src/share/vm/runtime/sharedRuntime.cpp

Wed, 14 Mar 2018 03:19:46 -0700

author
shshahma
date
Wed, 14 Mar 2018 03:19:46 -0700
changeset 9301
d47844b56aaf
parent 8773
1eaa9a72d705
child 9305
278ac6d2b59e
permissions
-rw-r--r--

8035074: hs_err improvement: Add time zone information in the hs_err file
8026335: hs_err improvement: Print exact compressed oops mode and the heap base value.
8026331: hs_err improvement: Print if we have seen any OutOfMemoryErrors or StackOverflowErrors
Summary: Add requested things to hs_err file.
Reviewed-by: dholmes

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "compiler/disassembler.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "interpreter/interpreterRuntime.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "prims/forte.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiRedefineClassesTrace.hpp"
    43 #include "prims/methodHandles.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/handles.inline.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/sharedRuntime.hpp"
    52 #include "runtime/stubRoutines.hpp"
    53 #include "runtime/vframe.hpp"
    54 #include "runtime/vframeArray.hpp"
    55 #include "utilities/copy.hpp"
    56 #include "utilities/dtrace.hpp"
    57 #include "utilities/events.hpp"
    58 #include "utilities/hashtable.inline.hpp"
    59 #include "utilities/macros.hpp"
    60 #include "utilities/xmlstream.hpp"
    61 #ifdef TARGET_ARCH_x86
    62 # include "nativeInst_x86.hpp"
    63 # include "vmreg_x86.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_sparc
    66 # include "nativeInst_sparc.hpp"
    67 # include "vmreg_sparc.inline.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_zero
    70 # include "nativeInst_zero.hpp"
    71 # include "vmreg_zero.inline.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_arm
    74 # include "nativeInst_arm.hpp"
    75 # include "vmreg_arm.inline.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_ppc
    78 # include "nativeInst_ppc.hpp"
    79 # include "vmreg_ppc.inline.hpp"
    80 #endif
    81 #ifdef COMPILER1
    82 #include "c1/c1_Runtime1.hpp"
    83 #endif
    85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    87 // Shared stub locations
    88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
    90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
   100 #ifdef COMPILER2
   101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
   102 #endif // COMPILER2
   105 //----------------------------generate_stubs-----------------------------------
   106 void SharedRuntime::generate_stubs() {
   107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
   108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
   109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
   110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
   111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
   112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
   114 #ifdef COMPILER2
   115   // Vectors are generated only by C2.
   116   if (is_wide_vector(MaxVectorSize)) {
   117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   118   }
   119 #endif // COMPILER2
   120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   123   generate_deopt_blob();
   125 #ifdef COMPILER2
   126   generate_uncommon_trap_blob();
   127 #endif // COMPILER2
   128 }
   130 #include <math.h>
   132 #ifndef USDT2
   133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   135                       char*, int, char*, int, char*, int);
   136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   137                       char*, int, char*, int, char*, int);
   138 #endif /* !USDT2 */
   140 // Implementation of SharedRuntime
   142 #ifndef PRODUCT
   143 // For statistics
   144 int SharedRuntime::_ic_miss_ctr = 0;
   145 int SharedRuntime::_wrong_method_ctr = 0;
   146 int SharedRuntime::_resolve_static_ctr = 0;
   147 int SharedRuntime::_resolve_virtual_ctr = 0;
   148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   149 int SharedRuntime::_implicit_null_throws = 0;
   150 int SharedRuntime::_implicit_div0_throws = 0;
   151 int SharedRuntime::_throw_null_ctr = 0;
   153 int SharedRuntime::_nof_normal_calls = 0;
   154 int SharedRuntime::_nof_optimized_calls = 0;
   155 int SharedRuntime::_nof_inlined_calls = 0;
   156 int SharedRuntime::_nof_megamorphic_calls = 0;
   157 int SharedRuntime::_nof_static_calls = 0;
   158 int SharedRuntime::_nof_inlined_static_calls = 0;
   159 int SharedRuntime::_nof_interface_calls = 0;
   160 int SharedRuntime::_nof_optimized_interface_calls = 0;
   161 int SharedRuntime::_nof_inlined_interface_calls = 0;
   162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   163 int SharedRuntime::_nof_removable_exceptions = 0;
   165 int SharedRuntime::_new_instance_ctr=0;
   166 int SharedRuntime::_new_array_ctr=0;
   167 int SharedRuntime::_multi1_ctr=0;
   168 int SharedRuntime::_multi2_ctr=0;
   169 int SharedRuntime::_multi3_ctr=0;
   170 int SharedRuntime::_multi4_ctr=0;
   171 int SharedRuntime::_multi5_ctr=0;
   172 int SharedRuntime::_mon_enter_stub_ctr=0;
   173 int SharedRuntime::_mon_exit_stub_ctr=0;
   174 int SharedRuntime::_mon_enter_ctr=0;
   175 int SharedRuntime::_mon_exit_ctr=0;
   176 int SharedRuntime::_partial_subtype_ctr=0;
   177 int SharedRuntime::_jbyte_array_copy_ctr=0;
   178 int SharedRuntime::_jshort_array_copy_ctr=0;
   179 int SharedRuntime::_jint_array_copy_ctr=0;
   180 int SharedRuntime::_jlong_array_copy_ctr=0;
   181 int SharedRuntime::_oop_array_copy_ctr=0;
   182 int SharedRuntime::_checkcast_array_copy_ctr=0;
   183 int SharedRuntime::_unsafe_array_copy_ctr=0;
   184 int SharedRuntime::_generic_array_copy_ctr=0;
   185 int SharedRuntime::_slow_array_copy_ctr=0;
   186 int SharedRuntime::_find_handler_ctr=0;
   187 int SharedRuntime::_rethrow_ctr=0;
   189 int     SharedRuntime::_ICmiss_index                    = 0;
   190 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   194 void SharedRuntime::trace_ic_miss(address at) {
   195   for (int i = 0; i < _ICmiss_index; i++) {
   196     if (_ICmiss_at[i] == at) {
   197       _ICmiss_count[i]++;
   198       return;
   199     }
   200   }
   201   int index = _ICmiss_index++;
   202   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   203   _ICmiss_at[index] = at;
   204   _ICmiss_count[index] = 1;
   205 }
   207 void SharedRuntime::print_ic_miss_histogram() {
   208   if (ICMissHistogram) {
   209     tty->print_cr ("IC Miss Histogram:");
   210     int tot_misses = 0;
   211     for (int i = 0; i < _ICmiss_index; i++) {
   212       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   213       tot_misses += _ICmiss_count[i];
   214     }
   215     tty->print_cr ("Total IC misses: %7d", tot_misses);
   216   }
   217 }
   218 #endif // PRODUCT
   220 #if INCLUDE_ALL_GCS
   222 // G1 write-barrier pre: executed before a pointer store.
   223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   224   if (orig == NULL) {
   225     assert(false, "should be optimized out");
   226     return;
   227   }
   228   assert(orig->is_oop(true /* ignore mark word */), "Error");
   229   // store the original value that was in the field reference
   230   thread->satb_mark_queue().enqueue(orig);
   231 JRT_END
   233 // G1 write-barrier post: executed after a pointer store.
   234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   235   thread->dirty_card_queue().enqueue(card_addr);
   236 JRT_END
   238 #endif // INCLUDE_ALL_GCS
   241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   242   return x * y;
   243 JRT_END
   246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   247   if (x == min_jlong && y == CONST64(-1)) {
   248     return x;
   249   } else {
   250     return x / y;
   251   }
   252 JRT_END
   255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   256   if (x == min_jlong && y == CONST64(-1)) {
   257     return 0;
   258   } else {
   259     return x % y;
   260   }
   261 JRT_END
   264 const juint  float_sign_mask  = 0x7FFFFFFF;
   265 const juint  float_infinity   = 0x7F800000;
   266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   267 const julong double_infinity  = CONST64(0x7FF0000000000000);
   269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   270 #ifdef _WIN64
   271   // 64-bit Windows on amd64 returns the wrong values for
   272   // infinity operands.
   273   union { jfloat f; juint i; } xbits, ybits;
   274   xbits.f = x;
   275   ybits.f = y;
   276   // x Mod Infinity == x unless x is infinity
   277   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   278        ((ybits.i & float_sign_mask) == float_infinity) ) {
   279     return x;
   280   }
   281 #endif
   282   return ((jfloat)fmod((double)x,(double)y));
   283 JRT_END
   286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   287 #ifdef _WIN64
   288   union { jdouble d; julong l; } xbits, ybits;
   289   xbits.d = x;
   290   ybits.d = y;
   291   // x Mod Infinity == x unless x is infinity
   292   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   293        ((ybits.l & double_sign_mask) == double_infinity) ) {
   294     return x;
   295   }
   296 #endif
   297   return ((jdouble)fmod((double)x,(double)y));
   298 JRT_END
   300 #ifdef __SOFTFP__
   301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   302   return x + y;
   303 JRT_END
   305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   306   return x - y;
   307 JRT_END
   309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   310   return x * y;
   311 JRT_END
   313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   314   return x / y;
   315 JRT_END
   317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   318   return x + y;
   319 JRT_END
   321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   322   return x - y;
   323 JRT_END
   325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   326   return x * y;
   327 JRT_END
   329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   330   return x / y;
   331 JRT_END
   333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   334   return (jfloat)x;
   335 JRT_END
   337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   338   return (jdouble)x;
   339 JRT_END
   341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   342   return (jdouble)x;
   343 JRT_END
   345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   347 JRT_END
   349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   351 JRT_END
   353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   355 JRT_END
   357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   359 JRT_END
   361 // Functions to return the opposite of the aeabi functions for nan.
   362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   364 JRT_END
   366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   368 JRT_END
   370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   372 JRT_END
   374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   376 JRT_END
   378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   380 JRT_END
   382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   384 JRT_END
   386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   388 JRT_END
   390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   392 JRT_END
   394 // Intrinsics make gcc generate code for these.
   395 float  SharedRuntime::fneg(float f)   {
   396   return -f;
   397 }
   399 double SharedRuntime::dneg(double f)  {
   400   return -f;
   401 }
   403 #endif // __SOFTFP__
   405 #if defined(__SOFTFP__) || defined(E500V2)
   406 // Intrinsics make gcc generate code for these.
