src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 09 Sep 2014 00:05:25 +0200

author
sjohanss
date
Tue, 09 Sep 2014 00:05:25 +0200
changeset 7131
d35872270666
parent 7118
227a9e5e4b4a
child 7195
c02ec279b062
permissions
-rw-r--r--

8057658: Enable G1 FullGC extensions
Summary: Refactored the G1 FullGC code to enable it to be extended.
Reviewed-by: mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1AllocationContext.hpp"
    29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
    30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    31 #include "gc_implementation/g1/survRateGroup.hpp"
    32 #include "gc_implementation/shared/ageTable.hpp"
    33 #include "gc_implementation/shared/spaceDecorator.hpp"
    34 #include "memory/space.inline.hpp"
    35 #include "memory/watermark.hpp"
    36 #include "utilities/macros.hpp"
    38 #if INCLUDE_ALL_GCS
    40 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    41 // can be collected independently.
    43 // NOTE: Although a HeapRegion is a Space, its
    44 // Space::initDirtyCardClosure method must not be called.
    45 // The problem is that the existence of this method breaks
    46 // the independence of barrier sets from remembered sets.
    47 // The solution is to remove this method from the definition
    48 // of a Space.
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    54 class nmethod;
    56 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    57 #define HR_FORMAT_PARAMS(_hr_) \
    58                 (_hr_)->hrm_index(), \
    59                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    60                 (_hr_)->startsHumongous() ? "HS" : \
    61                 (_hr_)->continuesHumongous() ? "HC" : \
    62                 !(_hr_)->is_empty() ? "O" : "F", \
    63                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    65 // sentinel value for hrm_index
    66 #define G1_NO_HRM_INDEX ((uint) -1)
    68 // A dirty card to oop closure for heap regions. It
    69 // knows how to get the G1 heap and how to use the bitmap
    70 // in the concurrent marker used by G1 to filter remembered
    71 // sets.
    73 class HeapRegionDCTOC : public DirtyCardToOopClosure {
    74 public:
    75   // Specification of possible DirtyCardToOopClosure filtering.
    76   enum FilterKind {
    77     NoFilterKind,
    78     IntoCSFilterKind,
    79     OutOfRegionFilterKind
    80   };
    82 protected:
    83   HeapRegion* _hr;
    84   FilterKind _fk;
    85   G1CollectedHeap* _g1;
    87   // Walk the given memory region from bottom to (actual) top
    88   // looking for objects and applying the oop closure (_cl) to
    89   // them. The base implementation of this treats the area as
    90   // blocks, where a block may or may not be an object. Sub-
    91   // classes should override this to provide more accurate
    92   // or possibly more efficient walking.
    93   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
    95 public:
    96   HeapRegionDCTOC(G1CollectedHeap* g1,
    97                   HeapRegion* hr, ExtendedOopClosure* cl,
    98                   CardTableModRefBS::PrecisionStyle precision,
    99                   FilterKind fk);
   100 };
   102 // The complicating factor is that BlockOffsetTable diverged
   103 // significantly, and we need functionality that is only in the G1 version.
   104 // So I copied that code, which led to an alternate G1 version of
   105 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   106 // be reconciled, then G1OffsetTableContigSpace could go away.
   108 // The idea behind time stamps is the following. Doing a save_marks on
   109 // all regions at every GC pause is time consuming (if I remember
   110 // well, 10ms or so). So, we would like to do that only for regions
   111 // that are GC alloc regions. To achieve this, we use time
   112 // stamps. For every evacuation pause, G1CollectedHeap generates a
   113 // unique time stamp (essentially a counter that gets
   114 // incremented). Every time we want to call save_marks on a region,
   115 // we set the saved_mark_word to top and also copy the current GC
   116 // time stamp to the time stamp field of the space. Reading the
   117 // saved_mark_word involves checking the time stamp of the
   118 // region. If it is the same as the current GC time stamp, then we
   119 // can safely read the saved_mark_word field, as it is valid. If the
   120 // time stamp of the region is not the same as the current GC time
   121 // stamp, then we instead read top, as the saved_mark_word field is
   122 // invalid. Time stamps (on the regions and also on the
   123 // G1CollectedHeap) are reset at every cleanup (we iterate over
   124 // the regions anyway) and at the end of a Full GC. The current scheme
   125 // that uses sequential unsigned ints will fail only if we have 4b
   126 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   127 class G1OffsetTableContigSpace: public CompactibleSpace {
   128   friend class VMStructs;
   129   HeapWord* _top;
   130  protected:
   131   G1BlockOffsetArrayContigSpace _offsets;
   132   Mutex _par_alloc_lock;
   133   volatile unsigned _gc_time_stamp;
   134   // When we need to retire an allocation region, while other threads
   135   // are also concurrently trying to allocate into it, we typically
   136   // allocate a dummy object at the end of the region to ensure that
   137   // no more allocations can take place in it. However, sometimes we
   138   // want to know where the end of the last "real" object we allocated
   139   // into the region was and this is what this keeps track.
