src/share/vm/c1/c1_IR.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 863
334969144810
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_IR.cpp.incl"
    29 // Implementation of XHandlers
    30 //
    31 // Note: This code could eventually go away if we are
    32 //       just using the ciExceptionHandlerStream.
    34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    35   ciExceptionHandlerStream s(method);
    36   while (!s.is_done()) {
    37     _list.append(new XHandler(s.handler()));
    38     s.next();
    39   }
    40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    41 }
    43 // deep copy of all XHandler contained in list
    44 XHandlers::XHandlers(XHandlers* other) :
    45   _list(other->length())
    46 {
    47   for (int i = 0; i < other->length(); i++) {
    48     _list.append(new XHandler(other->handler_at(i)));
    49   }
    50 }
    52 // Returns whether a particular exception type can be caught.  Also
    53 // returns true if klass is unloaded or any exception handler
    54 // classes are unloaded.  type_is_exact indicates whether the throw
    55 // is known to be exactly that class or it might throw a subtype.
    56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    57   // the type is unknown so be conservative
    58   if (!klass->is_loaded()) {
    59     return true;
    60   }
    62   for (int i = 0; i < length(); i++) {
    63     XHandler* handler = handler_at(i);
    64     if (handler->is_catch_all()) {
    65       // catch of ANY
    66       return true;
    67     }
    68     ciInstanceKlass* handler_klass = handler->catch_klass();
    69     // if it's unknown it might be catchable
    70     if (!handler_klass->is_loaded()) {
    71       return true;
    72     }
    73     // if the throw type is definitely a subtype of the catch type
    74     // then it can be caught.
    75     if (klass->is_subtype_of(handler_klass)) {
    76       return true;
    77     }
    78     if (!type_is_exact) {
    79       // If the type isn't exactly known then it can also be caught by
    80       // catch statements where the inexact type is a subtype of the
    81       // catch type.
    82       // given: foo extends bar extends Exception
    83       // throw bar can be caught by catch foo, catch bar, and catch
    84       // Exception, however it can't be caught by any handlers without
    85       // bar in its type hierarchy.
    86       if (handler_klass->is_subtype_of(klass)) {
    87         return true;
    88       }
    89     }
    90   }
    92   return false;
    93 }
    96 bool XHandlers::equals(XHandlers* others) const {
    97   if (others == NULL) return false;
    98   if (length() != others->length()) return false;
   100   for (int i = 0; i < length(); i++) {
   101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   102   }
   103   return true;
   104 }
   106 bool XHandler::equals(XHandler* other) const {
   107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   109   if (entry_pco() != other->entry_pco()) return false;
   110   if (scope_count() != other->scope_count()) return false;
   111   if (_desc != other->_desc) return false;
   113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   114   return true;
   115 }
   118 // Implementation of IRScope
   120 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
   121   if (entry == NULL) return NULL;
   122   assert(entry->is_set(f), "entry/flag mismatch");
   123   // create header block
   124   BlockBegin* h = new BlockBegin(entry->bci());
   125   BlockEnd* g = new Goto(entry, false);
   126   h->set_next(g, entry->bci());
   127   h->set_end(g);
   128   h->set(f);
   129   // setup header block end state
   130   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
   131   assert(s->stack_is_empty(), "must have empty stack at entry point");
   132   g->set_state(s);
   133   return h;
   134 }
   137 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   138   GraphBuilder gm(compilation, this);
   139   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   140   if (compilation->bailed_out()) return NULL;
   141   return gm.start();
   142 }
   145 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   146 : _callees(2)
   147 , _compilation(compilation)
   148 , _lock_stack_size(-1)
   149 , _requires_phi_function(method->max_locals())
   150 {
   151   _caller             = caller;
   152   _caller_bci         = caller == NULL ? -1 : caller_bci;
   153   _caller_state       = NULL; // Must be set later if needed
   154   _level              = caller == NULL ?  0 : caller->level() + 1;
   155   _method             = method;