   407 double SharedRuntime::dabs(double f)  {
   408   return (f <= (double)0.0) ? (double)0.0 - f : f;
   409 }
   411 #endif
   413 #if defined(__SOFTFP__) || defined(PPC32)
   414 double SharedRuntime::dsqrt(double f) {
   415   return sqrt(f);
   416 }
   417 #endif
   419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   420   if (g_isnan(x))
   421     return 0;
   422   if (x >= (jfloat) max_jint)
   423     return max_jint;
   424   if (x <= (jfloat) min_jint)
   425     return min_jint;
   426   return (jint) x;
   427 JRT_END
   430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   431   if (g_isnan(x))
   432     return 0;
   433   if (x >= (jfloat) max_jlong)
   434     return max_jlong;
   435   if (x <= (jfloat) min_jlong)
   436     return min_jlong;
   437   return (jlong) x;
   438 JRT_END
   441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   442   if (g_isnan(x))
   443     return 0;
   444   if (x >= (jdouble) max_jint)
   445     return max_jint;
   446   if (x <= (jdouble) min_jint)
   447     return min_jint;
   448   return (jint) x;
   449 JRT_END
   452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   453   if (g_isnan(x))
   454     return 0;
   455   if (x >= (jdouble) max_jlong)
   456     return max_jlong;
   457   if (x <= (jdouble) min_jlong)
   458     return min_jlong;
   459   return (jlong) x;
   460 JRT_END
   463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   464   return (jfloat)x;
   465 JRT_END
   468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   469   return (jfloat)x;
   470 JRT_END
   473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   474   return (jdouble)x;
   475 JRT_END
   477 // Exception handling accross interpreter/compiler boundaries
   478 //
   479 // exception_handler_for_return_address(...) returns the continuation address.
   480 // The continuation address is the entry point of the exception handler of the
   481 // previous frame depending on the return address.
   483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   484   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
   487   // Reset method handle flag.
   488   thread->set_is_method_handle_return(false);
   490   // The fastest case first
   491   CodeBlob* blob = CodeCache::find_blob(return_address);
   492   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   493   if (nm != NULL) {
   494     // Set flag if return address is a method handle call site.
   495     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   496     // native nmethods don't have exception handlers
   497     assert(!nm->is_native_method(), "no exception handler");
   498     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   499     if (nm->is_deopt_pc(return_address)) {
   500       // If we come here because of a stack overflow, the stack may be
   501       // unguarded. Reguard the stack otherwise if we return to the
   502       // deopt blob and the stack bang causes a stack overflow we
   503       // crash.
   504       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   505       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
   507       return SharedRuntime::deopt_blob()->unpack_with_exception();
   508     } else {
   509       return nm->exception_begin();
   510     }
   511   }
   513   // Entry code
   514   if (StubRoutines::returns_to_call_stub(return_address)) {
   515     return StubRoutines::catch_exception_entry();
   516   }
   517   // Interpreted code
   518   if (Interpreter::contains(return_address)) {
   519     return Interpreter::rethrow_exception_entry();
   520   }
   522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   525 #ifndef PRODUCT
   526   { ResourceMark rm;
   527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   529     tty->print_cr("b) other problem");
   530   }
   531 #endif // PRODUCT
   533   ShouldNotReachHere();
   534   return NULL;
   535 }
   538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   539   return raw_exception_handler_for_return_address(thread, return_address);
   540 JRT_END
   543 address SharedRuntime::get_poll_stub(address pc) {
   544   address stub;
   545   // Look up the code blob
   546   CodeBlob *cb = CodeCache::find_blob(pc);
   548   // Should be an nmethod
   549   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
   551   // Look up the relocation information
   552   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   553     "safepoint polling: type must be poll" );
   555   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   556     "Only polling locations are used for safepoint");
   558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   560   if (at_poll_return) {
   561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   562            "polling page return stub not created yet");
   563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   564   } else if (has_wide_vectors) {
   565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   566            "polling page vectors safepoint stub not created yet");
   567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   568   } else {
   569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   570            "polling page safepoint stub not created yet");
   571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   572   }
   573 #ifndef PRODUCT
   574   if( TraceSafepoint ) {
   575     char buf[256];
   576     jio_snprintf(buf, sizeof(buf),
   577                  "... found polling page %s exception at pc = "
   578                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   579                  at_poll_return ? "return" : "loop",
   580                  (intptr_t)pc, (intptr_t)stub);
   581     tty->print_raw_cr(buf);
   582   }
   583 #endif // PRODUCT
   584   return stub;
   585 }
   588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   589   assert(caller.is_interpreted_frame(), "");
   590   int args_size = ArgumentSizeComputer(sig).size() + 1;
   591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   593   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   594   return result;
   595 }
   598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   599   if (JvmtiExport::can_post_on_exceptions()) {
   600     vframeStream vfst(thread, true);
   601     methodHandle method = methodHandle(thread, vfst.method());
   602     address bcp = method()->bcp_from(vfst.bci());
   603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   604   }
   605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   606 }
   608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   609   Handle h_exception = Exceptions::new_exception(thread, name, message);
   610   throw_and_post_jvmti_exception(thread, h_exception);
   611 }
   613 // The interpreter code to call this tracing function is only
   614 // called/generated when TraceRedefineClasses has the right bits
   615 // set. Since obsolete methods are never compiled, we don't have
   616 // to modify the compilers to generate calls to this function.
   617 //
   618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   619     JavaThread* thread, Method* method))
   620   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   622   if (method->is_obsolete()) {
   623     // We are calling an obsolete method, but this is not necessarily
   624     // an error. Our method could have been redefined just after we
   625     // fetched the Method* from the constant pool.
   627     // RC_TRACE macro has an embedded ResourceMark
   628     RC_TRACE_WITH_THREAD(0x00001000, thread,
   629                          ("calling obsolete method '%s'",
   630                           method->name_and_sig_as_C_string()));
   631     if (RC_TRACE_ENABLED(0x00002000)) {
   632       // this option is provided to debug calls to obsolete methods
   633       guarantee(false, "faulting at call to an obsolete method.");
   634     }
   635   }
   636   return 0;
   637 JRT_END
   639 // ret_pc points into caller; we are returning caller's exception handler
   640 // for given exception
   641 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   642                                                     bool force_unwind, bool top_frame_only) {
   643   assert(nm != NULL, "must exist");
   644   ResourceMark rm;
   646   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   647   // determine handler bci, if any
   648   EXCEPTION_MARK;
   650   int handler_bci = -1;
   651   int scope_depth = 0;
   652   if (!force_unwind) {
   653     int bci = sd->bci();
   654     bool recursive_exception = false;
   655     do {
   656       bool skip_scope_increment = false;
   657       // exception handler lookup
   658       KlassHandle ek (THREAD, exception->klass());
   659       methodHandle mh(THREAD, sd->method());
   660       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   661       if (HAS_PENDING_EXCEPTION) {
   662         recursive_exception = true;
   663         // We threw an exception while trying to find the exception handler.
   664         // Transfer the new exception to the exception handle which will
   665         // be set into thread local storage, and do another lookup for an
   666         // exception handler for this exception, this time starting at the
   667         // BCI of the exception handler which caused the exception to be
   668         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   669         // argument to ensure that the correct exception is thrown (4870175).
   670         exception = Handle(THREAD, PENDING_EXCEPTION);
   671         CLEAR_PENDING_EXCEPTION;
   672         if (handler_bci >= 0) {
   673           bci = handler_bci;
   674           handler_bci = -1;
   675           skip_scope_increment = true;
   676         }
   677       }
   678       else {
   679         recursive_exception = false;
   680       }
   681       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   682         sd = sd->sender();
   683         if (sd != NULL) {
   684           bci = sd->bci();
   685         }
   686         ++scope_depth;
   687       }
   688     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   689   }
   691   // found handling method => lookup exception handler
   692   int catch_pco = ret_pc - nm->code_begin();
   694   ExceptionHandlerTable table(nm);
   695   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   696   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   697     // Allow abbreviated catch tables.  The idea is to allow a method
   698     // to materialize its exceptions without committing to the exact
   699     // routing of exceptions.  In particular this is needed for adding
   700     // a synthethic handler to unlock monitors when inlining
   701     // synchonized methods since the unlock path isn't represented in
   702     // the bytecodes.
   703     t = table.entry_for(catch_pco, -1, 0);
   704   }
   706 #ifdef COMPILER1
   707   if (t == NULL && nm->is_compiled_by_c1()) {
   708     assert(nm->unwind_handler_begin() != NULL, "");
   709     return nm->unwind_handler_begin();
   710   }
   711 #endif
   713   if (t == NULL) {
   714     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   715     tty->print_cr("   Exception:");
   716     exception->print();
   717     tty->cr();
   718     tty->print_cr(" Compiled exception table :");
   719     table.print();
   720     nm->print_code();
   721     guarantee(false, "missing exception handler");
   722     return NULL;
   723   }
   725   return nm->code_begin() + t->pco();
   726 }
   728 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   729   // These errors occur only at call sites
   730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   731 JRT_END
   733 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   734   // These errors occur only at call sites
   735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   736 JRT_END
   738 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   740 JRT_END
   742 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   744 JRT_END
   746 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   747   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   748   // cache sites (when the callee activation is not yet set up) so we are at a call site
   749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   750 JRT_END
   752 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   753   // We avoid using the normal exception construction in this case because
   754   // it performs an upcall to Java, and we're already out of stack space.
   755   Klass* k = SystemDictionary::StackOverflowError_klass();
   756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   757   Handle exception (thread, exception_oop);
   758   if (StackTraceInThrowable) {
   759     java_lang_Throwable::fill_in_stack_trace(exception);
   760   }
   761   // Increment counter for hs_err file reporting
   762   Atomic::inc(&Exceptions::_stack_overflow_errors);
   763   throw_and_post_jvmti_exception(thread, exception);
   764 JRT_END
   766 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   767                                                            address pc,
   768                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   769 {
   770   address target_pc = NULL;
   772   if (Interpreter::contains(pc)) {
   773 #ifdef CC_INTERP
   774     // C++ interpreter doesn't throw implicit exceptions
   775     ShouldNotReachHere();
   776 #else
   777     switch (exception_kind) {
   778       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   779       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   780       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   781       default:                      ShouldNotReachHere();
   782     }
   783 #endif // !CC_INTERP
   784   } else {
   785     switch (exception_kind) {
   786       case STACK_OVERFLOW: {
   787         // Stack overflow only occurs upon frame setup; the callee is
   788         // going to be unwound. Dispatch to a shared runtime stub
   789         // which will cause the StackOverflowError to be fabricated
   790         // and processed.
   791         // Stack overflow should never occur during deoptimization:
   792         // the compiled method bangs the stack by as much as the
   793         // interpreter would need in case of a deoptimization. The
   794         // deoptimization blob and uncommon trap blob bang the stack
   795         // in a debug VM to verify the correctness of the compiled
   796         // method stack banging.
   797         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
   798         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   799         return StubRoutines::throw_StackOverflowError_entry();
   800       }
   802       case IMPLICIT_NULL: {
   803         if (VtableStubs::contains(pc)) {
   804           // We haven't yet entered the callee frame. Fabricate an
   805           // exception and begin dispatching it in the caller. Since
   806           // the caller was at a call site, it's safe to destroy all
   807           // caller-saved registers, as these entry points do.
