src/share/vm/runtime/os.cpp

Wed, 14 Mar 2018 03:19:46 -0700

author
shshahma
date
Wed, 14 Mar 2018 03:19:46 -0700
changeset 9301
d47844b56aaf
parent 8661
27ae9bbef86a
child 9326
b5dd721bdda8
permissions
-rw-r--r--

8035074: hs_err improvement: Add time zone information in the hs_err file
8026335: hs_err improvement: Print exact compressed oops mode and the heap base value.
8026331: hs_err improvement: Print if we have seen any OutOfMemoryErrors or StackOverflowErrors
Summary: Add requested things to hs_err file.
Reviewed-by: dholmes

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #ifdef ASSERT
    36 #include "memory/guardedMemory.hpp"
    37 #endif
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "prims/privilegedStack.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/os.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "services/attachListener.hpp"
    52 #include "services/nmtCommon.hpp"
    53 #include "services/mallocTracker.hpp"
    54 #include "services/memTracker.hpp"
    55 #include "services/threadService.hpp"
    56 #include "utilities/defaultStream.hpp"
    57 #include "utilities/events.hpp"
    58 #ifdef TARGET_OS_FAMILY_linux
    59 # include "os_linux.inline.hpp"
    60 #endif
    61 #ifdef TARGET_OS_FAMILY_solaris
    62 # include "os_solaris.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_FAMILY_windows
    65 # include "os_windows.inline.hpp"
    66 #endif
    67 #ifdef TARGET_OS_FAMILY_bsd
    68 # include "os_bsd.inline.hpp"
    69 #endif
    71 # include <signal.h>
    73 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    75 OSThread*         os::_starting_thread    = NULL;
    76 address           os::_polling_page       = NULL;
    77 volatile int32_t* os::_mem_serialize_page = NULL;
    78 uintptr_t         os::_serialize_page_mask = 0;
    79 long              os::_rand_seed          = 1;
    80 int               os::_processor_count    = 0;
    81 int               os::_initial_active_processor_count = 0;
    82 size_t            os::_page_sizes[os::page_sizes_max];
    84 #ifndef PRODUCT
    85 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    86 julong os::alloc_bytes = 0;         // # of bytes allocated
    87 julong os::num_frees = 0;           // # of calls to free
    88 julong os::free_bytes = 0;          // # of bytes freed
    89 #endif
    91 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
    93 void os_init_globals() {
    94   // Called from init_globals().
    95   // See Threads::create_vm() in thread.cpp, and init.cpp.
    96   os::init_globals();
    97 }
    99 // Fill in buffer with current local time as an ISO-8601 string.
   100 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
   101 // Returns buffer, or NULL if it failed.
   102 // This would mostly be a call to
   103 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
   104 // except that on Windows the %z behaves badly, so we do it ourselves.
   105 // Also, people wanted milliseconds on there,
   106 // and strftime doesn't do milliseconds.
   107 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   108   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   109   //                                      1         2
   110   //                             12345678901234567890123456789
   111   static const char* iso8601_format =
   112     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   113   static const size_t needed_buffer = 29;
   115   // Sanity check the arguments
   116   if (buffer == NULL) {
   117     assert(false, "NULL buffer");
   118     return NULL;
   119   }
   120   if (buffer_length < needed_buffer) {
   121     assert(false, "buffer_length too small");
   122     return NULL;
   123   }
   124   // Get the current time
   125   jlong milliseconds_since_19700101 = javaTimeMillis();
   126   const int milliseconds_per_microsecond = 1000;
   127   const time_t seconds_since_19700101 =
   128     milliseconds_since_19700101 / milliseconds_per_microsecond;
   129   const int milliseconds_after_second =
   130     milliseconds_since_19700101 % milliseconds_per_microsecond;
   131   // Convert the time value to a tm and timezone variable
   132   struct tm time_struct;
   133   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   134     assert(false, "Failed localtime_pd");
   135     return NULL;
   136   }
   137 #if defined(_ALLBSD_SOURCE)
   138   const time_t zone = (time_t) time_struct.tm_gmtoff;
   139 #else
   140   const time_t zone = timezone;
   141 #endif
   143   // If daylight savings time is in effect,
   144   // we are 1 hour East of our time zone
   145   const time_t seconds_per_minute = 60;
   146   const time_t minutes_per_hour = 60;
   147   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   148   time_t UTC_to_local = zone;
   149   if (time_struct.tm_isdst > 0) {
   150     UTC_to_local = UTC_to_local - seconds_per_hour;
   151   }
   152   // Compute the time zone offset.
   153   //    localtime_pd() sets timezone to the difference (in seconds)
   154   //    between UTC and and local time.
   155   //    ISO 8601 says we need the difference between local time and UTC,
   156   //    we change the sign of the localtime_pd() result.
   157   const time_t local_to_UTC = -(UTC_to_local);
   158   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   159   char sign_local_to_UTC = '+';
   160   time_t abs_local_to_UTC = local_to_UTC;
   161   if (local_to_UTC < 0) {
   162     sign_local_to_UTC = '-';
   163     abs_local_to_UTC = -(abs_local_to_UTC);
   164   }
   165   // Convert time zone offset seconds to hours and minutes.