   156   _xhandlers          = new XHandlers(method);
   157   _number_of_locks    = 0;
   158   _monitor_pairing_ok = method->has_balanced_monitors();
   159   _start              = NULL;
   161   if (osr_bci == -1) {
   162     _requires_phi_function.clear();
   163   } else {
   164         // selective creation of phi functions is not possibel in osr-methods
   165     _requires_phi_function.set_range(0, method->max_locals());
   166   }
   168   assert(method->holder()->is_loaded() , "method holder must be loaded");
   170   // build graph if monitor pairing is ok
   171   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   172 }
   175 int IRScope::max_stack() const {
   176   int my_max = method()->max_stack();
   177   int callee_max = 0;
   178   for (int i = 0; i < number_of_callees(); i++) {
   179     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   180   }
   181   return my_max + callee_max;
   182 }
   185 void IRScope::compute_lock_stack_size() {
   186   if (!InlineMethodsWithExceptionHandlers) {
   187     _lock_stack_size = 0;
   188     return;
   189   }
   191   // Figure out whether we have to preserve expression stack elements
   192   // for parent scopes, and if so, how many
   193   IRScope* cur_scope = this;
   194   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
   195     cur_scope = cur_scope->caller();
   196   }
   197   _lock_stack_size = (cur_scope == NULL ? 0 :
   198                       (cur_scope->caller_state() == NULL ? 0 :
   199                        cur_scope->caller_state()->stack_size()));
   200 }
   202 int IRScope::top_scope_bci() const {
   203   assert(!is_top_scope(), "no correct answer for top scope possible");
   204   const IRScope* scope = this;
   205   while (!scope->caller()->is_top_scope()) {
   206     scope = scope->caller();
   207   }
   208   return scope->caller_bci();
   209 }
   213 // Implementation of CodeEmitInfo
   215 // Stack must be NON-null
   216 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
   217   : _scope(stack->scope())
   218   , _bci(bci)
   219   , _scope_debug_info(NULL)
   220   , _oop_map(NULL)
   221   , _stack(stack)
   222   , _exception_handlers(exception_handlers)
   223   , _next(NULL)
   224   , _id(-1) {
   225   assert(_stack != NULL, "must be non null");
   226   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
   227 }
   230 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
   231   : _scope(info->_scope)
   232   , _exception_handlers(NULL)
   233   , _bci(info->_bci)
   234   , _scope_debug_info(NULL)
   235   , _oop_map(NULL) {
   236   if (lock_stack_only) {
   237     if (info->_stack != NULL) {
   238       _stack = info->_stack->copy_locks();
   239     } else {
   240       _stack = NULL;
   241     }
   242   } else {
   243     _stack = info->_stack;
   244   }
   246   // deep copy of exception handlers
   247   if (info->_exception_handlers != NULL) {
   248     _exception_handlers = new XHandlers(info->_exception_handlers);
   249   }
   250 }
   253 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   254   // record the safepoint before recording the debug info for enclosing scopes
   255   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   256   _scope_debug_info->record_debug_info(recorder, pc_offset);
   257   recorder->end_safepoint(pc_offset);
   258 }
   261 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   262   assert(_oop_map != NULL, "oop map must already exist");
   263   assert(opr->is_single_cpu(), "should not call otherwise");
   265   int frame_size = frame_map()->framesize();
   266   int arg_count = frame_map()->oop_map_arg_count();
   267   VMReg name = frame_map()->regname(opr);
   268   _oop_map->set_oop(name);
   269 }
   274 // Implementation of IR
   276 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   277     _locals_size(in_WordSize(-1))
   278   , _num_loops(0) {
   279   // initialize data structures
   280   ValueType::initialize();
   281   Instruction::initialize();
   282   BlockBegin::initialize();
   283   GraphBuilder::initialize();
   284   // setup IR fields
   285   _compilation = compilation;
   286   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   287   _code        = NULL;
   288 }
   291 void IR::optimize() {
   292   Optimizer opt(this);
   293   if (DoCEE) {
   294     opt.eliminate_conditional_expressions();
   295 #ifndef PRODUCT
   296     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   297     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   298 #endif
   299   }
   300   if (EliminateBlocks) {
   301     opt.eliminate_blocks();
   302 #ifndef PRODUCT
