src/cpu/sparc/vm/c1_LIRGenerator_sparc.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator_sparc.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    34 void LIRItem::load_byte_item() {
    35   // byte loads use same registers as other loads
    36   load_item();
    37 }
    40 void LIRItem::load_nonconstant() {
    41   LIR_Opr r = value()->operand();
    42   if (_gen->can_inline_as_constant(value())) {
    43     if (!r->is_constant()) {
    44       r = LIR_OprFact::value_type(value()->type());
    45     }
    46     _result = r;
    47   } else {
    48     load_item();
    49   }
    50 }
    53 //--------------------------------------------------------------
    54 //               LIRGenerator
    55 //--------------------------------------------------------------
    57 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
    58 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
    59 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
    60 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }
    62 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    63   LIR_Opr opr;
    64   switch (type->tag()) {
    65   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
    66   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
    67   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
    68   case floatTag:   opr = FrameMap::F0_opr;                                        break;
    69   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
    71   case addressTag:
    72   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    73   }
    75   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
    76   return opr;
    77 }
    79 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
    80   LIR_Opr reg = new_register(type);
    81   set_vreg_flag(reg, callee_saved);
    82   return reg;
    83 }
    86 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
    87   return new_register(T_INT);
    88 }
    94 //--------- loading items into registers --------------------------------
    96 // SPARC cannot inline all constants
    97 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
    98   if (v->type()->as_IntConstant() != NULL) {
    99     return v->type()->as_IntConstant()->value() == 0;
   100   } else if (v->type()->as_LongConstant() != NULL) {
   101     return v->type()->as_LongConstant()->value() == 0L;
   102   } else if (v->type()->as_ObjectConstant() != NULL) {
   103     return v->type()->as_ObjectConstant()->value()->is_null_object();
   104   } else {
   105     return false;
   106   }
   107 }
   110 // only simm13 constants can be inlined
   111 bool LIRGenerator:: can_inline_as_constant(Value i) const {
   112   if (i->type()->as_IntConstant() != NULL) {
   113     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
   114   } else {
   115     return can_store_as_constant(i, as_BasicType(i->type()));
   116   }
   117 }
   120 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
   121   if (c->type() == T_INT) {
   122     return Assembler::is_simm13(c->as_jint());
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIRGenerator::safepoint_poll_register() {
   129   return new_register(T_INT);
   130 }
   134 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   135                                             int shift, int disp, BasicType type) {
   136   assert(base->is_register(), "must be");
   138   // accumulate fixed displacements
   139   if (index->is_constant()) {
   140     disp += index->as_constant_ptr()->as_jint() << shift;
   141     index = LIR_OprFact::illegalOpr;
   142   }
   144   if (index->is_register()) {
   145     // apply the shift and accumulate the displacement
   146     if (shift > 0) {
   147       LIR_Opr tmp = new_register(T_INT);
   148       __ shift_left(index, shift, tmp);
   149       index = tmp;
   150     }
   151     if (disp != 0) {
   152       LIR_Opr tmp = new_register(T_INT);
   153       if (Assembler::is_simm13(disp)) {
   154         __ add(tmp, LIR_OprFact::intConst(disp), tmp);
   155         index = tmp;
   156       } else {
   157         __ move(LIR_OprFact::intConst(disp), tmp);
   158         __ add(tmp, index, tmp);
   159         index = tmp;
   160       }
   161       disp = 0;
   162     }
   163   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
   164     // index is illegal so replace it with the displacement loaded into a register
   165     index = new_register(T_INT);
   166     __ move(LIR_OprFact::intConst(disp), index);
   167     disp = 0;
   168   }
   170   // at this point we either have base + index or base + displacement
   171   if (disp == 0) {
   172     return new LIR_Address(base, index, type);
   173   } else {
   174     assert(Assembler::is_simm13(disp), "must be");
   175     return new LIR_Address(base, disp, type);
   176   }
   177 }
   180 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   181                                               BasicType type, bool needs_card_mark) {
   182   int elem_size = type2aelembytes(type);
   183   int shift = exact_log2(elem_size);
   185   LIR_Opr base_opr;
   186   int offset = arrayOopDesc::base_offset_in_bytes(type);
   188   if (index_opr->is_constant()) {