   140   HeapWord* _pre_dummy_top;
   142  public:
   143   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   144                            MemRegion mr);
   146   void set_top(HeapWord* value) { _top = value; }
   147   HeapWord* top() const { return _top; }
   149  protected:
   150   // Reset the G1OffsetTableContigSpace.
   151   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   153   HeapWord** top_addr() { return &_top; }
   154   // Allocation helpers (return NULL if full).
   155   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   156   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   158  public:
   159   void reset_after_compaction() { set_top(compaction_top()); }
   161   size_t used() const { return byte_size(bottom(), top()); }
   162   size_t free() const { return byte_size(top(), end()); }
   163   bool is_free_block(const HeapWord* p) const { return p >= top(); }
   165   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   167   void object_iterate(ObjectClosure* blk);
   168   void safe_object_iterate(ObjectClosure* blk);
   170   void set_bottom(HeapWord* value);
   171   void set_end(HeapWord* value);
   173   virtual HeapWord* saved_mark_word() const;
   174   void record_top_and_timestamp();
   175   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   176   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   178   // See the comment above in the declaration of _pre_dummy_top for an
   179   // explanation of what it is.
   180   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   181     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   182     _pre_dummy_top = pre_dummy_top;
   183   }
   184   HeapWord* pre_dummy_top() {
   185     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   186   }
   187   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   189   virtual void clear(bool mangle_space);
   191   HeapWord* block_start(const void* p);
   192   HeapWord* block_start_const(const void* p) const;
   194   void prepare_for_compaction(CompactPoint* cp);
   196   // Add offset table update.
   197   virtual HeapWord* allocate(size_t word_size);
   198   HeapWord* par_allocate(size_t word_size);
   200   // MarkSweep support phase3
   201   virtual HeapWord* initialize_threshold();
   202   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   204   virtual void print() const;
   206   void reset_bot() {
   207     _offsets.reset_bot();
   208   }
   210   void update_bot_for_object(HeapWord* start, size_t word_size) {
   211     _offsets.alloc_block(start, word_size);
   212   }
   214   void print_bot_on(outputStream* out) {
   215     _offsets.print_on(out);
   216   }
   217 };
   219 class HeapRegion: public G1OffsetTableContigSpace {
   220   friend class VMStructs;
   221  private:
   223   enum HumongousType {
   224     NotHumongous = 0,
   225     StartsHumongous,
   226     ContinuesHumongous
   227   };
   229   // The remembered set for this region.
   230   // (Might want to make this "inline" later, to avoid some alloc failure
   231   // issues.)
   232   HeapRegionRemSet* _rem_set;
   234   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   236  protected:
   237   // The index of this region in the heap region sequence.
   238   uint  _hrm_index;
   240   AllocationContext_t _allocation_context;
   242   HumongousType _humongous_type;
   243   // For a humongous region, region in which it starts.
   244   HeapRegion* _humongous_start_region;
   245   // For the start region of a humongous sequence, it's original end().
   246   HeapWord* _orig_end;
   248   // True iff the region is in current collection_set.
   249   bool _in_collection_set;
   251   // True iff an attempt to evacuate an object in the region failed.
   252   bool _evacuation_failed;
   254   // A heap region may be a member one of a number of special subsets, each
   255   // represented as linked lists through the field below.  Currently, there
   256   // is only one set:
   257   //   The collection set.
