src/share/vm/c1/c1_LIR.hpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 739
dc7f315e41f7
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 2000-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BlockBegin;
    26 class BlockList;
    27 class LIR_Assembler;
    28 class CodeEmitInfo;
    29 class CodeStub;
    30 class CodeStubList;
    31 class ArrayCopyStub;
    32 class LIR_Op;
    33 class ciType;
    34 class ValueType;
    35 class LIR_OpVisitState;
    36 class FpuStackSim;
    38 //---------------------------------------------------------------------
    39 //                 LIR Operands
    40 //  LIR_OprDesc
    41 //    LIR_OprPtr
    42 //      LIR_Const
    43 //      LIR_Address
    44 //---------------------------------------------------------------------
    45 class LIR_OprDesc;
    46 class LIR_OprPtr;
    47 class LIR_Const;
    48 class LIR_Address;
    49 class LIR_OprVisitor;
    52 typedef LIR_OprDesc* LIR_Opr;
    53 typedef int          RegNr;
    55 define_array(LIR_OprArray, LIR_Opr)
    56 define_stack(LIR_OprList, LIR_OprArray)
    58 define_array(LIR_OprRefArray, LIR_Opr*)
    59 define_stack(LIR_OprRefList, LIR_OprRefArray)
    61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    64 define_array(LIR_OpArray, LIR_Op*)
    65 define_stack(LIR_OpList, LIR_OpArray)
    67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    68 class LIR_OprPtr: public CompilationResourceObj {
    69  public:
    70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    73   virtual LIR_Const*  as_constant()              { return NULL; }
    74   virtual LIR_Address* as_address()              { return NULL; }
    75   virtual BasicType type() const                 = 0;
    76   virtual void print_value_on(outputStream* out) const = 0;
    77 };
    81 // LIR constants
    82 class LIR_Const: public LIR_OprPtr {
    83  private:
    84   JavaValue _value;
    86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    89  public:
    90   LIR_Const(jint i)                              { _value.set_type(T_INT);     _value.set_jint(i); }
    91   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    92   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
    93   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
    94   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
    95   LIR_Const(void* p) {
    96 #ifdef _LP64
    97     assert(sizeof(jlong) >= sizeof(p), "too small");;
    98     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
    99 #else
   100     assert(sizeof(jint) >= sizeof(p), "too small");;
   101     _value.set_type(T_INT);     _value.set_jint((jint)p);
   102 #endif
   103   }
   105   virtual BasicType type()       const { return _value.get_type(); }
   106   virtual LIR_Const* as_constant()     { return this; }
   108   jint      as_jint()    const         { type_check(T_INT   ); return _value.get_jint(); }
   109   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   110   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   111   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   112   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   113   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   114   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   116 #ifdef _LP64
   117   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   118 #else
   119   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   120 #endif
   123   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT); return _value.get_jint(); }
   124   jint      as_jint_lo_bits() const    {
   125     if (type() == T_DOUBLE) {
   126       return low(jlong_cast(_value.get_jdouble()));
   127     } else {
   128       return as_jint_lo();
   129     }
   130   }
   131   jint      as_jint_hi_bits() const    {
   132     if (type() == T_DOUBLE) {
   133       return high(jlong_cast(_value.get_jdouble()));
   134     } else {
   135       return as_jint_hi();
   136     }
   137   }
   139   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   142   bool is_zero_float() {
   143     jfloat f = as_jfloat();
   144     jfloat ok = 0.0f;
   145     return jint_cast(f) == jint_cast(ok);
   146   }
   148   bool is_one_float() {
   149     jfloat f = as_jfloat();
   150     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   151   }
   153   bool is_zero_double() {
   154     jdouble d = as_jdouble();
   155     jdouble ok = 0.0;
   156     return jlong_cast(d) == jlong_cast(ok);
   157   }
   159   bool is_one_double() {
   160     jdouble d = as_jdouble();
   161     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   162   }
   163 };
   166 //---------------------LIR Operand descriptor------------------------------------
   167 //
   168 // The class LIR_OprDesc represents a LIR instruction operand;
   169 // it can be a register (ALU/FPU), stack location or a constant;
   170 // Constants and addresses are represented as resource area allocated
   171 // structures (see above).
   172 // Registers and stack locations are inlined into the this pointer
   173 // (see value function).
   175 class LIR_OprDesc: public CompilationResourceObj {
   176  public:
   177   // value structure:
   178   //     data       opr-type opr-kind
   179   // +--------------+-------+-------+
   180   // [max...........|7 6 5 4|3 2 1 0]
   181   //                             ^
   182   //                    is_pointer bit
   183   //
   184   // lowest bit cleared, means it is a structure pointer
   185   // we need  4 bits to represent types
   187  private:
   188   friend class LIR_OprFact;
   190   // Conversion
   191   intptr_t value() const                         { return (intptr_t) this; }
   193   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   194     return (value() & mask) == masked_value;
   195   }
   197   enum OprKind {
   198       pointer_value      = 0
   199     , stack_value        = 1
   200     , cpu_register       = 3
   201     , fpu_register       = 5
   202     , illegal_value      = 7
   203   };
   205   enum OprBits {
   206       pointer_bits   = 1
   207     , kind_bits      = 3
   208     , type_bits      = 4
   209     , size_bits      = 2
   210     , destroys_bits  = 1
   211     , virtual_bits   = 1
   212     , is_xmm_bits    = 1
   213     , last_use_bits  = 1
   214     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   215     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   216                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   217     , data_bits      = BitsPerInt - non_data_bits
   218     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   219   };
   221   enum OprShift {
   222       kind_shift     = 0
   223     , type_shift     = kind_shift     + kind_bits
   224     , size_shift     = type_shift     + type_bits
   225     , destroys_shift = size_shift     + size_bits
   226     , last_use_shift = destroys_shift + destroys_bits
   227     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   228     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   229     , is_xmm_shift   = virtual_shift + virtual_bits
   230     , data_shift     = is_xmm_shift + is_xmm_bits
   231     , reg1_shift = data_shift
   232     , reg2_shift = data_shift + reg_bits
   234   };
   236   enum OprSize {
   237       single_size = 0 << size_shift
   238     , double_size = 1 << size_shift
   239   };
   241   enum OprMask {
   242       kind_mask      = right_n_bits(kind_bits)
   243     , type_mask      = right_n_bits(type_bits) << type_shift
   244     , size_mask      = right_n_bits(size_bits) << size_shift
   245     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   246     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   247     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   248     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   249     , pointer_mask   = right_n_bits(pointer_bits)
   250     , lower_reg_mask = right_n_bits(reg_bits)
   251     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   252   };
   254   uintptr_t data() const                         { return value() >> data_shift; }
   255   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   256   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   257   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   258   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   260   static char type_char(BasicType t);
   262  public:
   263   enum {
   264     vreg_base = ConcreteRegisterImpl::number_of_registers,
   265     vreg_max = (1 << data_bits) - 1
   266   };
   268   static inline LIR_Opr illegalOpr();
   270   enum OprType {
   271       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   272     , int_type      = 1 << type_shift
   273     , long_type     = 2 << type_shift
   274     , object_type   = 3 << type_shift
   275     , pointer_type  = 4 << type_shift
   276     , float_type    = 5 << type_shift
   277     , double_type   = 6 << type_shift
   278   };
   279   friend OprType as_OprType(BasicType t);
   280   friend BasicType as_BasicType(OprType t);
   282   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   283   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   285   static OprSize size_for(BasicType t) {
   286     switch (t) {
   287       case T_LONG:
   288       case T_DOUBLE:
   289         return double_size;
   290         break;
   292       case T_FLOAT:
   293       case T_BOOLEAN:
   294       case T_CHAR:
   295       case T_BYTE:
   296       case T_SHORT:
   297       case T_INT:
   298       case T_OBJECT:
   299       case T_ARRAY:
   300         return single_size;
   301         break;
   303       default:
   304         ShouldNotReachHere();
   305       }
   306   }
   309   void validate_type() const PRODUCT_RETURN;
   311   BasicType type() const {
   312     if (is_pointer()) {
   313       return pointer()->type();
   314     }
   315     return as_BasicType(type_field());
   316   }
   319   ValueType* value_type() const                  { return as_ValueType(type()); }
   321   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   323   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   324   // checks whether types are same
   325   bool is_same_type(LIR_Opr opr) const     {
   326     assert(type_field() != unknown_type &&
   327            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   328     return type_field() == opr->type_field();
   329   }
   330   bool is_same_register(LIR_Opr opr) {