   303     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   304     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   305 #endif
   306   }
   307   if (EliminateNullChecks) {
   308     opt.eliminate_null_checks();
   309 #ifndef PRODUCT
   310     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   311     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   312 #endif
   313   }
   314 }
   317 static int sort_pairs(BlockPair** a, BlockPair** b) {
   318   if ((*a)->from() == (*b)->from()) {
   319     return (*a)->to()->block_id() - (*b)->to()->block_id();
   320   } else {
   321     return (*a)->from()->block_id() - (*b)->from()->block_id();
   322   }
   323 }
   326 class CriticalEdgeFinder: public BlockClosure {
   327   BlockPairList blocks;
   328   IR*       _ir;
   330  public:
   331   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   332   void block_do(BlockBegin* bb) {
   333     BlockEnd* be = bb->end();
   334     int nos = be->number_of_sux();
   335     if (nos >= 2) {
   336       for (int i = 0; i < nos; i++) {
   337         BlockBegin* sux = be->sux_at(i);
   338         if (sux->number_of_preds() >= 2) {
   339           blocks.append(new BlockPair(bb, sux));
   340         }
   341       }
   342     }
   343   }
   345   void split_edges() {
   346     BlockPair* last_pair = NULL;
   347     blocks.sort(sort_pairs);
   348     for (int i = 0; i < blocks.length(); i++) {
   349       BlockPair* pair = blocks.at(i);
   350       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   351       BlockBegin* from = pair->from();
   352       BlockBegin* to = pair->to();
   353       BlockBegin* split = from->insert_block_between(to);
   354 #ifndef PRODUCT
   355       if ((PrintIR || PrintIR1) && Verbose) {
   356         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   357                       from->block_id(), to->block_id(), split->block_id());
   358       }
   359 #endif
   360       last_pair = pair;
   361     }
   362   }
   363 };
   365 void IR::split_critical_edges() {
   366   CriticalEdgeFinder cef(this);
   368   iterate_preorder(&cef);
   369   cef.split_edges();
   370 }
   373 class UseCountComputer: public AllStatic {
   374  private:
   375   static void update_use_count(Value* n) {
   376     // Local instructions and Phis for expression stack values at the
   377     // start of basic blocks are not added to the instruction list
   378     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
   379         (*n)->as_Phi() == NULL) {
   380       assert(false, "a node was not appended to the graph");
   381       Compilation::current_compilation()->bailout("a node was not appended to the graph");
   382     }
   383     // use n's input if not visited before
   384     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   385       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   386       //       b) if the instruction has uses, it was touched before
   387       //       => in both cases we don't need to update n's values
   388       uses_do(n);
   389     }
   390     // use n
   391     (*n)->_use_count++;
   392   }
   394   static Values* worklist;
   395   static int depth;
   396   enum {
   397     max_recurse_depth = 20
   398   };
   400   static void uses_do(Value* n) {
   401     depth++;
   402     if (depth > max_recurse_depth) {
   403       // don't allow the traversal to recurse too deeply
   404       worklist->push(*n);
   405     } else {
   406       (*n)->input_values_do(update_use_count);
   407       // special handling for some instructions
   408       if ((*n)->as_BlockEnd() != NULL) {
   409         // note on BlockEnd:
   410         //   must 'use' the stack only if the method doesn't
   411         //   terminate, however, in those cases stack is empty
   412         (*n)->state_values_do(update_use_count);
   413       }
   414     }
   415     depth--;
   416   }
   418   static void basic_compute_use_count(BlockBegin* b) {
   419     depth = 0;
   420     // process all pinned nodes as the roots of expression trees
   421     for (Instruction* n = b; n != NULL; n = n->next()) {
   422       if (n->is_pinned()) uses_do(&n);
   423     }
   424     assert(depth == 0, "should have counted back down");
   426     // now process any unpinned nodes which recursed too deeply
   427     while (worklist->length() > 0) {
   428       Value t = worklist->pop();
   429       if (!t->is_pinned()) {
   430         // compute the use count
   431         uses_do(&t);
   433         // pin the instruction so that LIRGenerator doesn't recurse
   434         // too deeply during it's evaluation.