   258   HeapRegion* _next_in_special_set;
   260   // next region in the young "generation" region set
   261   HeapRegion* _next_young_region;
   263   // Next region whose cards need cleaning
   264   HeapRegion* _next_dirty_cards_region;
   266   // Fields used by the HeapRegionSetBase class and subclasses.
   267   HeapRegion* _next;
   268   HeapRegion* _prev;
   269 #ifdef ASSERT
   270   HeapRegionSetBase* _containing_set;
   271 #endif // ASSERT
   273   // For parallel heapRegion traversal.
   274   jint _claimed;
   276   // We use concurrent marking to determine the amount of live data
   277   // in each heap region.
   278   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   279   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   281   // The calculated GC efficiency of the region.
   282   double _gc_efficiency;
   284   enum YoungType {
   285     NotYoung,                   // a region is not young
   286     Young,                      // a region is young
   287     Survivor                    // a region is young and it contains survivors
   288   };
   290   volatile YoungType _young_type;
   291   int  _young_index_in_cset;
   292   SurvRateGroup* _surv_rate_group;
   293   int  _age_index;
   295   // The start of the unmarked area. The unmarked area extends from this
   296   // word until the top and/or end of the region, and is the part
   297   // of the region for which no marking was done, i.e. objects may
   298   // have been allocated in this part since the last mark phase.
   299   // "prev" is the top at the start of the last completed marking.
   300   // "next" is the top at the start of the in-progress marking (if any.)
   301   HeapWord* _prev_top_at_mark_start;
   302   HeapWord* _next_top_at_mark_start;
   303   // If a collection pause is in progress, this is the top at the start
   304   // of that pause.
   306   void init_top_at_mark_start() {
   307     assert(_prev_marked_bytes == 0 &&
   308            _next_marked_bytes == 0,
   309            "Must be called after zero_marked_bytes.");
   310     HeapWord* bot = bottom();
   311     _prev_top_at_mark_start = bot;
   312     _next_top_at_mark_start = bot;
   313   }
   315   void set_young_type(YoungType new_type) {
   316     //assert(_young_type != new_type, "setting the same type" );
   317     // TODO: add more assertions here
   318     _young_type = new_type;
   319   }
   321   // Cached attributes used in the collection set policy information
   323   // The RSet length that was added to the total value
   324   // for the collection set.
   325   size_t _recorded_rs_length;
   327   // The predicted elapsed time that was added to total value
   328   // for the collection set.
   329   double _predicted_elapsed_time_ms;
   331   // The predicted number of bytes to copy that was added to
   332   // the total value for the collection set.
   333   size_t _predicted_bytes_to_copy;
   335  public:
   336   HeapRegion(uint hrm_index,
   337              G1BlockOffsetSharedArray* sharedOffsetArray,
   338              MemRegion mr);
   340   // Initializing the HeapRegion not only resets the data structure, but also
   341   // resets the BOT for that heap region.
   342   // The default values for clear_space means that we will do the clearing if
   343   // there's clearing to be done ourselves. We also always mangle the space.
   344   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
   346   static int    LogOfHRGrainBytes;
   347   static int    LogOfHRGrainWords;
   349   static size_t GrainBytes;
   350   static size_t GrainWords;
   351   static size_t CardsPerRegion;
   353   static size_t align_up_to_region_byte_size(size_t sz) {
   354     return (sz + (size_t) GrainBytes - 1) &
   355                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   356   }
   358   static size_t max_region_size();
   360   // It sets up the heap region size (GrainBytes / GrainWords), as
   361   // well as other related fields that are based on the heap region
   362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   363   // CardsPerRegion). All those fields are considered constant
   364   // throughout the JVM's execution, therefore they should only be set
   365   // up once during initialization time.
   366   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   368   enum ClaimValues {
   369     InitialClaimValue          = 0,
   370     FinalCountClaimValue       = 1,
   371     NoteEndClaimValue          = 2,
   372     ScrubRemSetClaimValue      = 3,
   373     ParVerifyClaimValue        = 4,
   374     RebuildRSClaimValue        = 5,
   375     ParEvacFailureClaimValue   = 6,
   376     AggregateCountClaimValue   = 7,
   377     VerifyCountClaimValue      = 8,
   378     ParMarkRootClaimValue      = 9
   379   };
   381   // All allocated blocks are occupied by objects in a HeapRegion
   382   bool block_is_obj(const HeapWord* p) const;
   384   // Returns the object size for all valid block starts
   385   // and the amount of unallocated words if called on top()
   386   size_t block_size(const HeapWord* p) const;
   388   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
   389   inline HeapWord* allocate_no_bot_updates(size_t word_size);
   391   // If this region is a member of a HeapRegionManager, the index in that
   392   // sequence, otherwise -1.