   331     return (is_register() && opr->is_register() &&
   332             kind_field() == opr->kind_field() &&
   333             (value() & no_type_mask) == (opr->value() & no_type_mask));
   334   }
   336   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   337   bool is_illegal() const      { return kind_field() == illegal_value; }
   338   bool is_valid() const        { return kind_field() != illegal_value; }
   340   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   341   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   343   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   344   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   346   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   347   bool is_oop() const;
   349   // semantic for fpu- and xmm-registers:
   350   // * is_float and is_double return true for xmm_registers
   351   //   (so is_single_fpu and is_single_xmm are true)
   352   // * So you must always check for is_???_xmm prior to is_???_fpu to
   353   //   distinguish between fpu- and xmm-registers
   355   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   356   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   357   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   359   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   360   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   361   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   362   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   363   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   365   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   366   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   367   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   368   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   369   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   371   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   372   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   373   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   375   // fast accessor functions for special bits that do not work for pointers
   376   // (in this functions, the check for is_pointer() is omitted)
   377   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   378   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   379   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   380   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   381   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   383   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   384   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   385   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   386   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   389   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   390   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   391   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   392   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   393   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   394   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   395   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   396   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   397   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   398   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   399   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   400   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   402   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   403   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   404   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   406   Register as_register()    const;
   407   Register as_register_lo() const;
   408   Register as_register_hi() const;
   410   Register as_pointer_register() {
   411 #ifdef _LP64
   412     if (is_double_cpu()) {
   413       assert(as_register_lo() == as_register_hi(), "should be a single register");
   414       return as_register_lo();
   415     }
   416 #endif
   417     return as_register();
   418   }
   420 #ifdef IA32
   421   XMMRegister as_xmm_float_reg() const;
   422   XMMRegister as_xmm_double_reg() const;
   423   // for compatibility with RInfo
   424   int fpu () const                                  { return lo_reg_half(); }
   425 #endif
   427 #ifdef SPARC
   428   FloatRegister as_float_reg   () const;
   429   FloatRegister as_double_reg  () const;
   430 #endif
   432   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   433   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   434   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   435   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   436   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   438   void print() const PRODUCT_RETURN;
   439   void print(outputStream* out) const PRODUCT_RETURN;
   440 };
   443 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   444   switch (type) {
   445   case T_INT:      return LIR_OprDesc::int_type;
   446   case T_LONG:     return LIR_OprDesc::long_type;
   447   case T_FLOAT:    return LIR_OprDesc::float_type;
   448   case T_DOUBLE:   return LIR_OprDesc::double_type;
   449   case T_OBJECT:
   450   case T_ARRAY:    return LIR_OprDesc::object_type;
   451   case T_ILLEGAL:  // fall through
   452   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   453   }
   454 }
   456 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   457   switch (t) {
   458   case LIR_OprDesc::int_type:     return T_INT;
   459   case LIR_OprDesc::long_type:    return T_LONG;
   460   case LIR_OprDesc::float_type:   return T_FLOAT;
   461   case LIR_OprDesc::double_type:  return T_DOUBLE;
   462   case LIR_OprDesc::object_type:  return T_OBJECT;
   463   case LIR_OprDesc::unknown_type: // fall through
   464   default: ShouldNotReachHere();  return T_ILLEGAL;
   465   }
   466 }
   469 // LIR_Address
   470 class LIR_Address: public LIR_OprPtr {
   471  friend class LIR_OpVisitState;
   473  public:
   474   // NOTE: currently these must be the log2 of the scale factor (and
   475   // must also be equivalent to the ScaleFactor enum in
   476   // assembler_i486.hpp)
   477   enum Scale {
   478     times_1  =  0,
   479     times_2  =  1,
   480     times_4  =  2,
   481     times_8  =  3
   482   };
   484  private:
   485   LIR_Opr   _base;
   486   LIR_Opr   _index;
   487   Scale     _scale;
   488   intx      _disp;
   489   BasicType _type;
   491  public:
   492   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   493        _base(base)
   494      , _index(index)
   495      , _scale(times_1)
   496      , _type(type)
   497      , _disp(0) { verify(); }
   499   LIR_Address(LIR_Opr base, int disp, BasicType type):
   500        _base(base)
   501      , _index(LIR_OprDesc::illegalOpr())
   502      , _scale(times_1)
   503      , _type(type)
   504      , _disp(disp) { verify(); }
   506 #ifdef IA32
   507   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type):
   508        _base(base)
   509      , _index(index)
   510      , _scale(scale)
   511      , _type(type)
   512      , _disp(disp) { verify(); }
   513 #endif
   515   LIR_Opr base()  const                          { return _base;  }
   516   LIR_Opr index() const                          { return _index; }
   517   Scale   scale() const                          { return _scale; }
   518   intx    disp()  const                          { return _disp;  }
   520   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   522   virtual LIR_Address* as_address()              { return this;   }
   523   virtual BasicType type() const                 { return _type; }
   524   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   526   void verify() const PRODUCT_RETURN;
   528   static Scale scale(BasicType type);
   529 };
   532 // operand factory
   533 class LIR_OprFact: public AllStatic {
   534  public:
   536   static LIR_Opr illegalOpr;
   538   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   539   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   540   static LIR_Opr double_cpu(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::long_type   | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
   542   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size); }
   544 #ifdef SPARC
   545   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   546 #endif
   547 #ifdef IA32
   548   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) | (reg  << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   549   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::is_xmm_mask); }
   550   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) | (reg  << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::is_xmm_mask); }
   551 #endif
   554   static LIR_Opr virtual_register(int index, BasicType type) {
   555     LIR_Opr res;
   556     switch (type) {
   557       case T_OBJECT: // fall through
   558       case T_ARRAY:  res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
   559       case T_INT:    res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
   560       case T_LONG:   res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type   | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break;
   561       case T_FLOAT:  res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type  | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break;
   562       case T_DOUBLE: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break;
   564       default:       ShouldNotReachHere(); res = illegalOpr;
   565     }
   567 #ifdef ASSERT
   568     res->validate_type();
   569     assert(res->vreg_number() == index, "conversion check");
   570     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   571     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   573     // old-style calculation; check if old and new method are equal
   574     LIR_OprDesc::OprType t = as_OprType(type);
   575     LIR_Opr old_res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | t |
   576                                ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   577                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   578     assert(res == old_res, "old and new method not equal");
   579 #endif
   581     return res;
   582   }
   584   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   585   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   586   // index 2.
