simplifies the
  1048 // assembly code in the cpu directories.
  1049 //
  1051 int Runtime1::access_field_patching(JavaThread* thread) {
  1052 //
  1053 // NOTE: we are still in Java
  1054 //
  1055   Thread* THREAD = thread;
  1056   debug_only(NoHandleMark nhm;)
  1058     // Enter VM mode
  1060     ResetNoHandleMark rnhm;
  1061     patch_code(thread, access_field_patching_id);
  1063   // Back in JAVA, use no oops DON'T safepoint
  1065   // Return true if calling code is deoptimized
  1067   return caller_is_deopted();
  1068 JRT_END
  1071 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1072   // for now we just print out the block id
  1073   tty->print("%d ", block_id);
  1074 JRT_END
  1077 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1078 // and we did not copy anything
  1079 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1080 #ifndef PRODUCT
  1081   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1082 #endif
  1084   enum {
  1085     ac_failed = -1, // arraycopy failed
  1086     ac_ok = 0       // arraycopy succeeded
  1087   };
  1089   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1090   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1091   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1092   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1094   if (length == 0) return ac_ok;
  1095   if (src->is_typeArray()) {
  1096     const klassOop klass_oop = src->klass();
  1097     if (klass_oop != dst->klass()) return ac_failed;
  1098     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1099     const int l2es = klass->log2_element_size();
  1100     const int ihs = klass->array_header_in_bytes() / wordSize;
  1101     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1102     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1103     // Potential problem: memmove is not guaranteed to be word atomic
  1104     // Revisit in Merlin
  1105     memmove(dst_addr, src_addr, length << l2es);
  1106     return ac_ok;
  1107   } else if (src->is_objArray() && dst->is_objArray()) {
  1108     oop* src_addr = objArrayOop(src)->obj_at_addr(src_pos);
  1109     oop* dst_addr = objArrayOop(dst)->obj_at_addr(dst_pos);
  1110     // For performance reasons, we assume we are using a card marking write
  1111     // barrier. The assert will fail if this is not the case.
  1112     // Note that we use the non-virtual inlineable variant of write_ref_array.
  1113     BarrierSet* bs = Universe::heap()->barrier_set();
  1114     assert(bs->has_write_ref_array_opt(),
  1115            "Barrier set must have ref array opt");
  1116     if (src == dst) {
  1117       // same object, no check
  1118       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1119       bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
  1120                                     (HeapWord*)(dst_addr + length)));
  1121       return ac_ok;
  1122     } else {
  1123       klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1124       klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1125       if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1126         // Elements are guaranteed to be subtypes, so no check necessary
  1127         Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1128         bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
  1129                                       (HeapWord*)(dst_addr + length)));
  1130         return ac_ok;
  1134   return ac_failed;
  1135 JRT_END
  1138 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1139 #ifndef PRODUCT
  1140   _primitive_arraycopy_cnt++;
  1141 #endif
  1143   if (length == 0) return;
  1144   // Not guaranteed to be word atomic, but that doesn't matter
  1145   // for anything but an oop array, which is covered by oop_arraycopy.
  1146   Copy::conjoint_bytes(src, dst, length);
  1147 JRT_END
  1149 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1150 #ifndef PRODUCT
  1151   _oop_arraycopy_cnt++;
  1152 #endif
  1154   if (num == 0) return;
  1155   Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1156   BarrierSet* bs = Universe::heap()->barrier_set();
  1157   bs->write_ref_array(MemRegion(dst, dst + num));
  1158 JRT_END
  1161 #ifndef PRODUCT
  1162 void Runtime1::print_statistics() {
  1163   tty->print_cr("C1 Runtime statistics:");
  1164   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1165   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1166   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1167   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1168   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1169   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1170   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1171   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1172   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1174   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1175   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1176   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1177   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1178   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1179   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1180   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1182   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1183   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1184   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1185   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1186   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1187   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1188   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1189   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1191   SharedRuntime::print_ic_miss_histogram();
  1192   tty->cr();
  1194 #endif // PRODUCT

mercurial