   393   uint hrm_index() const { return _hrm_index; }
   395   // The number of bytes marked live in the region in the last marking phase.
   396   size_t marked_bytes()    { return _prev_marked_bytes; }
   397   size_t live_bytes() {
   398     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   399   }
   401   // The number of bytes counted in the next marking.
   402   size_t next_marked_bytes() { return _next_marked_bytes; }
   403   // The number of bytes live wrt the next marking.
   404   size_t next_live_bytes() {
   405     return
   406       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   407   }
   409   // A lower bound on the amount of garbage bytes in the region.
   410   size_t garbage_bytes() {
   411     size_t used_at_mark_start_bytes =
   412       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   413     assert(used_at_mark_start_bytes >= marked_bytes(),
   414            "Can't mark more than we have.");
   415     return used_at_mark_start_bytes - marked_bytes();
   416   }
   418   // Return the amount of bytes we'll reclaim if we collect this
   419   // region. This includes not only the known garbage bytes in the
   420   // region but also any unallocated space in it, i.e., [top, end),
   421   // since it will also be reclaimed if we collect the region.
   422   size_t reclaimable_bytes() {
   423     size_t known_live_bytes = live_bytes();
   424     assert(known_live_bytes <= capacity(), "sanity");
   425     return capacity() - known_live_bytes;
   426   }
   428   // An upper bound on the number of live bytes in the region.
   429   size_t max_live_bytes() { return used() - garbage_bytes(); }
   431   void add_to_marked_bytes(size_t incr_bytes) {
   432     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   433     assert(_next_marked_bytes <= used(), "invariant" );
   434   }
   436   void zero_marked_bytes()      {
   437     _prev_marked_bytes = _next_marked_bytes = 0;
   438   }
   440   bool isHumongous() const { return _humongous_type != NotHumongous; }
   441   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   442   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   443   // For a humongous region, region in which it starts.
   444   HeapRegion* humongous_start_region() const {
   445     return _humongous_start_region;
   446   }
   448   // Return the number of distinct regions that are covered by this region:
   449   // 1 if the region is not humongous, >= 1 if the region is humongous.
   450   uint region_num() const {
   451     if (!isHumongous()) {
   452       return 1U;
   453     } else {
   454       assert(startsHumongous(), "doesn't make sense on HC regions");
   455       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   456       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   457     }
   458   }
   460   // Return the index + 1 of the last HC regions that's associated
   461   // with this HS region.
   462   uint last_hc_index() const {
   463     assert(startsHumongous(), "don't call this otherwise");
   464     return hrm_index() + region_num();
   465   }
   467   // Same as Space::is_in_reserved, but will use the original size of the region.
   468   // The original size is different only for start humongous regions. They get
   469   // their _end set up to be the end of the last continues region of the
   470   // corresponding humongous object.
   471   bool is_in_reserved_raw(const void* p) const {
   472     return _bottom <= p && p < _orig_end;
   473   }
   475   // Makes the current region be a "starts humongous" region, i.e.,
   476   // the first region in a series of one or more contiguous regions
   477   // that will contain a single "humongous" object. The two parameters
   478   // are as follows:
   479   //
   480   // new_top : The new value of the top field of this region which
   481   // points to the end of the humongous object that's being
   482   // allocated. If there is more than one region in the series, top
   483   // will lie beyond this region's original end field and on the last
   484   // region in the series.
   485   //
   486   // new_end : The new value of the end field of this region which
   487   // points to the end of the last region in the series. If there is
   488   // one region in the series (namely: this one) end will be the same
   489   // as the original end of this region.
   490   //
   491   // Updating top and end as described above makes this region look as
   492   // if it spans the entire space taken up by all the regions in the
   493   // series and an single allocation moved its top to new_top. This
   494   // ensures that the space (capacity / allocated) taken up by all
   495   // humongous regions can be calculated by just looking at the
   496   // "starts humongous" regions and by ignoring the "continues
   497   // humongous" regions.