   435         t->pin();
   436       }
   437     }
   438     assert(depth == 0, "should have counted back down");
   439   }
   441  public:
   442   static void compute(BlockList* blocks) {
   443     worklist = new Values();
   444     blocks->blocks_do(basic_compute_use_count);
   445     worklist = NULL;
   446   }
   447 };
   450 Values* UseCountComputer::worklist = NULL;
   451 int UseCountComputer::depth = 0;
   453 // helper macro for short definition of trace-output inside code
   454 #ifndef PRODUCT
   455   #define TRACE_LINEAR_SCAN(level, code)       \
   456     if (TraceLinearScanLevel >= level) {       \
   457       code;                                    \
   458     }
   459 #else
   460   #define TRACE_LINEAR_SCAN(level, code)
   461 #endif
   463 class ComputeLinearScanOrder : public StackObj {
   464  private:
   465   int        _max_block_id;        // the highest block_id of a block
   466   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   467   int        _num_loops;           // total number of loops
   468   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   470   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   472   BitMap     _visited_blocks;      // used for recursive processing of blocks
   473   BitMap     _active_blocks;       // used for recursive processing of blocks
   474   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   475   intArray   _forward_branches;    // number of incoming forward branches for each block
   476   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   477   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   478   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   480   // accessors for _visited_blocks and _active_blocks
   481   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   482   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   483   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   484   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   485   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   486   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   488   // accessors for _forward_branches
   489   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   490   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   492   // accessors for _loop_map
   493   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   494   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   495   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   497   // count edges between blocks
   498   void count_edges(BlockBegin* cur, BlockBegin* parent);
   500   // loop detection
   501   void mark_loops();
   502   void clear_non_natural_loops(BlockBegin* start_block);
   503   void assign_loop_depth(BlockBegin* start_block);
   505   // computation of final block order
   506   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   507   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   508   int  compute_weight(BlockBegin* cur);
   509   bool ready_for_processing(BlockBegin* cur);
   510   void sort_into_work_list(BlockBegin* b);
   511   void append_block(BlockBegin* cur);
   512   void compute_order(BlockBegin* start_block);
   514   // fixup of dominators for non-natural loops
   515   bool compute_dominators_iter();
   516   void compute_dominators();
   518   // debug functions
   519   NOT_PRODUCT(void print_blocks();)
   520   DEBUG_ONLY(void verify();)
   522  public:
   523   ComputeLinearScanOrder(BlockBegin* start_block);
   525   // accessors for final result
   526   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   527   int        num_loops() const            { return _num_loops; }
   528 };
   531 ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
   532   _max_block_id(BlockBegin::number_of_blocks()),
   533   _num_blocks(0),
   534   _num_loops(0),
   535   _iterative_dominators(false),
   536   _visited_blocks(_max_block_id),
   537   _active_blocks(_max_block_id),
   538   _dominator_blocks(_max_block_id),
   539   _forward_branches(_max_block_id, 0),
   540   _loop_end_blocks(8),
   541   _work_list(8),
   542   _linear_scan_order(NULL), // initialized later with correct size
   543   _loop_map(0, 0)           // initialized later with correct size
   544 {
   545   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   547   init_visited();
   548   count_edges(start_block, NULL);
   550   if (_num_loops > 0) {
   551     mark_loops();
   552     clear_non_natural_loops(start_block);
   553     assign_loop_depth(start_block);
   554   }
   556   compute_order(start_block);
   557   compute_dominators();
   559   NOT_PRODUCT(print_blocks());
   560   DEBUG_ONLY(verify());
   561 }
   564 // Traverse the CFG:
   565 // * count total number of blocks
   566 // * count all incoming edges and backward incoming edges
   567 // * number loop header blocks
   568 // * create a list with all loop end blocks
   569 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   570   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   571   assert(cur->dominator() == NULL, "dominator already initialized");
   573   if (is_active(cur)) {
   574     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   575     assert(is_visited(cur), "block must be visisted when block is active");
   576     assert(parent != NULL, "must have parent");
   577     assert(parent->number_of_sux() == 1, "loop end blocks must have one successor (critical edges are split)");
   579     cur->set(BlockBegin::linear_scan_loop_header_flag);
   580     cur->set(BlockBegin::backward_branch_target_flag);
   582     parent->set(BlockBegin::linear_scan_loop_end_flag);
   583     _loop_end_blocks.append(parent);
   584     return;
   585   }
   587   // increment number of incoming forward branches
   588   inc_forward_branches(cur);
   590   if (is_visited(cur)) {
   591     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   592     return;
   593   }
   595   _num_blocks++;
   596   set_visited(cur);
   597   set_active(cur);
   599   // recursive call for all successors
   600   int i;
   601   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   602     count_edges(cur->sux_at(i), cur);
   603   }
   604   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   605     count_edges(cur->exception_handler_at(i), cur);
   606   }
   608   clear_active(cur);
   610   // Each loop has a unique number.
   611   // When multiple loops are nested, assign_loop_depth assumes that the
   612   // innermost loop has the lowest number. This is guaranteed by setting
   613   // the loop number after the recursive calls for the successors above
   614   // have returned.
   615   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   616     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   617     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   619     cur->set_loop_index(_num_loops);
   620     _num_loops++;
   621   }
   623   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   624 }
   627 void ComputeLinearScanOrder::mark_loops() {
   628   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   630   _loop_map = BitMap2D(_num_loops, _max_block_id);
   631   _loop_map.clear();
   633   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   634     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   635     BlockBegin* loop_start = loop_end->sux_at(0);
   636     int         loop_idx   = loop_start->loop_index();
   638     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   639     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   640     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   641     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   642     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   643     assert(_work_list.is_empty(), "work list must be empty before processing");
   645     // add the end-block of the loop to the working list
   646     _work_list.push(loop_end);
   647     set_block_in_loop(loop_idx, loop_end);
   648     do {
   649       BlockBegin* cur = _work_list.pop();
   651       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   652       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   654       // recursive processing of all predecessors ends when start block of loop is reached
   655       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   656         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   657           BlockBegin* pred = cur->pred_at(j);
   659           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   660             // this predecessor has not been processed yet, so add it to work list
   661             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   662             _work_list.push(pred);
   663             set_block_in_loop(loop_idx, pred);
   664           }
   665         }
   666       }
   667     } while (!_work_list.is_empty());
   668   }
   669 }
   672 // check for non-natural loops (loops where the loop header does not dominate
   673 // all other loop blocks = loops with mulitple entries).
   674 // such loops are ignored
   675 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   676   for (int i = _num_loops - 1; i >= 0; i--) {
   677     if (is_block_in_loop(i, start_block)) {
   678       // loop i contains the entry block of the method
   679       // -> this is not a natural loop, so ignore it
   680       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   682       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   683         clear_block_in_loop(i, block_id);
   684       }
   685       _iterative_dominators = true;
   686     }
   687   }
   688 }
   690 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   691   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   692   init_visited();
   694   assert(_work_list.is_empty(), "work list must be empty before processing");
   695   _work_list.append(start_block);
   697   do {
   698     BlockBegin* cur = _work_list.pop();
   700     if (!is_visited(cur)) {
   701       set_visited(cur);
   702       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   704       // compute loop-depth and loop-index for the block
   705       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   706       int i;
   707       int loop_depth = 0;
   708       int min_loop_idx = -1;
   709       for (i = _num_loops - 1; i >= 0; i--) {
   710         if (is_block_in_loop(i, cur)) {
   711           loop_depth++;
   712           min_loop_idx = i;
   713         }
   714       }
   715       cur->set_loop_depth(loop_depth);
   716       cur->set_loop_index(min_loop_idx);
   718       // append all unvisited successors to work list
   719       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   720         _work_list.append(cur->sux_at(i));
   721       }
   722       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   723         _work_list.append(cur->exception_handler_at(i));
   724       }
   725     }
   726   } while (!_work_list.is_empty());
   727 }
   730 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   731   assert(a != NULL && b != NULL, "must have input blocks");
   733   _dominator_blocks.clear();
   734   while (a != NULL) {
   735     _dominator_blocks.set_bit(a->block_id());
   736     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   737     a = a->dominator();
   738   }
   739   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   740     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   741     b = b->dominator();
   742   }
   744   assert(b != NULL, "could not find dominator");
   745   return b;
   746 }
   748 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   749   if (cur->dominator() == NULL) {
   750     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   751     cur->set_dominator(parent);
   753   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   754     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   755     assert(cur->number_of_preds() > 1, "");
   756     cur->set_dominator(common_dominator(cur->dominator(), parent));
   757   }
   758 }
   761 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   762   BlockBegin* single_sux = NULL;
   763   if (cur->number_of_sux() == 1) {
   764     single_sux = cur->sux_at(0);
   765   }
   767   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   768   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   770   // general macro for short definition of weight flags
   771   // the first instance of INC_WEIGHT_IF has the highest priority
   772   int cur_bit = 15;
   773   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   775   // this is necessery for the (very rare) case that two successing blocks have
   776   // the same loop depth, but a different loop index (can happen for endless loops
   777   // with exception handlers)
   778   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   780   // loop end blocks (blocks that end with a backward branch) are added
   781   // after all other blocks of the loop.
   782   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   784   // critical edge split blocks are prefered because than they have a bigger
   785   // proability to be completely empty
   786   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   788   // exceptions should not be thrown in normal control flow, so these blocks
   789   // are added as late as possible
   790   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   791   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   793   // exceptions handlers are added as late as possible
   794   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   796   // guarantee that weight is > 0
   797   weight |= 1;
   799   #undef INC_WEIGHT_IF
   800   assert(cur_bit >= 0, "too many flags");
   801   assert(weight > 0, "weight cannot become negative");
   803   return weight;
   804 }
   806 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   807   // Discount the edge just traveled.
   808   // When the number drops to zero, all forward branches were processed
   809   if (dec_forward_branches(cur) != 0) {
   810     return false;
   811   }
   813   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   814   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   815   return true;
   816 }
   818 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   819   assert(_work_list.index_of(cur) == -1, "block already in work list");
   821   int cur_weight = compute_weight(cur);
   823   // the linear_scan_number is used to cache the weight of a block
   824   cur->set_linear_scan_number(cur_weight);
   826 #ifndef PRODUCT
   827   if (StressLinearScan) {
   828     _work_list.insert_before(0, cur);
   829     return;
   830   }
   831 #endif
   833   _work_list.append(NULL); // provide space for new element
   835   int insert_idx = _work_list.length() - 1;
   836   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   837     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   838     insert_idx--;
   839   }
   840   _work_list.at_put(insert_idx, cur);
   842   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   843   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   845 #ifdef ASSERT
   846   for (int i = 0; i < _work_list.length(); i++) {
   847     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   848     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   849   }
   850 #endif
   851 }
   853 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   854   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   855   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   857   // currently, the linear scan order and code emit order are equal.
   858   // therefore the linear_scan_number and the weight of a block must also
   859   // be equal.
   860   cur->set_linear_scan_number(_linear_scan_order->length());
   861   _linear_scan_order->append(cur);
   862 }
   864 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   865   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   867   // the start block is always the first block in the linear scan order
   868   _linear_scan_order = new BlockList(_num_blocks);
   869   append_block(start_block);
   871   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   872   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   873   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   875   BlockBegin* sux_of_osr_entry = NULL;
   876   if (osr_entry != NULL) {
   877     // special handling for osr entry:
   878     // ignore the edge between the osr entry and its successor for processing
   879     // the osr entry block is added manually below
   880     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   881     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   883     sux_of_osr_entry = osr_entry->sux_at(0);
   884     dec_forward_branches(sux_of_osr_entry);
   886     compute_dominator(osr_entry, start_block);
   887     _iterative_dominators = true;
   888   }
   889   compute_dominator(std_entry, start_block);
   891   // start processing with standard entry block
   892   assert(_work_list.is_empty(), "list must be empty before processing");
   894   if (ready_for_processing(std_entry)) {
   895     sort_into_work_list(std_entry);
   896   } else {
   897     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   898   }
   900   do {
   901     BlockBegin* cur = _work_list.pop();
   903     if (cur == sux_of_osr_entry) {
   904       // the osr entry block is ignored in normal processing, it is never added to the
   905       // work list. Instead, it is added as late as possible manually here.
   906       append_block(osr_entry);
   907       compute_dominator(cur, osr_entry);
   908     }
   909     append_block(cur);
   911     int i;
   912     int num_sux = cur->number_of_sux();
   913     // changed loop order to get "intuitive" order of if- and else-blocks
   914     for (i = 0; i < num_sux; i++) {
   915       BlockBegin* sux = cur->sux_at(i);
   916       compute_dominator(sux, cur);
   917       if (ready_for_processing(sux)) {
   918         sort_into_work_list(sux);
   919       }
   920     }
   921     num_sux = cur->number_of_exception_handlers();
   922     for (i = 0; i < num_sux; i++) {
   923       BlockBegin* sux = cur->exception_handler_at(i);
   924       compute_dominator(sux, cur);
   925       if (ready_for_processing(sux)) {
   926         sort_into_work_list(sux);
   927       }
   928     }
   929   } while (_work_list.length() > 0);
   930 }
   933 bool ComputeLinearScanOrder::compute_dominators_iter() {
   934   bool changed = false;
   935   int num_blocks = _linear_scan_order->length();
   937   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   938   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   939   for (int i = 1; i < num_blocks; i++) {
   940     BlockBegin* block = _linear_scan_order->at(i);
   942     BlockBegin* dominator = block->pred_at(0);
   943     int num_preds = block->number_of_preds();
   944     for (int i = 1; i < num_preds; i++) {
   945       dominator = common_dominator(dominator, block->pred_at(i));
   946     }
   948     if (dominator != block->dominator()) {
   949       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   951       block->set_dominator(dominator);
   952       changed = true;
   953     }
   954   }
   955   return changed;
   956 }
   958 void ComputeLinearScanOrder::compute_dominators() {
   959   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   961   // iterative computation of dominators is only required for methods with non-natural loops
   962   // and OSR-methods. For all other methods, the dominators computed when generating the
   963   // linear scan block order are correct.
   964   if (_iterative_dominators) {
   965     do {
   966       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   967     } while (compute_dominators_iter());
   968   }
   970   // check that dominators are correct
   971   assert(!compute_dominators_iter(), "fix point not reached");
   972 }
   975 #ifndef PRODUCT
   976 void ComputeLinearScanOrder::print_blocks() {
   977   if (TraceLinearScanLevel >= 2) {
   978     tty->print_cr("----- loop information:");
   979     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   980       BlockBegin* cur = _linear_scan_order->at(block_idx);
   982       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
   983       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
   984         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
   985       }
   986       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
   987     }
   988   }
   990   if (TraceLinearScanLevel >= 1) {
   991     tty->print_cr("----- linear-scan block order:");
   992     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   993       BlockBegin* cur = _linear_scan_order->at(block_idx);
   994       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
   996       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
   997       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
   998       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
   999       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1001       if (cur->dominator() != NULL) {
  1002         tty->print("    dom: B%d ", cur->dominator()->block_id());
  1003       } else {
  1004         tty->print("    dom: NULL ");
  1007       if (cur->number_of_preds() > 0) {
  1008         tty->print("    preds: ");
  1009         for (int j = 0; j < cur->number_of_preds(); j++) {
  1010           BlockBegin* pred = cur->pred_at(j);
  1011           tty->print("B%d ", pred->block_id());
  1014       if (cur->number_of_sux() > 0) {
  1015         tty->print("    sux: ");
  1016         for (int j = 0; j < cur->number_of_sux(); j++) {
  1017           BlockBegin* sux = cur->sux_at(j);
  1018           tty->print("B%d ", sux->block_id());
  1021       if (cur->number_of_exception_handlers() > 0) {
  1022         tty->print("    ex: ");
  1023         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1024           BlockBegin* ex = cur->exception_handler_at(j);
  1025           tty->print("B%d ", ex->block_id());
  1028       tty->cr();
  1032 #endif
  1034 #ifdef ASSERT
  1035 void ComputeLinearScanOrder::verify() {
  1036   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1038   if (StressLinearScan) {
  1039     // blocks are scrambled when StressLinearScan is used
  1040     return;
  1043   // check that all successors of a block have a higher linear-scan-number
  1044   // and that all predecessors of a block have a lower linear-scan-number
  1045   // (only backward branches of loops are ignored)
  1046   int i;
  1047   for (i = 0; i < _linear_scan_order->length(); i++) {
  1048     BlockBegin* cur = _linear_scan_order->at(i);
  1050     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1051     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1053     int j;
  1054     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1055       BlockBegin* sux = cur->sux_at(j);
  1057       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1058       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1059         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1061       if (cur->loop_depth() == sux->loop_depth()) {
  1062         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1066     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1067       BlockBegin* pred = cur->pred_at(j);
  1069       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1070       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1071         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1073       if (cur->loop_depth() == pred->loop_depth()) {
  1074         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1077       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1080     // check dominator
  1081     if (i == 0) {
  1082       assert(cur->dominator() == NULL, "first block has no dominator");
  1083     } else {
  1084       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1086     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1089   // check that all loops are continuous
  1090   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1091     int block_idx = 0;
  1092     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1094     // skip blocks before the loop
  1095     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1096       block_idx++;
  1098     // skip blocks of loop
  1099     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1100       block_idx++;
  1102     // after the first non-loop block, there must not be another loop-block
  1103     while (block_idx < _num_blocks) {
  1104       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1105       block_idx++;
  1109 #endif
  1112 void IR::compute_code() {
  1113   assert(is_valid(), "IR must be valid");
  1115   ComputeLinearScanOrder compute_order(start());
  1116   _num_loops = compute_order.num_loops();
  1117   _code = compute_order.linear_scan_order();
  1121 void IR::compute_use_counts() {
  1122   // make sure all values coming out of this block get evaluated.
  1123   int num_blocks = _code->length();
  1124   for (int i = 0; i < num_blocks; i++) {
  1125     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1128   // compute use counts
  1129   UseCountComputer::compute(_code);
  1133 void IR::iterate_preorder(BlockClosure* closure) {
  1134   assert(is_valid(), "IR must be valid");
  1135   start()->iterate_preorder(closure);
  1139 void IR::iterate_postorder(BlockClosure* closure) {
  1140   assert(is_valid(), "IR must be valid");
  1141   start()->iterate_postorder(closure);
  1144 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1145   linear_scan_order()->iterate_forward(closure);
  1149 #ifndef PRODUCT
  1150 class BlockPrinter: public BlockClosure {
  1151  private:
  1152   InstructionPrinter* _ip;
  1153   bool                _cfg_only;
  1154   bool                _live_only;
  1156  public:
  1157   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1158     _ip       = ip;
  1159     _cfg_only = cfg_only;
  1160     _live_only = live_only;
  1163   virtual void block_do(BlockBegin* block) {
  1164     if (_cfg_only) {
  1165       _ip->print_instr(block); tty->cr();
  1166     } else {
  1167       block->print_block(*_ip, _live_only);
  1170 };
  1173 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1174   ttyLocker ttyl;
  1175   InstructionPrinter ip(!cfg_only);
  1176   BlockPrinter bp(&ip, cfg_only, live_only);
  1177   start->iterate_preorder(&bp);
  1178   tty->cr();
  1181 void IR::print(bool cfg_only, bool live_only) {
  1182   if (is_valid()) {
  1183     print(start(), cfg_only, live_only);
  1184   } else {
  1185     tty->print_cr("invalid IR");
  1190 define_array(BlockListArray, BlockList*)
  1191 define_stack(BlockListList, BlockListArray)
  1193 class PredecessorValidator : public BlockClosure {
  1194  private:
  1195   BlockListList* _predecessors;
  1196   BlockList*     _blocks;
  1198   static int cmp(BlockBegin** a, BlockBegin** b) {
  1199     return (*a)->block_id() - (*b)->block_id();
  1202  public:
  1203   PredecessorValidator(IR* hir) {
  1204     ResourceMark rm;
  1205     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1206     _blocks = new BlockList();
  1208     int i;
  1209     hir->start()->iterate_preorder(this);
  1210     if (hir->code() != NULL) {
  1211       assert(hir->code()->length() == _blocks->length(), "must match");
  1212       for (i = 0; i < _blocks->length(); i++) {
  1213         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1217     for (i = 0; i < _blocks->length(); i++) {
  1218       BlockBegin* block = _blocks->at(i);
  1219       BlockList* preds = _predecessors->at(block->block_id());
  1220       if (preds == NULL) {
  1221         assert(block->number_of_preds() == 0, "should be the same");
  1222         continue;
  1225       // clone the pred list so we can mutate it
  1226       BlockList* pred_copy = new BlockList();
  1227       int j;
  1228       for (j = 0; j < block->number_of_preds(); j++) {
  1229         pred_copy->append(block->pred_at(j));
  1231       // sort them in the same order
  1232       preds->sort(cmp);
  1233       pred_copy->sort(cmp);
  1234       int length = MIN2(preds->length(), block->number_of_preds());
  1235       for (j = 0; j < block->number_of_preds(); j++) {
  1236         assert(preds->at(j) == pred_copy->at(j), "must match");
  1239       assert(preds->length() == block->number_of_preds(), "should be the same");
  1243   virtual void block_do(BlockBegin* block) {
  1244     _blocks->append(block);
  1245     BlockEnd* be = block->end();
  1246     int n = be->number_of_sux();
  1247     int i;
  1248     for (i = 0; i < n; i++) {
  1249       BlockBegin* sux = be->sux_at(i);
  1250       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1252       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1253       if (preds == NULL) {
  1254         preds = new BlockList();
  1255         _predecessors->at_put(sux->block_id(), preds);
  1257       preds->append(block);
  1260     n = block->number_of_exception_handlers();
  1261     for (i = 0; i < n; i++) {
  1262       BlockBegin* sux = block->exception_handler_at(i);
  1263       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1265       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1266       if (preds == NULL) {
  1267         preds = new BlockList();
  1268         _predecessors->at_put(sux->block_id(), preds);
  1270       preds->append(block);
  1273 };
  1275 void IR::verify() {
  1276 #ifdef ASSERT
  1277   PredecessorValidator pv(this);
  1278 #endif
  1281 #endif // PRODUCT
  1283 void SubstitutionResolver::substitute(Value* v) {
  1284   Value v0 = *v;
  1285   if (v0) {
  1286     Value vs = v0->subst();
  1287     if (vs != v0) {
  1288       *v = v0->subst();
  1293 #ifdef ASSERT
  1294 void check_substitute(Value* v) {
  1295   Value v0 = *v;
  1296   if (v0) {
  1297     Value vs = v0->subst();
  1298     assert(vs == v0, "missed substitution");
  1301 #endif
  1304 void SubstitutionResolver::block_do(BlockBegin* block) {
  1305   Instruction* last = NULL;
  1306   for (Instruction* n = block; n != NULL;) {
  1307     n->values_do(substitute);
  1308     // need to remove this instruction from the instruction stream
  1309     if (n->subst() != n) {
  1310       assert(last != NULL, "must have last");
  1311       last->set_next(n->next(), n->next()->bci());
  1312     } else {
  1313       last = n;
  1315     n = last->next();
  1318 #ifdef ASSERT
  1319   if (block->state()) block->state()->values_do(check_substitute);
  1320   block->block_values_do(check_substitute);
  1321   if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
  1322 #endif

mercurial