   808           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   810           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   811           if (vt_stub == NULL) return NULL;
   813           if (vt_stub->is_abstract_method_error(pc)) {
   814             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   815             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   816             return StubRoutines::throw_AbstractMethodError_entry();
   817           } else {
   818             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   819             return StubRoutines::throw_NullPointerException_at_call_entry();
   820           }
   821         } else {
   822           CodeBlob* cb = CodeCache::find_blob(pc);
   824           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   825           if (cb == NULL) return NULL;
   827           // Exception happened in CodeCache. Must be either:
   828           // 1. Inline-cache check in C2I handler blob,
   829           // 2. Inline-cache check in nmethod, or
   830           // 3. Implict null exception in nmethod
   832           if (!cb->is_nmethod()) {
   833             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   834             if (!is_in_blob) {
   835               cb->print();
   836               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   837             }
   838             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   839             // There is no handler here, so we will simply unwind.
   840             return StubRoutines::throw_NullPointerException_at_call_entry();
   841           }
   843           // Otherwise, it's an nmethod.  Consult its exception handlers.
   844           nmethod* nm = (nmethod*)cb;
   845           if (nm->inlinecache_check_contains(pc)) {
   846             // exception happened inside inline-cache check code
   847             // => the nmethod is not yet active (i.e., the frame
   848             // is not set up yet) => use return address pushed by
   849             // caller => don't push another return address
   850             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   851             return StubRoutines::throw_NullPointerException_at_call_entry();
   852           }
   854           if (nm->method()->is_method_handle_intrinsic()) {
   855             // exception happened inside MH dispatch code, similar to a vtable stub
   856             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   857             return StubRoutines::throw_NullPointerException_at_call_entry();
   858           }
   860 #ifndef PRODUCT
   861           _implicit_null_throws++;
   862 #endif
   863           target_pc = nm->continuation_for_implicit_exception(pc);
   864           // If there's an unexpected fault, target_pc might be NULL,
   865           // in which case we want to fall through into the normal
   866           // error handling code.
   867         }
   869         break; // fall through
   870       }
   873       case IMPLICIT_DIVIDE_BY_ZERO: {
   874         nmethod* nm = CodeCache::find_nmethod(pc);
   875         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   876 #ifndef PRODUCT
   877         _implicit_div0_throws++;
   878 #endif
   879         target_pc = nm->continuation_for_implicit_exception(pc);
   880         // If there's an unexpected fault, target_pc might be NULL,
   881         // in which case we want to fall through into the normal
   882         // error handling code.
   883         break; // fall through
   884       }
   886       default: ShouldNotReachHere();
   887     }
   889     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   891     // for AbortVMOnException flag
   892     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   893     if (exception_kind == IMPLICIT_NULL) {
   894       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   895     } else {
   896       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   897     }
   898     return target_pc;
   899   }
   901   ShouldNotReachHere();
   902   return NULL;
   903 }
   906 /**
   907  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   908  * installed in the native function entry of all native Java methods before
   909  * they get linked to their actual native methods.
   910  *
   911  * \note
   912  * This method actually never gets called!  The reason is because
   913  * the interpreter's native entries call NativeLookup::lookup() which
   914  * throws the exception when the lookup fails.  The exception is then
   915  * caught and forwarded on the return from NativeLookup::lookup() call
   916  * before the call to the native function.  This might change in the future.
   917  */
   918 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   919 {
   920   // We return a bad value here to make sure that the exception is
   921   // forwarded before we look at the return value.
   922   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   923 }
   924 JNI_END
   926 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   927   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   928 }
   931 #ifndef PRODUCT
   932 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   933   const frame f = thread->last_frame();
   934   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   935 #ifndef PRODUCT
   936   methodHandle mh(THREAD, f.interpreter_frame_method());
   937   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   938 #endif // !PRODUCT
   939   return preserve_this_value;
   940 JRT_END
   941 #endif // !PRODUCT
   944 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   945   os::yield_all(attempts);
   946 JRT_END
   949 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   950   assert(obj->is_oop(), "must be a valid oop");
   951   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   952   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   953 JRT_END
   956 jlong SharedRuntime::get_java_tid(Thread* thread) {
   957   if (thread != NULL) {
   958     if (thread->is_Java_thread()) {
   959       oop obj = ((JavaThread*)thread)->threadObj();
   960       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   961     }
   962   }
   963   return 0;
   964 }
   966 /**
   967  * This function ought to be a void function, but cannot be because
   968  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   969  * 6254741.  Once that is fixed we can remove the dummy return value.
   970  */
   971 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
   972   return dtrace_object_alloc_base(Thread::current(), o, size);
   973 }
   975 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
   976   assert(DTraceAllocProbes, "wrong call");
   977   Klass* klass = o->klass();
   978   Symbol* name = klass->name();
   979 #ifndef USDT2
   980   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   981                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   982 #else /* USDT2 */
   983   HOTSPOT_OBJECT_ALLOC(
   984                    get_java_tid(thread),
   985                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   986 #endif /* USDT2 */
   987   return 0;
   988 }
   990 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   991     JavaThread* thread, Method* method))
   992   assert(DTraceMethodProbes, "wrong call");
   993   Symbol* kname = method->klass_name();
   994   Symbol* name = method->name();
   995   Symbol* sig = method->signature();
   996 #ifndef USDT2
   997   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   998       kname->bytes(), kname->utf8_length(),
   999       name->bytes(), name->utf8_length(),
  1000       sig->bytes(), sig->utf8_length());
  1001 #else /* USDT2 */
  1002   HOTSPOT_METHOD_ENTRY(
  1003       get_java_tid(thread),
  1004       (char *) kname->bytes(), kname->utf8_length(),
  1005       (char *) name->bytes(), name->utf8_length(),
  1006       (char *) sig->bytes(), sig->utf8_length());
  1007 #endif /* USDT2 */
  1008   return 0;
  1009 JRT_END
  1011 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
  1012     JavaThread* thread, Method* method))
  1013   assert(DTraceMethodProbes, "wrong call");
  1014   Symbol* kname = method->klass_name();
  1015   Symbol* name = method->name();
  1016   Symbol* sig = method->signature();
  1017 #ifndef USDT2
  1018   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1019       kname->bytes(), kname->utf8_length(),
  1020       name->bytes(), name->utf8_length(),
  1021       sig->bytes(), sig->utf8_length());
  1022 #else /* USDT2 */
  1023   HOTSPOT_METHOD_RETURN(
  1024       get_java_tid(thread),
  1025       (char *) kname->bytes(), kname->utf8_length(),
  1026       (char *) name->bytes(), name->utf8_length(),
  1027       (char *) sig->bytes(), sig->utf8_length());
  1028 #endif /* USDT2 */
  1029   return 0;
  1030 JRT_END
  1033 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1034 // for a call current in progress, i.e., arguments has been pushed on stack
  1035 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1036 // vtable updates, etc.  Caller frame must be compiled.
  1037 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1038   ResourceMark rm(THREAD);
  1040   // last java frame on stack (which includes native call frames)
  1041   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1043   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1048 // for a call current in progress, i.e., arguments has been pushed on stack
  1049 // but callee has not been invoked yet.  Caller frame must be compiled.
  1050 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1051                                               vframeStream& vfst,
  1052                                               Bytecodes::Code& bc,
  1053                                               CallInfo& callinfo, TRAPS) {
  1054   Handle receiver;
  1055   Handle nullHandle;  //create a handy null handle for exception returns
  1057   assert(!vfst.at_end(), "Java frame must exist");
  1059   // Find caller and bci from vframe
  1060   methodHandle caller(THREAD, vfst.method());
  1061   int          bci   = vfst.bci();
  1063   // Find bytecode
  1064   Bytecode_invoke bytecode(caller, bci);
  1065   bc = bytecode.invoke_code();
  1066   int bytecode_index = bytecode.index();
  1068   // Find receiver for non-static call
  1069   if (bc != Bytecodes::_invokestatic &&
  1070       bc != Bytecodes::_invokedynamic &&
  1071       bc != Bytecodes::_invokehandle) {
  1072     // This register map must be update since we need to find the receiver for
  1073     // compiled frames. The receiver might be in a register.
  1074     RegisterMap reg_map2(thread);
  1075     frame stubFrame   = thread->last_frame();
  1076     // Caller-frame is a compiled frame
  1077     frame callerFrame = stubFrame.sender(&reg_map2);
  1079     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1080     if (callee.is_null()) {
  1081       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1083     // Retrieve from a compiled argument list
  1084     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1086     if (receiver.is_null()) {
  1087       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1091   // Resolve method. This is parameterized by bytecode.
  1092   constantPoolHandle constants(THREAD, caller->constants());
  1093   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1094   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1096 #ifdef ASSERT
  1097   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1098   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1099     assert(receiver.not_null(), "should have thrown exception");
  1100     KlassHandle receiver_klass(THREAD, receiver->klass());
  1101     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1102                             // klass is already loaded
  1103     KlassHandle static_receiver_klass(THREAD, rk);
  1104     // Method handle invokes might have been optimized to a direct call
  1105     // so don't check for the receiver class.
  1106     // FIXME this weakens the assert too much
  1107     methodHandle callee = callinfo.selected_method();
  1108     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1109            callee->is_method_handle_intrinsic() ||
  1110            callee->is_compiled_lambda_form(),
  1111            "actual receiver must be subclass of static receiver klass");
  1112     if (receiver_klass->oop_is_instance()) {
  1113       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1114         tty->print_cr("ERROR: Klass not yet initialized!!");
  1115         receiver_klass()->print();
  1117       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1120 #endif
  1122   return receiver;
  1125 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1126   ResourceMark rm(THREAD);
  1127   // We need first to check if any Java activations (compiled, interpreted)
  1128   // exist on the stack since last JavaCall.  If not, we need
  1129   // to get the target method from the JavaCall wrapper.
  1130   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1131   methodHandle callee_method;
  1132   if (vfst.at_end()) {
  1133     // No Java frames were found on stack since we did the JavaCall.
  1134     // Hence the stack can only contain an entry_frame.  We need to
  1135     // find the target method from the stub frame.
  1136     RegisterMap reg_map(thread, false);
  1137     frame fr = thread->last_frame();
  1138     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1139     fr = fr.sender(&reg_map);
  1140     assert(fr.is_entry_frame(), "must be");
  1141     // fr is now pointing to the entry frame.
  1142     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1143     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1144   } else {
  1145     Bytecodes::Code bc;
  1146     CallInfo callinfo;
  1147     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1148     callee_method = callinfo.selected_method();
  1150   assert(callee_method()->is_method(), "must be");
  1151   return callee_method;
  1154 // Resolves a call.
  1155 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1156                                            bool is_virtual,
  1157                                            bool is_optimized, TRAPS) {
  1158   methodHandle callee_method;
  1159   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1160   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1161     int retry_count = 0;
  1162     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1163            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1164       // If has a pending exception then there is no need to re-try to
  1165       // resolve this method.
  1166       // If the method has been redefined, we need to try again.
  1167       // Hack: we have no way to update the vtables of arrays, so don't
  1168       // require that java.lang.Object has been updated.
  1170       // It is very unlikely that method is redefined more than 100 times
  1171       // in the middle of resolve. If it is looping here more than 100 times
  1172       // means then there could be a bug here.
  1173       guarantee((retry_count++ < 100),
  1174                 "Could not resolve to latest version of redefined method");
  1175       // method is redefined in the middle of resolve so re-try.
  1176       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1179   return callee_method;
  1182 // Resolves a call.  The compilers generate code for calls that go here
  1183 // and are patched with the real destination of the call.
  1184 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1185                                            bool is_virtual,
  1186                                            bool is_optimized, TRAPS) {
  1188   ResourceMark rm(thread);
  1189   RegisterMap cbl_map(thread, false);
  1190   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1192   CodeBlob* caller_cb = caller_frame.cb();
  1193   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1194   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1196   // make sure caller is not getting deoptimized
  1197   // and removed before we are done with it.
  1198   // CLEANUP - with lazy deopt shouldn't need this lock
  1199   nmethodLocker caller_lock(caller_nm);
  1201   // determine call info & receiver
  1202   // note: a) receiver is NULL for static calls
  1203   //       b) an exception is thrown if receiver is NULL for non-static calls
  1204   CallInfo call_info;
  1205   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1206   Handle receiver = find_callee_info(thread, invoke_code,
  1207                                      call_info, CHECK_(methodHandle()));
  1208   methodHandle callee_method = call_info.selected_method();
  1210   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1211          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1212          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1213          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1215   assert(caller_nm->is_alive(), "It should be alive");
  1217 #ifndef PRODUCT
  1218   // tracing/debugging/statistics
  1219   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1220                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1221                                (&_resolve_static_ctr);
  1222   Atomic::inc(addr);
  1224   if (TraceCallFixup) {
  1225     ResourceMark rm(thread);
  1226     tty->print("resolving %s%s (%s) call to",
  1227       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1228       Bytecodes::name(invoke_code));
  1229     callee_method->print_short_name(tty);
  1230     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1232 #endif
  1234   // JSR 292 key invariant:
  1235   // If the resolved method is a MethodHandle invoke target, the call
  1236   // site must be a MethodHandle call site, because the lambda form might tail-call
  1237   // leaving the stack in a state unknown to either caller or callee
  1238   // TODO detune for now but we might need it again
  1239 //  assert(!callee_method->is_compiled_lambda_form() ||
  1240 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1242   // Compute entry points. This might require generation of C2I converter
  1243   // frames, so we cannot be holding any locks here. Furthermore, the
  1244   // computation of the entry points is independent of patching the call.  We
  1245   // always return the entry-point, but we only patch the stub if the call has
  1246   // not been deoptimized.  Return values: For a virtual call this is an
  1247   // (cached_oop, destination address) pair. For a static call/optimized
  1248   // virtual this is just a destination address.
  1250   StaticCallInfo static_call_info;
  1251   CompiledICInfo virtual_call_info;
  1253   // Make sure the callee nmethod does not get deoptimized and removed before
  1254   // we are done patching the code.
  1255   nmethod* callee_nm = callee_method->code();
  1256   if (callee_nm != NULL && !callee_nm->is_in_use()) {
  1257     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
  1258     callee_nm = NULL;
  1260   nmethodLocker nl_callee(callee_nm);
  1261 #ifdef ASSERT
  1262   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1263 #endif
  1265   if (is_virtual) {
  1266     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1267     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1268     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1269     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1270                      is_optimized, static_bound, virtual_call_info,
  1271                      CHECK_(methodHandle()));
  1272   } else {
  1273     // static call
  1274     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1277   // grab lock, check for deoptimization and potentially patch caller
  1279     MutexLocker ml_patch(CompiledIC_lock);
  1281     // Lock blocks for safepoint during which both nmethods can change state.
  1283     // Now that we are ready to patch if the Method* was redefined then
  1284     // don't update call site and let the caller retry.
  1285     // Don't update call site if callee nmethod was unloaded or deoptimized.
  1286     // Don't update call site if callee nmethod was replaced by an other nmethod
  1287     // which may happen when multiply alive nmethod (tiered compilation)
  1288     // will be supported.
  1289     if (!callee_method->is_old() &&
  1290         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
  1291 #ifdef ASSERT
  1292       // We must not try to patch to jump to an already unloaded method.
  1293       if (dest_entry_point != 0) {
  1294         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
  1295         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
  1296                "should not call unloaded nmethod");
  1298 #endif
  1299       if (is_virtual) {
  1300         nmethod* nm = callee_nm;
  1301         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1302         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1303         if (inline_cache->is_clean()) {
  1304           inline_cache->set_to_monomorphic(virtual_call_info);
  1306       } else {
  1307         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1308         if (ssc->is_clean()) ssc->set(static_call_info);
  1312   } // unlock CompiledIC_lock
  1314   return callee_method;
  1318 // Inline caches exist only in compiled code
  1319 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1320 #ifdef ASSERT
  1321   RegisterMap reg_map(thread, false);
  1322   frame stub_frame = thread->last_frame();
  1323   assert(stub_frame.is_runtime_frame(), "sanity check");
  1324   frame caller_frame = stub_frame.sender(&reg_map);
  1325   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1326 #endif /* ASSERT */
  1328   methodHandle callee_method;
  1329   JRT_BLOCK
  1330     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1331     // Return Method* through TLS
  1332     thread->set_vm_result_2(callee_method());
  1333   JRT_BLOCK_END
  1334   // return compiled code entry point after potential safepoints
  1335   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1336   return callee_method->verified_code_entry();
  1337 JRT_END
  1340 // Handle call site that has been made non-entrant
  1341 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1342   // 6243940 We might end up in here if the callee is deoptimized
  1343   // as we race to call it.  We don't want to take a safepoint if
  1344   // the caller was interpreted because the caller frame will look
  1345   // interpreted to the stack walkers and arguments are now
  1346   // "compiled" so it is much better to make this transition
  1347   // invisible to the stack walking code. The i2c path will
  1348   // place the callee method in the callee_target. It is stashed
  1349   // there because if we try and find the callee by normal means a
  1350   // safepoint is possible and have trouble gc'ing the compiled args.
  1351   RegisterMap reg_map(thread, false);
  1352   frame stub_frame = thread->last_frame();
  1353   assert(stub_frame.is_runtime_frame(), "sanity check");
  1354   frame caller_frame = stub_frame.sender(&reg_map);
  1356   if (caller_frame.is_interpreted_frame() ||
  1357       caller_frame.is_entry_frame()) {
  1358     Method* callee = thread->callee_target();
  1359     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1360     thread->set_vm_result_2(callee);
  1361     thread->set_callee_target(NULL);
  1362     return callee->get_c2i_entry();
  1365   // Must be compiled to compiled path which is safe to stackwalk
  1366   methodHandle callee_method;
  1367   JRT_BLOCK
  1368     // Force resolving of caller (if we called from compiled frame)
  1369     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1370     thread->set_vm_result_2(callee_method());
  1371   JRT_BLOCK_END
  1372   // return compiled code entry point after potential safepoints
  1373   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1374   return callee_method->verified_code_entry();
  1375 JRT_END
  1377 // Handle abstract method call
  1378 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
  1379   return StubRoutines::throw_AbstractMethodError_entry();
  1380 JRT_END
  1383 // resolve a static call and patch code
  1384 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1385   methodHandle callee_method;
  1386   JRT_BLOCK
  1387     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1388     thread->set_vm_result_2(callee_method());
  1389   JRT_BLOCK_END
  1390   // return compiled code entry point after potential safepoints
  1391   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1392   return callee_method->verified_code_entry();
  1393 JRT_END
  1396 // resolve virtual call and update inline cache to monomorphic
  1397 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1398   methodHandle callee_method;
  1399   JRT_BLOCK
  1400     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1401     thread->set_vm_result_2(callee_method());
  1402   JRT_BLOCK_END
  1403   // return compiled code entry point after potential safepoints
  1404   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1405   return callee_method->verified_code_entry();
  1406 JRT_END
  1409 // Resolve a virtual call that can be statically bound (e.g., always
  1410 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1411 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1412   methodHandle callee_method;
  1413   JRT_BLOCK
  1414     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1415     thread->set_vm_result_2(callee_method());
  1416   JRT_BLOCK_END
  1417   // return compiled code entry point after potential safepoints
  1418   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1419   return callee_method->verified_code_entry();
  1420 JRT_END
  1426 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1427   ResourceMark rm(thread);
  1428   CallInfo call_info;
  1429   Bytecodes::Code bc;
  1431   // receiver is NULL for static calls. An exception is thrown for NULL
  1432   // receivers for non-static calls
  1433   Handle receiver = find_callee_info(thread, bc, call_info,
  1434                                      CHECK_(methodHandle()));
  1435   // Compiler1 can produce virtual call sites that can actually be statically bound
  1436   // If we fell thru to below we would think that the site was going megamorphic
  1437   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1438   // we'd try and do a vtable dispatch however methods that can be statically bound
  1439   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1440   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1441   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1442   // never to miss again. I don't believe C2 will produce code like this but if it
  1443   // did this would still be the correct thing to do for it too, hence no ifdef.
  1444   //
  1445   if (call_info.resolved_method()->can_be_statically_bound()) {
  1446     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1447     if (TraceCallFixup) {
  1448       RegisterMap reg_map(thread, false);
  1449       frame caller_frame = thread->last_frame().sender(&reg_map);
  1450       ResourceMark rm(thread);
  1451       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1452       callee_method->print_short_name(tty);
  1453       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1454       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1456     return callee_method;
  1459   methodHandle callee_method = call_info.selected_method();
  1461   bool should_be_mono = false;
  1463 #ifndef PRODUCT
  1464   Atomic::inc(&_ic_miss_ctr);
  1466   // Statistics & Tracing
  1467   if (TraceCallFixup) {
  1468     ResourceMark rm(thread);
  1469     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1470     callee_method->print_short_name(tty);
  1471     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1474   if (ICMissHistogram) {
  1475     MutexLocker m(VMStatistic_lock);
  1476     RegisterMap reg_map(thread, false);
  1477     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1478     // produce statistics under the lock
  1479     trace_ic_miss(f.pc());
  1481 #endif
  1483   // install an event collector so that when a vtable stub is created the
  1484   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1485   // event can't be posted when the stub is created as locks are held
  1486   // - instead the event will be deferred until the event collector goes
  1487   // out of scope.
  1488   JvmtiDynamicCodeEventCollector event_collector;
  1490   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
  1491   { MutexLocker ml_patch (CompiledIC_lock);
  1492     RegisterMap reg_map(thread, false);
  1493     frame caller_frame = thread->last_frame().sender(&reg_map);
  1494     CodeBlob* cb = caller_frame.cb();
  1495     if (cb->is_nmethod()) {
  1496       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1497       bool should_be_mono = false;
  1498       if (inline_cache->is_optimized()) {
  1499         if (TraceCallFixup) {
  1500           ResourceMark rm(thread);
  1501           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1502           callee_method->print_short_name(tty);
  1503           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1505         should_be_mono = true;
  1506       } else if (inline_cache->is_icholder_call()) {
  1507         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1508         if ( ic_oop != NULL) {
  1510           if (receiver()->klass() == ic_oop->holder_klass()) {
  1511             // This isn't a real miss. We must have seen that compiled code
  1512             // is now available and we want the call site converted to a
  1513             // monomorphic compiled call site.
  1514             // We can't assert for callee_method->code() != NULL because it
  1515             // could have been deoptimized in the meantime
  1516             if (TraceCallFixup) {
  1517               ResourceMark rm(thread);
  1518               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1519               callee_method->print_short_name(tty);
  1520               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1522             should_be_mono = true;
  1527       if (should_be_mono) {
  1529         // We have a path that was monomorphic but was going interpreted
  1530         // and now we have (or had) a compiled entry. We correct the IC
  1531         // by using a new icBuffer.
  1532         CompiledICInfo info;
  1533         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1534         inline_cache->compute_monomorphic_entry(callee_method,
  1535                                                 receiver_klass,
  1536                                                 inline_cache->is_optimized(),
  1537                                                 false,
  1538                                                 info, CHECK_(methodHandle()));
  1539         inline_cache->set_to_monomorphic(info);
  1540       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1541         // Potential change to megamorphic
  1542         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1543         if (!successful) {
  1544           inline_cache->set_to_clean();
  1546       } else {
  1547         // Either clean or megamorphic
  1550   } // Release CompiledIC_lock
  1552   return callee_method;
  1555 //
  1556 // Resets a call-site in compiled code so it will get resolved again.
  1557 // This routines handles both virtual call sites, optimized virtual call
  1558 // sites, and static call sites. Typically used to change a call sites
  1559 // destination from compiled to interpreted.
  1560 //
  1561 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1562   ResourceMark rm(thread);
  1563   RegisterMap reg_map(thread, false);
  1564   frame stub_frame = thread->last_frame();
  1565   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1566   frame caller = stub_frame.sender(&reg_map);
  1568   // Do nothing if the frame isn't a live compiled frame.
  1569   // nmethod could be deoptimized by the time we get here
  1570   // so no update to the caller is needed.
  1572   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1574     address pc = caller.pc();
  1576     // Default call_addr is the location of the "basic" call.
  1577     // Determine the address of the call we a reresolving. With
  1578     // Inline Caches we will always find a recognizable call.
  1579     // With Inline Caches disabled we may or may not find a
  1580     // recognizable call. We will always find a call for static
  1581     // calls and for optimized virtual calls. For vanilla virtual
  1582     // calls it depends on the state of the UseInlineCaches switch.
  1583     //
  1584     // With Inline Caches disabled we can get here for a virtual call
  1585     // for two reasons:
  1586     //   1 - calling an abstract method. The vtable for abstract methods
  1587     //       will run us thru handle_wrong_method and we will eventually
  1588     //       end up in the interpreter to throw the ame.
  1589     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1590     //       call and between the time we fetch the entry address and
  1591     //       we jump to it the target gets deoptimized. Similar to 1
  1592     //       we will wind up in the interprter (thru a c2i with c2).
  1593     //
  1594     address call_addr = NULL;
  1596       // Get call instruction under lock because another thread may be
  1597       // busy patching it.
  1598       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1599       // Location of call instruction
  1600       if (NativeCall::is_call_before(pc)) {
  1601         NativeCall *ncall = nativeCall_before(pc);
  1602         call_addr = ncall->instruction_address();
  1606     // Check for static or virtual call
  1607     bool is_static_call = false;
  1608     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1609     // Make sure nmethod doesn't get deoptimized and removed until
  1610     // this is done with it.
  1611     // CLEANUP - with lazy deopt shouldn't need this lock
  1612     nmethodLocker nmlock(caller_nm);
  1614     if (call_addr != NULL) {
  1615       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1616       int ret = iter.next(); // Get item
  1617       if (ret) {
  1618         assert(iter.addr() == call_addr, "must find call");
  1619         if (iter.type() == relocInfo::static_call_type) {
  1620           is_static_call = true;
  1621         } else {
  1622           assert(iter.type() == relocInfo::virtual_call_type ||
  1623                  iter.type() == relocInfo::opt_virtual_call_type
  1624                 , "unexpected relocInfo. type");
  1626       } else {
  1627         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1630       // Cleaning the inline cache will force a new resolve. This is more robust
  1631       // than directly setting it to the new destination, since resolving of calls
  1632       // is always done through the same code path. (experience shows that it
  1633       // leads to very hard to track down bugs, if an inline cache gets updated
  1634       // to a wrong method). It should not be performance critical, since the
  1635       // resolve is only done once.
  1637       MutexLocker ml(CompiledIC_lock);
  1638       if (is_static_call) {
  1639         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1640         ssc->set_to_clean();
  1641       } else {
  1642         // compiled, dispatched call (which used to call an interpreted method)
  1643         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1644         inline_cache->set_to_clean();
  1650   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1653 #ifndef PRODUCT
  1654   Atomic::inc(&_wrong_method_ctr);
  1656   if (TraceCallFixup) {
  1657     ResourceMark rm(thread);
  1658     tty->print("handle_wrong_method reresolving call to");
  1659     callee_method->print_short_name(tty);
  1660     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1662 #endif
  1664   return callee_method;
  1667 #ifdef ASSERT
  1668 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1669                                                                 const BasicType* sig_bt,
  1670                                                                 const VMRegPair* regs) {
  1671   ResourceMark rm;
  1672   const int total_args_passed = method->size_of_parameters();
  1673   const VMRegPair*    regs_with_member_name = regs;
  1674         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1676   const int member_arg_pos = total_args_passed - 1;
  1677   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1678   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1680   const bool is_outgoing = method->is_method_handle_intrinsic();
  1681   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1683   for (int i = 0; i < member_arg_pos; i++) {
  1684     VMReg a =    regs_with_member_name[i].first();
  1685     VMReg b = regs_without_member_name[i].first();
  1686     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1688   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1690 #endif
  1692 // ---------------------------------------------------------------------------
  1693 // We are calling the interpreter via a c2i. Normally this would mean that
  1694 // we were called by a compiled method. However we could have lost a race
  1695 // where we went int -> i2c -> c2i and so the caller could in fact be
  1696 // interpreted. If the caller is compiled we attempt to patch the caller
  1697 // so he no longer calls into the interpreter.
  1698 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1699   Method* moop(method);
  1701   address entry_point = moop->from_compiled_entry();
  1703   // It's possible that deoptimization can occur at a call site which hasn't
  1704   // been resolved yet, in which case this function will be called from
  1705   // an nmethod that has been patched for deopt and we can ignore the
  1706   // request for a fixup.
  1707   // Also it is possible that we lost a race in that from_compiled_entry
  1708   // is now back to the i2c in that case we don't need to patch and if
  1709   // we did we'd leap into space because the callsite needs to use
  1710   // "to interpreter" stub in order to load up the Method*. Don't
  1711   // ask me how I know this...
  1713   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1714   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1715     return;
  1718   // The check above makes sure this is a nmethod.
  1719   nmethod* nm = cb->as_nmethod_or_null();
  1720   assert(nm, "must be");
  1722   // Get the return PC for the passed caller PC.
  1723   address return_pc = caller_pc + frame::pc_return_offset;
  1725   // There is a benign race here. We could be attempting to patch to a compiled
  1726   // entry point at the same time the callee is being deoptimized. If that is
  1727   // the case then entry_point may in fact point to a c2i and we'd patch the
  1728   // call site with the same old data. clear_code will set code() to NULL
  1729   // at the end of it. If we happen to see that NULL then we can skip trying
  1730   // to patch. If we hit the window where the callee has a c2i in the
  1731   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1732   // and patch the code with the same old data. Asi es la vida.
  1734   if (moop->code() == NULL) return;
  1736   if (nm->is_in_use()) {
  1738     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1739     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1740     if (NativeCall::is_call_before(return_pc)) {
  1741       NativeCall *call = nativeCall_before(return_pc);
  1742       //
  1743       // bug 6281185. We might get here after resolving a call site to a vanilla
  1744       // virtual call. Because the resolvee uses the verified entry it may then
  1745       // see compiled code and attempt to patch the site by calling us. This would
  1746       // then incorrectly convert the call site to optimized and its downhill from
  1747       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1748       // just made a call site that could be megamorphic into a monomorphic site
  1749       // for the rest of its life! Just another racing bug in the life of
  1750       // fixup_callers_callsite ...
  1751       //
  1752       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1753       iter.next();
  1754       assert(iter.has_current(), "must have a reloc at java call site");
  1755       relocInfo::relocType typ = iter.reloc()->type();
  1756       if ( typ != relocInfo::static_call_type &&
  1757            typ != relocInfo::opt_virtual_call_type &&
  1758            typ != relocInfo::static_stub_type) {
  1759         return;
  1761       address destination = call->destination();
  1762       if (destination != entry_point) {
  1763         CodeBlob* callee = CodeCache::find_blob(destination);
  1764         // callee == cb seems weird. It means calling interpreter thru stub.
  1765         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
  1766           // static call or optimized virtual
  1767           if (TraceCallFixup) {
  1768             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1769             moop->print_short_name(tty);
  1770             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1772           call->set_destination_mt_safe(entry_point);
  1773         } else {
  1774           if (TraceCallFixup) {
  1775             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1776             moop->print_short_name(tty);
  1777             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1779           // assert is too strong could also be resolve destinations.
  1780           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1782       } else {
  1783           if (TraceCallFixup) {
  1784             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1785             moop->print_short_name(tty);
  1786             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1791 IRT_END
  1794 // same as JVM_Arraycopy, but called directly from compiled code
  1795 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1796                                                 oopDesc* dest, jint dest_pos,
  1797                                                 jint length,
  1798                                                 JavaThread* thread)) {
  1799 #ifndef PRODUCT
  1800   _slow_array_copy_ctr++;
  1801 #endif
  1802   // Check if we have null pointers
  1803   if (src == NULL || dest == NULL) {
  1804     THROW(vmSymbols::java_lang_NullPointerException());
  1806   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1807   // even though the copy_array API also performs dynamic checks to ensure
  1808   // that src and dest are truly arrays (and are conformable).
  1809   // The copy_array mechanism is awkward and could be removed, but
  1810   // the compilers don't call this function except as a last resort,
  1811   // so it probably doesn't matter.