   498   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   500   // Makes the current region be a "continues humongous'
   501   // region. first_hr is the "start humongous" region of the series
   502   // which this region will be part of.
   503   void set_continuesHumongous(HeapRegion* first_hr);
   505   // Unsets the humongous-related fields on the region.
   506   void set_notHumongous();
   508   // If the region has a remembered set, return a pointer to it.
   509   HeapRegionRemSet* rem_set() const {
   510     return _rem_set;
   511   }
   513   // True iff the region is in current collection_set.
   514   bool in_collection_set() const {
   515     return _in_collection_set;
   516   }
   517   void set_in_collection_set(bool b) {
   518     _in_collection_set = b;
   519   }
   520   HeapRegion* next_in_collection_set() {
   521     assert(in_collection_set(), "should only invoke on member of CS.");
   522     assert(_next_in_special_set == NULL ||
   523            _next_in_special_set->in_collection_set(),
   524            "Malformed CS.");
   525     return _next_in_special_set;
   526   }
   527   void set_next_in_collection_set(HeapRegion* r) {
   528     assert(in_collection_set(), "should only invoke on member of CS.");
   529     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   530     _next_in_special_set = r;
   531   }
   533   void set_allocation_context(AllocationContext_t context) {
   534     _allocation_context = context;
   535   }
   537   AllocationContext_t  allocation_context() const {
   538     return _allocation_context;
   539   }
   541   // Methods used by the HeapRegionSetBase class and subclasses.
   543   // Getter and setter for the next and prev fields used to link regions into
   544   // linked lists.
   545   HeapRegion* next()              { return _next; }
   546   HeapRegion* prev()              { return _prev; }
   548   void set_next(HeapRegion* next) { _next = next; }
   549   void set_prev(HeapRegion* prev) { _prev = prev; }
   551   // Every region added to a set is tagged with a reference to that
   552   // set. This is used for doing consistency checking to make sure that
   553   // the contents of a set are as they should be and it's only
   554   // available in non-product builds.
   555 #ifdef ASSERT
   556   void set_containing_set(HeapRegionSetBase* containing_set) {
   557     assert((containing_set == NULL && _containing_set != NULL) ||
   558            (containing_set != NULL && _containing_set == NULL),
   559            err_msg("containing_set: "PTR_FORMAT" "
   560                    "_containing_set: "PTR_FORMAT,
   561                    p2i(containing_set), p2i(_containing_set)));
   563     _containing_set = containing_set;
   564   }
   566   HeapRegionSetBase* containing_set() { return _containing_set; }
   567 #else // ASSERT
   568   void set_containing_set(HeapRegionSetBase* containing_set) { }
   570   // containing_set() is only used in asserts so there's no reason
   571   // to provide a dummy version of it.
   572 #endif // ASSERT
   574   HeapRegion* get_next_young_region() { return _next_young_region; }
   575   void set_next_young_region(HeapRegion* hr) {
   576     _next_young_region = hr;
   577   }
   579   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   580   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   581   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   582   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   584   HeapWord* orig_end() const { return _orig_end; }
   586   // Reset HR stuff to default values.
   587   void hr_clear(bool par, bool clear_space, bool locked = false);
   588   void par_clear();
   590   // Get the start of the unmarked area in this region.
   591   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   592   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   594   // Note the start or end of marking. This tells the heap region
   595   // that the collector is about to start or has finished (concurrently)
   596   // marking the heap.
   598   // Notify the region that concurrent marking is starting. Initialize
   599   // all fields related to the next marking info.
   600   inline void note_start_of_marking();
   602   // Notify the region that concurrent marking has finished. Copy the
   603   // (now finalized) next marking info fields into the prev marking
   604   // info fields.
   605   inline void note_end_of_marking();
   607   // Notify the region that it will be used as to-space during a GC
   608   // and we are about to start copying objects into it.
   609   inline void note_start_of_copying(bool during_initial_mark);
   611   // Notify the region that it ceases being to-space during a GC and
   612   // we will not copy objects into it any more.