   166   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   167   const time_t zone_min =
   168     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   170   // Print an ISO 8601 date and time stamp into the buffer
   171   const int year = 1900 + time_struct.tm_year;
   172   const int month = 1 + time_struct.tm_mon;
   173   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   174                                    year,
   175                                    month,
   176                                    time_struct.tm_mday,
   177                                    time_struct.tm_hour,
   178                                    time_struct.tm_min,
   179                                    time_struct.tm_sec,
   180                                    milliseconds_after_second,
   181                                    sign_local_to_UTC,
   182                                    zone_hours,
   183                                    zone_min);
   184   if (printed == 0) {
   185     assert(false, "Failed jio_printf");
   186     return NULL;
   187   }
   188   return buffer;
   189 }
   191 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   192 #ifdef ASSERT
   193   if (!(!thread->is_Java_thread() ||
   194          Thread::current() == thread  ||
   195          Threads_lock->owned_by_self()
   196          || thread->is_Compiler_thread()
   197         )) {
   198     assert(false, "possibility of dangling Thread pointer");
   199   }
   200 #endif
   202   if (p >= MinPriority && p <= MaxPriority) {
   203     int priority = java_to_os_priority[p];
   204     return set_native_priority(thread, priority);
   205   } else {
   206     assert(false, "Should not happen");
   207     return OS_ERR;
   208   }
   209 }
   211 // The mapping from OS priority back to Java priority may be inexact because
   212 // Java priorities can map M:1 with native priorities. If you want the definite
   213 // Java priority then use JavaThread::java_priority()
   214 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   215   int p;
   216   int os_prio;
   217   OSReturn ret = get_native_priority(thread, &os_prio);
   218   if (ret != OS_OK) return ret;
   220   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   221     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   222   } else {
   223     // niceness values are in reverse order
   224     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   225   }
   226   priority = (ThreadPriority)p;
   227   return OS_OK;
   228 }
   231 // --------------------- sun.misc.Signal (optional) ---------------------
   234 // SIGBREAK is sent by the keyboard to query the VM state
   235 #ifndef SIGBREAK
   236 #define SIGBREAK SIGQUIT
   237 #endif
   239 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   242 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   243   os::set_priority(thread, NearMaxPriority);
   244   while (true) {
   245     int sig;
   246     {
   247       // FIXME : Currently we have not decieded what should be the status
   248       //         for this java thread blocked here. Once we decide about
   249       //         that we should fix this.
   250       sig = os::signal_wait();
   251     }
   252     if (sig == os::sigexitnum_pd()) {
   253        // Terminate the signal thread
   254        return;
   255     }
   257     switch (sig) {
   258       case SIGBREAK: {
   259         // Check if the signal is a trigger to start the Attach Listener - in that
   260         // case don't print stack traces.
   261         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   262           continue;
   263         }
   264         // Print stack traces
   265         // Any SIGBREAK operations added here should make sure to flush
   266         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   267         // Each module also prints an extra carriage return after its output.
   268         VM_PrintThreads op;
   269         VMThread::execute(&op);
   270         VM_PrintJNI jni_op;
   271         VMThread::execute(&jni_op);
   272         VM_FindDeadlocks op1(tty);
   273         VMThread::execute(&op1);
   274         Universe::print_heap_at_SIGBREAK();
   275         if (PrintClassHistogram) {
   276           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   277           VMThread::execute(&op1);
   278         }
   279         if (JvmtiExport::should_post_data_dump()) {
   280           JvmtiExport::post_data_dump();
   281         }
   282         break;
   283       }
   284       default: {
   285         // Dispatch the signal to java
   286         HandleMark hm(THREAD);
   287         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   288         KlassHandle klass (THREAD, k);
   289         if (klass.not_null()) {
   290           JavaValue result(T_VOID);
   291           JavaCallArguments args;
   292           args.push_int(sig);
   293           JavaCalls::call_static(
   294             &result,
   295             klass,
   296             vmSymbols::dispatch_name(),
   297             vmSymbols::int_void_signature(),
   298             &args,
   299             THREAD
   300           );
   301         }
   302         if (HAS_PENDING_EXCEPTION) {
   303           // tty is initialized early so we don't expect it to be null, but
   304           // if it is we can't risk doing an initialization that might
   305           // trigger additional out-of-memory conditions
   306           if (tty != NULL) {
   307             char klass_name[256];
   308             char tmp_sig_name[16];
   309             const char* sig_name = "UNKNOWN";
   310             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   311               name()->as_klass_external_name(klass_name, 256);
   312             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   313               sig_name = tmp_sig_name;
   314             warning("Exception %s occurred dispatching signal %s to handler"
   315                     "- the VM may need to be forcibly terminated",
   316                     klass_name, sig_name );
   317           }
   318           CLEAR_PENDING_EXCEPTION;
   319         }
   320       }
   321     }
   322   }
   323 }
   325 void os::init_before_ergo() {
   326   initialize_initial_active_processor_count();
   327   // We need to initialize large page support here because ergonomics takes some
   328   // decisions depending on large page support and the calculated large page size.
   329   large_page_init();
   331   // VM version initialization identifies some characteristics of the
   332   // the platform that are used during ergonomic decisions.
   333   VM_Version::init_before_ergo();
   334 }
   336 void os::signal_init() {
   337   if (!ReduceSignalUsage) {
   338     // Setup JavaThread for processing signals
   339     EXCEPTION_MARK;
   340     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   341     instanceKlassHandle klass (THREAD, k);
   342     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   344     const char thread_name[] = "Signal Dispatcher";
   345     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   347     // Initialize thread_oop to put it into the system threadGroup
   348     Handle thread_group (THREAD, Universe::system_thread_group());
   349     JavaValue result(T_VOID);
   350     JavaCalls::call_special(&result, thread_oop,
   351                            klass,
   352                            vmSymbols::object_initializer_name(),
   353                            vmSymbols::threadgroup_string_void_signature(),
   354                            thread_group,
   355                            string,
   356                            CHECK);
   358     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   359     JavaCalls::call_special(&result,
   360                             thread_group,
   361                             group,
   362                             vmSymbols::add_method_name(),
   363                             vmSymbols::thread_void_signature(),
   364                             thread_oop,         // ARG 1
   365                             CHECK);
   367     os::signal_init_pd();
   369     { MutexLocker mu(Threads_lock);
   370       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   372       // At this point it may be possible that no osthread was created for the
   373       // JavaThread due to lack of memory. We would have to throw an exception
   374       // in that case. However, since this must work and we do not allow
   375       // exceptions anyway, check and abort if this fails.
   376       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   377         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   378                                       "unable to create new native thread");
   379       }
   381       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   382       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   383       java_lang_Thread::set_daemon(thread_oop());
   385       signal_thread->set_threadObj(thread_oop());
   386       Threads::add(signal_thread);
   387       Thread::start(signal_thread);
   388     }
   389     // Handle ^BREAK
   390     os::signal(SIGBREAK, os::user_handler());
   391   }
   392 }
   395 void os::terminate_signal_thread() {
   396   if (!ReduceSignalUsage)
   397     signal_notify(sigexitnum_pd());
   398 }
   401 // --------------------- loading libraries ---------------------
   403 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   404 extern struct JavaVM_ main_vm;
   406 static void* _native_java_library = NULL;
   408 void* os::native_java_library() {
   409   if (_native_java_library == NULL) {
   410     char buffer[JVM_MAXPATHLEN];
   411     char ebuf[1024];
   413     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   414     // always able to find it when the loading executable is outside the JDK.
   415     // In order to keep working with 1.2 we ignore any loading errors.
   416     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   417                        "verify")) {
   418       dll_load(buffer, ebuf, sizeof(ebuf));
   419     }
   421     // Load java dll
   422     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   423                        "java")) {
   424       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   425     }
   426     if (_native_java_library == NULL) {
   427       vm_exit_during_initialization("Unable to load native library", ebuf);
   428     }
   430 #if defined(__OpenBSD__)
   431     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   432     // ignore errors
   433     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   434                        "net")) {
   435       dll_load(buffer, ebuf, sizeof(ebuf));
   436     }
   437 #endif
   438   }
   439   static jboolean onLoaded = JNI_FALSE;
   440   if (onLoaded) {
   441     // We may have to wait to fire OnLoad until TLS is initialized.
   442     if (ThreadLocalStorage::is_initialized()) {
   443       // The JNI_OnLoad handling is normally done by method load in
   444       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   445       // explicitly so we have to check for JNI_OnLoad as well
   446       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   447       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   448           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   449       if (JNI_OnLoad != NULL) {
   450         JavaThread* thread = JavaThread::current();
   451         ThreadToNativeFromVM ttn(thread);
   452         HandleMark hm(thread);
   453         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   454         onLoaded = JNI_TRUE;
   455         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   456           vm_exit_during_initialization("Unsupported JNI version");
   457         }
   458       }
   459     }
   460   }
   461   return _native_java_library;
   462 }
   464 /*
   465  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
   466  * If check_lib == true then we are looking for an
   467  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
   468  * this library is statically linked into the image.
   469  * If check_lib == false then we will look for the appropriate symbol in the
   470  * executable if agent_lib->is_static_lib() == true or in the shared library
   471  * referenced by 'handle'.
   472  */
   473 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
   474                               const char *syms[], size_t syms_len) {
   475   assert(agent_lib != NULL, "sanity check");
   476   const char *lib_name;
   477   void *handle = agent_lib->os_lib();
   478   void *entryName = NULL;
   479   char *agent_function_name;
   480   size_t i;
   482   // If checking then use the agent name otherwise test is_static_lib() to
   483   // see how to process this lookup
   484   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
   485   for (i = 0; i < syms_len; i++) {
   486     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
   487     if (agent_function_name == NULL) {
   488       break;
   489     }
   490     entryName = dll_lookup(handle, agent_function_name);
   491     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
   492     if (entryName != NULL) {
   493       break;
   494     }
   495   }
   496   return entryName;
   497 }
   499 // See if the passed in agent is statically linked into the VM image.
   500 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
   501                             size_t syms_len) {
   502   void *ret;
   503   void *proc_handle;
   504   void *save_handle;
   506   assert(agent_lib != NULL, "sanity check");
   507   if (agent_lib->name() == NULL) {
   508     return false;
   509   }
   510   proc_handle = get_default_process_handle();
   511   // Check for Agent_OnLoad/Attach_lib_name function
   512   save_handle = agent_lib->os_lib();
   513   // We want to look in this process' symbol table.
   514   agent_lib->set_os_lib(proc_handle);
   515   ret = find_agent_function(agent_lib, true, syms, syms_len);
   516   if (ret != NULL) {
   517     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
   518     agent_lib->set_valid();
   519     agent_lib->set_static_lib(true);
   520     return true;
   521   }
   522   agent_lib->set_os_lib(save_handle);
   523   return false;
   524 }
   526 // --------------------- heap allocation utilities ---------------------
   528 char *os::strdup(const char *str, MEMFLAGS flags) {
   529   size_t size = strlen(str);
   530   char *dup_str = (char *)malloc(size + 1, flags);
   531   if (dup_str == NULL) return NULL;
   532   strcpy(dup_str, str);
   533   return dup_str;
   534 }
   538 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   540 #ifdef ASSERT
   541 static void verify_memory(void* ptr) {
   542   GuardedMemory guarded(ptr);
   543   if (!guarded.verify_guards()) {
   544     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   545     tty->print_cr("## memory stomp:");
   546     guarded.print_on(tty);
   547     fatal("memory stomping error");
   548   }
   549 }
   550 #endif
   552 //
   553 // This function supports testing of the malloc out of memory
   554 // condition without really running the system out of memory.
   555 //
   556 static u_char* testMalloc(size_t alloc_size) {
   557   assert(MallocMaxTestWords > 0, "sanity check");
   559   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
   560     return NULL;
   561   }
   563   u_char* ptr = (u_char*)::malloc(alloc_size);
   565   if (ptr != NULL) {
   566     Atomic::add(((jint) (alloc_size / BytesPerWord)),
   567                 (volatile jint *) &cur_malloc_words);
   568   }
   569   return ptr;
   570 }
   572 void* os::malloc(size_t size, MEMFLAGS flags) {
   573   return os::malloc(size, flags, CALLER_PC);
   574 }
   576 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
   577   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   578   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   580 #ifdef ASSERT
   581   // checking for the WatcherThread and crash_protection first
   582   // since os::malloc can be called when the libjvm.{dll,so} is
   583   // first loaded and we don't have a thread yet.
   584   // try to find the thread after we see that the watcher thread
   585   // exists and has crash protection.
   586   WatcherThread *wt = WatcherThread::watcher_thread();
   587   if (wt != NULL && wt->has_crash_protection()) {
   588     Thread* thread = ThreadLocalStorage::get_thread_slow();
   589     if (thread == wt) {
   590       assert(!wt->has_crash_protection(),
   591           "Can't malloc with crash protection from WatcherThread");
   592     }
   593   }
   594 #endif
   596   if (size == 0) {
   597     // return a valid pointer if size is zero
   598     // if NULL is returned the calling functions assume out of memory.
   599     size = 1;
   600   }
   602   // NMT support
   603   NMT_TrackingLevel level = MemTracker::tracking_level();
   604   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
   606 #ifndef ASSERT
   607   const size_t alloc_size = size + nmt_header_size;
   608 #else
   609   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
   610   if (size + nmt_header_size > alloc_size) { // Check for rollover.
   611     return NULL;
   612   }
   613 #endif
   615   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   617   u_char* ptr;
   618   if (MallocMaxTestWords > 0) {
   619     ptr = testMalloc(alloc_size);
   620   } else {
   621     ptr = (u_char*)::malloc(alloc_size);
   622   }
   624 #ifdef ASSERT
   625   if (ptr == NULL) {
   626     return NULL;
   627   }
   628   // Wrap memory with guard
   629   GuardedMemory guarded(ptr, size + nmt_header_size);
   630   ptr = guarded.get_user_ptr();
   631 #endif
   632   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   633     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   634     breakpoint();
   635   }
   636   debug_only(if (paranoid) verify_memory(ptr));
   637   if (PrintMalloc && tty != NULL) {
   638     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   639   }
   641   // we do not track guard memory
   642   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
   643 }
   645 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
   646   return os::realloc(memblock, size, flags, CALLER_PC);
   647 }
   649 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
   651 #ifndef ASSERT
   652   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   653   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   654    // NMT support
   655   void* membase = MemTracker::record_free(memblock);
   656   NMT_TrackingLevel level = MemTracker::tracking_level();
   657   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
   658   void* ptr = ::realloc(membase, size + nmt_header_size);
   659   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
   660 #else
   661   if (memblock == NULL) {
   662     return os::malloc(size, memflags, stack);
   663   }
   664   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   665     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   666     breakpoint();
   667   }
   668   // NMT support
   669   void* membase = MemTracker::malloc_base(memblock);
   670   verify_memory(membase);
   671   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   672   if (size == 0) {
   673     return NULL;
   674   }
   675   // always move the block
   676   void* ptr = os::malloc(size, memflags, stack);
   677   if (PrintMalloc) {
   678     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   679   }
   680   // Copy to new memory if malloc didn't fail
   681   if ( ptr != NULL ) {
   682     GuardedMemory guarded(MemTracker::malloc_base(memblock));
   683     // Guard's user data contains NMT header
   684     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
   685     memcpy(ptr, memblock, MIN2(size, memblock_size));
   686     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
   687     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   688       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   689       breakpoint();
   690     }
   691     os::free(memblock);
   692   }
   693   return ptr;
   694 #endif
   695 }
   698 void  os::free(void *memblock, MEMFLAGS memflags) {
   699   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   700 #ifdef ASSERT
   701   if (memblock == NULL) return;
   702   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   703     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   704     breakpoint();
   705   }
   706   void* membase = MemTracker::record_free(memblock);
   707   verify_memory(membase);
   708   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   710   GuardedMemory guarded(membase);
   711   size_t size = guarded.get_user_size();
   712   inc_stat_counter(&free_bytes, size);
   713   membase = guarded.release_for_freeing();
   714   if (PrintMalloc && tty != NULL) {
   715       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
   716   }
   717   ::free(membase);
   718 #else
   719   void* membase = MemTracker::record_free(memblock);
   720   ::free(membase);
   721 #endif
   722 }
   724 void os::init_random(long initval) {
   725   _rand_seed = initval;
   726 }
   729 long os::random() {
   730   /* standard, well-known linear congruential random generator with
   731    * next_rand = (16807*seed) mod (2**31-1)
   732    * see
   733    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   734    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   735    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   736    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   737   */
   738   const long a = 16807;
   739   const unsigned long m = 2147483647;
   740   const long q = m / a;        assert(q == 127773, "weird math");
   741   const long r = m % a;        assert(r == 2836, "weird math");
   743   // compute az=2^31p+q
   744   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   745   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   746   lo += (hi & 0x7FFF) << 16;
   748   // if q overflowed, ignore the overflow and increment q
   749   if (lo > m) {
   750     lo &= m;
   751     ++lo;
   752   }
   753   lo += hi >> 15;
   755   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   756   if (lo > m) {
   757     lo &= m;
   758     ++lo;
   759   }
   760   return (_rand_seed = lo);
   761 }
   763 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   764 // conditions in which a thread is first started are different from those in which
   765 // a suspension is resumed.  These differences make it hard for us to apply the
   766 // tougher checks when starting threads that we want to do when resuming them.
   767 // However, when start_thread is called as a result of Thread.start, on a Java
   768 // thread, the operation is synchronized on the Java Thread object.  So there
   769 // cannot be a race to start the thread and hence for the thread to exit while
   770 // we are working on it.  Non-Java threads that start Java threads either have
   771 // to do so in a context in which races are impossible, or should do appropriate
   772 // locking.
   774 void os::start_thread(Thread* thread) {
   775   // guard suspend/resume
   776   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   777   OSThread* osthread = thread->osthread();
   778   osthread->set_state(RUNNABLE);
   779   pd_start_thread(thread);
   780 }
   782 //---------------------------------------------------------------------------
   783 // Helper functions for fatal error handler
   785 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   786   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   788   int cols = 0;
   789   int cols_per_line = 0;
   790   switch (unitsize) {
   791     case 1: cols_per_line = 16; break;
   792     case 2: cols_per_line = 8;  break;
   793     case 4: cols_per_line = 4;  break;
   794     case 8: cols_per_line = 2;  break;
   795     default: return;
   796   }
   798   address p = start;
   799   st->print(PTR_FORMAT ":   ", start);
   800   while (p < end) {
   801     switch (unitsize) {
   802       case 1: st->print("%02x", *(u1*)p); break;
   803       case 2: st->print("%04x", *(u2*)p); break;
   804       case 4: st->print("%08x", *(u4*)p); break;
   805       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   806     }
   807     p += unitsize;
   808     cols++;
   809     if (cols >= cols_per_line && p < end) {
   810        cols = 0;
   811        st->cr();
   812        st->print(PTR_FORMAT ":   ", p);
   813     } else {
   814        st->print(" ");
   815     }
   816   }
   817   st->cr();
   818 }
   820 void os::print_environment_variables(outputStream* st, const char** env_list,
   821                                      char* buffer, int len) {
   822   if (env_list) {
   823     st->print_cr("Environment Variables:");
   825     for (int i = 0; env_list[i] != NULL; i++) {
   826       if (getenv(env_list[i], buffer, len)) {
   827         st->print("%s", env_list[i]);
   828         st->print("=");
   829         st->print_cr("%s", buffer);
   830       }
   831     }
   832   }
   833 }
   835 void os::print_cpu_info(outputStream* st) {
   836   // cpu
   837   st->print("CPU:");
   838   st->print("total %d", os::processor_count());
   839   // It's not safe to query number of active processors after crash
   840   // st->print("(active %d)", os::active_processor_count()); but we can
   841   // print the initial number of active processors.
   842   // We access the raw value here because the assert in the accessor will
   843   // fail if the crash occurs before initialization of this value.
   844   st->print(" (initial active %d)", _initial_active_processor_count);
   845   st->print(" %s", VM_Version::cpu_features());
   846   st->cr();
   847   pd_print_cpu_info(st);
   848 }
   850 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
   851   const int secs_per_day  = 86400;
   852   const int secs_per_hour = 3600;
   853   const int secs_per_min  = 60;
   855   time_t tloc;
   856   (void)time(&tloc);
   857   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   859   struct tm tz;
   860   if (localtime_pd(&tloc, &tz) != NULL) {
   861     ::strftime(buf, buflen, "%Z", &tz);
   862     st->print_cr("timezone: %s", buf);
   863   }
   865   double t = os::elapsedTime();
   866   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   867   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   868   //       before printf. We lost some precision, but who cares?
   869   int eltime = (int)t;  // elapsed time in seconds
   871   // print elapsed time in a human-readable format:
   872   int eldays = eltime / secs_per_day;
   873   int day_secs = eldays * secs_per_day;
   874   int elhours = (eltime - day_secs) / secs_per_hour;
   875   int hour_secs = elhours * secs_per_hour;
   876   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
   877   int minute_secs = elmins * secs_per_min;
   878   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
   879   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
   880 }
   882 // moved from debug.cpp (used to be find()) but still called from there
   883 // The verbose parameter is only set by the debug code in one case
   884 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   885   address addr = (address)x;
   886   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   887   if (b != NULL) {
   888     if (b->is_buffer_blob()) {
   889       // the interpreter is generated into a buffer blob
   890       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   891       if (i != NULL) {
   892         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   893         i->print_on(st);
   894         return;
   895       }
   896       if (Interpreter::contains(addr)) {
   897         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   898                      " (not bytecode specific)", addr);
   899         return;
   900       }
   901       //
   902       if (AdapterHandlerLibrary::contains(b)) {
   903         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   904         AdapterHandlerLibrary::print_handler_on(st, b);
   905       }
   906       // the stubroutines are generated into a buffer blob
   907       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   908       if (d != NULL) {
   909         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   910         d->print_on(st);
   911         st->cr();
   912         return;
   913       }
   914       if (StubRoutines::contains(addr)) {
   915         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   916                      "stub routine", addr);
   917         return;
   918       }
   919       // the InlineCacheBuffer is using stubs generated into a buffer blob
   920       if (InlineCacheBuffer::contains(addr)) {
   921         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   922         return;
   923       }
   924       VtableStub* v = VtableStubs::stub_containing(addr);
   925       if (v != NULL) {
   926         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   927         v->print_on(st);
   928         st->cr();
   929         return;
   930       }
   931     }
   932     nmethod* nm = b->as_nmethod_or_null();
   933     if (nm != NULL) {
   934       ResourceMark rm;
   935       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   936                 addr, (int)(addr - nm->entry_point()), nm);
   937       if (verbose) {
   938         st->print(" for ");
   939         nm->method()->print_value_on(st);
   940       }
   941       st->cr();
   942       nm->print_nmethod(verbose);
   943       return;
   944     }
   945     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   946     b->print_on(st);
   947     return;
   948   }
   950   if (Universe::heap()->is_in(addr)) {
   951     HeapWord* p = Universe::heap()->block_start(addr);
   952     bool print = false;
   953     // If we couldn't find it it just may mean that heap wasn't parseable
   954     // See if we were just given an oop directly
   955     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   956       print = true;
   957     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   958       p = (HeapWord*) addr;
   959       print = true;
   960     }
   961     if (print) {
   962       if (p == (HeapWord*) addr) {
   963         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   964       } else {
   965         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   966       }
   967       oop(p)->print_on(st);
   968       return;
   969     }
   970   } else {
   971     if (Universe::heap()->is_in_reserved(addr)) {
   972       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   973                    "in the heap", addr);
   974       return;
   975     }
   976   }
   977   if (JNIHandles::is_global_handle((jobject) addr)) {
   978     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   979     return;
   980   }
   981   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   982     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   983     return;
   984   }
   985 #ifndef PRODUCT
   986   // we don't keep the block list in product mode
   987   if (JNIHandleBlock::any_contains((jobject) addr)) {
   988     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   989     return;
   990   }
   991 #endif
   993   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   994     // Check for privilege stack
   995     if (thread->privileged_stack_top() != NULL &&
   996         thread->privileged_stack_top()->contains(addr)) {
   997       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   998                    "for thread: " INTPTR_FORMAT, addr, thread);
   999       if (verbose) thread->print_on(st);
  1000       return;
  1002     // If the addr is a java thread print information about that.
  1003     if (addr == (address)thread) {
  1004       if (verbose) {
  1005         thread->print_on(st);
  1006       } else {
  1007         st->print_cr(INTPTR_FORMAT " is a thread", addr);
  1009       return;
  1011     // If the addr is in the stack region for this thread then report that
  1012     // and print thread info
  1013     if (thread->stack_base() >= addr &&
  1014         addr > (thread->stack_base() - thread->stack_size())) {
  1015       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
  1016                    INTPTR_FORMAT, addr, thread);
  1017       if (verbose) thread->print_on(st);
  1018       return;
  1023   // Check if in metaspace and print types that have vptrs (only method now)
  1024   if (Metaspace::contains(addr)) {
  1025     if (Method::has_method_vptr((const void*)addr)) {
  1026       ((Method*)addr)->print_value_on(st);
  1027       st->cr();
  1028     } else {
  1029       // Use addr->print() from the debugger instead (not here)
  1030       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
  1032     return;
  1035   // Try an OS specific find
  1036   if (os::find(addr, st)) {
  1037     return;
  1040   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
  1043 // Looks like all platforms except IA64 can use the same function to check
  1044 // if C stack is walkable beyond current frame. The check for fp() is not
  1045 // necessary on Sparc, but it's harmless.
  1046 bool os::is_first_C_frame(frame* fr) {
  1047 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
  1048   // On IA64 we have to check if the callers bsp is still valid
  1049   // (i.e. within the register stack bounds).
  1050   // Notice: this only works for threads created by the VM and only if
  1051   // we walk the current stack!!! If we want to be able to walk
  1052   // arbitrary other threads, we'll have to somehow store the thread
  1053   // object in the frame.
  1054   Thread *thread = Thread::current();
  1055   if ((address)fr->fp() <=
  1056       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
  1057     // This check is a little hacky, because on Linux the first C
  1058     // frame's ('start_thread') register stack frame starts at
  1059     // "register_stack_base + 0x48" while on HPUX, the first C frame's
  1060     // ('__pthread_bound_body') register stack frame seems to really
  1061     // start at "register_stack_base".
  1062     return true;
  1063   } else {
  1064     return false;
  1066 #elif defined(IA64) && defined(_WIN32)
  1067   return true;
  1068 #else
  1069   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1070   // Check usp first, because if that's bad the other accessors may fault
  1071   // on some architectures.  Ditto ufp second, etc.
  1072   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1073   // sp on amd can be 32 bit aligned.
  1074   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1076   uintptr_t usp    = (uintptr_t)fr->sp();
  1077   if ((usp & sp_align_mask) != 0) return true;
  1079   uintptr_t ufp    = (uintptr_t)fr->fp();
  1080   if ((ufp & fp_align_mask) != 0) return true;
  1082   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1083   if ((old_sp & sp_align_mask) != 0) return true;
  1084   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1086   uintptr_t old_fp = (uintptr_t)fr->link();
  1087   if ((old_fp & fp_align_mask) != 0) return true;
  1088   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1090   // stack grows downwards; if old_fp is below current fp or if the stack
  1091   // frame is too large, either the stack is corrupted or fp is not saved
  1092   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1093   // is not walkable beyond current frame.
  1094   if (old_fp < ufp) return true;
  1095   if (old_fp - ufp > 64 * K) return true;
  1097   return false;
  1098 #endif
  1101 #ifdef ASSERT
  1102 extern "C" void test_random() {
  1103   const double m = 2147483647;
  1104   double mean = 0.0, variance = 0.0, t;
  1105   long reps = 10000;
  1106   unsigned long seed = 1;
  1108   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1109   os::init_random(seed);
  1110   long num;
  1111   for (int k = 0; k < reps; k++) {
  1112     num = os::random();
  1113     double u = (double)num / m;
  1114     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1116     // calculate mean and variance of the random sequence
  1117     mean += u;
  1118     variance += (u*u);
  1120   mean /= reps;
  1121   variance /= (reps - 1);
  1123   assert(num == 1043618065, "bad seed");
  1124   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1125   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1126   const double eps = 0.0001;
  1127   t = fabsd(mean - 0.5018);
  1128   assert(t < eps, "bad mean");
  1129   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1130   assert(t < eps, "bad variance");
  1132 #endif
  1135 // Set up the boot classpath.
  1137 char* os::format_boot_path(const char* format_string,
  1138                            const char* home,
  1139                            int home_len,
  1140                            char fileSep,
  1141                            char pathSep) {
  1142     assert((fileSep == '/' && pathSep == ':') ||
  1143            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1145     // Scan the format string to determine the length of the actual
  1146     // boot classpath, and handle platform dependencies as well.
  1147     int formatted_path_len = 0;
  1148     const char* p;
  1149     for (p = format_string; *p != 0; ++p) {
  1150         if (*p == '%') formatted_path_len += home_len - 1;
  1151         ++formatted_path_len;
  1154     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1155     if (formatted_path == NULL) {
  1156         return NULL;
  1159     // Create boot classpath from format, substituting separator chars and
  1160     // java home directory.
  1161     char* q = formatted_path;
  1162     for (p = format_string; *p != 0; ++p) {
  1163         switch (*p) {
  1164         case '%':
  1165             strcpy(q, home);
  1166             q += home_len;
  1167             break;
  1168         case '/':
  1169             *q++ = fileSep;
  1170             break;
  1171         case ':':
  1172             *q++ = pathSep;
  1173             break;
  1174         default:
  1175             *q++ = *p;
  1178     *q = '\0';
  1180     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1181     return formatted_path;
  1185 bool os::set_boot_path(char fileSep, char pathSep) {
  1186     const char* home = Arguments::get_java_home();
  1187     int home_len = (int)strlen(home);
  1189     static const char* meta_index_dir_format = "%/lib/";
  1190     static const char* meta_index_format = "%/lib/meta-index";
  1191     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1192     if (meta_index == NULL) return false;
  1193     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1194     if (meta_index_dir == NULL) return false;
  1195     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1197     // Any modification to the JAR-file list, for the boot classpath must be
  1198     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1199     // path class JARs, are stripped for StackMapTable to reduce download size.
  1200     static const char classpath_format[] =
  1201         "%/lib/resources.jar:"
  1202         "%/lib/rt.jar:"
  1203         "%/lib/sunrsasign.jar:"
  1204         "%/lib/jsse.jar:"
  1205         "%/lib/jce.jar:"
  1206         "%/lib/charsets.jar:"
  1207         "%/lib/jfr.jar:"
  1208         "%/classes";
  1209     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1210     if (sysclasspath == NULL) return false;
  1211     Arguments::set_sysclasspath(sysclasspath);
  1213     return true;
  1216 /*
  1217  * Splits a path, based on its separator, the number of
  1218  * elements is returned back in n.
  1219  * It is the callers responsibility to:
  1220  *   a> check the value of n, and n may be 0.
  1221  *   b> ignore any empty path elements
  1222  *   c> free up the data.
  1223  */
  1224 char** os::split_path(const char* path, int* n) {
  1225   *n = 0;
  1226   if (path == NULL || strlen(path) == 0) {
  1227     return NULL;
  1229   const char psepchar = *os::path_separator();
  1230   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1231   if (inpath == NULL) {
  1232     return NULL;
  1234   strcpy(inpath, path);
  1235   int count = 1;
  1236   char* p = strchr(inpath, psepchar);
  1237   // Get a count of elements to allocate memory
  1238   while (p != NULL) {
  1239     count++;
  1240     p++;
  1241     p = strchr(p, psepchar);
  1243   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1244   if (opath == NULL) {
  1245     return NULL;
  1248   // do the actual splitting
  1249   p = inpath;
  1250   for (int i = 0 ; i < count ; i++) {
  1251     size_t len = strcspn(p, os::path_separator());
  1252     if (len > JVM_MAXPATHLEN) {
  1253       return NULL;
  1255     // allocate the string and add terminator storage
  1256     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1257     if (s == NULL) {
  1258       return NULL;
  1260     strncpy(s, p, len);
  1261     s[len] = '\0';
  1262     opath[i] = s;
  1263     p += len + 1;
  1265   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1266   *n = count;
  1267   return opath;
  1270 void os::set_memory_serialize_page(address page) {
  1271   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1272   _mem_serialize_page = (volatile int32_t *)page;
  1273   // We initialize the serialization page shift count here
  1274   // We assume a cache line size of 64 bytes
  1275   assert(SerializePageShiftCount == count,
  1276          "thread size changed, fix SerializePageShiftCount constant");
  1277   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1280 static volatile intptr_t SerializePageLock = 0;
  1282 // This method is called from signal handler when SIGSEGV occurs while the current
  1283 // thread tries to store to the "read-only" memory serialize page during state
  1284 // transition.
  1285 void os::block_on_serialize_page_trap() {
  1286   if (TraceSafepoint) {
  1287     tty->print_cr("Block until the serialize page permission restored");
  1289   // When VMThread is holding the SerializePageLock during modifying the
  1290   // access permission of the memory serialize page, the following call
  1291   // will block until the permission of that page is restored to rw.
  1292   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1293   // this case, it's OK as the signal is synchronous and we know precisely when
  1294   // it can occur.
  1295   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1296   Thread::muxRelease(&SerializePageLock);
  1299 // Serialize all thread state variables
  1300 void os::serialize_thread_states() {
  1301   // On some platforms such as Solaris & Linux, the time duration of the page
  1302   // permission restoration is observed to be much longer than expected  due to
  1303   // scheduler starvation problem etc. To avoid the long synchronization
  1304   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1305   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1306   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1307   os::protect_memory((char *)os::get_memory_serialize_page(),
  1308                      os::vm_page_size(), MEM_PROT_READ);
  1309   os::protect_memory((char *)os::get_memory_serialize_page(),
  1310                      os::vm_page_size(), MEM_PROT_RW);
  1311   Thread::muxRelease(&SerializePageLock);
  1314 // Returns true if the current stack pointer is above the stack shadow
  1315 // pages, false otherwise.
  1317 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1318   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1319   address sp = current_stack_pointer();
  1320   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1321   // is dependent on the depth of the maximum VM call stack possible from
  1322   // the handler for stack overflow.  'instanceof' in the stack overflow
  1323   // handler or a println uses at least 8k stack of VM and native code
  1324   // respectively.
  1325   const int framesize_in_bytes =
  1326     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1327   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1328                       * vm_page_size()) + framesize_in_bytes;
  1329   // The very lower end of the stack
  1330   address stack_limit = thread->stack_base() - thread->stack_size();
  1331   return (sp > (stack_limit + reserved_area));
  1334 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
  1335   assert(min_pages > 0, "sanity");
  1336   if (UseLargePages) {
  1337     const size_t max_page_size = region_size / min_pages;
  1339     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
  1340       const size_t page_size = _page_sizes[i];
  1341       if (page_size <= max_page_size) {
  1342         if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
  1343           return page_size;
  1349   return vm_page_size();
  1352 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
  1353   return page_size_for_region(region_size, min_pages, true);
  1356 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
  1357   return page_size_for_region(region_size, min_pages, false);
  1360 #ifndef PRODUCT
  1361 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1363   if (TracePageSizes) {
  1364     tty->print("%s: ", str);
  1365     for (int i = 0; i < count; ++i) {
  1366       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1368     tty->cr();
  1372 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1373                           const size_t region_max_size, const size_t page_size,
  1374                           const char* base, const size_t size)
  1376   if (TracePageSizes) {
  1377     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1378                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1379                   " size=" SIZE_FORMAT,
  1380                   str, region_min_size, region_max_size,
  1381                   page_size, base, size);
  1384 #endif  // #ifndef PRODUCT
  1386 // This is the working definition of a server class machine:
  1387 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1388 // because the graphics memory (?) sometimes masks physical memory.
  1389 // If you want to change the definition of a server class machine
  1390 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1391 // then you'll have to parameterize this method based on that state,
  1392 // as was done for logical processors here, or replicate and
  1393 // specialize this method for each platform.  (Or fix os to have
  1394 // some inheritance structure and use subclassing.  Sigh.)
  1395 // If you want some platform to always or never behave as a server
  1396 // class machine, change the setting of AlwaysActAsServerClassMachine
  1397 // and NeverActAsServerClassMachine in globals*.hpp.
  1398 bool os::is_server_class_machine() {
  1399   // First check for the early returns
  1400   if (NeverActAsServerClassMachine) {
  1401     return false;
  1403   if (AlwaysActAsServerClassMachine) {
  1404     return true;
  1406   // Then actually look at the machine
  1407   bool         result            = false;
  1408   const unsigned int    server_processors = 2;
  1409   const julong server_memory     = 2UL * G;
  1410   // We seem not to get our full complement of memory.
  1411   //     We allow some part (1/8?) of the memory to be "missing",
  1412   //     based on the sizes of DIMMs, and maybe graphics cards.
  1413   const julong missing_memory   = 256UL * M;
  1415   /* Is this a server class machine? */
  1416   if ((os::active_processor_count() >= (int)server_processors) &&
  1417       (os::physical_memory() >= (server_memory - missing_memory))) {
  1418     const unsigned int logical_processors =
  1419       VM_Version::logical_processors_per_package();
  1420     if (logical_processors > 1) {
  1421       const unsigned int physical_packages =
  1422         os::active_processor_count() / logical_processors;
  1423       if (physical_packages > server_processors) {
  1424         result = true;
  1426     } else {
  1427       result = true;
  1430   return result;
  1433 void os::initialize_initial_active_processor_count() {
  1434   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
  1435   _initial_active_processor_count = active_processor_count();
  1438 void os::SuspendedThreadTask::run() {
  1439   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
  1440   internal_do_task();
  1441   _done = true;
  1444 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1445   return os::pd_create_stack_guard_pages(addr, bytes);
  1448 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1449   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1450   if (result != NULL) {
  1451     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1454   return result;
  1457 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
  1458    MEMFLAGS flags) {
  1459   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1460   if (result != NULL) {
  1461     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1462     MemTracker::record_virtual_memory_type((address)result, flags);
  1465   return result;
  1468 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1469   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1470   if (result != NULL) {
  1471     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1473   return result;
  1476 void os::split_reserved_memory(char *base, size_t size,
  1477                                  size_t split, bool realloc) {
  1478   pd_split_reserved_memory(base, size, split, realloc);
  1481 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1482   bool res = pd_commit_memory(addr, bytes, executable);
  1483   if (res) {
  1484     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1486   return res;
  1489 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1490                               bool executable) {
  1491   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1492   if (res) {
  1493     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1495   return res;
  1498 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
  1499                                const char* mesg) {
  1500   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
  1501   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1504 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
  1505                                bool executable, const char* mesg) {
  1506   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
  1507   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1510 bool os::uncommit_memory(char* addr, size_t bytes) {
  1511   bool res;
  1512   if (MemTracker::tracking_level() > NMT_minimal) {
  1513     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
  1514     res = pd_uncommit_memory(addr, bytes);
  1515     if (res) {
  1516       tkr.record((address)addr, bytes);
  1518   } else {
  1519     res = pd_uncommit_memory(addr, bytes);
  1521   return res;
  1524 bool os::release_memory(char* addr, size_t bytes) {
  1525   bool res;
  1526   if (MemTracker::tracking_level() > NMT_minimal) {
  1527     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1528     res = pd_release_memory(addr, bytes);
  1529     if (res) {
  1530       tkr.record((address)addr, bytes);
  1532   } else {
  1533     res = pd_release_memory(addr, bytes);
  1535   return res;
  1538 void os::pretouch_memory(char* start, char* end) {
  1539   for (volatile char *p = start; p < end; p += os::vm_page_size()) {
  1540     *p = 0;
  1544 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1545                            char *addr, size_t bytes, bool read_only,
  1546                            bool allow_exec) {
  1547   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1548   if (result != NULL) {
  1549     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
  1551   return result;
  1554 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1555                              char *addr, size_t bytes, bool read_only,
  1556                              bool allow_exec) {
  1557   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1558                     read_only, allow_exec);
  1561 bool os::unmap_memory(char *addr, size_t bytes) {
  1562   bool result;
  1563   if (MemTracker::tracking_level() > NMT_minimal) {
  1564     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1565     result = pd_unmap_memory(addr, bytes);
  1566     if (result) {
  1567       tkr.record((address)addr, bytes);
  1569   } else {
  1570     result = pd_unmap_memory(addr, bytes);
  1572   return result;
  1575 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1576   pd_free_memory(addr, bytes, alignment_hint);
  1579 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1580   pd_realign_memory(addr, bytes, alignment_hint);
  1583 #ifndef TARGET_OS_FAMILY_windows
  1584 /* try to switch state from state "from" to state "to"
  1585  * returns the state set after the method is complete
  1586  */
  1587 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
  1588                                                          os::SuspendResume::State to)
  1590   os::SuspendResume::State result =
  1591     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
  1592   if (result == from) {
  1593     // success
  1594     return to;
  1596   return result;
  1598 #endif
  1600 /////////////// Unit tests ///////////////
  1602 #ifndef PRODUCT
  1604 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
  1606 class TestOS : AllStatic {
  1607   static size_t small_page_size() {
  1608     return os::vm_page_size();
  1611   static size_t large_page_size() {
  1612     const size_t large_page_size_example = 4 * M;
  1613     return os::page_size_for_region_aligned(large_page_size_example, 1);
  1616   static void test_page_size_for_region_aligned() {
  1617     if (UseLargePages) {
  1618       const size_t small_page = small_page_size();
  1619       const size_t large_page = large_page_size();
  1621       if (large_page > small_page) {
  1622         size_t num_small_pages_in_large = large_page / small_page;
  1623         size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
  1625         assert_eq(page, small_page);
  1630   static void test_page_size_for_region_alignment() {
  1631     if (UseLargePages) {
  1632       const size_t small_page = small_page_size();
  1633       const size_t large_page = large_page_size();
  1634       if (large_page > small_page) {
  1635         const size_t unaligned_region = large_page + 17;
  1636         size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
  1637         assert_eq(page, small_page);
  1639         const size_t num_pages = 5;
  1640         const size_t aligned_region = large_page * num_pages;
  1641         page = os::page_size_for_region_aligned(aligned_region, num_pages);
  1642         assert_eq(page, large_page);
  1647   static void test_page_size_for_region_unaligned() {
  1648     if (UseLargePages) {
  1649       // Given exact page size, should return that page size.
  1650       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
  1651         size_t expected = os::_page_sizes[i];
  1652         size_t actual = os::page_size_for_region_unaligned(expected, 1);
  1653         assert_eq(expected, actual);
  1656       // Given slightly larger size than a page size, return the page size.
  1657       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
  1658         size_t expected = os::_page_sizes[i];
  1659         size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
  1660         assert_eq(expected, actual);
  1663       // Given a slightly smaller size than a page size,
  1664       // return the next smaller page size.
  1665       if (os::_page_sizes[1] > os::_page_sizes[0]) {
  1666         size_t expected = os::_page_sizes[0];
  1667         size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
  1668         assert_eq(actual, expected);
  1671       // Return small page size for values less than a small page.
  1672       size_t small_page = small_page_size();
  1673       size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
  1674       assert_eq(small_page, actual);
  1678  public:
  1679   static void run_tests() {
  1680     test_page_size_for_region_aligned();
  1681     test_page_size_for_region_alignment();
  1682     test_page_size_for_region_unaligned();
  1684 };
  1686 void TestOS_test() {
  1687   TestOS::run_tests();
  1690 #endif // PRODUCT

mercurial