  1812   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1813                                         (arrayOopDesc*)dest, dest_pos,
  1814                                         length, thread);
  1816 JRT_END
  1818 char* SharedRuntime::generate_class_cast_message(
  1819     JavaThread* thread, const char* objName) {
  1821   // Get target class name from the checkcast instruction
  1822   vframeStream vfst(thread, true);
  1823   assert(!vfst.at_end(), "Java frame must exist");
  1824   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1825   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1826     cc.index(), thread);
  1827   return generate_class_cast_message(objName, targetKlass->external_name());
  1830 char* SharedRuntime::generate_class_cast_message(
  1831     const char* objName, const char* targetKlassName, const char* desc) {
  1832   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1834   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1835   if (NULL == message) {
  1836     // Shouldn't happen, but don't cause even more problems if it does
  1837     message = const_cast<char*>(objName);
  1838   } else {
  1839     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1841   return message;
  1844 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1845   (void) JavaThread::current()->reguard_stack();
  1846 JRT_END
  1849 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1850 #ifndef PRODUCT
  1851 int SharedRuntime::_monitor_enter_ctr=0;
  1852 #endif
  1853 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1854   oop obj(_obj);
  1855 #ifndef PRODUCT
  1856   _monitor_enter_ctr++;             // monitor enter slow
  1857 #endif
  1858   if (PrintBiasedLockingStatistics) {
  1859     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1861   Handle h_obj(THREAD, obj);
  1862   if (UseBiasedLocking) {
  1863     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1864     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1865   } else {
  1866     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1868   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1869 JRT_END
  1871 #ifndef PRODUCT
  1872 int SharedRuntime::_monitor_exit_ctr=0;
  1873 #endif
  1874 // Handles the uncommon cases of monitor unlocking in compiled code
  1875 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1876    oop obj(_obj);
  1877 #ifndef PRODUCT
  1878   _monitor_exit_ctr++;              // monitor exit slow
  1879 #endif
  1880   Thread* THREAD = JavaThread::current();
  1881   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1882   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1883   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1884 #undef MIGHT_HAVE_PENDING
  1885 #ifdef MIGHT_HAVE_PENDING
  1886   // Save and restore any pending_exception around the exception mark.
  1887   // While the slow_exit must not throw an exception, we could come into
  1888   // this routine with one set.
  1889   oop pending_excep = NULL;
  1890   const char* pending_file;
  1891   int pending_line;
  1892   if (HAS_PENDING_EXCEPTION) {
  1893     pending_excep = PENDING_EXCEPTION;
  1894     pending_file  = THREAD->exception_file();
  1895     pending_line  = THREAD->exception_line();
  1896     CLEAR_PENDING_EXCEPTION;
  1898 #endif /* MIGHT_HAVE_PENDING */
  1901     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1902     EXCEPTION_MARK;
  1903     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1906 #ifdef MIGHT_HAVE_PENDING
  1907   if (pending_excep != NULL) {
  1908     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1910 #endif /* MIGHT_HAVE_PENDING */
  1911 JRT_END
  1913 #ifndef PRODUCT
  1915 void SharedRuntime::print_statistics() {
  1916   ttyLocker ttyl;
  1917   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1919   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1920   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1921   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1923   SharedRuntime::print_ic_miss_histogram();
  1925   if (CountRemovableExceptions) {
  1926     if (_nof_removable_exceptions > 0) {
  1927       Unimplemented(); // this counter is not yet incremented
  1928       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1932   // Dump the JRT_ENTRY counters
  1933   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1934   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1935   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1936   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1937   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1938   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1939   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1941   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1942   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1943   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1944   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1945   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1947   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1948   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1949   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1950   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1951   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1952   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1953   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1954   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1955   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1956   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1957   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1958   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1959   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1960   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1961   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1962   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1964   AdapterHandlerLibrary::print_statistics();
  1966   if (xtty != NULL)  xtty->tail("statistics");
  1969 inline double percent(int x, int y) {
  1970   return 100.0 * x / MAX2(y, 1);
  1973 class MethodArityHistogram {
  1974  public:
  1975   enum { MAX_ARITY = 256 };
  1976  private:
  1977   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1978   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1979   static int _max_arity;                      // max. arity seen
  1980   static int _max_size;                       // max. arg size seen
  1982   static void add_method_to_histogram(nmethod* nm) {
  1983     Method* m = nm->method();
  1984     ArgumentCount args(m->signature());
  1985     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1986     int argsize = m->size_of_parameters();
  1987     arity   = MIN2(arity, MAX_ARITY-1);
  1988     argsize = MIN2(argsize, MAX_ARITY-1);
  1989     int count = nm->method()->compiled_invocation_count();
  1990     _arity_histogram[arity]  += count;
  1991     _size_histogram[argsize] += count;
  1992     _max_arity = MAX2(_max_arity, arity);
  1993     _max_size  = MAX2(_max_size, argsize);
  1996   void print_histogram_helper(int n, int* histo, const char* name) {
  1997     const int N = MIN2(5, n);
  1998     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1999     double sum = 0;
  2000     double weighted_sum = 0;
  2001     int i;
  2002     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2003     double rest = sum;
  2004     double percent = sum / 100;
  2005     for (i = 0; i <= N; i++) {
  2006       rest -= histo[i];
  2007       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2009     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2010     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2013   void print_histogram() {
  2014     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2015     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2016     tty->print_cr("\nSame for parameter size (in words):");
  2017     print_histogram_helper(_max_size, _size_histogram, "size");
  2018     tty->cr();
  2021  public:
  2022   MethodArityHistogram() {
  2023     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2024     _max_arity = _max_size = 0;
  2025     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2026     CodeCache::nmethods_do(add_method_to_histogram);
  2027     print_histogram();
  2029 };
  2031 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2032 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2033 int MethodArityHistogram::_max_arity;
  2034 int MethodArityHistogram::_max_size;
  2036 void SharedRuntime::print_call_statistics(int comp_total) {
  2037   tty->print_cr("Calls from compiled code:");
  2038   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2039   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2040   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2041   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2042   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2043   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2044   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2045   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2046   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2047   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2048   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2049   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2050   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2051   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2052   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2053   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2054   tty->cr();
  2055   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2056   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2057   tty->print_cr("        %% in nested categories are relative to their category");
  2058   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2059   tty->cr();
  2061   MethodArityHistogram h;
  2063 #endif
  2066 // A simple wrapper class around the calling convention information
  2067 // that allows sharing of adapters for the same calling convention.
  2068 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2069  private:
  2070   enum {
  2071     _basic_type_bits = 4,
  2072     _basic_type_mask = right_n_bits(_basic_type_bits),
  2073     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2074     _compact_int_count = 3
  2075   };
  2076   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2077   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2079   union {
  2080     int  _compact[_compact_int_count];
  2081     int* _fingerprint;
  2082   } _value;
  2083   int _length; // A negative length indicates the fingerprint is in the compact form,
  2084                // Otherwise _value._fingerprint is the array.
  2086   // Remap BasicTypes that are handled equivalently by the adapters.
  2087   // These are correct for the current system but someday it might be
  2088   // necessary to make this mapping platform dependent.
  2089   static int adapter_encoding(BasicType in) {
  2090     switch(in) {
  2091       case T_BOOLEAN:
  2092       case T_BYTE:
  2093       case T_SHORT:
  2094       case T_CHAR:
  2095         // There are all promoted to T_INT in the calling convention
  2096         return T_INT;
  2098       case T_OBJECT:
  2099       case T_ARRAY:
  2100         // In other words, we assume that any register good enough for
  2101         // an int or long is good enough for a managed pointer.
  2102 #ifdef _LP64
  2103         return T_LONG;
  2104 #else
  2105         return T_INT;
  2106 #endif
  2108       case T_INT:
  2109       case T_LONG:
  2110       case T_FLOAT:
  2111       case T_DOUBLE:
  2112       case T_VOID:
  2113         return in;
  2115       default:
  2116         ShouldNotReachHere();
  2117         return T_CONFLICT;
  2121  public:
  2122   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2123     // The fingerprint is based on the BasicType signature encoded
  2124     // into an array of ints with eight entries per int.
  2125     int* ptr;
  2126     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2127     if (len <= _compact_int_count) {
  2128       assert(_compact_int_count == 3, "else change next line");
  2129       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2130       // Storing the signature encoded as signed chars hits about 98%
  2131       // of the time.
  2132       _length = -len;
  2133       ptr = _value._compact;
  2134     } else {
  2135       _length = len;
  2136       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2137       ptr = _value._fingerprint;
  2140     // Now pack the BasicTypes with 8 per int
  2141     int sig_index = 0;
  2142     for (int index = 0; index < len; index++) {
  2143       int value = 0;
  2144       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2145         int bt = ((sig_index < total_args_passed)
  2146                   ? adapter_encoding(sig_bt[sig_index++])
  2147                   : 0);
  2148         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2149         value = (value << _basic_type_bits) | bt;
  2151       ptr[index] = value;
  2155   ~AdapterFingerPrint() {
  2156     if (_length > 0) {
  2157       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2161   int value(int index) {
  2162     if (_length < 0) {
  2163       return _value._compact[index];
  2165     return _value._fingerprint[index];
  2167   int length() {
  2168     if (_length < 0) return -_length;
  2169     return _length;
  2172   bool is_compact() {
  2173     return _length <= 0;
  2176   unsigned int compute_hash() {
  2177     int hash = 0;
  2178     for (int i = 0; i < length(); i++) {
  2179       int v = value(i);
  2180       hash = (hash << 8) ^ v ^ (hash >> 5);
  2182     return (unsigned int)hash;
  2185   const char* as_string() {
  2186     stringStream st;
  2187     st.print("0x");
  2188     for (int i = 0; i < length(); i++) {
  2189       st.print("%08x", value(i));
  2191     return st.as_string();
  2194   bool equals(AdapterFingerPrint* other) {
  2195     if (other->_length != _length) {
  2196       return false;
  2198     if (_length < 0) {
  2199       assert(_compact_int_count == 3, "else change next line");
  2200       return _value._compact[0] == other->_value._compact[0] &&
  2201              _value._compact[1] == other->_value._compact[1] &&
  2202              _value._compact[2] == other->_value._compact[2];
  2203     } else {
  2204       for (int i = 0; i < _length; i++) {
  2205         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2206           return false;
  2210     return true;
  2212 };
  2215 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2216 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2217   friend class AdapterHandlerTableIterator;
  2219  private:
  2221 #ifndef PRODUCT
  2222   static int _lookups; // number of calls to lookup
  2223   static int _buckets; // number of buckets checked
  2224   static int _equals;  // number of buckets checked with matching hash
  2225   static int _hits;    // number of successful lookups
  2226   static int _compact; // number of equals calls with compact signature
  2227 #endif
  2229   AdapterHandlerEntry* bucket(int i) {
  2230     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2233  public:
  2234   AdapterHandlerTable()
  2235     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2237   // Create a new entry suitable for insertion in the table
  2238   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2239     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2240     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2241     return entry;
  2244   // Insert an entry into the table
  2245   void add(AdapterHandlerEntry* entry) {
  2246     int index = hash_to_index(entry->hash());
  2247     add_entry(index, entry);
  2250   void free_entry(AdapterHandlerEntry* entry) {
  2251     entry->deallocate();
  2252     BasicHashtable<mtCode>::free_entry(entry);
  2255   // Find a entry with the same fingerprint if it exists
  2256   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2257     NOT_PRODUCT(_lookups++);
  2258     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2259     unsigned int hash = fp.compute_hash();
  2260     int index = hash_to_index(hash);
  2261     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2262       NOT_PRODUCT(_buckets++);
  2263       if (e->hash() == hash) {
  2264         NOT_PRODUCT(_equals++);
  2265         if (fp.equals(e->fingerprint())) {
  2266 #ifndef PRODUCT
  2267           if (fp.is_compact()) _compact++;
  2268           _hits++;
  2269 #endif
  2270           return e;
  2274     return NULL;
  2277 #ifndef PRODUCT
  2278   void print_statistics() {
  2279     ResourceMark rm;
  2280     int longest = 0;
  2281     int empty = 0;
  2282     int total = 0;
  2283     int nonempty = 0;
  2284     for (int index = 0; index < table_size(); index++) {
  2285       int count = 0;
  2286       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2287         count++;
  2289       if (count != 0) nonempty++;
  2290       if (count == 0) empty++;
  2291       if (count > longest) longest = count;
  2292       total += count;
  2294     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2295                   empty, longest, total, total / (double)nonempty);
  2296     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2297                   _lookups, _buckets, _equals, _hits, _compact);
  2299 #endif
  2300 };
  2303 #ifndef PRODUCT
  2305 int AdapterHandlerTable::_lookups;
  2306 int AdapterHandlerTable::_buckets;
  2307 int AdapterHandlerTable::_equals;
  2308 int AdapterHandlerTable::_hits;
  2309 int AdapterHandlerTable::_compact;
  2311 #endif
  2313 class AdapterHandlerTableIterator : public StackObj {
  2314  private:
  2315   AdapterHandlerTable* _table;
  2316   int _index;
  2317   AdapterHandlerEntry* _current;
  2319   void scan() {
  2320     while (_index < _table->table_size()) {
  2321       AdapterHandlerEntry* a = _table->bucket(_index);
  2322       _index++;
  2323       if (a != NULL) {
  2324         _current = a;
  2325         return;
  2330  public:
  2331   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2332     scan();
  2334   bool has_next() {
  2335     return _current != NULL;
  2337   AdapterHandlerEntry* next() {
  2338     if (_current != NULL) {
  2339       AdapterHandlerEntry* result = _current;
  2340       _current = _current->next();
  2341       if (_current == NULL) scan();
  2342       return result;
  2343     } else {
  2344       return NULL;
  2347 };
  2350 // ---------------------------------------------------------------------------
  2351 // Implementation of AdapterHandlerLibrary
  2352 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2353 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2354 const int AdapterHandlerLibrary_size = 16*K;
  2355 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2357 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2358   // Should be called only when AdapterHandlerLibrary_lock is active.
  2359   if (_buffer == NULL) // Initialize lazily
  2360       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2361   return _buffer;
  2364 void AdapterHandlerLibrary::initialize() {
  2365   if (_adapters != NULL) return;
  2366   _adapters = new AdapterHandlerTable();
  2368   // Create a special handler for abstract methods.  Abstract methods
  2369   // are never compiled so an i2c entry is somewhat meaningless, but
  2370   // throw AbstractMethodError just in case.
  2371   // Pass wrong_method_abstract for the c2i transitions to return
  2372   // AbstractMethodError for invalid invocations.
  2373   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
  2374   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2375                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2376                                                               wrong_method_abstract, wrong_method_abstract);
  2379 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2380                                                       address i2c_entry,
  2381                                                       address c2i_entry,
  2382                                                       address c2i_unverified_entry) {
  2383   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2386 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2387   // Use customized signature handler.  Need to lock around updates to
  2388   // the AdapterHandlerTable (it is not safe for concurrent readers
  2389   // and a single writer: this could be fixed if it becomes a
  2390   // problem).
  2392   // Get the address of the ic_miss handlers before we grab the
  2393   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2394   // was caused by the initialization of the stubs happening
  2395   // while we held the lock and then notifying jvmti while
  2396   // holding it. This just forces the initialization to be a little
  2397   // earlier.
  2398   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2399   assert(ic_miss != NULL, "must have handler");
  2401   ResourceMark rm;
  2403   NOT_PRODUCT(int insts_size);
  2404   AdapterBlob* new_adapter = NULL;
  2405   AdapterHandlerEntry* entry = NULL;
  2406   AdapterFingerPrint* fingerprint = NULL;
  2408     MutexLocker mu(AdapterHandlerLibrary_lock);
  2409     // make sure data structure is initialized
  2410     initialize();
  2412     if (method->is_abstract()) {
  2413       return _abstract_method_handler;
  2416     // Fill in the signature array, for the calling-convention call.
  2417     int total_args_passed = method->size_of_parameters(); // All args on stack
  2419     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2420     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2421     int i = 0;
  2422     if (!method->is_static())  // Pass in receiver first
  2423       sig_bt[i++] = T_OBJECT;
  2424     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2425       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2426       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2427         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2429     assert(i == total_args_passed, "");
  2431     // Lookup method signature's fingerprint
  2432     entry = _adapters->lookup(total_args_passed, sig_bt);
  2434 #ifdef ASSERT
  2435     AdapterHandlerEntry* shared_entry = NULL;
  2436     // Start adapter sharing verification only after the VM is booted.
  2437     if (VerifyAdapterSharing && (entry != NULL)) {
  2438       shared_entry = entry;
  2439       entry = NULL;
  2441 #endif
  2443     if (entry != NULL) {
  2444       return entry;
  2447     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2448     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2450     // Make a C heap allocated version of the fingerprint to store in the adapter
  2451     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2453     // StubRoutines::code2() is initialized after this function can be called. As a result,
  2454     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
  2455     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
  2456     // stub that ensure that an I2C stub is called from an interpreter frame.
  2457     bool contains_all_checks = StubRoutines::code2() != NULL;
  2459     // Create I2C & C2I handlers
  2460     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2461     if (buf != NULL) {
  2462       CodeBuffer buffer(buf);
  2463       short buffer_locs[20];
  2464       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2465                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2467       MacroAssembler _masm(&buffer);
  2468       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2469                                                      total_args_passed,
  2470                                                      comp_args_on_stack,
  2471                                                      sig_bt,
  2472                                                      regs,
  2473                                                      fingerprint);
  2474 #ifdef ASSERT
  2475       if (VerifyAdapterSharing) {
  2476         if (shared_entry != NULL) {
  2477           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
  2478           // Release the one just created and return the original
  2479           _adapters->free_entry(entry);
  2480           return shared_entry;
  2481         } else  {
  2482           entry->save_code(buf->code_begin(), buffer.insts_size());
  2485 #endif
  2487       new_adapter = AdapterBlob::create(&buffer);
  2488       NOT_PRODUCT(insts_size = buffer.insts_size());
  2490     if (new_adapter == NULL) {
  2491       // CodeCache is full, disable compilation
  2492       // Ought to log this but compile log is only per compile thread
  2493       // and we're some non descript Java thread.
  2494       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2495       CompileBroker::handle_full_code_cache();
  2496       return NULL; // Out of CodeCache space
  2498     entry->relocate(new_adapter->content_begin());
  2499 #ifndef PRODUCT
  2500     // debugging suppport
  2501     if (PrintAdapterHandlers || PrintStubCode) {
  2502       ttyLocker ttyl;
  2503       entry->print_adapter_on(tty);
  2504       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2505                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2506                     method->signature()->as_C_string(), insts_size);
  2507       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2508       if (Verbose || PrintStubCode) {
  2509         address first_pc = entry->base_address();
  2510         if (first_pc != NULL) {
  2511           Disassembler::decode(first_pc, first_pc + insts_size);
  2512           tty->cr();
  2516 #endif
  2517     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
  2518     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
  2519     if (contains_all_checks || !VerifyAdapterCalls) {
  2520       _adapters->add(entry);
  2523   // Outside of the lock
  2524   if (new_adapter != NULL) {
  2525     char blob_id[256];
  2526     jio_snprintf(blob_id,
  2527                  sizeof(blob_id),
  2528                  "%s(%s)@" PTR_FORMAT,
  2529                  new_adapter->name(),
  2530                  fingerprint->as_string(),
  2531                  new_adapter->content_begin());
  2532     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
  2534     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2535       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
  2538   return entry;
  2541 address AdapterHandlerEntry::base_address() {
  2542   address base = _i2c_entry;
  2543   if (base == NULL)  base = _c2i_entry;
  2544   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2545   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2546   return base;
  2549 void AdapterHandlerEntry::relocate(address new_base) {
  2550   address old_base = base_address();
  2551   assert(old_base != NULL, "");
  2552   ptrdiff_t delta = new_base - old_base;
  2553   if (_i2c_entry != NULL)
  2554     _i2c_entry += delta;
  2555   if (_c2i_entry != NULL)
  2556     _c2i_entry += delta;
  2557   if (_c2i_unverified_entry != NULL)
  2558     _c2i_unverified_entry += delta;
  2559   assert(base_address() == new_base, "");
  2563 void AdapterHandlerEntry::deallocate() {
  2564   delete _fingerprint;
  2565 #ifdef ASSERT
  2566   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2567 #endif
  2571 #ifdef ASSERT
  2572 // Capture the code before relocation so that it can be compared
  2573 // against other versions.  If the code is captured after relocation
  2574 // then relative instructions won't be equivalent.
  2575 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
  2576   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2577   _saved_code_length = length;
  2578   memcpy(_saved_code, buffer, length);
  2582 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
  2583   if (length != _saved_code_length) {
  2584     return false;
  2587   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
  2589 #endif
  2592 /**
  2593  * Create a native wrapper for this native method.  The wrapper converts the
  2594  * Java-compiled calling convention to the native convention, handles
  2595  * arguments, and transitions to native.  On return from the native we transition
  2596  * back to java blocking if a safepoint is in progress.
  2597  */
  2598 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2599   ResourceMark rm;
  2600   nmethod* nm = NULL;
  2602   assert(method->is_native(), "must be native");
  2603   assert(method->is_method_handle_intrinsic() ||
  2604          method->has_native_function(), "must have something valid to call!");
  2607     // Perform the work while holding the lock, but perform any printing outside the lock
  2608     MutexLocker mu(AdapterHandlerLibrary_lock);
  2609     // See if somebody beat us to it
  2610     nm = method->code();
  2611     if (nm != NULL) {
  2612       return;
  2615     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
  2616     assert(compile_id > 0, "Must generate native wrapper");
  2619     ResourceMark rm;
  2620     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2621     if (buf != NULL) {
  2622       CodeBuffer buffer(buf);
  2623       double locs_buf[20];
  2624       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2625       MacroAssembler _masm(&buffer);
  2627       // Fill in the signature array, for the calling-convention call.
  2628       const int total_args_passed = method->size_of_parameters();
  2630       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2631       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2632       int i=0;
  2633       if( !method->is_static() )  // Pass in receiver first
  2634         sig_bt[i++] = T_OBJECT;
  2635       SignatureStream ss(method->signature());
  2636       for( ; !ss.at_return_type(); ss.next()) {
  2637         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2638         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2639           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2641       assert(i == total_args_passed, "");
  2642       BasicType ret_type = ss.type();
  2644       // Now get the compiled-Java layout as input (or output) arguments.
  2645       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2646       // are just trampolines so the argument registers must be outgoing ones.
  2647       const bool is_outgoing = method->is_method_handle_intrinsic();
  2648       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2650       // Generate the compiled-to-native wrapper code
  2651       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
  2653       if (nm != NULL) {
  2654         method->set_code(method, nm);
  2657   } // Unlock AdapterHandlerLibrary_lock
  2660   // Install the generated code.
  2661   if (nm != NULL) {
  2662     if (PrintCompilation) {
  2663       ttyLocker ttyl;
  2664       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2666     nm->post_compiled_method_load_event();
  2667   } else {
  2668     // CodeCache is full, disable compilation
  2669     CompileBroker::handle_full_code_cache();
  2673 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2674   assert(thread == JavaThread::current(), "must be");
  2675   // The code is about to enter a JNI lazy critical native method and
  2676   // _needs_gc is true, so if this thread is already in a critical
  2677   // section then just return, otherwise this thread should block
  2678   // until needs_gc has been cleared.
  2679   if (thread->in_critical()) {
  2680     return;
  2682   // Lock and unlock a critical section to give the system a chance to block
  2683   GC_locker::lock_critical(thread);
  2684   GC_locker::unlock_critical(thread);
  2685 JRT_END
  2687 #ifdef HAVE_DTRACE_H
  2688 /**
  2689  * Create a dtrace nmethod for this method.  The wrapper converts the
  2690  * Java-compiled calling convention to the native convention, makes a dummy call
  2691  * (actually nops for the size of the call instruction, which become a trap if
  2692  * probe is enabled), and finally returns to the caller. Since this all looks like a
  2693  * leaf, no thread transition is needed.
  2694  */
  2695 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2696   ResourceMark rm;
  2697   nmethod* nm = NULL;
  2699   if (PrintCompilation) {
  2700     ttyLocker ttyl;
  2701     tty->print("---   n  ");
  2702     method->print_short_name(tty);
  2703     if (method->is_static()) {
  2704       tty->print(" (static)");
  2706     tty->cr();
  2710     // perform the work while holding the lock, but perform any printing
  2711     // outside the lock
  2712     MutexLocker mu(AdapterHandlerLibrary_lock);
  2713     // See if somebody beat us to it
  2714     nm = method->code();
  2715     if (nm) {
  2716       return nm;
  2719     ResourceMark rm;
  2721     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2722     if (buf != NULL) {
  2723       CodeBuffer buffer(buf);
  2724       // Need a few relocation entries
  2725       double locs_buf[20];
  2726       buffer.insts()->initialize_shared_locs(
  2727         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2728       MacroAssembler _masm(&buffer);
  2730       // Generate the compiled-to-native wrapper code
  2731       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2734   return nm;
  2737 // the dtrace method needs to convert java lang string to utf8 string.
  2738 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2739   typeArrayOop jlsValue  = java_lang_String::value(src);
  2740   int          jlsOffset = java_lang_String::offset(src);
  2741   int          jlsLen    = java_lang_String::length(src);
  2742   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2743                                            jlsValue->char_at_addr(jlsOffset);
  2744   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2745   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2747 #endif // ndef HAVE_DTRACE_H
  2749 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
  2750   int argcnt = in_args_count;
  2751   if (CCallingConventionRequiresIntsAsLongs) {
  2752     for (int in = 0; in < in_args_count; in++) {
  2753       BasicType bt = in_sig_bt[in];
  2754       switch (bt) {
  2755         case T_BOOLEAN:
  2756         case T_CHAR:
  2757         case T_BYTE:
  2758         case T_SHORT:
  2759         case T_INT:
  2760           argcnt++;
  2761           break;
  2762         default:
  2763           break;
  2766   } else {
  2767     assert(0, "This should not be needed on this platform");
  2770   return argcnt;
  2773 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
  2774                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
  2775   if (CCallingConventionRequiresIntsAsLongs) {
  2776     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
  2777     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  2779     int argcnt = 0;
  2780     for (int in = 0; in < in_args_count; in++, argcnt++) {
  2781       BasicType bt  = in_sig_bt[in];
  2782       VMRegPair reg = in_regs[in];
  2783       switch (bt) {
  2784         case T_BOOLEAN:
  2785         case T_CHAR:
  2786         case T_BYTE:
  2787         case T_SHORT:
  2788         case T_INT:
  2789           // Convert (bt) to (T_LONG,bt).
  2790           new_in_sig_bt[argcnt  ] = T_LONG;
  2791           new_in_sig_bt[argcnt+1] = bt;
  2792           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
  2793           new_in_regs[argcnt  ].set2(reg.first());
  2794           new_in_regs[argcnt+1].set_bad();
  2795           argcnt++;
  2796           break;
  2797         default:
  2798           // No conversion needed.
  2799           new_in_sig_bt[argcnt] = bt;
  2800           new_in_regs[argcnt]   = reg;
  2801           break;
  2804     assert(argcnt == i2l_argcnt, "must match");
  2806     in_regs = new_in_regs;
  2807     in_sig_bt = new_in_sig_bt;
  2808     in_args_count = i2l_argcnt;
  2809   } else {
  2810     assert(0, "This should not be needed on this platform");
  2814 // -------------------------------------------------------------------------
  2815 // Java-Java calling convention
  2816 // (what you use when Java calls Java)
  2818 //------------------------------name_for_receiver----------------------------------
  2819 // For a given signature, return the VMReg for parameter 0.
  2820 VMReg SharedRuntime::name_for_receiver() {
  2821   VMRegPair regs;
  2822   BasicType sig_bt = T_OBJECT;
  2823   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2824   // Return argument 0 register.  In the LP64 build pointers
  2825   // take 2 registers, but the VM wants only the 'main' name.
  2826   return regs.first();
  2829 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2830   // This method is returning a data structure allocating as a
  2831   // ResourceObject, so do not put any ResourceMarks in here.
  2832   char *s = sig->as_C_string();
  2833   int len = (int)strlen(s);
  2834   s++; len--;                   // Skip opening paren
  2836   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2837   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2838   int cnt = 0;
  2839   if (has_receiver) {
  2840     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2843   while( *s != ')' ) {          // Find closing right paren
  2844     switch( *s++ ) {            // Switch on signature character
  2845     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2846     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2847     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2848     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2849     case 'I': sig_bt[cnt++] = T_INT;     break;
  2850     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2851     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2852     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2853     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2854     case 'L':                   // Oop
  2855       while( *s++ != ';'  ) ;   // Skip signature
  2856       sig_bt[cnt++] = T_OBJECT;
  2857       break;
  2858     case '[': {                 // Array
  2859       do {                      // Skip optional size
  2860         while( *s >= '0' && *s <= '9' ) s++;
  2861       } while( *s++ == '[' );   // Nested arrays?
  2862       // Skip element type
  2863       if( s[-1] == 'L' )
  2864         while( *s++ != ';'  ) ; // Skip signature
  2865       sig_bt[cnt++] = T_ARRAY;
  2866       break;
  2868     default : ShouldNotReachHere();
  2872   if (has_appendix) {
  2873     sig_bt[cnt++] = T_OBJECT;
  2876   assert( cnt < 256, "grow table size" );
  2878   int comp_args_on_stack;
  2879   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2881   // the calling convention doesn't count out_preserve_stack_slots so
  2882   // we must add that in to get "true" stack offsets.
  2884   if (comp_args_on_stack) {
  2885     for (int i = 0; i < cnt; i++) {
  2886       VMReg reg1 = regs[i].first();
  2887       if( reg1->is_stack()) {
  2888         // Yuck
  2889         reg1 = reg1->bias(out_preserve_stack_slots());
  2891       VMReg reg2 = regs[i].second();
  2892       if( reg2->is_stack()) {
  2893         // Yuck
  2894         reg2 = reg2->bias(out_preserve_stack_slots());
  2896       regs[i].set_pair(reg2, reg1);
  2900   // results
  2901   *arg_size = cnt;
  2902   return regs;
  2905 // OSR Migration Code
  2906 //
  2907 // This code is used convert interpreter frames into compiled frames.  It is
  2908 // called from very start of a compiled OSR nmethod.  A temp array is
  2909 // allocated to hold the interesting bits of the interpreter frame.  All
  2910 // active locks are inflated to allow them to move.  The displaced headers and
  2911 // active interpeter locals are copied into the temp buffer.  Then we return
  2912 // back to the compiled code.  The compiled code then pops the current
  2913 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2914 // copies the interpreter locals and displaced headers where it wants.
  2915 // Finally it calls back to free the temp buffer.
  2916 //
  2917 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2919 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2921   //
  2922   // This code is dependent on the memory layout of the interpreter local
  2923   // array and the monitors. On all of our platforms the layout is identical
  2924   // so this code is shared. If some platform lays the their arrays out
  2925   // differently then this code could move to platform specific code or
  2926   // the code here could be modified to copy items one at a time using
  2927   // frame accessor methods and be platform independent.
  2929   frame fr = thread->last_frame();
  2930   assert( fr.is_interpreted_frame(), "" );
  2931   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2933   // Figure out how many monitors are active.
  2934   int active_monitor_count = 0;
  2935   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2936        kptr < fr.interpreter_frame_monitor_begin();
  2937        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2938     if( kptr->obj() != NULL ) active_monitor_count++;
  2941   // QQQ we could place number of active monitors in the array so that compiled code
  2942   // could double check it.
  2944   Method* moop = fr.interpreter_frame_method();
  2945   int max_locals = moop->max_locals();
  2946   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2947   int buf_size_words = max_locals + active_monitor_count*2;
  2948   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2950   // Copy the locals.  Order is preserved so that loading of longs works.
  2951   // Since there's no GC I can copy the oops blindly.
  2952   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2953   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2954                        (HeapWord*)&buf[0],
  2955                        max_locals);
  2957   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2958   int i = max_locals;
  2959   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2960        kptr2 < fr.interpreter_frame_monitor_begin();
  2961        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2962     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2963       BasicLock *lock = kptr2->lock();
  2964       // Inflate so the displaced header becomes position-independent
  2965       if (lock->displaced_header()->is_unlocked())
  2966         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2967       // Now the displaced header is free to move
  2968       buf[i++] = (intptr_t)lock->displaced_header();
  2969       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  2972   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2974   return buf;
  2975 JRT_END
  2977 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2978   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2979 JRT_END
  2981 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2982   AdapterHandlerTableIterator iter(_adapters);
  2983   while (iter.has_next()) {
  2984     AdapterHandlerEntry* a = iter.next();
  2985     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2987   return false;
  2990 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2991   AdapterHandlerTableIterator iter(_adapters);
  2992   while (iter.has_next()) {
  2993     AdapterHandlerEntry* a = iter.next();
  2994     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2995       st->print("Adapter for signature: ");
  2996       a->print_adapter_on(tty);
  2997       return;
  3000   assert(false, "Should have found handler");
  3003 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  3004   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  3005                (intptr_t) this, fingerprint()->as_string(),
  3006                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  3010 #ifndef PRODUCT
  3012 void AdapterHandlerLibrary::print_statistics() {
  3013   _adapters->print_statistics();
  3016 #endif /* PRODUCT */

mercurial