   613   inline void note_end_of_copying(bool during_initial_mark);
   615   // Notify the region that we are about to start processing
   616   // self-forwarded objects during evac failure handling.
   617   void note_self_forwarding_removal_start(bool during_initial_mark,
   618                                           bool during_conc_mark);
   620   // Notify the region that we have finished processing self-forwarded
   621   // objects during evac failure handling.
   622   void note_self_forwarding_removal_end(bool during_initial_mark,
   623                                         bool during_conc_mark,
   624                                         size_t marked_bytes);
   626   // Returns "false" iff no object in the region was allocated when the
   627   // last mark phase ended.
   628   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   630   void reset_during_compaction() {
   631     assert(isHumongous() && startsHumongous(),
   632            "should only be called for starts humongous regions");
   634     zero_marked_bytes();
   635     init_top_at_mark_start();
   636   }
   638   void calc_gc_efficiency(void);
   639   double gc_efficiency() { return _gc_efficiency;}
   641   bool is_young() const     { return _young_type != NotYoung; }
   642   bool is_survivor() const  { return _young_type == Survivor; }
   644   int  young_index_in_cset() const { return _young_index_in_cset; }
   645   void set_young_index_in_cset(int index) {
   646     assert( (index == -1) || is_young(), "pre-condition" );
   647     _young_index_in_cset = index;
   648   }
   650   int age_in_surv_rate_group() {
   651     assert( _surv_rate_group != NULL, "pre-condition" );
   652     assert( _age_index > -1, "pre-condition" );
   653     return _surv_rate_group->age_in_group(_age_index);
   654   }
   656   void record_surv_words_in_group(size_t words_survived) {
   657     assert( _surv_rate_group != NULL, "pre-condition" );
   658     assert( _age_index > -1, "pre-condition" );
   659     int age_in_group = age_in_surv_rate_group();
   660     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   661   }
   663   int age_in_surv_rate_group_cond() {
   664     if (_surv_rate_group != NULL)
   665       return age_in_surv_rate_group();
   666     else
   667       return -1;
   668   }
   670   SurvRateGroup* surv_rate_group() {
   671     return _surv_rate_group;
   672   }
   674   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   675     assert( surv_rate_group != NULL, "pre-condition" );
   676     assert( _surv_rate_group == NULL, "pre-condition" );
   677     assert( is_young(), "pre-condition" );
   679     _surv_rate_group = surv_rate_group;
   680     _age_index = surv_rate_group->next_age_index();
   681   }
   683   void uninstall_surv_rate_group() {
   684     if (_surv_rate_group != NULL) {
   685       assert( _age_index > -1, "pre-condition" );
   686       assert( is_young(), "pre-condition" );
   688       _surv_rate_group = NULL;
   689       _age_index = -1;
   690     } else {
   691       assert( _age_index == -1, "pre-condition" );
   692     }
   693   }
   695   void set_young() { set_young_type(Young); }
   697   void set_survivor() { set_young_type(Survivor); }
   699   void set_not_young() { set_young_type(NotYoung); }
   701   // Determine if an object has been allocated since the last
   702   // mark performed by the collector. This returns true iff the object
   703   // is within the unmarked area of the region.
   704   bool obj_allocated_since_prev_marking(oop obj) const {
   705     return (HeapWord *) obj >= prev_top_at_mark_start();
   706   }
   707   bool obj_allocated_since_next_marking(oop obj) const {
   708     return (HeapWord *) obj >= next_top_at_mark_start();
   709   }
   711   // For parallel heapRegion traversal.
   712   bool claimHeapRegion(int claimValue);
   713   jint claim_value() { return _claimed; }
   714   // Use this carefully: only when you're sure no one is claiming...
   715   void set_claim_value(int claimValue) { _claimed = claimValue; }
   717   // Returns the "evacuation_failed" property of the region.
   718   bool evacuation_failed() { return _evacuation_failed; }
   720   // Sets the "evacuation_failed" property of the region.
   721   void set_evacuation_failed(bool b) {
   722     _evacuation_failed = b;
   724     if (b) {
   725       _next_marked_bytes = 0;
   726     }
   727   }
   729   // Requires that "mr" be entirely within the region.
   730   // Apply "cl->do_object" to all objects that intersect with "mr".