   189     int i = index_opr->as_constant_ptr()->as_jint();
   190     int array_offset = i * elem_size;
   191     if (Assembler::is_simm13(array_offset + offset)) {
   192       base_opr = array_opr;
   193       offset = array_offset + offset;
   194     } else {
   195       base_opr = new_pointer_register();
   196       if (Assembler::is_simm13(array_offset)) {
   197         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
   198       } else {
   199         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
   200         __ add(base_opr, array_opr, base_opr);
   201       }
   202     }
   203   } else {
   204 #ifdef _LP64
   205     if (index_opr->type() == T_INT) {
   206       LIR_Opr tmp = new_register(T_LONG);
   207       __ convert(Bytecodes::_i2l, index_opr, tmp);
   208       index_opr = tmp;
   209     }
   210 #endif
   212     base_opr = new_pointer_register();
   213     assert (index_opr->is_register(), "Must be register");
   214     if (shift > 0) {
   215       __ shift_left(index_opr, shift, base_opr);
   216       __ add(base_opr, array_opr, base_opr);
   217     } else {
   218       __ add(index_opr, array_opr, base_opr);
   219     }
   220   }
   221   if (needs_card_mark) {
   222     LIR_Opr ptr = new_pointer_register();
   223     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
   224     return new LIR_Address(ptr, 0, type);
   225   } else {
   226     return new LIR_Address(base_opr, offset, type);
   227   }
   228 }
   231 void LIRGenerator::increment_counter(address counter, int step) {
   232   LIR_Opr pointer = new_pointer_register();
   233   __ move(LIR_OprFact::intptrConst(counter), pointer);
   234   LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
   235   increment_counter(addr, step);
   236 }
   238 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   239   LIR_Opr temp = new_register(T_INT);
   240   __ move(addr, temp);
   241   LIR_Opr c = LIR_OprFact::intConst(step);
   242   if (Assembler::is_simm13(step)) {
   243     __ add(temp, c, temp);
   244   } else {
   245     LIR_Opr temp2 = new_register(T_INT);
   246     __ move(c, temp2);
   247     __ add(temp, temp2, temp);
   248   }
   249   __ move(temp, addr);
   250 }
   253 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   254   LIR_Opr o7opr = FrameMap::O7_opr;
   255   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
   256   __ cmp(condition, o7opr, c);
   257 }
   260 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   261   LIR_Opr o7opr = FrameMap::O7_opr;
   262   __ load(new LIR_Address(base, disp, type), o7opr, info);
   263   __ cmp(condition, reg, o7opr);
   264 }
   267 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   268   LIR_Opr o7opr = FrameMap::O7_opr;
   269   __ load(new LIR_Address(base, disp, type), o7opr, info);
   270   __ cmp(condition, reg, o7opr);
   271 }
   274 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   275   assert(left != result, "should be different registers");
   276   if (is_power_of_2(c + 1)) {
   277     __ shift_left(left, log2_intptr(c + 1), result);
   278     __ sub(result, left, result);
   279     return true;
   280   } else if (is_power_of_2(c - 1)) {
   281     __ shift_left(left, log2_intptr(c - 1), result);
   282     __ add(result, left, result);
   283     return true;
   284   }
   285   return false;
   286 }
   289 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   290   BasicType t = item->type();
   291   LIR_Opr sp_opr = FrameMap::SP_opr;
   292   if ((t == T_LONG || t == T_DOUBLE) &&
   293       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
   294     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
   295   } else {
   296     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
   297   }
   298 }
   300 //----------------------------------------------------------------------
   301 //             visitor functions
   302 //----------------------------------------------------------------------
   305 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   306   assert(x->is_root(),"");
   307   bool needs_range_check = true;
   308   bool use_length = x->length() != NULL;
   309   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   310   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   311                                          !get_jobject_constant(x->value())->is_null_object());
   313   LIRItem array(x->array(), this);
   314   LIRItem index(x->index(), this);
   315   LIRItem value(x->value(), this);
   316   LIRItem length(this);
   318   array.load_item();
   319   index.load_nonconstant();
   321   if (use_length) {
   322     needs_range_check = x->compute_needs_range_check();
   323     if (needs_range_check) {
   324       length.set_instruction(x->length());
   325       length.load_item();
   326     }
   327   }
   328   if (needs_store_check) {
   329     value.load_item();
   330   } else {
   331     value.load_for_store(x->elt_type());
   332   }
   334   set_no_result(x);
   336   // the CodeEmitInfo must be duplicated for each different
   337   // LIR-instruction because spilling can occur anywhere between two
   338   // instructions and so the debug information must be different
   339   CodeEmitInfo* range_check_info = state_for(x);
   340   CodeEmitInfo* null_check_info = NULL;
   341   if (x->needs_null_check()) {
   342     null_check_info = new CodeEmitInfo(range_check_info);
   343   }
   345   // emit array address setup early so it schedules better
   346   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   348   if (GenerateRangeChecks && needs_range_check) {
   349     if (use_length) {
   350       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   351       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   352     } else {
   353       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   354       // range_check also does the null check
   355       null_check_info = NULL;
   356     }
   357   }
   359   if (GenerateArrayStoreCheck && needs_store_check) {
   360     LIR_Opr tmp1 = FrameMap::G1_opr;
   361     LIR_Opr tmp2 = FrameMap::G3_opr;
   362     LIR_Opr tmp3 = FrameMap::G5_opr;
   364     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   365     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
   366   }
   368   __ move(value.result(), array_addr, null_check_info);
   369   if (obj_store) {
   370     // Is this precise?
   371     post_barrier(LIR_OprFact::address(array_addr), value.result());
   372   }
   373 }
   376 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   377   assert(x->is_root(),"");
   378   LIRItem obj(x->obj(), this);
   379   obj.load_item();
   381   set_no_result(x);
   383   LIR_Opr lock    = FrameMap::G1_opr;
   384   LIR_Opr scratch = FrameMap::G3_opr;
   385   LIR_Opr hdr     = FrameMap::G4_opr;
   387   CodeEmitInfo* info_for_exception = NULL;
   388   if (x->needs_null_check()) {
   389     info_for_exception = state_for(x, x->lock_stack_before());
   390   }
   392   // this CodeEmitInfo must not have the xhandlers because here the
   393   // object is already locked (xhandlers expects object to be unlocked)
   394   CodeEmitInfo* info = state_for(x, x->state(), true);
   395   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
   396 }
   399 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   400   assert(x->is_root(),"");
   401   LIRItem obj(x->obj(), this);
   402   obj.dont_load_item();
   404   set_no_result(x);
   405   LIR_Opr lock      = FrameMap::G1_opr;
   406   LIR_Opr hdr       = FrameMap::G3_opr;
   407   LIR_Opr obj_temp  = FrameMap::G4_opr;
   408   monitor_exit(obj_temp, lock, hdr, x->monitor_no());
   409 }
   412 // _ineg, _lneg, _fneg, _dneg
   413 void LIRGenerator::do_NegateOp(NegateOp* x) {
   414   LIRItem value(x->x(), this);
   415   value.load_item();
   416   LIR_Opr reg = rlock_result(x);
   417   __ negate(value.result(), reg);
   418 }
   422 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   423 //      _dadd, _dmul, _dsub, _ddiv, _drem
   424 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   425   switch (x->op()) {
   426   case Bytecodes::_fadd:
   427   case Bytecodes::_fmul:
   428   case Bytecodes::_fsub:
   429   case Bytecodes::_fdiv:
   430   case Bytecodes::_dadd:
   431   case Bytecodes::_dmul:
   432   case Bytecodes::_dsub:
   433   case Bytecodes::_ddiv: {
   434     LIRItem left(x->x(), this);
   435     LIRItem right(x->y(), this);
   436     left.load_item();
   437     right.load_item();
   438     rlock_result(x);
   439     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
   440   }
   441   break;
   443   case Bytecodes::_frem:
   444   case Bytecodes::_drem: {
   445     address entry;
   446     switch (x->op()) {
   447     case Bytecodes::_frem:
   448       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
   449       break;
   450     case Bytecodes::_drem:
   451       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
   452       break;
   453     default:
   454       ShouldNotReachHere();
   455     }
   456     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
   457     set_result(x, result);
   458   }
   459   break;
   461   default: ShouldNotReachHere();
   462   }
   463 }
   466 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   467 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   468   switch (x->op()) {
   469   case Bytecodes::_lrem:
   470   case Bytecodes::_lmul:
   471   case Bytecodes::_ldiv: {
   473     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
   474       LIRItem right(x->y(), this);
   475       right.load_item();
   477       CodeEmitInfo* info = state_for(x);
   478       LIR_Opr item = right.result();
   479       assert(item->is_register(), "must be");
   480       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
   481       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   482     }
   484     address entry;
   485     switch (x->op()) {
   486     case Bytecodes::_lrem:
   487       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   488       break; // check if dividend is 0 is done elsewhere
   489     case Bytecodes::_ldiv:
   490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   491       break; // check if dividend is 0 is done elsewhere
   492     case Bytecodes::_lmul:
   493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   494       break;
   495     default:
   496       ShouldNotReachHere();
   497     }
   499     // order of arguments to runtime call is reversed.
   500     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
   501     set_result(x, result);
   502     break;
   503   }
   504   case Bytecodes::_ladd:
   505   case Bytecodes::_lsub: {
   506     LIRItem left(x->x(), this);
   507     LIRItem right(x->y(), this);
   508     left.load_item();
   509     right.load_item();
   510     rlock_result(x);
   512     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   513     break;
   514   }
   515   default: ShouldNotReachHere();
   516   }
   517 }
   520 // Returns if item is an int constant that can be represented by a simm13
   521 static bool is_simm13(LIR_Opr item) {
   522   if (item->is_constant() && item->type() == T_INT) {
   523     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
   524   } else {
   525     return false;
   526   }
   527 }
   530 // for: _iadd, _imul, _isub, _idiv, _irem
   531 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   532   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
   533   LIRItem left(x->x(), this);
   534   LIRItem right(x->y(), this);
   535   // missing test if instr is commutative and if we should swap
   536   right.load_nonconstant();
   537   assert(right.is_constant() || right.is_register(), "wrong state of right");
   538   left.load_item();
   539   rlock_result(x);
   540   if (is_div_rem) {
   541     CodeEmitInfo* info = state_for(x);
   542     LIR_Opr tmp = FrameMap::G1_opr;
   543     if (x->op() == Bytecodes::_irem) {
   544       __ irem(left.result(), right.result(), x->operand(), tmp, info);
   545     } else if (x->op() == Bytecodes::_idiv) {
   546       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
   547     }
   548   } else {
   549     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
   550   }
   551 }
   554 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   555   ValueTag tag = x->type()->tag();
   556   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   557   switch (tag) {
   558     case floatTag:
   559     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   560     case longTag:    do_ArithmeticOp_Long(x); return;
   561     case intTag:     do_ArithmeticOp_Int(x);  return;
   562   }
   563   ShouldNotReachHere();
   564 }
   567 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   568 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   569   LIRItem value(x->x(), this);
   570   LIRItem count(x->y(), this);
   571   // Long shift destroys count register
   572   if (value.type()->is_long()) {
   573     count.set_destroys_register();
   574   }
   575   value.load_item();
   576   // the old backend doesn't support this
   577   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
   578     jint c = count.get_jint_constant() & 0x1f;
   579     assert(c >= 0 && c < 32, "should be small");
   580     count.dont_load_item();
   581   } else {
   582     count.load_item();
   583   }
   584   LIR_Opr reg = rlock_result(x);
   585   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   586 }
   589 // _iand, _land, _ior, _lor, _ixor, _lxor
   590 void LIRGenerator::do_LogicOp(LogicOp* x) {
   591   LIRItem left(x->x(), this);
   592   LIRItem right(x->y(), this);
   594   left.load_item();
   595   right.load_nonconstant();
   596   LIR_Opr reg = rlock_result(x);
   598   logic_op(x->op(), reg, left.result(), right.result());
   599 }
   603 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   604 void LIRGenerator::do_CompareOp(CompareOp* x) {
   605   LIRItem left(x->x(), this);
   606   LIRItem right(x->y(), this);
   607   left.load_item();
   608   right.load_item();
   609   LIR_Opr reg = rlock_result(x);
   611   if (x->x()->type()->is_float_kind()) {
   612     Bytecodes::Code code = x->op();
   613     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   614   } else if (x->x()->type()->tag() == longTag) {
   615     __ lcmp2int(left.result(), right.result(), reg);
   616   } else {
   617     Unimplemented();
   618   }
   619 }
   622 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
   623   assert(x->number_of_arguments() == 3, "wrong type");
   624   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
   625   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
   626   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
   628   obj.load_item();
   629   cmp_value.load_item();
   630   new_value.load_item();
   632   // generate compare-and-swap and produce zero condition if swap occurs
   633   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
   634   LIR_Opr addr = FrameMap::O7_opr;
   635   __ add(obj.result(), LIR_OprFact::intConst(value_offset), addr);
   636   LIR_Opr t1 = FrameMap::G1_opr;  // temp for 64-bit value
   637   LIR_Opr t2 = FrameMap::G3_opr;  // temp for 64-bit value
   638   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
   640   // generate conditional move of boolean result
   641   LIR_Opr result = rlock_result(x);
   642   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   643 }
   646 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   647   assert(x->number_of_arguments() == 4, "wrong type");
   648   LIRItem obj   (x->argument_at(0), this);  // object
   649   LIRItem offset(x->argument_at(1), this);  // offset of field
   650   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   651   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   653   // Use temps to avoid kills
   654   LIR_Opr t1 = FrameMap::G1_opr;
   655   LIR_Opr t2 = FrameMap::G3_opr;
   656   LIR_Opr addr = new_pointer_register();
   658   // get address of field
   659   obj.load_item();
   660   offset.load_item();
   661   cmp.load_item();
   662   val.load_item();
   664   __ add(obj.result(), offset.result(), addr);
   666   if (type == objectType)
   667     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
   668   else if (type == intType)
   669     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
   670   else if (type == longType)
   671     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
   672   else {
   673     ShouldNotReachHere();
   674   }
   676   // generate conditional move of boolean result
   677   LIR_Opr result = rlock_result(x);
   678   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   679   if (type == objectType) {  // Write-barrier needed for Object fields.
   680     post_barrier(obj.result(), val.result());
   681   }
   682 }
   685 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   686   switch (x->id()) {
   687     case vmIntrinsics::_dabs:
   688     case vmIntrinsics::_dsqrt: {
   689       assert(x->number_of_arguments() == 1, "wrong type");
   690       LIRItem value(x->argument_at(0), this);
   691       value.load_item();
   692       LIR_Opr dst = rlock_result(x);
   694       switch (x->id()) {
   695       case vmIntrinsics::_dsqrt: {
   696         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
   697         break;
   698       }
   699       case vmIntrinsics::_dabs: {
   700         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
   701         break;
   702       }
   703       }
   704       break;
   705     }
   706     case vmIntrinsics::_dlog10: // fall through
   707     case vmIntrinsics::_dlog: // fall through
   708     case vmIntrinsics::_dsin: // fall through
   709     case vmIntrinsics::_dtan: // fall through
   710     case vmIntrinsics::_dcos: {
   711       assert(x->number_of_arguments() == 1, "wrong type");
   713       address runtime_entry = NULL;
   714       switch (x->id()) {
   715       case vmIntrinsics::_dsin:
   716         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
   717         break;
   718       case vmIntrinsics::_dcos:
   719         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
   720         break;
   721       case vmIntrinsics::_dtan:
   722         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
   723         break;
   724       case vmIntrinsics::_dlog:
   725         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
   726         break;
   727       case vmIntrinsics::_dlog10:
   728         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
   729         break;
   730       default:
   731         ShouldNotReachHere();
   732       }
   734       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
   735       set_result(x, result);
   736     }
   737   }
   738 }
   741 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   742   assert(x->number_of_arguments() == 5, "wrong type");
   743   // Note: spill caller save before setting the item
   744   LIRItem src     (x->argument_at(0), this);
   745   LIRItem src_pos (x->argument_at(1), this);
   746   LIRItem dst     (x->argument_at(2), this);
   747   LIRItem dst_pos (x->argument_at(3), this);
   748   LIRItem length  (x->argument_at(4), this);
   749   // load all values in callee_save_registers, as this makes the
   750   // parameter passing to the fast case simpler
   751   src.load_item_force     (rlock_callee_saved(T_OBJECT));
   752   src_pos.load_item_force (rlock_callee_saved(T_INT));
   753   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
   754   dst_pos.load_item_force (rlock_callee_saved(T_INT));
   755   length.load_item_force  (rlock_callee_saved(T_INT));
   757   int flags;
   758   ciArrayKlass* expected_type;
   759   arraycopy_helper(x, &flags, &expected_type);
   761   CodeEmitInfo* info = state_for(x, x->state());
   762   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
   763                length.result(), rlock_callee_saved(T_INT),
   764                expected_type, flags, info);
   765   set_no_result(x);
   766 }
   768 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   769 // _i2b, _i2c, _i2s
   770 void LIRGenerator::do_Convert(Convert* x) {
   772   switch (x->op()) {
   773     case Bytecodes::_f2l:
   774     case Bytecodes::_d2l:
   775     case Bytecodes::_d2i:
   776     case Bytecodes::_l2f:
   777     case Bytecodes::_l2d: {
   779       address entry;
   780       switch (x->op()) {
   781       case Bytecodes::_l2f:
   782         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
   783         break;
   784       case Bytecodes::_l2d:
   785         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
   786         break;
   787       case Bytecodes::_f2l:
   788         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
   789         break;
   790       case Bytecodes::_d2l:
   791         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
   792         break;
   793       case Bytecodes::_d2i:
   794         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
   795         break;
   796       default:
   797         ShouldNotReachHere();
   798       }
   799       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
   800       set_result(x, result);
   801       break;
   802     }
   804     case Bytecodes::_i2f:
   805     case Bytecodes::_i2d: {
   806       LIRItem value(x->value(), this);
   808       LIR_Opr reg = rlock_result(x);
   809       // To convert an int to double, we need to load the 32-bit int
   810       // from memory into a single precision floating point register
   811       // (even numbered). Then the sparc fitod instruction takes care
   812       // of the conversion. This is a bit ugly, but is the best way to
   813       // get the int value in a single precision floating point register
   814       value.load_item();
   815       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
   816       __ convert(x->op(), tmp, reg);
   817       break;
   818     }
   819     break;
   821     case Bytecodes::_i2l:
   822     case Bytecodes::_i2b:
   823     case Bytecodes::_i2c:
   824     case Bytecodes::_i2s:
   825     case Bytecodes::_l2i:
   826     case Bytecodes::_f2d:
   827     case Bytecodes::_d2f: { // inline code
   828       LIRItem value(x->value(), this);
   830       value.load_item();
   831       LIR_Opr reg = rlock_result(x);
   832       __ convert(x->op(), value.result(), reg, false);
   833     }
   834     break;
   836     case Bytecodes::_f2i: {
   837       LIRItem value (x->value(), this);
   838       value.set_destroys_register();
   839       value.load_item();
   840       LIR_Opr reg = rlock_result(x);
   841       set_vreg_flag(reg, must_start_in_memory);
   842       __ convert(x->op(), value.result(), reg, false);
   843     }
   844     break;
   846     default: ShouldNotReachHere();
   847   }
   848 }
   851 void LIRGenerator::do_NewInstance(NewInstance* x) {
   852   // This instruction can be deoptimized in the slow path : use
   853   // O0 as result register.
   854   const LIR_Opr reg = result_register_for(x->type());
   856   if (PrintNotLoaded && !x->klass()->is_loaded()) {
   857     tty->print_cr("   ###class not loaded at new bci %d", x->bci());
   858   }
   859   CodeEmitInfo* info = state_for(x, x->state());
   860   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   861   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   862   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   863   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   864   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
   865   new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
   866   LIR_Opr result = rlock_result(x);
   867   __ move(reg, result);
   868 }
   871 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
   872   LIRItem length(x->length(), this);
   873   length.load_item();
   875   LIR_Opr reg = result_register_for(x->type());
   876   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   877   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   878   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   879   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   880   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
   881   LIR_Opr len = length.result();
   882   BasicType elem_type = x->elt_type();
   884   __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
   886   CodeEmitInfo* info = state_for(x, x->state());
   887   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
   888   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
   890   LIR_Opr result = rlock_result(x);
   891   __ move(reg, result);
   892 }
   895 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
   896   LIRItem length(x->length(), this);
   897   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
   898   // and therefore provide the state before the parameters have been consumed
   899   CodeEmitInfo* patching_info = NULL;
   900   if (!x->klass()->is_loaded() || PatchALot) {
   901     patching_info = state_for(x, x->state_before());
   902   }
   904   length.load_item();
   906   const LIR_Opr reg = result_register_for(x->type());
   907   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   908   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   909   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   910   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   911   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
   912   LIR_Opr len = length.result();
   913   CodeEmitInfo* info = state_for(x, x->state());
   915   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
   916   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
   917   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
   918     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
   919   }
   920   jobject2reg_with_patching(klass_reg, obj, patching_info);
   921   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
   923   LIR_Opr result = rlock_result(x);
   924   __ move(reg, result);
   925 }
   928 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
   929   Values* dims = x->dims();
   930   int i = dims->length();
   931   LIRItemList* items = new LIRItemList(dims->length(), NULL);
   932   while (i-- > 0) {
   933     LIRItem* size = new LIRItem(dims->at(i), this);
   934     items->at_put(i, size);
   935   }
   937   // need to get the info before, as the items may become invalid through item_free
   938   CodeEmitInfo* patching_info = NULL;
   939   if (!x->klass()->is_loaded() || PatchALot) {
   940     patching_info = state_for(x, x->state_before());
   942     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
   943     // clone all handlers
   944     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
   945   }
   947   i = dims->length();
   948   while (i-- > 0) {
   949     LIRItem* size = items->at(i);
   950     // if a patching_info was generated above then debug information for the state before
   951     // the call is going to be emitted.  The LIRGenerator calls above may have left some values
   952     // in registers and that's been recorded in the CodeEmitInfo.  In that case the items
   953     // for those values can't simply be freed if they are registers because the values
   954     // might be destroyed by store_stack_parameter.  So in the case of patching, delay the
   955     // freeing of the items that already were in registers
   956     size->load_item();
   957     store_stack_parameter (size->result(),
   958                            in_ByteSize(STACK_BIAS +
   959                                        (i + frame::memory_parameter_word_sp_offset) * wordSize));
   960   }
   962   // This instruction can be deoptimized in the slow path : use
   963   // O0 as result register.
   964   const LIR_Opr reg = result_register_for(x->type());
   965   CodeEmitInfo* info = state_for(x, x->state());
   967   jobject2reg_with_patching(reg, x->klass(), patching_info);
   968   LIR_Opr rank = FrameMap::O1_opr;
   969   __ move(LIR_OprFact::intConst(x->rank()), rank);
   970   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
   971   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
   972   __ add(FrameMap::SP_opr,
   973          LIR_OprFact::intptrConst(offset_from_sp),
   974          varargs);
   975   LIR_OprList* args = new LIR_OprList(3);
   976   args->append(reg);
   977   args->append(rank);
   978   args->append(varargs);
   979   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
   980                   LIR_OprFact::illegalOpr,
   981                   reg, args, info);
   983   LIR_Opr result = rlock_result(x);
   984   __ move(reg, result);
   985 }
   988 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
   989 }
   992 void LIRGenerator::do_CheckCast(CheckCast* x) {
   993   LIRItem obj(x->obj(), this);
   994   CodeEmitInfo* patching_info = NULL;
   995   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
   996     // must do this before locking the destination register as an oop register,
   997     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
   998     patching_info = state_for(x, x->state_before());
   999   }
  1000   obj.load_item();
  1001   LIR_Opr out_reg = rlock_result(x);
  1002   CodeStub* stub;
  1003   CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
  1005   if (x->is_incompatible_class_change_check()) {
  1006     assert(patching_info == NULL, "can't patch this");
  1007     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1008   } else {
  1009     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1011   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  1012   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  1013   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  1014   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
  1015                x->direct_compare(), info_for_exception, patching_info, stub,
  1016                x->profiled_method(), x->profiled_bci());
  1020 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1021   LIRItem obj(x->obj(), this);
  1022   CodeEmitInfo* patching_info = NULL;
  1023   if (!x->klass()->is_loaded() || PatchALot) {
  1024     patching_info = state_for(x, x->state_before());
  1026   // ensure the result register is not the input register because the result is initialized before the patching safepoint
  1027   obj.load_item();
  1028   LIR_Opr out_reg = rlock_result(x);
  1029   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  1030   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  1031   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  1032   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,  x->direct_compare(), patching_info);
  1036 void LIRGenerator::do_If(If* x) {
  1037   assert(x->number_of_sux() == 2, "inconsistency");
  1038   ValueTag tag = x->x()->type()->tag();
  1039   LIRItem xitem(x->x(), this);
  1040   LIRItem yitem(x->y(), this);
  1041   LIRItem* xin = &xitem;
  1042   LIRItem* yin = &yitem;
  1043   If::Condition cond = x->cond();
  1045   if (tag == longTag) {
  1046     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1047     // mirror for other conditions
  1048     if (cond == If::gtr || cond == If::leq) {
  1049       // swap inputs
  1050       cond = Instruction::mirror(cond);
  1051       xin = &yitem;
  1052       yin = &xitem;
  1054     xin->set_destroys_register();
  1057   LIR_Opr left = LIR_OprFact::illegalOpr;
  1058   LIR_Opr right = LIR_OprFact::illegalOpr;
  1060   xin->load_item();
  1061   left = xin->result();
  1063   if (is_simm13(yin->result())) {
  1064     // inline int constants which are small enough to be immediate operands
  1065     right = LIR_OprFact::value_type(yin->value()->type());
  1066   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
  1067              (cond == If::eql || cond == If::neq)) {
  1068     // inline long zero
  1069     right = LIR_OprFact::value_type(yin->value()->type());
  1070   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
  1071     right = LIR_OprFact::value_type(yin->value()->type());
  1072   } else {
  1073     yin->load_item();
  1074     right = yin->result();
  1076   set_no_result(x);
  1078   // add safepoint before generating condition code so it can be recomputed
  1079   if (x->is_safepoint()) {
  1080     // increment backedge counter if needed
  1081     increment_backedge_counter(state_for(x, x->state_before()));
  1083     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
  1086   __ cmp(lir_cond(cond), left, right);
  1087   profile_branch(x, cond);
  1088   move_to_phi(x->state());
  1089   if (x->x()->type()->is_float_kind()) {
  1090     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1091   } else {
  1092     __ branch(lir_cond(cond), right->type(), x->tsux());
  1094   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1095   __ jump(x->default_sux());
  1099 LIR_Opr LIRGenerator::getThreadPointer() {
  1100   return FrameMap::as_pointer_opr(G2);
  1104 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1105   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
  1106   LIR_OprList* args = new LIR_OprList(1);
  1107   args->append(FrameMap::O0_opr);
  1108   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1109   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
  1113 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1114                                         CodeEmitInfo* info) {
  1115 #ifdef _LP64
  1116   __ store(value, address, info);
  1117 #else
  1118   __ volatile_store_mem_reg(value, address, info);
  1119 #endif
  1122 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1123                                        CodeEmitInfo* info) {
  1124 #ifdef _LP64
  1125   __ load(address, result, info);
  1126 #else
  1127   __ volatile_load_mem_reg(address, result, info);
  1128 #endif
  1132 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1133                                      BasicType type, bool is_volatile) {
  1134   LIR_Opr base_op = src;
  1135   LIR_Opr index_op = offset;
  1137   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1138 #ifndef _LP64
  1139   if (is_volatile && type == T_LONG) {
  1140     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
  1141   } else
  1142 #endif
  1144       if (type == T_BOOLEAN) {
  1145         type = T_BYTE;
  1147       LIR_Address* addr;
  1148       if (type == T_ARRAY || type == T_OBJECT) {
  1149         LIR_Opr tmp = new_pointer_register();
  1150         __ add(base_op, index_op, tmp);
  1151         addr = new LIR_Address(tmp, 0, type);
  1152       } else {
  1153         addr = new LIR_Address(base_op, index_op, type);
  1156       __ move(data, addr);
  1157       if (is_obj) {
  1158         // This address is precise
  1159         post_barrier(LIR_OprFact::address(addr), data);
  1165 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1166                                      BasicType type, bool is_volatile) {
  1167 #ifndef _LP64
  1168   if (is_volatile && type == T_LONG) {
  1169     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
  1170   } else
  1171 #endif
  1173     LIR_Address* addr = new LIR_Address(src, offset, type);
  1174     __ load(addr, dst);

mercurial