   587   static LIR_Opr stack(int index, BasicType type) {
   588     LIR_Opr res;
   589     switch (type) {
   590       case T_OBJECT: // fall through
   591       case T_ARRAY:  res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
   592       case T_INT:    res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type    | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
   593       case T_LONG:   res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type   | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break;
   594       case T_FLOAT:  res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type  | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break;
   595       case T_DOUBLE: res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break;
   597       default:       ShouldNotReachHere(); res = illegalOpr;
   598     }
   600 #ifdef ASSERT
   601     assert(index >= 0, "index must be positive");
   602     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   604     LIR_Opr old_res = (LIR_Opr)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::stack_value | as_OprType(type) | LIR_OprDesc::size_for(type));
   605     assert(res == old_res, "old and new method not equal");
   606 #endif
   608     return res;
   609   }
   611   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   612   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   613   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   614   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   615   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   616   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   617   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   618   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   619   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   621   static LIR_Opr value_type(ValueType* type);
   622   static LIR_Opr dummy_value_type(ValueType* type);
   623 };
   626 //-------------------------------------------------------------------------------
   627 //                   LIR Instructions
   628 //-------------------------------------------------------------------------------
   629 //
   630 // Note:
   631 //  - every instruction has a result operand
   632 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   633 //  - every instruction has a LIR_OpCode operand
   634 //  - LIR_OpN, means an instruction that has N input operands
   635 //
   636 // class hierarchy:
   637 //
   638 class  LIR_Op;
   639 class    LIR_Op0;
   640 class      LIR_OpLabel;
   641 class    LIR_Op1;
   642 class      LIR_OpBranch;
   643 class      LIR_OpConvert;
   644 class      LIR_OpAllocObj;
   645 class      LIR_OpRoundFP;
   646 class    LIR_Op2;
   647 class    LIR_OpDelay;
   648 class    LIR_Op3;
   649 class      LIR_OpAllocArray;
   650 class    LIR_OpCall;
   651 class      LIR_OpJavaCall;
   652 class      LIR_OpRTCall;
   653 class    LIR_OpArrayCopy;
   654 class    LIR_OpLock;
   655 class    LIR_OpTypeCheck;
   656 class    LIR_OpCompareAndSwap;
   657 class    LIR_OpProfileCall;
   660 // LIR operation codes
   661 enum LIR_Code {
   662     lir_none
   663   , begin_op0
   664       , lir_word_align
   665       , lir_label
   666       , lir_nop
   667       , lir_backwardbranch_target
   668       , lir_std_entry
   669       , lir_osr_entry
   670       , lir_build_frame
   671       , lir_fpop_raw
   672       , lir_24bit_FPU
   673       , lir_reset_FPU
   674       , lir_breakpoint
   675       , lir_rtcall
   676       , lir_membar
   677       , lir_membar_acquire
   678       , lir_membar_release
   679       , lir_get_thread
   680   , end_op0
   681   , begin_op1
   682       , lir_fxch
   683       , lir_fld
   684       , lir_ffree
   685       , lir_push
   686       , lir_pop
   687       , lir_null_check
   688       , lir_return
   689       , lir_leal
   690       , lir_neg
   691       , lir_branch
   692       , lir_cond_float_branch
   693       , lir_move
   694       , lir_prefetchr
   695       , lir_prefetchw
   696       , lir_convert
   697       , lir_alloc_object
   698       , lir_monaddr
   699       , lir_roundfp
   700       , lir_safepoint
   701   , end_op1
   702   , begin_op2
   703       , lir_cmp
   704       , lir_cmp_l2i
   705       , lir_ucmp_fd2i
   706       , lir_cmp_fd2i
   707       , lir_cmove
   708       , lir_add
   709       , lir_sub
   710       , lir_mul
   711       , lir_mul_strictfp
   712       , lir_div
   713       , lir_div_strictfp
   714       , lir_rem
   715       , lir_sqrt
   716       , lir_abs
   717       , lir_sin
   718       , lir_cos
   719       , lir_tan
   720       , lir_log
   721       , lir_log10
   722       , lir_logic_and
   723       , lir_logic_or
   724       , lir_logic_xor
   725       , lir_shl
   726       , lir_shr
   727       , lir_ushr
   728       , lir_alloc_array
   729       , lir_throw
   730       , lir_unwind
   731       , lir_compare_to
   732   , end_op2
   733   , begin_op3
   734       , lir_idiv
   735       , lir_irem
   736   , end_op3
   737   , begin_opJavaCall
   738       , lir_static_call
   739       , lir_optvirtual_call
   740       , lir_icvirtual_call
   741       , lir_virtual_call
   742   , end_opJavaCall
   743   , begin_opArrayCopy
   744       , lir_arraycopy
   745   , end_opArrayCopy
   746   , begin_opLock
   747     , lir_lock
   748     , lir_unlock
   749   , end_opLock
   750   , begin_delay_slot
   751     , lir_delay_slot
   752   , end_delay_slot
   753   , begin_opTypeCheck
   754     , lir_instanceof
   755     , lir_checkcast
   756     , lir_store_check
   757   , end_opTypeCheck
   758   , begin_opCompareAndSwap
   759     , lir_cas_long
   760     , lir_cas_obj
   761     , lir_cas_int
   762   , end_opCompareAndSwap
   763   , begin_opMDOProfile
   764     , lir_profile_call
   765   , end_opMDOProfile
   766 };
   769 enum LIR_Condition {
   770     lir_cond_equal
   771   , lir_cond_notEqual
   772   , lir_cond_less
   773   , lir_cond_lessEqual
   774   , lir_cond_greaterEqual
   775   , lir_cond_greater
   776   , lir_cond_belowEqual
   777   , lir_cond_aboveEqual
   778   , lir_cond_always
   779   , lir_cond_unknown = -1
   780 };
   783 enum LIR_PatchCode {
   784   lir_patch_none,
   785   lir_patch_low,
   786   lir_patch_high,
   787   lir_patch_normal
   788 };
   791 enum LIR_MoveKind {
   792   lir_move_normal,
   793   lir_move_volatile,
   794   lir_move_unaligned,
   795   lir_move_max_flag
   796 };
   799 // --------------------------------------------------
   800 // LIR_Op
   801 // --------------------------------------------------
   802 class LIR_Op: public CompilationResourceObj {
   803  friend class LIR_OpVisitState;
   805 #ifdef ASSERT
   806  private:
   807   const char *  _file;
   808   int           _line;
   809 #endif
   811  protected:
   812   LIR_Opr       _result;
   813   unsigned short _code;
   814   unsigned short _flags;
   815   CodeEmitInfo* _info;
   816   int           _id;     // value id for register allocation
   817   int           _fpu_pop_count;
   818   Instruction*  _source; // for debugging
   820   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
   822  protected:
   823   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
   825  public:
   826   LIR_Op()
   827     : _result(LIR_OprFact::illegalOpr)
   828     , _code(lir_none)
   829     , _flags(0)
   830     , _info(NULL)
   831 #ifdef ASSERT
   832     , _file(NULL)
   833     , _line(0)
   834 #endif
   835     , _fpu_pop_count(0)
   836     , _source(NULL)
   837     , _id(-1)                             {}
   839   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
   840     : _result(result)
   841     , _code(code)
   842     , _flags(0)
   843     , _info(info)
   844 #ifdef ASSERT
   845     , _file(NULL)
   846     , _line(0)
   847 #endif
   848     , _fpu_pop_count(0)
   849     , _source(NULL)
   850     , _id(-1)                             {}
   852   CodeEmitInfo* info() const                  { return _info;   }
   853   LIR_Code code()      const                  { return (LIR_Code)_code;   }
   854   LIR_Opr result_opr() const                  { return _result; }
   855   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
   857 #ifdef ASSERT
   858   void set_file_and_line(const char * file, int line) {
   859     _file = file;
   860     _line = line;
   861   }
   862 #endif
   864   virtual const char * name() const PRODUCT_RETURN0;
   866   int id()             const                  { return _id;     }
   867   void set_id(int id)                         { _id = id; }
   869   // FPU stack simulation helpers -- only used on Intel
   870   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
   871   int  fpu_pop_count() const                  { return _fpu_pop_count; }
   872   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
   874   Instruction* source() const                 { return _source; }
   875   void set_source(Instruction* ins)           { _source = ins; }
   877   virtual void emit_code(LIR_Assembler* masm) = 0;
   878   virtual void print_instr(outputStream* out) const   = 0;
   879   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
   881   virtual LIR_OpCall* as_OpCall() { return NULL; }
   882   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
   883   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
   884   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
   885   virtual LIR_OpLock* as_OpLock() { return NULL; }
   886   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
   887   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
   888   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
   889   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
   890   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
   891   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
   892   virtual LIR_Op0* as_Op0() { return NULL; }
   893   virtual LIR_Op1* as_Op1() { return NULL; }
   894   virtual LIR_Op2* as_Op2() { return NULL; }
   895   virtual LIR_Op3* as_Op3() { return NULL; }
   896   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
   897   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
   898   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
   899   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
   901   virtual void verify() const {}
   902 };
   904 // for calls
   905 class LIR_OpCall: public LIR_Op {
   906  friend class LIR_OpVisitState;
   908  protected:
   909   address      _addr;
   910   LIR_OprList* _arguments;
   911  protected:
   912   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
   913              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
   914     : LIR_Op(code, result, info)
   915     , _arguments(arguments)
   916     , _addr(addr) {}
   918  public:
   919   address addr() const                           { return _addr; }
   920   const LIR_OprList* arguments() const           { return _arguments; }
   921   virtual LIR_OpCall* as_OpCall()                { return this; }
   922 };
   925 // --------------------------------------------------
   926 // LIR_OpJavaCall
   927 // --------------------------------------------------
   928 class LIR_OpJavaCall: public LIR_OpCall {
   929  friend class LIR_OpVisitState;
   931  private:
   932   ciMethod*       _method;
   933   LIR_Opr         _receiver;
   935  public:
   936   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
   937                  LIR_Opr receiver, LIR_Opr result,
   938                  address addr, LIR_OprList* arguments,
   939                  CodeEmitInfo* info)
   940   : LIR_OpCall(code, addr, result, arguments, info)
   941   , _receiver(receiver)
   942   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
   944   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
   945                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
   946                  LIR_OprList* arguments, CodeEmitInfo* info)
   947   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
   948   , _receiver(receiver)
   949   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
   951   LIR_Opr receiver() const                       { return _receiver; }
   952   ciMethod* method() const                       { return _method;   }
   954   intptr_t vtable_offset() const {
   955     assert(_code == lir_virtual_call, "only have vtable for real vcall");
   956     return (intptr_t) addr();
   957   }
   959   virtual void emit_code(LIR_Assembler* masm);
   960   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
   961   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
   962 };
   964 // --------------------------------------------------
   965 // LIR_OpLabel
   966 // --------------------------------------------------
   967 // Location where a branch can continue
   968 class LIR_OpLabel: public LIR_Op {
   969  friend class LIR_OpVisitState;
   971  private:
   972   Label* _label;
   973  public:
   974   LIR_OpLabel(Label* lbl)
   975    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
   976    , _label(lbl)                                 {}
   977   Label* label() const                           { return _label; }
   979   virtual void emit_code(LIR_Assembler* masm);
   980   virtual LIR_OpLabel* as_OpLabel() { return this; }
   981   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
   982 };
   984 // LIR_OpArrayCopy
   985 class LIR_OpArrayCopy: public LIR_Op {
   986  friend class LIR_OpVisitState;
   988  private:
   989   ArrayCopyStub*  _stub;
   990   LIR_Opr   _src;
   991   LIR_Opr   _src_pos;
   992   LIR_Opr   _dst;
   993   LIR_Opr   _dst_pos;
   994   LIR_Opr   _length;
   995   LIR_Opr   _tmp;
   996   ciArrayKlass* _expected_type;
   997   int       _flags;
   999 public:
  1000   enum Flags {
  1001     src_null_check         = 1 << 0,
  1002     dst_null_check         = 1 << 1,
  1003     src_pos_positive_check = 1 << 2,
  1004     dst_pos_positive_check = 1 << 3,
  1005     length_positive_check  = 1 << 4,
  1006     src_range_check        = 1 << 5,
  1007     dst_range_check        = 1 << 6,
  1008     type_check             = 1 << 7,
  1009     all_flags              = (1 << 8) - 1
  1010   };
  1012   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1013                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1015   LIR_Opr src() const                            { return _src; }
  1016   LIR_Opr src_pos() const                        { return _src_pos; }
  1017   LIR_Opr dst() const                            { return _dst; }
  1018   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1019   LIR_Opr length() const                         { return _length; }
  1020   LIR_Opr tmp() const                            { return _tmp; }
  1021   int flags() const                              { return _flags; }
  1022   ciArrayKlass* expected_type() const            { return _expected_type; }
  1023   ArrayCopyStub* stub() const                    { return _stub; }
  1025   virtual void emit_code(LIR_Assembler* masm);
  1026   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1027   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1028 };
  1031 // --------------------------------------------------
  1032 // LIR_Op0
  1033 // --------------------------------------------------
  1034 class LIR_Op0: public LIR_Op {
  1035  friend class LIR_OpVisitState;
  1037  public:
  1038   LIR_Op0(LIR_Code code)
  1039    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1040   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1041    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1043   virtual void emit_code(LIR_Assembler* masm);
  1044   virtual LIR_Op0* as_Op0() { return this; }
  1045   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1046 };
  1049 // --------------------------------------------------
  1050 // LIR_Op1
  1051 // --------------------------------------------------
  1053 class LIR_Op1: public LIR_Op {
  1054  friend class LIR_OpVisitState;
  1056  protected:
  1057   LIR_Opr         _opr;   // input operand
  1058   BasicType       _type;  // Operand types
  1059   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1061   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1063   void set_kind(LIR_MoveKind kind) {
  1064     assert(code() == lir_move, "must be");
  1065     _flags = kind;
  1068  public:
  1069   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1070     : LIR_Op(code, result, info)
  1071     , _opr(opr)
  1072     , _patch(patch)
  1073     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1075   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1076     : LIR_Op(code, result, info)
  1077     , _opr(opr)
  1078     , _patch(patch)
  1079     , _type(type)                      {
  1080     assert(code == lir_move, "must be");
  1081     set_kind(kind);
  1084   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1085     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1086     , _opr(opr)
  1087     , _patch(lir_patch_none)
  1088     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1090   LIR_Opr in_opr()           const               { return _opr;   }
  1091   LIR_PatchCode patch_code() const               { return _patch; }
  1092   BasicType type()           const               { return _type;  }
  1094   LIR_MoveKind move_kind() const {
  1095     assert(code() == lir_move, "must be");
  1096     return (LIR_MoveKind)_flags;
  1099   virtual void emit_code(LIR_Assembler* masm);
  1100   virtual LIR_Op1* as_Op1() { return this; }
  1101   virtual const char * name() const PRODUCT_RETURN0;
  1103   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1105   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1106   virtual void verify() const;
  1107 };
  1110 // for runtime calls
  1111 class LIR_OpRTCall: public LIR_OpCall {
  1112  friend class LIR_OpVisitState;
  1114  private:
  1115   LIR_Opr _tmp;
  1116  public:
  1117   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1118                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1119     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1120     , _tmp(tmp) {}
  1122   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1123   virtual void emit_code(LIR_Assembler* masm);
  1124   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1126   LIR_Opr tmp() const                            { return _tmp; }
  1128   virtual void verify() const;
  1129 };
  1132 class LIR_OpBranch: public LIR_Op {
  1133  friend class LIR_OpVisitState;
  1135  private:
  1136   LIR_Condition _cond;
  1137   BasicType     _type;
  1138   Label*        _label;
  1139   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1140   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1141   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1143  public:
  1144   LIR_OpBranch(LIR_Condition cond, Label* lbl)
  1145     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1146     , _cond(cond)
  1147     , _label(lbl)
  1148     , _block(NULL)
  1149     , _ublock(NULL)
  1150     , _stub(NULL) { }
  1152   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1153   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1155   // for unordered comparisons
  1156   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1158   LIR_Condition cond()        const              { return _cond;        }
  1159   BasicType     type()        const              { return _type;        }
  1160   Label*        label()       const              { return _label;       }
  1161   BlockBegin*   block()       const              { return _block;       }
  1162   BlockBegin*   ublock()      const              { return _ublock;      }
  1163   CodeStub*     stub()        const              { return _stub;       }
  1165   void          change_block(BlockBegin* b);
  1166   void          change_ublock(BlockBegin* b);
  1167   void          negate_cond();
  1169   virtual void emit_code(LIR_Assembler* masm);
  1170   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1171   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1172 };
  1175 class ConversionStub;
  1177 class LIR_OpConvert: public LIR_Op1 {
  1178  friend class LIR_OpVisitState;
  1180  private:
  1181    Bytecodes::Code _bytecode;
  1182    ConversionStub* _stub;
  1184  public:
  1185    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1186      : LIR_Op1(lir_convert, opr, result)
  1187      , _stub(stub)
  1188      , _bytecode(code)                           {}
  1190   Bytecodes::Code bytecode() const               { return _bytecode; }
  1191   ConversionStub* stub() const                   { return _stub; }
  1193   virtual void emit_code(LIR_Assembler* masm);
  1194   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1195   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1197   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1198 };
  1201 // LIR_OpAllocObj
  1202 class LIR_OpAllocObj : public LIR_Op1 {
  1203  friend class LIR_OpVisitState;
  1205  private:
  1206   LIR_Opr _tmp1;
  1207   LIR_Opr _tmp2;
  1208   LIR_Opr _tmp3;
  1209   LIR_Opr _tmp4;
  1210   int     _hdr_size;
  1211   int     _obj_size;
  1212   CodeStub* _stub;
  1213   bool    _init_check;
  1215  public:
  1216   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1217                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1218                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1219     : LIR_Op1(lir_alloc_object, klass, result)
  1220     , _tmp1(t1)
  1221     , _tmp2(t2)
  1222     , _tmp3(t3)
  1223     , _tmp4(t4)
  1224     , _hdr_size(hdr_size)
  1225     , _obj_size(obj_size)
  1226     , _init_check(init_check)
  1227     , _stub(stub)                                { }
  1229   LIR_Opr klass()        const                   { return in_opr();     }
  1230   LIR_Opr obj()          const                   { return result_opr(); }
  1231   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1232   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1233   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1234   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1235   int     header_size()  const                   { return _hdr_size;    }
  1236   int     object_size()  const                   { return _obj_size;    }
  1237   bool    init_check()   const                   { return _init_check;  }
  1238   CodeStub* stub()       const                   { return _stub;        }
  1240   virtual void emit_code(LIR_Assembler* masm);
  1241   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1242   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1243 };
  1246 // LIR_OpRoundFP
  1247 class LIR_OpRoundFP : public LIR_Op1 {
  1248  friend class LIR_OpVisitState;
  1250  private:
  1251   LIR_Opr _tmp;
  1253  public:
  1254   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1255     : LIR_Op1(lir_roundfp, reg, result)
  1256     , _tmp(stack_loc_temp) {}
  1258   LIR_Opr tmp() const                            { return _tmp; }
  1259   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1260   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1261 };
  1263 // LIR_OpTypeCheck
  1264 class LIR_OpTypeCheck: public LIR_Op {
  1265  friend class LIR_OpVisitState;
  1267  private:
  1268   LIR_Opr       _object;
  1269   LIR_Opr       _array;
  1270   ciKlass*      _klass;
  1271   LIR_Opr       _tmp1;
  1272   LIR_Opr       _tmp2;
  1273   LIR_Opr       _tmp3;
  1274   bool          _fast_check;
  1275   CodeEmitInfo* _info_for_patch;
  1276   CodeEmitInfo* _info_for_exception;
  1277   CodeStub*     _stub;
  1278   // Helpers for Tier1UpdateMethodData
  1279   ciMethod*     _profiled_method;
  1280   int           _profiled_bci;
  1282 public:
  1283   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1284                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1285                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1286                   ciMethod* profiled_method, int profiled_bci);
  1287   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1288                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
  1289                   ciMethod* profiled_method, int profiled_bci);
  1291   LIR_Opr object() const                         { return _object;         }
  1292   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1293   LIR_Opr tmp1() const                           { return _tmp1;           }
  1294   LIR_Opr tmp2() const                           { return _tmp2;           }
  1295   LIR_Opr tmp3() const                           { return _tmp3;           }
  1296   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1297   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1298   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1299   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1300   CodeStub* stub() const                         { return _stub;           }
  1302   // methodDataOop profiling
  1303   ciMethod* profiled_method()                    { return _profiled_method; }
  1304   int       profiled_bci()                       { return _profiled_bci; }
  1306   virtual void emit_code(LIR_Assembler* masm);
  1307   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1308   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1309 };
  1311 // LIR_Op2
  1312 class LIR_Op2: public LIR_Op {
  1313  friend class LIR_OpVisitState;
  1315   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1317  protected:
  1318   LIR_Opr   _opr1;
  1319   LIR_Opr   _opr2;
  1320   BasicType _type;
  1321   LIR_Opr   _tmp;
  1322   LIR_Condition _condition;
  1324   void verify() const;
  1326  public:
  1327   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1328     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1329     , _opr1(opr1)
  1330     , _opr2(opr2)
  1331     , _type(T_ILLEGAL)
  1332     , _condition(condition)
  1333     , _fpu_stack_size(0)
  1334     , _tmp(LIR_OprFact::illegalOpr) {
  1335     assert(code == lir_cmp, "code check");
  1338   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
  1339     : LIR_Op(code, result, NULL)
  1340     , _opr1(opr1)
  1341     , _opr2(opr2)
  1342     , _type(T_ILLEGAL)
  1343     , _condition(condition)
  1344     , _fpu_stack_size(0)
  1345     , _tmp(LIR_OprFact::illegalOpr) {
  1346     assert(code == lir_cmove, "code check");
  1349   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1350           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1351     : LIR_Op(code, result, info)
  1352     , _opr1(opr1)
  1353     , _opr2(opr2)
  1354     , _type(type)
  1355     , _condition(lir_cond_unknown)
  1356     , _fpu_stack_size(0)
  1357     , _tmp(LIR_OprFact::illegalOpr) {
  1358     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1361   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
  1362     : LIR_Op(code, result, NULL)
  1363     , _opr1(opr1)
  1364     , _opr2(opr2)
  1365     , _type(T_ILLEGAL)
  1366     , _condition(lir_cond_unknown)
  1367     , _fpu_stack_size(0)
  1368     , _tmp(tmp) {
  1369     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1372   LIR_Opr in_opr1() const                        { return _opr1; }
  1373   LIR_Opr in_opr2() const                        { return _opr2; }
  1374   BasicType type()  const                        { return _type; }
  1375   LIR_Opr tmp_opr() const                        { return _tmp; }
  1376   LIR_Condition condition() const  {
  1377     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1380   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1381   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1383   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1384   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1386   virtual void emit_code(LIR_Assembler* masm);
  1387   virtual LIR_Op2* as_Op2() { return this; }
  1388   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1389 };
  1391 class LIR_OpAllocArray : public LIR_Op {
  1392  friend class LIR_OpVisitState;
  1394  private:
  1395   LIR_Opr   _klass;
  1396   LIR_Opr   _len;
  1397   LIR_Opr   _tmp1;
  1398   LIR_Opr   _tmp2;
  1399   LIR_Opr   _tmp3;
  1400   LIR_Opr   _tmp4;
  1401   BasicType _type;
  1402   CodeStub* _stub;
  1404  public:
  1405   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1406     : LIR_Op(lir_alloc_array, result, NULL)
  1407     , _klass(klass)
  1408     , _len(len)
  1409     , _tmp1(t1)
  1410     , _tmp2(t2)
  1411     , _tmp3(t3)
  1412     , _tmp4(t4)
  1413     , _type(type)
  1414     , _stub(stub) {}
  1416   LIR_Opr   klass()   const                      { return _klass;       }
  1417   LIR_Opr   len()     const                      { return _len;         }
  1418   LIR_Opr   obj()     const                      { return result_opr(); }
  1419   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1420   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1421   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1422   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1423   BasicType type()    const                      { return _type;        }
  1424   CodeStub* stub()    const                      { return _stub;        }
  1426   virtual void emit_code(LIR_Assembler* masm);
  1427   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1428   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1429 };
  1432 class LIR_Op3: public LIR_Op {
  1433  friend class LIR_OpVisitState;
  1435  private:
  1436   LIR_Opr _opr1;
  1437   LIR_Opr _opr2;
  1438   LIR_Opr _opr3;
  1439  public:
  1440   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1441     : LIR_Op(code, result, info)
  1442     , _opr1(opr1)
  1443     , _opr2(opr2)
  1444     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1445   LIR_Opr in_opr1() const                        { return _opr1; }
  1446   LIR_Opr in_opr2() const                        { return _opr2; }
  1447   LIR_Opr in_opr3() const                        { return _opr3; }
  1449   virtual void emit_code(LIR_Assembler* masm);
  1450   virtual LIR_Op3* as_Op3() { return this; }
  1451   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1452 };
  1455 //--------------------------------
  1456 class LabelObj: public CompilationResourceObj {
  1457  private:
  1458   Label _label;
  1459  public:
  1460   LabelObj()                                     {}
  1461   Label* label()                                 { return &_label; }
  1462 };
  1465 class LIR_OpLock: public LIR_Op {
  1466  friend class LIR_OpVisitState;
  1468  private:
  1469   LIR_Opr _hdr;
  1470   LIR_Opr _obj;
  1471   LIR_Opr _lock;
  1472   LIR_Opr _scratch;
  1473   CodeStub* _stub;
  1474  public:
  1475   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1476     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1477     , _hdr(hdr)
  1478     , _obj(obj)
  1479     , _lock(lock)
  1480     , _scratch(scratch)
  1481     , _stub(stub)                      {}
  1483   LIR_Opr hdr_opr() const                        { return _hdr; }
  1484   LIR_Opr obj_opr() const                        { return _obj; }
  1485   LIR_Opr lock_opr() const                       { return _lock; }
  1486   LIR_Opr scratch_opr() const                    { return _scratch; }
  1487   CodeStub* stub() const                         { return _stub; }
  1489   virtual void emit_code(LIR_Assembler* masm);
  1490   virtual LIR_OpLock* as_OpLock() { return this; }
  1491   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1492 };
  1495 class LIR_OpDelay: public LIR_Op {
  1496  friend class LIR_OpVisitState;
  1498  private:
  1499   LIR_Op* _op;
  1501  public:
  1502   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1503     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1504     _op(op) {
  1505     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1507   virtual void emit_code(LIR_Assembler* masm);
  1508   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1509   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1510   LIR_Op* delay_op() const { return _op; }
  1511   CodeEmitInfo* call_info() const { return info(); }
  1512 };
  1515 // LIR_OpCompareAndSwap
  1516 class LIR_OpCompareAndSwap : public LIR_Op {
  1517  friend class LIR_OpVisitState;
  1519  private:
  1520   LIR_Opr _addr;
  1521   LIR_Opr _cmp_value;
  1522   LIR_Opr _new_value;
  1523   LIR_Opr _tmp1;
  1524   LIR_Opr _tmp2;
  1526  public:
  1527   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
  1528     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1529     , _addr(addr)
  1530     , _cmp_value(cmp_value)
  1531     , _new_value(new_value)
  1532     , _tmp1(t1)
  1533     , _tmp2(t2)                                  { }
  1535   LIR_Opr addr()        const                    { return _addr;  }
  1536   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1537   LIR_Opr new_value()   const                    { return _new_value; }
  1538   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1539   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1541   virtual void emit_code(LIR_Assembler* masm);
  1542   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1543   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1544 };
  1546 // LIR_OpProfileCall
  1547 class LIR_OpProfileCall : public LIR_Op {
  1548  friend class LIR_OpVisitState;
  1550  private:
  1551   ciMethod* _profiled_method;
  1552   int _profiled_bci;
  1553   LIR_Opr _mdo;
  1554   LIR_Opr _recv;
  1555   LIR_Opr _tmp1;
  1556   ciKlass* _known_holder;
  1558  public:
  1559   // Destroys recv
  1560   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1561     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1562     , _profiled_method(profiled_method)
  1563     , _profiled_bci(profiled_bci)
  1564     , _mdo(mdo)
  1565     , _recv(recv)
  1566     , _tmp1(t1)
  1567     , _known_holder(known_holder)                { }
  1569   ciMethod* profiled_method() const              { return _profiled_method;  }
  1570   int       profiled_bci()    const              { return _profiled_bci;     }
  1571   LIR_Opr   mdo()             const              { return _mdo;              }
  1572   LIR_Opr   recv()            const              { return _recv;             }
  1573   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1574   ciKlass*  known_holder()    const              { return _known_holder;     }
  1576   virtual void emit_code(LIR_Assembler* masm);
  1577   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1578   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1579 };
  1582 class LIR_InsertionBuffer;
  1584 //--------------------------------LIR_List---------------------------------------------------
  1585 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1586 // The LIR instructions are appended by the LIR_List class itself;
  1587 //
  1588 // Notes:
  1589 // - all offsets are(should be) in bytes
  1590 // - local positions are specified with an offset, with offset 0 being local 0
  1592 class LIR_List: public CompilationResourceObj {
  1593  private:
  1594   LIR_OpList  _operations;
  1596   Compilation*  _compilation;
  1597 #ifndef PRODUCT
  1598   BlockBegin*   _block;
  1599 #endif
  1600 #ifdef ASSERT
  1601   const char *  _file;
  1602   int           _line;
  1603 #endif
  1605   void append(LIR_Op* op) {
  1606     if (op->source() == NULL)
  1607       op->set_source(_compilation->current_instruction());
  1608 #ifndef PRODUCT
  1609     if (PrintIRWithLIR) {
  1610       _compilation->maybe_print_current_instruction();
  1611       op->print(); tty->cr();
  1613 #endif // PRODUCT
  1615     _operations.append(op);
  1617 #ifdef ASSERT
  1618     op->verify();
  1619     op->set_file_and_line(_file, _line);
  1620     _file = NULL;
  1621     _line = 0;
  1622 #endif
  1625  public:
  1626   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1628 #ifdef ASSERT
  1629   void set_file_and_line(const char * file, int line);
  1630 #endif
  1632   //---------- accessors ---------------
  1633   LIR_OpList* instructions_list()                { return &_operations; }
  1634   int         length() const                     { return _operations.length(); }
  1635   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1637   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1639   // insert LIR_Ops in buffer to right places in LIR_List
  1640   void append(LIR_InsertionBuffer* buffer);
  1642   //---------- mutators ---------------
  1643   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1644   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1646   //---------- printing -------------
  1647   void print_instructions() PRODUCT_RETURN;
  1650   //---------- instructions -------------
  1651   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1652                         address dest, LIR_OprList* arguments,
  1653                         CodeEmitInfo* info) {
  1654     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1656   void call_static(ciMethod* method, LIR_Opr result,
  1657                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1658     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1660   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1661                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1662     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1664   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1665                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1666     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1669   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1670   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1671   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1672   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1673   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1675   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  1676   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  1678   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  1679   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  1681   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  1683   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  1684   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  1686   // result is a stack location for old backend and vreg for UseLinearScan
  1687   // stack_loc_temp is an illegal register for old backend
  1688   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  1689   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1690   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1691   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1692   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1693   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  1694   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  1696   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  1698   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  1699   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  1701   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  1703   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  1705   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  1707   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  1708   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  1709   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  1711   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  1712   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
  1713   void unwind_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_unwind, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
  1715   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  1716     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  1719   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  1720   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  1722   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  1723     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  1725   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  1726     cmp(condition, left, LIR_OprFact::intConst(right), info);
  1729   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  1730   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  1732   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
  1733     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
  1736   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1737   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1738   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1740   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  1741   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  1742   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, tmp, to)); }
  1743   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, tmp, to)); }
  1744   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  1745   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  1746   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  1748   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  1749   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  1750   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  1751   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  1752   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  1753   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  1754   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  1756   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1757   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1759   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1761   void prefetch(LIR_Address* addr, bool is_store);
  1763   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1764   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1765   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1766   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1767   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1769   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1770   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1771   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1772   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1774   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  1775   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  1777   // jump is an unconditional branch
  1778   void jump(BlockBegin* block) {
  1779     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  1781   void jump(CodeStub* stub) {
  1782     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  1784   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
  1785   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  1786     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1787     append(new LIR_OpBranch(cond, type, block));
  1789   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  1790     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1791     append(new LIR_OpBranch(cond, type, stub));
  1793   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  1794     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  1795     append(new LIR_OpBranch(cond, type, block, unordered));
  1798   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1799   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1800   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1802   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1803   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1804   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1806   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  1807   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  1809   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  1810     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  1813   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  1814                     LIR_OprList* arguments, CodeEmitInfo* info) {
  1815     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  1818   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  1819   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
  1820   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  1822   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  1823   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  1824   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  1826   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  1828   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  1830   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1831                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1832                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1833                   ciMethod* profiled_method, int profiled_bci);
  1834   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
  1835   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1837   // methodDataOop profiling
  1838   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
  1839 };
  1841 void print_LIR(BlockList* blocks);
  1843 class LIR_InsertionBuffer : public CompilationResourceObj {
  1844  private:
  1845   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  1847   // list of insertion points. index and count are stored alternately:
  1848   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  1849   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  1850   intStack    _index_and_count;
  1852   // the LIR_Ops to be inserted
  1853   LIR_OpList  _ops;
  1855   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  1856   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  1857   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  1859 #ifdef ASSERT
  1860   void verify();
  1861 #endif
  1862  public:
  1863   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  1865   // must be called before using the insertion buffer
  1866   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  1867   bool initialized() const  { return _lir != NULL; }
  1868   // called automatically when the buffer is appended to the LIR_List
  1869   void finish()             { _lir = NULL; }
  1871   // accessors
  1872   LIR_List*  lir_list() const             { return _lir; }
  1873   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  1874   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  1875   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  1877   int number_of_ops() const               { return _ops.length(); }
  1878   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  1880   // append an instruction to the buffer
  1881   void append(int index, LIR_Op* op);
  1883   // instruction
  1884   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1885 };
  1888 //
  1889 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  1890 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  1891 // information about the input, output and temporaries used by the
  1892 // op to be recorded.  It also records whether the op has call semantics
  1893 // and also records all the CodeEmitInfos used by this op.
  1894 //
  1897 class LIR_OpVisitState: public StackObj {
  1898  public:
  1899   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  1901   enum {
  1902     maxNumberOfOperands = 14,
  1903     maxNumberOfInfos = 4
  1904   };
  1906  private:
  1907   LIR_Op*          _op;
  1909   // optimization: the operands and infos are not stored in a variable-length
  1910   //               list, but in a fixed-size array to save time of size checks and resizing
  1911   int              _oprs_len[numModes];
  1912   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  1913   int _info_len;
  1914   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  1916   bool             _has_call;
  1917   bool             _has_slow_case;
  1920   // only include register operands
  1921   // addresses are decomposed to the base and index registers
  1922   // constants and stack operands are ignored
  1923   void append(LIR_Opr& opr, OprMode mode) {
  1924     assert(opr->is_valid(), "should not call this otherwise");
  1925     assert(mode >= 0 && mode < numModes, "bad mode");
  1927     if (opr->is_register()) {
  1928        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  1929       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  1931     } else if (opr->is_pointer()) {
  1932       LIR_Address* address = opr->as_address_ptr();
  1933       if (address != NULL) {
  1934         // special handling for addresses: add base and index register of the address
  1935         // both are always input operands!
  1936         if (address->_base->is_valid()) {
  1937           assert(address->_base->is_register(), "must be");
  1938           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  1939           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
  1941         if (address->_index->is_valid()) {
  1942           assert(address->_index->is_register(), "must be");
  1943           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  1944           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
  1947       } else {
  1948         assert(opr->is_constant(), "constant operands are not processed");
  1950     } else {
  1951       assert(opr->is_stack(), "stack operands are not processed");
  1955   void append(CodeEmitInfo* info) {
  1956     assert(info != NULL, "should not call this otherwise");
  1957     assert(_info_len < maxNumberOfInfos, "array overflow");
  1958     _info_new[_info_len++] = info;
  1961  public:
  1962   LIR_OpVisitState()         { reset(); }
  1964   LIR_Op* op() const         { return _op; }
  1965   void set_op(LIR_Op* op)    { reset(); _op = op; }
  1967   bool has_call() const      { return _has_call; }
  1968   bool has_slow_case() const { return _has_slow_case; }
  1970   void reset() {
  1971     _op = NULL;
  1972     _has_call = false;
  1973     _has_slow_case = false;
  1975     _oprs_len[inputMode] = 0;
  1976     _oprs_len[tempMode] = 0;
  1977     _oprs_len[outputMode] = 0;
  1978     _info_len = 0;
  1982   int opr_count(OprMode mode) const {
  1983     assert(mode >= 0 && mode < numModes, "bad mode");
  1984     return _oprs_len[mode];
  1987   LIR_Opr opr_at(OprMode mode, int index) const {
  1988     assert(mode >= 0 && mode < numModes, "bad mode");
  1989     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  1990     return *_oprs_new[mode][index];
  1993   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  1994     assert(mode >= 0 && mode < numModes, "bad mode");
  1995     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  1996     *_oprs_new[mode][index] = opr;
  1999   int info_count() const {
  2000     return _info_len;
  2003   CodeEmitInfo* info_at(int index) const {
  2004     assert(index < _info_len, "index out of bounds");
  2005     return _info_new[index];
  2008   XHandlers* all_xhandler();
  2010   // collects all register operands of the instruction
  2011   void visit(LIR_Op* op);
  2013 #if ASSERT
  2014   // check that an operation has no operands
  2015   bool no_operands(LIR_Op* op);
  2016 #endif
  2018   // LIR_Op visitor functions use these to fill in the state
  2019   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2020   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2021   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2022   void do_info(CodeEmitInfo* info)        { append(info); }
  2024   void do_stub(CodeStub* stub);
  2025   void do_call()                          { _has_call = true; }
  2026   void do_slow_case()                     { _has_slow_case = true; }
  2027   void do_slow_case(CodeEmitInfo* info) {
  2028     _has_slow_case = true;
  2029     append(info);
  2031 };
  2034 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };

mercurial