   731   // If the iteration encounters an unparseable portion of the region,
   732   // or if "cl->abort()" is true after a closure application,
   733   // terminate the iteration and return the address of the start of the
   734   // subregion that isn't done.  (The two can be distinguished by querying
   735   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   736   // completed.
   737   HeapWord*
   738   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   740   // filter_young: if true and the region is a young region then we
   741   // skip the iteration.
   742   // card_ptr: if not NULL, and we decide that the card is not young
   743   // and we iterate over it, we'll clean the card before we start the
   744   // iteration.
   745   HeapWord*
   746   oops_on_card_seq_iterate_careful(MemRegion mr,
   747                                    FilterOutOfRegionClosure* cl,
   748                                    bool filter_young,
   749                                    jbyte* card_ptr);
   751   // A version of block start that is guaranteed to find *some* block
   752   // boundary at or before "p", but does not object iteration, and may
   753   // therefore be used safely when the heap is unparseable.
   754   HeapWord* block_start_careful(const void* p) const {
   755     return _offsets.block_start_careful(p);
   756   }
   758   // Requires that "addr" is within the region.  Returns the start of the
   759   // first ("careful") block that starts at or after "addr", or else the
   760   // "end" of the region if there is no such block.
   761   HeapWord* next_block_start_careful(HeapWord* addr);
   763   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   764   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   765   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   767   void set_recorded_rs_length(size_t rs_length) {
   768     _recorded_rs_length = rs_length;
   769   }
   771   void set_predicted_elapsed_time_ms(double ms) {
   772     _predicted_elapsed_time_ms = ms;
   773   }
   775   void set_predicted_bytes_to_copy(size_t bytes) {
   776     _predicted_bytes_to_copy = bytes;
   777   }
   779   virtual CompactibleSpace* next_compaction_space() const;
   781   virtual void reset_after_compaction();
   783   // Routines for managing a list of code roots (attached to the
   784   // this region's RSet) that point into this heap region.
   785   void add_strong_code_root(nmethod* nm);
   786   void remove_strong_code_root(nmethod* nm);
   788   // During a collection, migrate the successfully evacuated
   789   // strong code roots that referenced into this region to the
   790   // new regions that they now point into. Unsuccessfully
   791   // evacuated code roots are not migrated.
   792   void migrate_strong_code_roots();
   794   // Applies blk->do_code_blob() to each of the entries in
   795   // the strong code roots list for this region
   796   void strong_code_roots_do(CodeBlobClosure* blk) const;
   798   // Verify that the entries on the strong code root list for this
   799   // region are live and include at least one pointer into this region.
   800   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   802   void print() const;
   803   void print_on(outputStream* st) const;
   805   // vo == UsePrevMarking  -> use "prev" marking information,
   806   // vo == UseNextMarking -> use "next" marking information
   807   // vo == UseMarkWord    -> use the mark word in the object header
   808   //
   809   // NOTE: Only the "prev" marking information is guaranteed to be
   810   // consistent most of the time, so most calls to this should use
   811   // vo == UsePrevMarking.
   812   // Currently, there is only one case where this is called with
   813   // vo == UseNextMarking, which is to verify the "next" marking
   814   // information at the end of remark.
   815   // Currently there is only one place where this is called with
   816   // vo == UseMarkWord, which is to verify the marking during a
   817   // full GC.
   818   void verify(VerifyOption vo, bool *failures) const;
   820   // Override; it uses the "prev" marking information
   821   virtual void verify() const;
   822 };
   824 // HeapRegionClosure is used for iterating over regions.
   825 // Terminates the iteration when the "doHeapRegion" method returns "true".
   826 class HeapRegionClosure : public StackObj {
   827   friend class HeapRegionManager;
   828   friend class G1CollectedHeap;
   830   bool _complete;
   831   void incomplete() { _complete = false; }
   833  public:
   834   HeapRegionClosure(): _complete(true) {}
   836   // Typically called on each region until it returns true.
   837   virtual bool doHeapRegion(HeapRegion* r) = 0;
   839   // True after iteration if the closure was applied to all heap regions
   840   // and returned "false" in all cases.
   841   bool complete() { return _complete; }
   842 };
   844 #endif // INCLUDE_ALL_GCS
   846 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial